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The band structure and Fermi surface of calcium 

S. L. ALTMANN, A. R. HARFORDt and R. G. BLAKE 
Department of Metallurgy, University of Oxford, UK 
M S .  received 23rd March 1971 

Abstract. The conduction bands for Ca have been computed with a Slater-type potential 
and it is found that for less than 20% or more than 75% of the exchange term there is no 
overlap between the first and second band. The conduction and core bands, density of 
states, Fermi energy and Fermi surface are computed for an optimum value ofthe exchange. 
It is found that the Fermi surface is connected and agreement with all the known results 
of the de Haas-van Alphen effect is obtained. Although this is in apparent disagreement 
with the results of Vasvari et al. who obtain an unconnected Fermi surface, their Fermi 
level was wrongly located and when the error is corrected a connected surface should 
almost certainly be obtained. The effect of pressure on the Fermi surface and conductivity 
of Ca is discussed. 

1. Introduction 
The band structure of calcium was computed in this department in 1963 (Altmann and 

Cracknell 1964, Cracknell 1964) with the surprising result that, contrary to the free-electron 
prediction, the Fermi surface was small and disconnected, consisting of small pockets of 
holes in the first band and pockets of electrons in the second. It was also found that, when the 
lattice is compressed, the Fermi surface contracts down until it reaches a negligible size: 
Altmann and Cracknell (1964) suggested that anomalies in the electrical conductivity 
of Ca would thereby arise at high pressure. This prediction was verified by the results of 
Stager and Drickamer (1963) which came out almost at the same time. Dr. Bela Vasvari 
continued this work, first in this department and then independently, using a model potential 
(VasvBri et al. 1967) and confirmed substantially the description given above. There were 
nevertheless two differences. The first is purely semantic. When the calcium bands are com- 
puted one finds a crossing point between the first and second bands at Q, (a point of LW) 
which entails the existence of a line of degeneracy between those bands so that a gap between 
them cannot be established. Vasvari and Heine (1967) pointed out therefore that the material 
can become a semimetal but not a semiconductor, which appeared to contradict the work 
of Altmann and Cracknell (1964), who had suggested that Ca might become a semiconductor 
at high pressures. However, Altmann and Cracknell followed the practice, frequent at that 
time, and explicitly adopted by Drickamer (1965, p. 37), of referring to semimetals as well as 
semiconductors with the latter name. Their computations, of course, show the crossing 
point at Q (see Cracknell 1964) and their interpretation, if not their vocabulary, coincided 
with that adopted by Vasvari et al. 

The second difference between the computations of Vasvari et al. and those of Altmann 
and Cracknell is a real one. Not unnaturally, since the potential fields used were different, 
the position of the pockets of holes varies from W for Vasvari et al. to K (see figure 7 for 
the position of these points) for Altmann and Cracknell (1964). We have now studied in 
great detail the effect of the potential field on the band structure of Ca and have found that 
the bands are extremely sensitive to the potential. It now appears that, if the Fermi surface 
were disconnected, the holes would be sited at W. However, we have found it impossible to 
construct a disconnected Fermi surface with holes at W that keeps the exact balance between 
the number of electrons in the second band and the number of holes in the first. We have 

t Now with Burroughs Machines Ltd., City Wall House, Finsbury Street, London EC2 
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also found that the results of Vasvari et al. appear to be in error in this respect and that the 
bands that they computed would lead to a connected Fermi surface. The connected Fermi 
surface which is given by our computations agrees in every detail with the experimental 
results of Condon and Marcus (1964) on the de Haas-van Alphen effect. 

2. Method: interpolation 
A general description of the cellular method of computation that we use is given by Alt- 

mann et al. (1968), who show that the results of the present method agree with those of the 
augmented plane wave method and the Green function method to 0.002 Ryd. However, we 
should like to correct two of the results published in that paper. As shown in it, the empty 
lattice eigenvalues for all symmetry points in k space are correct to O.OOOO1 Ryd, with a 
single error of 0.0001 Ryd. On the other hand, for general k values two errors were found 
between 0.01 and 0.02 Ryd, for expansions up to l = 6.  The programme has been stream- 
lined and higher values of I can now be used without difficulty for general points. The new 
results are shown in table 1 where they are compared with the old ones. It can be seen that 
the new errors are around 09003 Ryd, although they pertain to high energy bands. 

Table 1. Empty fcc lattice eigenvalues (in Ryd) 

Band Exact Calculated 
eigenvalue / = 6  / = 8  

5 2.75 2.762861 2.749796 
6 3.55 3.569161 3.550307 

k = (0.2,0.3,0,4). The lattice constant is 2n. 

In order to obtain the density of states curves, the Fermi energy and a preliminary form 
of the Fermi surface, the eigenvalues are computed over a basic grid of the Brillouin zone 
and interpolated for about 5000 values of k in the basic region of it (1/48 of the Brillouin 
zone). A number of elaborate interpolation procedures have been proposed in the last few 
years but, owing to the fact that we are able to obtain very accurate eigenvalues over a 
fairly close grid, we find that a simple geometrical method, along the lines described by 
Altmann and Bradley (1965) gives excellent accuracy, as shown in table 2.  A small random 
sample of interpolated eigenvalues for a Ca potential is shown in the table, computed with a 
basic grid of 95 points over 1/48 of the Brillouin zone. The largest error in the table is 0.003 
Ryd and from over a hundred eigenvalues similarly examined we are confident that the 
interpolation programme that we have devised should nowhere give errors in excess of 
0.005 Ryd. 

Table 2. Eigenvalues (in Ryd) for Ca. 

(2x)-' x k vector 

0.45 0.45 0.46 
0.36 0.36 0.60 
0.30 0.30 0.40 
0.36 0.36 0.40 
0.25 0.25 0.40 
0.08 0.08 0.12 
0.28 0.16 0.3 1 

Computed value 

0.2252 
0.265 1 
0.1470 
0.1674 
0,1368 
0.0140 
0.1047 

Interpolated 

0.2222 
0.2651 
0.1481 
0.1706 
0.1361 
0.0151 
0.1032 

n = 10.5 au 
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3. The potential fields 
The potential field was obtained by the usual Mattheiss (1964) prescription (see Loucks 

1967), starting from a complete SCF calculation with exchange for neutral Ca. The only 
difference in our case was that the full potential was taken throughout the cell rather than 
constructing a muffin tin potential. The Slater exchange term, - 6~(3p/8rr) ' /~ was introduced, 
where p is the electronic density and a a weighting factor going from 0 to 1. In figure 1 the 
potentials used are shown for a = 0, 0.4 and 1. 

i 
Figure 1. The potential for different values ofthe exchange term. A ct = 1 : B U = 0.4. C ct = 0. 
The potential is Z ( r ) / r .  The values of r in au are given by r = exp { -6.125 + (j/64)}. 

It should be noticed that the potential depends on the lattice constant a through the 
expansion of the potentials of the neighbouring cells. The potentials shown in figure 1 were 
computed for the equilibrium value at atmospheric pressure a = 5.57 A = 10.5 au, but 
were recomputed whenever the lattice constant was changed. 

4. The bands 
4.1. Effect of exchange 

The bands along the lines of symmetry are displayed in figures 2 and 3 where the notation 
of Altmann ana Cracknell(l965) is used, as elsewhere in this paper. Figure 2 gives the bands 
for a = 0.4, a = 10.5 au. It can be seen that there is a small overlap between the first and 
second bands which is due to the fact that the second level at L, LA,,, of energy 0.293 Ryd, 
lies below the first levels at W and K, WB, (0.321 Ryd) and KA, (0.308 Ryd) respectively. 
The W-L overlap, given by the difference of the WB, and LA,, eigenvalues, is 0.028 Ryd 
and the K-L overlap 0.015 Ryd. It was soon found that these overlaps are extremely 
sensitive to changes in a. For instance, they are much reduced in figure 3, which gives the 
bands for a = 0.7, for which the K-L overlap has almost closed down to the value 0.006 Ryd 
and the main W-L overlap is little more than one half of the previous one, taking the value 
0.0 16 Ryd. 

This sensitivity of the results to the value of a is not a new result. In several computations 
of metallic bands it has been found necessary to take values of z # 1 in order to obtain 
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Figure 2 .  Bands for Ca. a = 10.5 au, a = 0.4. The value E(TA,,) used as reference for 
the energies, is -0.473 Ryd. 

agreement with experiment and a value of a around 3 has often been used. What makes Ca 
a most interesting case is that for a wide range of a there is no overlap at all between W and 
L. Thus, it is not here a question that a merely affects the shape of the Fermi surface but 
rather that, whereas for some values ofa one finds holes at W and electrons at L (see figure 2), 
for others, those surfaces entirely disappear and one is left with no more than an infinitesimal 
Fermi surface around the line of degeneracy. (See the crossing point of the first and second 

0.6 

0.5 

I 0 

IIIIIIIIIII IA- 

Figure 3. Bands for Ca. a = 10.5 au, r = 0.7. E(TA,,) = - 0.696 Ryd. 
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bands along LW). This situation is illustrated in figure 4 where the K-L and W-L overlaps 
are given as a function of a :  it follows that there is no overlap at all between the first and 
second band at these points except in the range 0.2 < a < 0-75. 

Unfortunately, the evidence from experimental studies of the Fermi surface (see $ 6) 
is not good enough to determine the value of a in the range just mentioned which gives the 
best agreement with experiment. On the other hand, the study of the behaviour of the bands 
at high pressure ( 5  8) indicates that the overlap should be larger than even the maximum 

a 
Figure 4. Overlaps as a function of the exchange parameter. AK = E(KA,) - E(LA,,): 

A W  = E(WB2) - E(LA2U). 

value obtained from figure 4 for a = 0.5. It is thus probable that the bands should be a little 
more free-electron-like than any of our Slater-type potentials allows. This shows that a 
potential such as the one used in figure 3 ( x  = 0.70) can be rejected, since it compresses 
the bands away from the free-electron picture. For instance, it gives a Fermi energy of 
0.29 Ryd, smaller than that for a = 0.40 (0.310 Ryd) and much too far away from the free- 
electron Fermi energy of 0.344 Ryd. 

It follows that the best we can do with a potential of the Slater-type is to take a value of 
a around a = 0.5 but, since the difference between the results for a = 0.5 and a = 0.4 is not 
very large, in particular in what concerns the Fermi surface (see 5 6), we base the result of 
our discussion on the values obtained for a = 0.4. Once we were satisfied that a change to 
a = 0.5 would not affect significantly our results, it was considered unnecessary to duplicate 
the calculations. Also, a more detailed analysis of the potential field conducted in this 
department, in which exchange and screening are introduced more accurately than by 
means of the Slater term, provides a potential for which the K-L overlap is much larger 
than in the present paper and in better agreement with the high-pressure experiments. 

4.2, Discussion of the bands 
A selection of our eigenvalues is compared in table 3 with the results of Vasvari et al. and 

of the free-electron model. In both cases the results are not too far from the free-electron 
picture, those of Vasvari et al. being more free-electron-like than the present calculations. 

When our results are compared with those of Vasvhri et al. it can be seen that except for 
the second level at r our eigenvalues coincide in most cases within 0.03 Ryd. However, in 
the computations of Vasvari et al., their first level at K goes up with respect to ours by 
about this amount and the second at L goes down in the same way, thus making their 
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Table 3. Energy eigenvalues (in Ryd) for Ca 

Present vasvarq 
workt 

rT2g (Y25) 0.600 
LA,, (Ll) 0.248 
LA,, L2) 0.293 0.262 
KA, (Kl)  0.308 0.336 
KAl (K,)  0.374 0,394 
KB2 (K,) 0.397 
WB2 (W2) 0.321 
WE (W,) 0.395 0.396 

Fermi energy 0.308 0.339 

Level 

TA,, 0-1) 0.000 0.000 

E:} 

WB2-LA,, 0.028 0.102 

Free 
electron 

0.000 
1.054 

0.263 

0.395 

0438 

0.175 
0.344 

i. Computed for I = 0.4. a = 10.5 au. 
$ Computed by Vasvari er al. (1967) and reported by 

Vasvari (1968). 

overlap about 0.07 Ryd larger than ours. It is probable from the discussion of S 8 that the 
true overlap lies somewhere between ours and that of Vasvari et al. 

An important difference between the two sets of computations should be noticed: 
whereas in our calculations the levels at K are, in increasing order of energies, KA,, 
KA, and KB,, those for Vasvari et al. are KA,. KB,, KA,. The significance ofthis difference 
can be appreciated from table 4. Both in our calculations and those of Vasviri et al. 
the first band is heavily hybridized, so that some substantial s contribution must appear 
in the higher bands. In a fairly free-electron band where sp hybridization is permitted, 
one would expect the first band to have a large p contribution somewhere at the edge and 
the corresponding second band, instead, to have there a large s contribution. This is 
exactly what we find at Kand these, except for the similar U points, are the only points for 
which the symmetry of the second band permits an s Contribution. However, the second 
level at K of Vasvari et al., being KB,, does not admit of an s contribution. None of the 
other second levels of Vasvari et al., which are of the same symmetry as ours, can admit 
an s contribution. It would appear therefore that in the calculations of Vasvari et al. the 
s contribution in the higher bands would be found in the third band at KA, (and UA,) 
which is somewhat unexpected, unless of course, it appears in the second band at general 
k vectors. Nevertheless, in most cases, it is the symmetry restrictions at the points of 
symmetry that determinine the nature of the wave functions of a band, these restrictions 
propagating by continuity for some distance away from the corresponding symmetry points. 

Discussion of the position of the Fermi levels in table 3 will be left until S 6 .  

Table 4. The wavefunctions. a = 10.5, a = 0-40 

First band Second band 
r L K X w r L K X W 

A,, A,, A ,  A,, B2 TZg A,, A1 A,, E 
- - - - - 16 

64 

s 100 53 5 22 
P -  - 28 - 27 - 96 17 93 52 

45 d -  41 64 77 69 96 
4 - 4 2 6 2 f 

- - 
- - 2 - 

The figures given in the table are the percentage contribution of each harmonic to the wave functions. 
A dash means that the contribution vanishes by symmetry. Where the total in any column falls short 
of 100 there is a detectable contribution to the wave function from I 4. 
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4.3. Core levels 
The calcium core ls2 2s2 2p6 3s2 3p6 has the same configuration as the argon atom, 

for which Mattheiss (1963) computed the valence bands. Figure 5 shows the 3s and 3p 
bands for calcium computed for a = 103 and a = 0.4. For comparison, we also give 
Mattheiss’ eigenvalues for argon in a suitable scale. The correspondence between the 
calcium and argon bands thus scaled is remarkable. The order and relative position of 
the eigenvalue at all points of symmetry coincides precisely once the scaling is done. The 
coincidence of the levels at K is particularly gratifying, on account of the difference at this 

R nc 

-2.21 - 
I 
x w u x  r L K r W L 

Figure 5 The bands for the core levels of Ca The energy scale is given on the left: notice 
that it is broken and that there is a different scale for each set of bands. The triangles 
correspond to the eigenvalues of the 3p band of argon calculated by Mattheiss, in the 
scale given on the right of the figure. The energy levels for Ca are given in an energy scale 
for which T A , ,  = 0 in figure 2 (its absolute value is -0.473 ryd). The absolute valuc 01 

E(T,,) tor argon is - 1.253 ryd. 

point between our results for the conduction band and those of Vasvari et al. Not sur- 
prisingly, the core bands for calcium are more compact than those for argon. Thus the 
band widths for calcium are 0.026 Ryd for the 3p band and 0.006 Ryd for the 3s band, whereas 
the corresponding figures for argon are 0.044 and 0.010 Ryd respectively. The energy dif- 
ference between the centres of the calcium 3s and 3p bands is 1.254 Ryd, which compares 
very well with the experimental value 1.3 Ryd for the difference between the calcium atom 
3s and 3p levels (Slater 1955). 

It should be noticed that the 3p band width is not negligible in comparison with that of 
the conduction band, being 8.404 of it. Thus, it is possible that the distortion of the 3p 
core levels might have a small but significant effect on the conduction band. 

5. Density of states 
The density of states was computed as indicated in $ 2 and is shown in figure 6. The 

computed Fermi energy is 0.310 Ryd (see also $ 6) and the corresponding band width of 
4.23 eV can be compared with the value of about 7 eV measured by Skinner et al. (1954), 
a result which unfortunately might have been affected by surface contaminations. Also 
other effects, such as slit width corrections, background, etc. can easily introduce correc- 
tions of about 2 eV. 

The density of states at the Fermi surface derived from our curve is 13 states/Ryd/atom 
which leads to a value of the low temperature coefficient of specific heat y equal to 5.5 
cal mole-’ deg-2, to be compared with an experimental value of 6 5  in the same units. 
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RYd 

Figure 6. The density of states n ( E )  in electron states of both spins per rydberg per atom. 
The broken vertical line is the Fermi energy. 

This is an excellent agreement, since the electron phonon interactions should not be large 
in calcium metal. 

6. The Fermi surface 

states calculations, the interpolation scheme described in 
Once the value of the Fermi energy, 0.310Ryd, was determined from the density of 

2 was used to obtain level 

K 

Figure 7 .  The Fermi surface for E ,  = 0.308 Ryd. Empty areas contain holes and harched 
areas electrons. Areas with double hatching indicate pockets of electrons in the second 
lone. The broken lines given the contour for E = 0310 Ryd. where it is significantly 

different from the contour for E ,  = 0.308 Rqd. 
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surfaces around this value. Since their shape varies widely in certain regions for variations 
of 0.002 Ryd in the eigenvalues, direct computation was also employed when necessary. 
The level surfaces are shown in figures 7 and 8. It can be seen that there are pockets of 
electrons at L in the second band (saucer). Also, if E ,  = 0,310, the surface of holes in the 
first band is unconnected, consisting of pockets at W, which, because they have (squashed) 
tetrahedral symmetry, will be called tetroids. 

Figure 8. Important sections of the Fermi surface for E ,  = 0.308 Ryd. The broken contour 
corresponds to E = 0.310 Ryd. 

Once these results are obtained, it must be remembered that the computed value of E, 
is not accurate to more than about 0.005 Ryd and that the volume of the pockets of elec- 
trons in the second band must equal that of the pockets of holes in the first. There is no 
guarantee, from the computations of E ,  from the density of states, that this equality is 
verified exactly and the right procedure is to correct the computed E, until the volumes are 
properly balanced. 

48, whence it follows that the number of 
tetroids per Brillouin zone is 48/8 = 6. Likewise, the number of saucers is 4, so that the 
ratio 

The order of the group of W is 8 and that of 

t = vol saucer/vol tetroid = 1.5. (1) 
We found that for E ,  = 0.310Ryd, t = 2.3, and it was not possible, by exploring the 

shape of the tetroid in greater detail, to improve on this value. On the other hand, it can be 
seen from figure 7 that the volume of the tetroid is very sensitive to the value of E ,  whereas 
the saucer is relatively stable. Even a change of 0.001 Ryd to E ,  = 0.309 Ryd affects the 
shape of the tetroid substantially, making it connected through necks along LK but at 
some small distance of K. However, even then the volumes are not right and the orbits do 
not agree with the de Hass-van Alphen results. 

For E ,  = 0-308 Ryd the tetroid is connected through flat necks along LK which reach 
and surround K itself. For this value of E,, t = 1.4 in acceptable agreement with (1) and 
the orbits found correlate very well with the de Haas-van Alphen results (see 3 7) .  Hence, 
we consider this to be the best value of the Fermi energy compatible with our results and 
conclude that the Fermi surface is most likely to be connected (see figure 10). 

The volume of the saucers is 0 . 0 8 0 k 3 ,  leading to the existence of 1.89 electrons/atom 
in the first band and 0.1 1 in the second. 
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6.1. The computations of Vasvari et al. 
Since Vasvari and Heine (1967) and Vasvari (1968) derive an unconnected Fermi surface 

from the bands of Vasvari et al. (1967), it is desirable to compare their results with ours: 
we shall show that there is no contradiction but rather, that an erroneous assumption was 
made in the work of Vasvari et al. which, when corrected, should also lead to a connected 
Fermi surface. Vasvari et al. took the value E ,  = 0.33 Ryd (or about 0.34 Ryd if measured 
from the lowest eigenvalue at I-) in an attempt to obtain an unconnected Fermi surface 
(see Vasvari and Heine 1967) and thus, as was previously done by Altmann and Cracknell 
(1964) explain most simply the small number of periods observed in the de Haas-van 
Alphen effect. However, in doing so, it appears that these authors failed to verify the funda- 
mental relation (1). An estimate of the volumes of their Fermi surface can easily be obtained. 
From the bands in figure 1 of Vasvari et al. (1967), the semimajor axis of the saucer along 
LW is 0.535 A - '  and the largest radius of the tetroid, along WU, is 0.201 A-'.  From figure 2 
of Vasvari (1968), the semimajor axis of the saucer along L is 0.166 A- '. Thus, the volume of 
the saucer can be very well estimated as an ellipsoid and it is 0.199 Since this is more 
than twice the volume of our saucer (0.080 k3), the most favourable hypothesis for Vasvari 
et al. is to take the largest possible volume of the tetroid, which is the sphere of radius equal 
to the dimension of the tetroid along WU. This gives a volume 0*034A-3 so that T = 5.9, 
which is probably a lower bound for T, since any more realistic estimate of the volume of 
the tetroid produces values of T larger than 10. We conclude that the bands given in figure 1 
of Vasvhi et al. are not compatible with the Fermi energy proposed by them. In order to 
increase the volume of the tetroid and bring down T to its correct value, the Fermi level has 
to be brought down by 0.01 Ryd or more so that the holes extend from W to K. It appears to 
us most unlikely that the bands of Vasvari et al. could lead to a Fermi surface which is not 
connected. This being so, the conclusions derived by these authors about the conductivity 
of calcium, its high pressure behaviour and the de Haas-van Alphen experiments must be 
entirely revised; they depend critically on the size and shape of a Fermi surface upon which 
no reliance can be placed, because the volume of holes is incorrect by a factor that cannot 
be smaller than 4 and which is likely to be at least 6. 

7. The de Haas-van Alphen results 
7.1. Experimental results 

The de Haas-van Alphen effect was observed in calcium by Condon and Marcus (1964). 
Unfortunately, it turned out that their sample was a microcrystallite rather than a single 
crystal and this makes the interpretation of their results more difficult. In particular, the 
crystal orientations measured against external faces (fiduciary orientations) are not 
necessarily the true ones. Condon and Marcus observed three periods, shown in figure 9, 
which reproduces one set of their results. In order to facilitate comparison with our theoreti- 
cal Fermi surface, we shall summarize systematically all the results that appear well estab- 
lished from Condon and Marcus experiments. 

(i) The periods observed are l = 3.05 lo-' G-', m = 0.77 G-' 
with fiduciary orientations as in (a) of figure 9. 

(ii) The angular dependence of I is well established, as shown in figure 9, where the broken 
line gives the angular dependence of a cross section of a cylindrical surface. 

(iii) Period l and s appear together. 
(iv) Periods 1 and m never appear together. 
(v) Period 1 is repeated every 60" when the magnetic field is mtated in the (111) plane. 

(vi) Period m does not appear when the field is rotated in the (1 1 1) plane. 

G-', s = 0.57 

(see figure 4 of Condon and Marcus 1964 or figure 3 of Altmann and Cracknell 1964). 

7.2. Computed orbits and experimental correlation 
The values and orientations of the computed orbits are shown in table 5. Orbit a (figure 8) 

is the neck orbit of the tetroid at K. Orbit b (figure 8) is the belly orbit of the saucer. Orbit 
c (figure 10) is a body orbit of the tetroid in a plane whose normal is about 20' off the 
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Figure 9. de Haas-van Alphen periods after Condon and Marcus. Magnetic field rotated 
in the (100) plane: (a) fiduciary orientations, (b )  Condon and Marcus reassignment to fit 

Harrison's Fermi surface, (c) our reassignment. 

(100) direction. Orbit d (figure 8) is the rim of the ring of tetroids on the square face and 
orbit e (figure 8) is an extended orbit of the tetroids. Orbits f and g (figure 12) are respectively 
the rim orbit of the saucer on the hexagonal face and the rim of the teroid ring on the same 
face. The orientation of these orbits are given in the second column of table 5 .  

Our interpretation of the experimental results is based on two major assumptions. 
Condon and Marcus (1964) found three orbits only, whereas we have seven. IHowever, 
the rim orbit of the saucer, f, is one that must be considered as an established feature of the 
Fermi surface, since all calculations agree to the extent that this orbit exists and as to its order 
of magnitude, but it was not observed by Condon and Marcus. It must therefore be assumed 
that their crystal was too imperfect to allow the observation of an orbit as large as f. Since 
d, e and g are of the same order of magnitude, the lack of observation of these orbits is 
understandable. 

Table 5. Computed orbits and experimental periods 

Orbit Experimental 
Period Period Name 

3.8 3.05 1 
0.68 0.57 S 

0.60 0.77 m 
0.2 1 
0.09 
0.16 
0.12 

All periods are in lo-'  G-'. The orientations are 
those of the normal to the plane of the orbit. The name of 
the period identifies it in figure 9. 
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Figure 10. Fermi surface for Ca. The surface shown contains holes in the first band. Four 
tetroids are shown, connected in a torus around X. 

The second major assumption relates to the reinterpretation of the crystal orientations 
that we must make in order to correlate the remaining three orbits a, b, c with the periods 
I, s and m. This reinterpretation is given in (c) of figure 9 and it can be seen that it is similar 
to that given by Condon and Marcus, with the advantage that it respects the fact, clear 
from the figure, that the angle between the peaks of the two I periods is fairly exactly 90". 

It can be seen from table 5 that the quantitative agreement between the computed and 
experimental values of the periods is fair. In fact, considering the sensitivity of the orbits 
to errors of 0.001 Ryd in the eigenvalues, it would be unrealistic to expect a much better 
fit. 

In order to show the angular dependence of the period 1 in figure 9, we scale the curve so 
as to get the computed maximum period to coincide with the experimental maximum. 
The computed points (shown with triangles) agree fairly well with the experimental angular 
dependence. 

The orbits a and b must appear together (see figure 8) as is indeed the case with the periods 
1 and s that we assign to them (see (iii) of $7.1.). The neck orbit a must be repeated at intervals 
of 60" when the field is rotated in the hexagonal face in agreement with the behaviour of 
of period 1. (See (v) of S 7.1.). 

It can be shown (see figure 10) that the body period of the tetroid,~, disappears when the 
magnetic field is tilted away from the maximal cross section by 20" or so. This is the case 
because the tetroids form a torus-like object around X. The orbit c cuts the boundary of the 
torus but, when it is slightly tilted, it runs into the body of the torus and is replaced by either 
e or d (see figure 8). Thus, orbit c can only be observed within a small angular range. This 
agrees with the fact that the period m which we assign to c never appears with I((v) of $ 7.1) 
and does not appear at all when the field is rotated in the (1 1 1) plane ((vi) of $ 7.1 .) 
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It can thus be seen that our interpretation accounts satisfactorily for all the experimental 
results listed in $ 7.1. 

A comparison with the interpretation of the de Haas-van Alphen experiment given by 
Vasvari (1968) is hardly necessary, owing to the difficulties mentioned in $ 6 about his 
Fermi surface. It might be mentioned, however. that his proposed interpretation does not 
account for the vital period I and that the predicted values of s and m are 045 and 0.34 

G-'  respectively (see table 5 ) .  

8. High pressure behaviour of Ca 
In order to study the high pressure behaviour of Ca we computed the bands as a function 

of w = V N , ,  where V and V, are the volumes of the unit cell at the pressures P and Po 
(normal) respectively. We show in figure 11 the bands f o r o  = 0.86. Comparison with figure 

0.8 c 

Figure 11. Bands for Ca. a = 9.975 au, (01 = 0.86), 2 = 0.4. E(TA1,) = -0.526Ryd. 

2 shows that all levels in the first band go up by about 0.01 Ryd, except X which is unchanged. 
On the other hand, in the second band, L goes up by about three times as much, thus reducing 
the overlap between L and W to a few thousands of a rydberg. When the wave functions 
are examined (cf. table 4) it is seen that, on compression, the d contribution is increased 
throughout by a few percent but the second level at L, which is essentially p, remains 
exactly unchanged in composition. Thus the rise in energy due to compression is largely 
compensated by a greater d contribution, except for the second level at L, so that its relative 
increase of energy is larger. 

The Fermi energy for o = 0.86 goes up to 0.33 Ryd and it can be seen at once that the 
Fermi surface must be much reduced in volume, which is confirmed from figure 12, where 
the Fermi surface contours on the hexagonal face of the Brillouin zone are given, for 
comparison, for w = 1 and w = 0.86. It can be seen from the bands that for w = 0.86 the 
overlap between KA, and LA,, has disappeared, as a result of which K is no longer occu- 
pied by holes, which are now concentrated in small pockets around W. It follows that at 
compression slightly larger than that corresponding to UJ = 0.86 even the pockets of 
holes at W will disappear entirely, as well of course as the pockets of electrons at L. At this 
stage the Fermi surface must become infinitesimal, reduced at most to tiny pockets of holes 
and electrons along the line of degeneracy that goes through the crossing point of the first 
and second bands at Q (along LW, see figure 11). That is, the material becomes a semimetal. 

F-F6 
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a = 0 . 4  a=10.5 a u  a =  I cr=0,4 0-9.975 a u  0=046 

Figure 12. Sections of the Fermi surface for w = 1 and w = 0.86. 

In order to find the value CO’ of o at which the Fermi surface collapses as described, we 
computed the overlaps A, = E(WB,) - E(LA,,) and AK = E(KA,) - E(LA,,) as a 
function of U. which are plotted in figure 13. The negative values of A in the figure correspond 
to energy gaps, and it follows from figure 13 that, as explained before, the holes recede 
first from K and that at w = 0.84 the overlap at W disappears. This is therefore the value w’ 
at which the Fermi surface collapses. 

V 

= h-0.01 - 

-0.02- 

-0.03 - 

-0.04- 

1.0 0.9 0.8 
0 

Figure 13. Overlaps as a function of w. AK = E(KA,) - E(LA,,): Ab, = E(WB,) - 
E(LA2,). 

Stager and Drickamer (1963) studied the behaviour of Ca at high pressure. As summarized 
by Drickamer (1965) a sluggish transition commences at 140 kbar to a ‘semiconducting’ 
phase, which is completed at 300 kbar. In this context, ‘semiconductor’ merely means that 
the resistance p decreases with temperature. We can distinguish four regions in the curves 
given by Drickamer (1965, figure 98). Two regions, x ,  from normal pressure up to about 
140 kbar. and 6. above 400 kbar. can be considered typically metallic (p lgbK > p77K).  



B a n d s  and Fermi surface of Ca 805 

Before 6, from 300 to 400 kbar, there is a region y which is typically ‘semiconducting’ 
(p296 < P , , ~ ) .  Finally, between y and the initial metallic region a there is a region 0 (from 
about 140 kbar to 300 kbar) that cannot by any means be considered typically metallic: 
p296K is hardly different from P , , ~ .  Since a finite size of the Fermi surface must lead to 
normal metallic behaviour, as in the first region a, we suggest, as Altmann and Cracknell 
(1964) did, that the onset of region at 140 kbar corresponds to the pressure at which the 
Fermi surface vanishes, - that is, to the value w’ = 0.84 computed above. 

In order to express c‘) as a function ofthe pressure we used Birch’s equation of state as given 
by Blush (1967). after fitting the experimental values of Bridgman (1942) up to 100 kbar. 
We obtained for o’ = 0.84 the pressure of 35 kbar, to be compared with 140 kbar. The 
latter value corresponds to w = 0.67, so that our value of w’ is off by about 20°6 This would 
indicate that the value of Aw for w = 1 is far too small and since the kalue we started from 
was the largest given by a Slater potential, it suggests that another type of potential field 
is required. However, the present calculations reproduce qualitatively the right type of 
behaviour. 
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