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Abslract. The electrostatic field of a point charge at rest in the Schwarzschild metric is given 
in algebraic form using some results of Copson. It is possible also to determine the 
magnetostatin. As an example, the magnetostatic field of a current loop surrounding a 
black hole is given in integral form. 

1. Introduction 

The generation of an electromagnetic field by static sources in the Schwarzschild 
background has been considered recently in several papers. Cohen and Wald (1971) 
and Hanni and Ruffini (1973) have discussed the electric field of a point charge. 
Petterson (1974) has discussed the magnetic field of a current loop surrounding a 
Schwarzschild black hole. These solutions are given in the form of series of multipoles. 

However, the potential of a point charge at rest in the Schwarzschild metric outside 
the horizon has been given in algebraic form by Copson (1928); yet a correction of 
Copson’s solution will be given in this paper. 

Firstly, we shall examine Copson’s solution originally given in isotropic coordinates. 
Applying Gauss’s law, we shall derive the necessary correction. In order to extend the 
corrected solution of Copson inside the horizon, we shall use the standard 
Schwarzschild coordinates. We shall see that it is regular everywhere except at the 
position of the charge. 

Secondly, we shall show that it is possible to determine the magnetostatics in the 
Schwarzschild metric. As an example, we shall determine the magnetic field of a 
current loop surrounding a black hole. 

2. Maxwell’s equations in the Schwarzschild metric 

The electromagnetic field is assumed to be sufficiently weak that its gravitational effect 
is negligible. The Einstein-Maxwell equations thus reduce to Maxwell’s equations in a 
Schwarzschild background. 

The Schwarzschild metric, in standard coordinates, is: 

ds  2 = ( 1-- “m) dt 2 - ( 1-- 2rm)-1 dr2-r2(d02+sin20d$2). 
(1) 
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Copson uses isotropic coordinates defined by the following transformation formula: 

The inverse formula is: 

r = i  ( I+- :)’ i>m/2 .  (3) 

In isotropic coordinates, the metric (1) takes the form: 

It is known that the isotropic coordinates do not cover the whole Schwarzschild 
manifold, but only the part lying outside the horizon. From (2), we see that the horizon, 
r = 2m, corresponds to i = 4 2 .  

Maxwell’s equations have the general form: 

= GJ” and apA,  + a,F, + a,,FPA = o ( 5 )  

where g is the determinant of the metric and J” is the current density. 

duce the following notations: 
We shall consider Maxwell’s equations in the standard coordinates (1). We intro- 

Ei=Foi and Bi = Fkl (i, k, 1 circular permutation). (6) 

For electrostatics, characterized by Bi = 0 and aE,/at = 0, from ( 5 )  we have: 

a a 
ae a4 
a a 

a4 ar 
a a 
ar ae 

-E+ --Eo = 0 

-E, --E+ = 0 

-Eg --Er = 0 
(7) 

E+) = 1 2  sin e f .  
ar 

We shall use the electrostatic potential V to which the vector potential A, reduces 
in this case: 

A,,= V and A,=O. (8) 

The electric field is given by: 

E, = -a v/ar, Ee = -a V/a8 and E+ = -a V,ad. (9) 

Combining with (7), we obtain the following equation for the electrostatic potential: 
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For magnetostatics, characterized by Ei = 0 and aBi/at = 0, from ( 5 )  we have: 

2 ae [ ( I  -?) sin OB,] -$ [ ( I  -?) &BB] = r2 sin 0.r 

a a+ ( r2sin 1 e B~) -: [sin e ( 1 - ?) B ~ ]  = r 2  sin eJe 

A[  ar ( 1  -$9&~@] -$( r 2  sin e ~ r )  = r2sin e.r+ 

a a a 
ar ae a+ -B, +-Be +-B+ = 0. 

Outside the current which is the source of the magnetostatic field, it is usual to 
introduce the magnetostatic potential 0. The magnetic field is given by: 

3. Electrostatics 

3.1. The solution of Copson 

Copson (1928) employs a radial coordinate equal to the T defined by (2 )  divided by 
m/2.  Here, we use the isotropic coordinates directly. 

In the isotropic coordinates, the electrostatic potential V satisfies the partial 
differential equation: 

where A is Laplace's operator. 

at a point i = d and 8 = 0 with d > m/2.  This solution is: 
Copson obtains a solution Vc of equation (13) corresponding to a charge e situated 

where p( T, 6 )  has the following expression: 

T ~ + & - ~ ~ ~ ~ T C O S  e 
pe, e )=  ( - r 2  + ii2 - 2 i i ~  COS e 

with dl = m2/4ii .  
However, it is easy to see that the solution (14) has also some other source, besides 

the charge e at point (d ,  0,O). Indeed, for i+ 00, the electrostatic potential Vc has the 
asymptotic form: 
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Consequently by virtue of Gauss's theorem, it also contains a second charge equal to 

- e m / i i [ l +  (m/2ii)12. 

Since Copson's solution has only the source e outside the horizon, this second source 
must lie inside the horizon. It is possible to see that the electric field corresponding to 
electrostatic potential V ,  is regular at the horizon. Now, the only electric field which is 
regular for m / 2  C T < CO is spherically symmetric (Israel 1968) and consequently, it will 
be of the form: 

The value of the constant corresponds to the second charge at 7+ 00: 

em 
i i [ l S ( m / 2 i i ) l 2 '  

constant = 

It follows that the electrostatic potential which has as source the charge e at (6, 0,O) 
is: 

3.2. Electrostatic potential 

Cohen and Wald (1971) and also Hanni and Ruffini (1973) derive the electrostatic 
potential V using a multipole expansion in standard coordinates. We remark that this 
multipole expansion coincides with the one given by Copson (1928),  when the 
correction given in (18)  has been taken into account. 

In order to determine the field also inside the horizon, we shall use the standard 
coordinates. 

So as to express V(F, 0 )  given by (18)  in standard coordinates, we write it in the 
following form: 

em 1 + 
i i [ l+(m/2i i ) ]*  $ 1  +(m/2i)]2'  

From the transformation formula (31, we deduce the following relations: 

iiii 1 r - m = f + :  
r 

( r - m ) 2 - - -  m 2  -2 6%: - r  +- 2 i 2  . 

(19)  

We also define the quantity a corresponding to ii by the transformation formula ( 3 ) :  
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A straightforward calculation gives: 

e (r-m)(a-m)-m2cos e em 
v(r,  e)  =- +-. 

ar [ ( r - m ) 2 + ( a - m ) 2 - m 2 - 2 ( r - m ) ( a - m )  cos e+m2~os28]1 /2  ar 
(22) 

It is easy to see that V(r, e)  is well behaved everywhere except at the position of the 
charge e. 

The formula giving the electrostatic potential V(re&, ae,&,) of a charge e situated at 
the point (a, Bo, 4,) with a > 2m is obtained from (22) by simply replacing cos e by 
cos e cos 8,+sin 8 sin 8, cos(& - 4,). We write the result since it will be needed in the 
next section: 

e (r-m)(a-m)-m2A(0, &) em 
=- +- 

a r  [ ( r -  m12+(a - m)2-  m2-2(r- m)(a - m)A(e, &)+ m2A2(8, a r  

with: 

A (e, 4) = COS e cos e, +sin e sin e, cos(& - 4,). 

4. Magnetostatics 

4.1. Method 

Outside the electromagnetic sources, it is possible by duality to transform an 
electrostatic solution into a magnetostatic one and vice versa. But the solution 
corresponding to a given source is not obvious. 

Using the equations (7), we see that the component of the electrostatic field E, 
satisfies the partial differential equation: 

ar ar 

Using also the equation (1 1) for the magnetostatic field, if we introduce the function 
X defined by: 

we see that the function X satisfies the partial differential equation: 

a 2m a l a  a 1 a2 
-[(~--T)G ar ] sine ae ( ae 1 sin28 a42 r 2 X  +-- sine-x +--X 

r2 a r2 a 
= -- - (sin2eJm) + - - P. 

sin 8 a& sin 8 ae 
The equations (24) and (26) without the source term are identical, in agreement with 

duality. 
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We shall determine the solution of the equation (26) for the source term: 

4 ~ 6 ( r  - ro)6(cos e -cos eo)S(+ - +o). (27) 

This solution will then allow us to determine general magnetostatic fields in the 
Schwarzschild background. According to (12) and (25), the corresponding 
magnetostatic potential fl(re+, roOo+o) will satisfy the equation: 

X = -afl/ar. (28) 

In order to obtain the source term (27) in the equation (24), we must consider the 
following charge density: 

Y(r - ro) being the step function. 
Remembering the first equation (9), we see that, for the same source term in 

equation (24) and (26), we shall have Cl= V. The solution V=fl(re+, roeo+o) of 
equation (24) for the source term (27) is obtained from (23) with the help of the remark 
that the charge density corresponding to V(re+, ue,+,) is: 

(30) 
4 T  
r 

Jo(r,  e)  = 6 ( r  - u)6(cos e - cos eo)s(+ - +o). 

We thus obtain: 

It is easy to show that this solution is well behaved everywhere except at (ro,  do, c $ ~ ) .  

4.2. Current loop ut radius ro 

We consider a static current loop at radius ro, with ro > 2m, located in the plane 8 = ~ / 2 .  
The only non-vanishing component of the current density is now: 

(32) 
J 
r 

P ( r ,  e) = ~ T T s ( ~  - ro)6(cos e). 

However, J' is a current density. Consequently using the total current I, we find 
that J has the following expression (Petterson 1974): 

For the current density (32), the source term of the equation (26) is: 

~ ( ~ 0 s  e-cos eo)l,o,.rr/26(r-ro). (34) 
d  COS e )6 ( r - ro )  or -- 

dcos 8 d cos eo 
d 

Comparing (34) with (27), we see that the magnetostatic potential corresponding to 
the source term (34) will be obtained from (31) by the formula: 
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The quantity (35) can be written explicitly in integral form. We obtain: 
2- CD 

nk e) = -Jlo [” 
a ( r - 2 m )  cos 8 da  ddo 

[ ( r  - m)’ + ( a  - m)2 - m2 - 2(r - m)(a  - m) sin e cos(4 - do) + m2sin28 cos2(d - 4 ~ ~ ) ] ~ / ~ ’  

(36) 
The magnetostatic potential is antisymmetric. The angle 4 can be eliminated and the 
final result is: 

n(r, 0) = -J(r  - 2m) cos 8 

~ ~ o ’ ~ ~ , ~ ~ ( r - m ) ~ + ( a - m ) ~ - m ~ - 2 ( r - m ) ( a - m ) ~ i n  e cos ++mZsinze cos2+13/2.  

a da ci+ 

(37) 
We see that the integral (37) is finite when ro+ 2m. But then we conclude from the 

relation (33) that for any given intensity I, the quantity Q(r, e), and consequently the 
magnetic field, vanishes as ro + 2m. This property has been proved by Petterson (1974), 
but only for the dipole part of the magnetic field. 
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