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Abstract. A general theory to count the number of ‘local minimum states’ in an Ising spin 
glass is developed. The problem is reduced to finding the partition function of an interact- 
ing non-random spin system with an imaginary spin weight function. For the infinite- 
ranged spin glass with Gaussian bond distribution, we find (go) = 2°.287435 fo c the 
average number of the local minimum states. The distribution function for the energies of 
these states is also studied. The upper limit of the average ground state energy per spin of 
the infinite-ranged spin glass is found to be - f lk 2%. 

1. Definition of the problem 

Since the theoretical prediction of the existence of a continuous phase transition in a 
spin glass (Edwards and Anderson 1975), there has been considerable interest in the 
understanding of the low-temperature properties of a spin glass, a particular problem 
of which is the ground state (Edwards and Anderson 1976, Edwards 1976). The details 
of the low-temperature phase, however, remain largely unknown. The difficulty is due 
mainly to the fact that a random-ordered state has a very large number of low-lying 
local minimum states which are approximately degenerate in energy. One of these 
local minimum states is a ‘global’ ground state which is stable for any kind of pertur- 
bation. Since the experimental measurements are mainly concerned with metastable 
relaxation phenomena, a study of these local minimum states seems to be crucial for 
understanding the low-temperature phase of a spin glass. 

The first step towards this was developed by Edwards and Anderson (1976) by 
counting the number of metastable states and also by finding a probability distribu- 
tion of their energies in a model spin-glass system (hereafter referred to as the EA 
model). Later, more elaborate studies were developed in a random Ising spin system 
with competing exchange interactions + J  (frustration model) (Toulouse 1977, Kirk- 
patrick 1977, Vannimenus and Toulouse 1977). The method, however, is heavily 
dependent on computer calculations. The purpose of this paper is to develop a simple 
analytic theory to understand the above mentioned local minimum states. 

We start with the EA model; 

x = -  c J i j  bibj (1.1) 
(Li) 
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where oi is an king spin (oi = k 1) on a lattice point i and Jij is a nearest-neighbour 
random exchange interaction of which the probability distribution is assumed to be 
Gaussian with a vanishing mean value: 

The summation should be taken over all nearest-neighbouring pairs (i,J). For a given 
configuration of spins [oil at zero temperature, the spin on the lattice point i is 
affected by the internal magnetic field 

hi = J i j o j  
j 

produced by surrounding spins. Our conditions of metastability then are defined by 

for all spins oi ( i  = 1,2 , .  . . , N ) .  

Let us consider the local exchange energy 
These conditions are derived by considering the stability to ‘single’ spin flipping. 

6 .  i = - - 0 ,  Jijoj 
j 

for each spin in the starting configuration. After flipping the direction of ci, the local 
energy becomes 

E :  = J i j o j ,  
i 

so that the energy difference is given by 

(1.4) A € .  = e! - E .  = 2oi J . . a .  = 2 i i  
1 -  I 1 I J  J 

j 

which must be positive by definition of the concept of the local minimum. The con- 
ditions (1.3), of course, can say nothing about stability against a simultaneous flip- 
ping of a spin cluster consisting of more than two spins. It is the first diagonal 
condition on the positive definiteness of the energy matrix for small deformations. 
Stability conditions for any type of spin flipping give a global ground state of course. 
The conditions (1.3) indicate that the system has a very large number of metastable 
configurations for a given ( J i j ) ,  and the single spin-flip barriers separating one such 
configuration from a neighbouring one are, in general, not very high. 

This argument can be applied to general n-component classical spins. In the pre- 
vious paper (Edwards and Anderson 1976), a classical X Y  spin system ( n  = 2) was 
studied. For an X Y  model, the Hamiltonian is given by 

where Si (cos Bi, sin Oi) .  The conditions of the minimum energy are then given by 

= positive definite matrix (1.7) 
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where 

as before and the product in (1.6) means the external product in spin space. The first 
condition (1.6) gives Sillhi, i.e. hi = ;+Si. The main condition for positive definiteness 
of the matrix X i j  is given by the positivity of the diagonal elements; i.i 3 0 for all i. Of 
course, these conditions are not sufficient for a true local minimum. In conclusion, the 
conditions 

for all spins Si seem to be essential to characterise the local minimum states. 
The following parts of this paper are devoted to counting the number of local 

minimum states characterised by the conditions ( 1.3) and to finding the energy distri- 
bution of these states. 

2. The average number of the local minimum states 

Let go({Jij]i) be the number of states satisfying the condition (1.3) for a given configur- 
ation of the exchange interactions [Jl,;. The average number of the local minimum 
states is then given by the formula 

In this equation, ( .  . . ) J  denotes the average over all configurations of (.Iij} and Tr, is 
the operation taking the trace of all configurations of the spins. The pre-factor 1/2 is 
included to eliminate the trivial degeneracy of a simultaneous change of the spin 
direction oi -+ -oi (i = 1,2, .  . . , N ) .  The most important point is that the i. integrals 
are limited to the half space. Using the integral representation of the 6 function and 
taking the Gaussian average for [Jij),  equation (2.1) can be written as 

d4 i  Tr, [ exp ( - i 1 4ii.ioi 
i 

The simple variable change 4i -+ oi$i(i = 1,2, . . . , N )  gives a spin-independent form 
of the integrand and therefore Tr, gives 2.’. Hence we find 

(2.3) 
? J o  4I  -+ 4i and i., -+ \. z J o  i., to obtain the where we have rescaled the variables as 



2772 F Tunaka und S F Edwcird.5 

final expression where z is the number of the nearest-neighbouring lattice points. In 
order to get a more familiar expression, we replace the half space integral as 

by inserting the step function e(;.) 
resentation of the step function 

1 (i. > 0) 0 (i. < 0). Using the integral rep- 

d 4  
1 JCO exp(ii.4) e(J.) = 

2x1 4 - i c  

we find our starting formula: 

where the function D(4) is defined by 

where B denotes the principal value. Our problem, therefore, is reduced to finding a 
partition function of a regular system which consists of interacting ‘spins’ {4i) with an 
imaginary spin weight function D ( 4 ) .  The following analysis will be based on the 
formula (2.4). 

3. The cumulant expansion 

Since our problem was converted into a familiar statistical mechanical problem of an 
interacting (non-random) spin system with a particular spin weight function, the 
methods developed in that field can be applied directly. In this section, we evaluate 
(2.4) in a straightforward expansion method which is quite similar to the high- 
temperature series expansion of the partition function of an Ising model, in order to 
get an overall view of the problem. Let us start by rewriting (2.4) as 

where the average ( .  

( .  . . > o  

For example, we find 

(1)o = 

(qp+’ 

Let X be the exponent of equation (3.1) 

(3.3) 
(m = 0, 1,2, ...). 
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Figure 1. Three types of graphs which appear in the second-order cumulant are shown 
with their combinatorial factors. 

We can then expand the right-hand side of equation (3.1) in powers of X by the use 
of the cumulant expansion formula: 

where ( X ) , , c  = ( X ) , ,  ( X 2 ) o , c  = (X'), - ( X ) :  and so on. The first term is easily 
evaluated as follows: 

where zN/2 is the total number of nearest-neighbouring spin pairs. In the second- 
order term, three distinct types of graph appear. These graphs and the associated 
combinatorial factors are shown in figure 1. 

The cumulant can be obtained easily by extracting the O(N) terms in the corre- 
sponding moments : 

( X 2 ) , , ,  = O(N) terms in the moment ( X ' ) ,  

= $ ( - - l  +;)N. 

Combining the results of (3.5) and (3.6), we have 

2 ( g 0 )  = exp[ A 7 t n  + 4 ( - 1 + L) 2z + . . . ] N .  

(3.6) 

(3.7) 

Although it is straightforward to evaluate the higher order cumulants, the series (3.7) 
is unfortunately not a power series of l/z because of the appearance of combinatorial 
factors which include the number z. In the next section, we collect all terms of zeroth 
order in l /z .  

4. Infinite-ranged spin glass 

It is possible to obtain a rigorous solution for the infinite-ranged spin-glass model 
proposed by Sherrington and Kirkpatrick (1975). 

In this model, we have z = N - 1 z N and 
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Substituting the identity 

into (4.1) and neglecting the 0 ( 1 / N )  term, we find 

where the function f ( t )  is defined as 

An elementary calculation gives 

(4.4) 

where @ ( t )  is the accumulated distribution function of the normal distribution. For 
A’+ x. we can evaluate the integral (4.2) by the saddle-poipt method. The condition 
of the saddle point is given by 

df, dt = t - @’(t)’@(t)  = 0 (4.5) 

t* = 0.5061 @(t*) = 0.69361 f ( t * )  = -0.19923. (4.6) 

(4.7) (Yo) = e 

1 ‘  dqh D ( 4 )  ei‘4 = 2 - j- exp( - x2/2) d x  E 2@(t) s-, \.2n I 

which gives the unique solution: 

Hence we find the final solution 
0.19923.Y = 20.28743.V 

Kirkpatrick (1977) has estimated. by the Monte Carlo method, the ground-state de- 
generacy of an Ising spin glass, with J i j  = kJ.  to be as high as 2‘” where c = 0.14 for 
a two-dimensional square lattice. For the model that we are considering here, one 
does not expect such a high degeneracy. essentially because of the fact that, for a 
Gaussian bond distribution. finite clusters which can be turned over with no  energy 
cost at  all form a set of measure zero. The large fraction (4.7) we obtained is therefore 
due to our definition of the local equilibrium states. The degeneracy will be reduced 
substantially if further stability conditions against the flip of clusters are taken into 
account. This problem remains open. 

In appendix 1, correction due to the finite range of the interaction is discussed 
using a simple variational calculation. 

5. Distribution of the local minimum energies 

Our  next problem is to get a distribution for the energies of the local minimum states 
defined by (1.3). Let - A o  be the energy of one of the states satisfying the condition 
(1.3): 
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The distribution function of the local minimum energies then is given by 

Jlr(g0) = JoX F diid(B0 - f C ;.i)Tro(?d(T Jijoj - ;.pi /go({ J}) . (5.2) 

To avoid any mathematical difficulty, we evaluate this by replacing go({J ) )  by its 
average (go) ;  .t”(a0) = P ( 6 , ) / ( g 0 )  where 

i 1 ) J  

This approximation, of course, is not proper to a ‘quenched’ alloy, but the following 
picture will not be far from the real situation as far as go( [ J ) )  is a mild function of { J ) .  

In a procedure quite similar to that used to derive (2.3), we find 

By using the integral - representation of the 6 function again and with the scaled energy 
variable Eo go/\ z Jo, we can rewrite equation (5.4) as 

X X 1 
dp exp( - 2 i p ~ o )  n ~1 D(4i ; p )  exp( - 1 1 4i.j) 

J-e i i < i . j )  
P(8,) = - 

n& J o  J:, 
X 

dp exp(- N p z  - 2ipEo) 
1 =- 

q,& J o  .!-e 

where D ( 4 ;  p )  = exp( - $’,2)/ni(4 - p - ic). 
The problem is reduced to find a partition function of the same interacting regular 

system as before but under a uniform ‘magnetic field’ p in this time. Equation (5.5) is 
our second basic formula. 

It is easy to find the rigorous solution for the infinite-ranged SK model. By defini- 
tion, we set 

i = N - 1 r~ N and J o  = J \ N (5.6)  
to find 

P(8,) = a .!- dp exp( - N p 2  - 2ipEo) 

- 

1 “  dt 
= exp( - N t Z  2) 

X rXX , 2n 

1 

(5 .7)  
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and eo 
r = t + 2ip as new independent variables. We then have 

E o / N  = 8 , jNJ  is the dimensionless energy per spin. Let us choose p and 

(5.9) f ( t , p )  =f(r,,u) = +r' - p2 - 2ip(t - eo) - ln(2@(r)). 

The saddle-point conditions give 

?ff/dr = t - 2ip - @'(r) /@(7)  = 0 

6f/i3p = - 2 [ p  + i(r - eo)] = 0. 

(5.10) 

(5.11) 

Eliminating the parameter p* by using (5.1 l), we find the saddle-point equation for t* 
from (5.10): 

(5.12) 

Substituting the solution T* = r*(c0) of this equation into (5.7), the energy distribution 
can be expressed as 

(5.13) 

for large N apart from the unimportant pre-factor. As for the normalised distribution 
function *$"(eo), one can readily find .Y(c0) z (n(Eo))N where 

(5.14) 

with the use of the result (4.7) for (go). We have solved the equation (5.12) numeri- 
cally. The result is shown in figure 2 in terms of the function n(Eo). 

For deep energy states eo >> 1, @ I / @  is sufficiently small compared with r*, so that 
one finds T* z 2Eo, which gives a Gaussian tail of P(e0); P(e0) - exp( - NE:),  (c0 >> 1). 
In the middle of the distribution, behaves like a displaced Gaussian distribution: 

(5.15) 

We estimated the numerical parameters a and D as a = 050 and D = 0.31 from the 
peak position and the half-width of n(c0). The average and the variance of co are 

T* f @'(T*) /@(T*)  = 260. 

P(c0) = {2@(r*) exp[(r* - eo)' - ( ~ * ) ' / 2 ] } ~  

n(c0) = 2@(r*) exp[(r* - E,,)' - (7* ) ' /2  - 0.199231 

P ( E ~ )  - exp[ - N(co - ~ ) ~ / 2 o ' ]  (Eo 5 1). 

0 0 5  1 0  1. 5 2 0  2 5  

Eo 

Figure 2. Energy distribution of the local minima is shown. The function H(E,,) defined in 
(5.14) is plotted against the dimensionless energy eo per one spin. 
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approximately given by 
0’ 0.09 
N N  

((&,)2) = - = -. ( E O )  = 0.50 (5.16) 

For comparison with other theories, we summarise the results obtained so far: 

2 /n  = 0.79 

l/,/% = 0.39 l o  0.75 - 0.77 

replica (Sherrington and Kirkpatrick 1975) 
TAP (Thouless er al 1977) 
mean random field (Klein 1976) 
Monte Carlo (Kirkpatrick and Sherrington 1978). 

( € 0 )  = 

Our result is lower than that of the mean random field theory (MRF) by Klein (1976) 
and higher than the replica calculation and the Monte Carlo result. (Our eo is defined 
by changing the sign.) Since our condition for a local minimum is a necessary but not 
sufficient condition for a global minimum, it seems appropriate to interpret our result 
as giving an upper limit of the mean ground state energy. 

As for the variance of the energy ((SE,)’) = Nu’, most parts of the number of 
local minimum states are packed within a width of about v/x around the mean value. 
As was discussed by Edwards and Anderson (1976), this fact leads the system to the 
following domain structure. Let us consider a situation in which our system is divided 
into M subsystems, each of which is in one of the g , ( { J } )  local minimum configur- 
ations defined above and has an energy lying in the middle of the distribution. The 
cost of energy mismatching along the boundaries is of the order of about Md- ‘ ) I d  in d 
dimensional space. The energy of the whole system therefore is still lying within the 
width \IN from the mean ground state energy in two dimensions. The system will 
have a long relaxation time to decay into the final lowest state. 

- 

6. Conclusions and discussion 

On the basis of a definition of ‘local minimum states’ which is derived by stability 
conditions for flipping an individual spin, we have developed a general theory of 
counting the number of such states in an Ising spin glass. The energy distribution of 
these local minimum states is also studied. The problem has been found to be equival- 
ent to obtaining a partition function of an interacting regular spin system with a 
particular spin weight function. To examine stability against any kind of flipping of a 
cluster of spins is a difficult problem. Our theory is the first step towards this purpose. 
Extension of our theory to general n component spins seems to be straightforward. A 
detailed study of the X Y  model is reported in the following paper. 
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Appendix 1. Variational calculation of the O(l/z) corrections to (go) 

In this appendix, we study the effect of short-range interaction using a simple varia- 
tional method. We start from equation (2.4). Let us choose a trial single-particle 
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Hamiltonian 

i 

( t  is a variational parameter). We then find 

where the average ( .  . . ) t  is defined by 

For example, we have 

(4i)r = - i A ( t )  (+i>r = - B( t )  ('4.3) 
where A ( t )  = @'(t) /@(t)  and B( t )  = @"(t)/@(t). The first term of the cumulant 
expansion of the average in (A . l )  gives 

Hence we have 

2(g0) t exp - N [ A ( t ) ( t  - A ( t ) / 2 )  - In 2@(t)]. ( '4 .5)  

An extremum condition with respect to t reproduces equation (4.5), i.e. A(t*)  = ?*. 
Under this condition. the second cumulant gives 

after a similar calculation to that in $3, A numerical evaluation gives 

('4.7) (0 1 9 9 2 3  + 0 0656'z)N = 2 ' 0 , 2 8 7 4 3  + 0,0946/z)N (Yo) = e 
Since each spin can move more freely for a short range interaction, O(l/z) correction 
increases the number of local minima. The correction, however, is already small 
enough in any realistic lattice in space dimensions above two. 
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