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2 Feza Gürsey Institute, Kandilli, 81220 İstanbul, Turkey
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Abstract
We have studied bound states of the Schrödinger equation for an attractive
potential with any finite number (P) of Dirac delta-functions in Rn where
n = 1, 2, 3, . . . . The potential is radially symmetric for n � 2 and is given
as V (r) = − h̄2

2m

∑P
i=1 σiδ(r − ri) where σi > 0, r1 < r2 < · · · < rP , and

ri ∈ (0, +∞) for n � 2, ri ∈ (−∞, +∞) for n = 1. By separating angular
degrees of freedom, the radial equation is obtained for n � 2 and applications
of the boundary conditions lead to P transfer matrices which are used to form
an equation for the eigenvalues. We have proven that, for given n and l, the
bound state solutions of the radial equation are non-degenerate and there are
at most P bound state solutions of the radial equation and hence P bound state
energy levels for a potential with P attractive Dirac delta-functions. Given
l and n � 2, for P = 1, we have shown that there exists one and only one
solution of the radial equation if σ1r1 > 2l+n−2 and none otherwise. We have
also proven that there are at most P positive roots for the equation X22(k) = 0

where X = (X11 X12

X21 X22

) = MP MP−1 . . .M1 and Mi ∈ SL(2, R) are the particular
transfer matrices mentioned above.

PACS number: 03.65.−w

1. Introduction

Bound state solutions of the Schrödinger equation for a particle of mass m in a potential with
one or two attractive delta-functions are commonly investigated in quantum mechanics [1–3].
However, no rigorous study of any finite number of Dirac delta-functions in Rn for arbitrary
n can be found in the literature. In this paper, we present rigorous analysis of bound states for
a potential with any finite number of attractive Dirac delta-functions. We take the potential
radially symmetric for n � 2.

Studies of Dirac delta-function potentials are also useful to get information on the solutions
of the Schrödinger equation with some finite potentials which lead to Dirac delta potentials
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for certain limits of their parameters. Thus, the information on the existence of a bound state
for a given potential can be obtained from this limit. For example, the square well potential in
one dimension becomes a Dirac delta potential when its width goes to zero and its depth goes
to infinity such that their product is finite. Since the Schrödinger equation with an attractive
Dirac delta potential in one dimension always has one bound state, one concludes that the
square well potential has also at least one bound state. The analysis of a Kronig–Penney model
with a periodic potential which has an infinite number of Dirac delta-functions is also helpful
to understand the electronic band structure of crystals [4, 5].

A potential with one attractive delta-function can be solved exactly in the one-dimensional
case. For potentials with attractive delta-functions in higher dimensions and with more than
one delta-function in one dimension can be solved numerically since one should find roots
of a transcendental equation to obtain eigenvalues. In this paper, we show a way to find this
equation for the eigenvalues of bound states by using transfer matrices. We also prove some
theorems on the properties of the eigenfunctions for the bound states. Finally, by using these
theorems, we present a general theorem for some particular matrices which are elements of
SL(2, R).

Although delta-functions do not exactly represent realistic potentials, very short-ranged
interactions may be investigated by using these functions. For example, the attractive
interaction experienced by a neutron when it approaches a nucleus of radius r1 can be modelled
by using one delta potential U(r) = −g1δ(r − r1) [2]. This crude model can be improved by
using several delta potentials with different gi and ri values, depicting the shell structure of
the nucleus. Thus, our bound states calculations for a single particle can be utilized for the
mean-field approximation of complicated many-body interactions of the nucleus. Similarly,
new materials such as concentric ring shape polymeric molecules might be designed and
synthesized, such that certain particles will experience short-ranged interactions on concentric
spherical or cylindrical surfaces. Carbon nanotubes are possible candidates for such structures.
Furthermore, the analysis below may shed light on surface physics problems such as impurities
deposited with concentric ring structures or circular molecules directly attached on a substrate.

2. Results and discussion

We first obtain bound state eigenfunctions of the Schrödinger equation for a potential with P
attractive Dirac delta-functions in n dimensions. The potential is given as

V (r) = − h̄2

2m

P∑
i=1

σiδ(r − ri) (1)

where the strengths of the delta-functions are σi > 0, r1 < r2 < · · · < rP with ri ∈ (0, +∞)

for n � 2 and ri ∈ (−∞, +∞) for n = 1. The factor h̄2

2m
is for calculational convenience.

Throughout this work, σi are always positive numbers and ri are ordered as defined above.
Then, the time-independent Schrödinger equation in Rn becomes

H� =
(

− h̄2

2m
∇2 + V (r)

)
�(x1, . . . , xn) = E�(x1, . . . , xn) (2)

where ∇2 = ∑n
i=1

∂2

∂x2
i

. Since the potential depends only on r for n � 2, we write the

wavefunction in terms of spherical coordinates as � = fn,l(r)Yl,n(ω) where Yl,n(ω) is an
n-dimensional spherical harmonic of degree l and ω = (θ1, . . . , θn−1), angular coordinates
which we define below [6, 7]. When n = 1, we take l = 0 and Y0,1 = 1 leading to � = f1,0.
Thus, we can use � = fn,l(r)Yl,n(ω) for n = 1, 2, 3, . . . .
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Since the bound states have negative energies, we define k2 = − 2m

h̄2 E > 0 with k > 0.
For n = 1, we get the equation

d2f1,0(r)

dr2
+

{
P∑

i=1

σiδ(r − ri)

}
f1,0(r) − k2f1,0(r) = 0. (3)

By using the dimensionless parameter v = kr , we obtain

d2f1,0(v)

dv2
+

{
P∑

i=1

σi

k
δ(v − vi)

}
f1,0(v) − f1,0(v) = 0 (4)

where vi = kri for i = 1, 2, . . . , P . When v �= vi , equation (4) reduces to

d2f1,0(v)

d2v
− f1,0(v) = 0. (5)

Equation (5) has two linearly-independent solutions, ev and e−v . By taking v0 = −∞
and vP +1 = +∞, we define ith interval as [vi−1, vi], for i = 1, 2, . . . , P + 1. Then, the general
solution of equation (4) is

f1,0(v) = ai e−v + bi ev when v ∈ [vi−1, vi] and i = 1, 2, . . . , P + 1. (6)

Since ev → +∞ as v → +∞ and e−v → +∞ as v → −∞, we have to take a1 = 0 and
bP +1 = 0 which leads to b1 ev for the first interval and aP +1 e−v for the (P + 1)th interval as
the regular solutions of equation (4).

For an arbitrary n � 2, the Cartesian coordinates of �r = (x1, . . . , xn) are given in terms
of the spherical coordinates:

x1 = r cos θ1

x2 = r sin θ1 cos θ2

· · · . (7)

xn−1 = r sin θ1 sin θ2 . . . sin θn−2 cos θn−1

xn = r sin θ1 sin θ2 . . . sin θn−2 sin θn−1

where 0 � r < ∞, 0 � θj � π for j � n − 2 and 0 � θn−1 � 2π . Then, the Laplacian in
spherical coordinates becomes

∇2 = 1

rn−1

d

dr

(
rn−1 d(·)

dr

)
+

�LB

r2
(8)

where the Laplace–Beltrami operator, �LB, on the sphere Sn−1, satisfies

�LBYl,n(ω) = −l(l + n − 2)Yl,n(ω) (9)

and Yl,n(ω) is an n-dimensional spherical harmonics of degree l for l = 0, 1, 2, . . .

and ω = (θ1, . . . , θn−1). The degeneracy of the eigenvalue −αl = −l(l + n − 2) is
ml,n = (2l+n−2)(l+n−3)!

l!(n−2)! for n � 2 and l � 0 [6, 7].3

By writing � = fn,l(r)Yl,n(ω) and using equation (7), we have the radial equation,

1

rn−1

d

dr

(
rn−1 dfn,l(r)

dr

)
+

{
P∑

i=1

σiδ(r − ri)

}
fn,l(r) −

(
k2 +

αl

r2

)
fn,l(r) = 0 (10)

for l = 0, 1, 2, . . . .

3 m0,2 = 1. This can also be obtained from the general formula by first inserting l = 0, doing cancellations and then
inserting n.



7452 E Demiralp and H Beker

Inserting v = kr, vi = kri , one obtains

1

vn−1

d

dv

(
vn−1 dfn,l(v)

dv

)
+

{
P∑

i=1

σi

k
δ(v − vi)

}
fn,l(v) −

(
1 +

αl

v2

)
fn,l(v) = 0. (11)

Defining gn,l = v
n−2

2 fn,l , we get

1

v

d

dv

(
v

dgn,l(v)

dv

)
+

(
P∑

i=1

σi

k
δ(v − vi)

)
gn,l(v) −

(
1 +

(
l + n−2

2

)2

v2

)
gn,l(v) = 0. (12)

When v �= vi , equation (12) reduces to

1

v

d

dv

(
v

dgn,l(v)

dv

)
−

(
1 +

(
l + n−2

2

)2

v2

)
gn,l(v) = 0. (13)

This is Bessel’s equation which has two linearly-independent solutions that are the modified
Bessel functions of the first kind I(l+ n−2

2 )(v) and the third kind K(l+ n−2
2 )(v).

By taking v0 = 0 and vP +1 = +∞, we define the ith interval as [vi−1, vi] for
i = 1, 2, . . . , P + 1. Then, for µ = l + n−2

2 , the general solution of equation (12) is

gn,l(v) = aiKµ(v) + biIµ(v) when v ∈ [vi−1, vi] and i = 1, 2, . . . , P + 1. (14)

Since Kµ(v) → +∞ as v → 0 and Iµ(v) → +∞ as v → +∞, we have to take a1 = 0 and
bP +1 = 0 which leads to b1Iµ(v) in the first interval and aP +1Kµ(v) in the (P + 1)th interval
as the regular solutions of equation (12).

For a point y ∈ (−∞, +∞) for n = 1 and z ∈ (0, +∞) for n � 2, we define the region A
as [y, +∞) for n = 1 and [z, +∞) for n � 2 and the region B as (−∞, y] for n = 1 and [0, z]
for n � 2. Thus, the solutions φA ∈ {e−v,Kµ(v)} are regular in region A and φB ∈ {ev, Iµ(v)}
are regular in region B, where the first functions in the brackets are for n = 1 and the second
ones for n � 2. Then, the bound state solutions of equation (4) or (12) are

gn,l(v) = aiφA(v) + biφB(v) when v ∈ [vi−1, vi] and i = 1, 2, . . . , P + 1. (15)

The continuity of the wavefunction at the boundary of ith and (i + 1)th intervals leads to

aiφA(vi) + biφB(vi) = ai+1φA(vi) + bi+1φB(vi). (16)

By multiplying equation (4) with dv and equation (12) with v dv, we integrate these equations
between vi − ε and vi + ε. Letting ε → 0+ and using the continuity of the wavefunctions, we
get

(ai+1φ
′
A(vi) + bi+1φ

′
B(vi)) − (aiφ

′
A(vi) + biφ

′
B(vi)) +

σi

k
(aiφA(vi) + biφB(vi)) = 0 (17)

where ′ denotes differentiation with respect to v. By solving linear equations (16) and (17) for
ai+1 and bi+1 in terms of ai and bi , we obtain the recursion relations

ai+1 =
(

1 +
σiφA(vi)φB(vi)

kWi

)
ai +

(
σi(φB(vi))

2

kWi

)
bi

bi+1 =
(

−σi(φA(vi))
2

kWi

)
ai +

(
1 − σiφA(vi)φB(vi)

kWi

)
bi

(18)

where Wi = Wi[φA, φB] = φA(vi)φ
′
B(vi) − φB(vi)φ

′
A(vi) is the Wronskian.

We define the transfer matrix Mi and write equation (18) in terms of Mi :(
ai+1

bi+1

)
= Mi

(
ai

bi

)
=


1 + σiφA(vi )φB(vi )

kWi

σi (φB(vi ))
2

kWi

− σi (φA(vi ))
2

kWi
1 − σiφA(vi )φB(vi )

kWi


 (

ai

bi

)
. (19)
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Thus, (
aP +1

bP +1

)
= MP MP−1 · · · M1

(
a1

b1

)
= X

(
a1

b1

)
(20)

where the matrix X = (X11 X12

X21 X22

) = MP MP−1 . . . M1 is a function of k for given σi and ri values.
Since we demand a1 = 0 and bP +1 = 0 for regular solutions, then we obtain X22(k) = 0 which
is a transcendental equation in general. The positive real roots of the equation X22(k) = 0 will
be used to find the energy levels, E = − h̄2

2m
k2.

Since W(e−v, ev) = 2 and W(Kµ(v), Iµ(v)) = 1
v
, we have

Mi =
(

1 + σi

2k

σi e2kxi

2k

− σi e−2kxi

2k
1 − σi

2k

)
(21)

for n = 1 and

Mi =
(

1 + σivi Iµ(vi )Kµ(vi )

k

σivi (Iµ(vi ))
2

k

− σivi (Kµ(vi ))
2

k
1 − σivi Iµ(vi )Kµ(vi )

k

)

=
(

1 + γiIµ(kri)Kµ(kri) γi(Iµ(kri))
2

−γi(Kµ(kri))
2 1 − γiIµ(kri)Kµ(kri)

) (22)

for n � 2 with γi = σiri and vi = kri for i = 1, 2, . . . , P . Thus, by solving X22(k) = 0, we
obtain k and hence Mi which in turn determine gn,l exactly.

Before we prove some results on the bound states, we prove a property of Fµ(v) =
Iµ(v)Kµ(v).

Lemma 1. Fµ(v) = Iµ(v)Kµ(v) is a monotonically decreasing function of v for v > 0 and
µ > −1.

Proof. We use the following representation of Fµ(v) = Iµ(v)Kµ(v) (6.535 entry of
Gradshteyn and Ryzhik [8]),

Fµ(v) = Iµ(v)Kµ(v) =
∫ ∞

0

x

x2 + v2
[Jµ(x)]2 dx (23)

where Re(v) > 0 and Re(µ) > −1. By taking the derivative respect to v, we obtain
dFµ(v)

dv
= −2v

∫ ∞

0

x

(x2 + v2)2
[Jµ(x)]2 dx. (24)

For real v > 0 and µ > −1, the integrand and hence the integral are positive. Thus, dFµ

dv
< 0

and the lemma is proven. �

The asymptotic behaviour of Iµ(v) and Kµ(v) is [9]

Iµ(v) ≈ vµ

2µ
(1 + µ)
Kµ(v) ≈ 2µ−1
(µ)

vµ
as v → 0 (25)

for µ > 0 and

I0(0) = 1 K0(v) ≈ log

(
2

v

)
as v → 0 (26)

and

Iµ(v) ≈ ev

√
2πv

Kµ(v) ≈
√

π

2v
e−v as v → ∞. (27)

Therefore, the maximum value of Fµ(v) = Iµ(v)Kµ(v) is equal to 1
2µ

for µ > 0 and ∞ for
µ = 0 while Fµ(v) → 0 as v → ∞.
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Theorem 1. For the potential V (r) = − h̄2

2m
σ1δ(r − r1):

(a) there always exists one and only one bound state energy level E for n = 1 or n = 2 with
l = 0,

(b) for given l and n � 2, there always exists one and only one bound state energy level E if
σ1r1 > 2l + n − 2 and none otherwise.

Proof.

(a) We have shown that k =
√

− 2m

h̄2 E > 0 values for bound state are obtained from the

equation (M1)22 = 0. For n = 1, (M1)22 = 1 − σ1
2k

= 0 will always have a solution
k = σ1

2 > 0 for any σ1 > 0. For n = 2 with l = 0, we have (M1)22 = 1 − γ1F0(v) = 0.
By lemma 1, for µ = l + n−2

2 , Fµ(v) decreases monotonically and F0(v) → ∞ as v → 0
and F0(v) → 0 as v → ∞. Hence, there exists one and only one value of vB > 0 such
that F0(vB) = 1

γ1
and k = vB

r1
> 0.

(b) For µ > 0, Fµ(v) � 1
2µ

and Fµ(v) decreases to zero monotonically, then (M1)22 increases

monotonically from
(
1 − γ1

2µ

)
to 1. Therefore, for a given l, there exists one and only one

bound state solution of equation (12) if 1 − γ1

2µ
< 0 or σ1r1 > 2µ = 2l + n − 2 and none

otherwise. The theorem is proven. �

By writing the bound state wavefunction in terms of the original variables, we have

� =
{

f1,0(kr) = g1,0(kr) for n = 1 and r ∈ (−∞,∞)

fn,l(kr)Yl,n(ω) = (kr)
2−n

2 gn,l(kr)Yl,n(ω) for n � 2 and r ∈ [0,∞).
(†)

We note that since gn,l ∝ r(l+ n−2
2 ), then � ∝ rl as r → 0 for n � 2.

For gn,l(v) part of the bound states �, we define equation (¶) by combining equations
(4) and (12) as

d2g1,0(v)

dv2
+

{
P∑

i=1

σi

k
δ(v − vi)

}
g1,0(v) − g1,0(v) = 0 for n = 1

1

v

d
(
v

dgn,l (v)

dv

)
dv

+

{
P∑

i=1

σi

k
δ(v − vi)

}
gn,l(v) −

(
1 +

(
l + n−2

2

)2

v2

)
gn,l(v) = 0 for n � 2.

(¶)

We will prove the following theorems for the bound state solutions of equation (¶).

Theorem 2. Given n and l, the bound state solutions gn,l(kr) of equation (¶) are non-
degenerate.

Proof. The bound state solutions of equation (¶) are given as gn,l(v) = aiφA(v) + biφB(v)

when v ∈ [vi−1, vi] for i = 1, 2, . . . , P + 1. If they are degenerate, for given n and l, there are
gn,l functions with different ai and bi for the same k value. Equation (19) shows that all the ai

and bi for i � 1 are found by

Mi · · · M1

(
0
b1

)
where the Mi are given by equation (21) or (22). For given parameters σi , and ri , since all Mi

are functions of k, then all Mi are the same for degenerate gn,l functions. Thus, ai and bi are
uniquely determined by b1 which is fixed by the normalization of gn,l . Therefore, ai and bi
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are unique for given σi, ri and k. Hence, for given n and l, the bound state solutions gn,l(kr)

of equation (¶) are non-degenerate and the theorem is proven. �

Theorem 3. If gn,l(v) is a bound state solution of equation (¶), then both gn,l(v) and dgn,l (v)

dv

cannot be zero at two points in the same interval [vi−1, vi] for i = 2, . . . , P and they are
non-zero in the first and (P + 1)th intervals.

Proof. gn,l(v) = b1φB(v) in the first interval and gn,l(v) = aP +1φA(v) in the (P + 1)th
interval. gnl and dgn,l (v)

dv
cannot vanish at all for i = 1 and i = P + 1 since φA ∈ {e−v,Kµ(v)}

and φB ∈ {ev, Iµ(v)}, φA(v) > 0, φB(v) > 0, φ′
A(v) < 0 and φ′

B(v) > 0 for v values which
are defined for φA(v), φB(v).

For i = 2, . . . , P , assume that both gn,l(v) and dgn,l (v)

dv
are zero at two points u1 and u2 in

the ith interval. Then,

aiφA(u1) + biφB(u1) = 0 (28)

and

aiφ
′
A(u2) + biφ

′
B(u2) = 0. (29)

By solving these linear equations for ai and bi , we obtain

ai[φA(u1)φ
′
B(u2) − φB(u1)φ

′
A(u2)] = 0 (30)

and

bi[φB(u1)φ
′
A(u2) − φA(u1)φ

′
B(u2)] = 0. (31)

Thus, the brackets of equations (30) and (31) do not vanish due to the properties of φA, φB

and their derivatives which we show above. Hence, we get ai = 0 and bi = 0. Then, by using
transfer matrices and their inverses (which exist since det(Mi) = 1 for all i), we get aj = 0
and bj = 0 for all j = 1, . . . , P + 1. This leads to the wavefunction which is identically zero
and cannot be a bound state. The theorem is proven. �

Theorem 4. For given n and l, a bound state solution gn,l(v) cannot be zero at two points in
the same interval [vi−1, vi] for i = 2, . . . , P .

Proof. Assume that gn,l(u1) = 0 and gn,l(u2) = 0 at two points u1 and u2 in an interval
[vi, vi+1]. Then, by Rolle’s theorem, there exists a point u between u1 and u2 such that
g′

n,l(u) = 0. This contradicts theorem 3, hence gn,l(v) cannot be zero at two points u1 and u2

in the same interval and the theorem is proven. �

Theorem 5. If there exists a bound state solution gn,l(kr) of equation (¶) for the potential
V1(r) = − h̄2

2m
σ1δ(r − r1), then there exists at least one bound state solution gn,l(kr) of

equation (¶) with the potential V (r) = V1(r) − h̄2

2m

∑P
i=2 σiδ(r − ri) for i = 2, . . . , P .

Proof. If there exists a bound state solution gn,l(kr) of equation (¶) with the potential
V (r) = − h̄2

2m
σ1δ(r − r1), we have[

− h̄2

2m
∇2 + V1(r)

]
� = E� (32)

where � is defined in terms of gn,l(kr) in equation (†). Then, by using the ‘volume element’
dτ in Rn, we get∫

Rn

�∗
[
− h̄2

2m
∇2 + V (r)

]
� dτ <

∫
Rn

�∗
[
− h̄2

2m
∇2 + V1(r)

]
� dτ (33)

since
∫

Rn �∗[V (r) − V1(r)]� dτ < 0. The theorem is proven. �
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Corollary 1. For the potential V (r) = − h̄2

2m

∑P
i=1 σiδ(r − ri), there always exists at least one

bound state solution gn,l(kr) of equation (¶) for n = 1 or n = 2 with l = 0.

Proof. By theorems 1 and 5, the corollary is proven. �

We will prove theorem 6 about the number of bound state solutions, gn,l(kr), of
equation (¶) with V (r) = − h̄2

2m

∑P
i=1 σiδ(r − ri) for given n and l values. The first part

of the proof is a modification of the proof given on page 455 of Hilbert–Courant, vol 1 [10].
This proof states that for the Sturm–Liouville problem, the eigenvalue of a state with a larger
number of zeros is larger than the eigenvalue of a state with fewer zeros.

First we prove a lemma for self-adjoint operators which have delta-functions.

Lemma 2. Let L be a self-adjoint operator and h1 and h2 be the continuous solutions of the
following equation in the interval [u1, u2] ⊂ R,

L[hi] = d

dv

(
Q

dhi

dv

)
+ Jhi = λiShi (34)

where J (v) = σ1δ(v−v1)+G(v) with arbitrary real σ1, u1 < v1 < u2 and λi is the eigenvalue
with the weight function S. Let Q(v),G(v) and S(v) be continuous in the interval [u1, u2] and
the derivatives of hi be continuous in [u1, v1) and (v1, u2] and the left and right derivatives of
hi about v = vi , limε→0+

dhi (v)

dv
|v=v1−ε = h′

i (v
−
1 ) and limε→0+

dhi (v)

dv
|v=v1+ε = h′

i

(
v+

1

)
, exist for

i = 1, 2. Then,∫ u2

u1

(h1L[h2] − h2L[h1]) dv = (QW [h1, h2])|v=u2
v=u1

(35)

where W [h1, h2] is the Wronskian of two different eigenfunctions of equation (34).

Proof. For a given L and continuous hi , we have

lim
ε→0+

∫ v1+ε

v1−ε

L[hi] dv = Q(v1)
[
h′

i

(
v+

1

) − h′
i (v

−
1 )

]
+ σ1hi(v1) = 0 (36)

where h′
i

(
v+

1

)
and h′

i (v
−
1 ) are right and left derivatives, respectively. Thus,

Q(v1)
[
h′

i

(
v+

1

) − h′
i (v

−
1 )

] = −σ1hi(v1). (37)

By using equation (34), we get

h1L[h2] − h2L[h1] = d(QW [h1, h2])

dv
= (λ2 − λ1)Sh1h2. (38)

Since h′
i is continuous in [u1, v1 − ε) and (v1 + ε, u2], we have

lim
ε→0+

∫ v1−ε

u1

(h1L[h2] − h2L[h1]) dv = lim
ε→0+

(QW [h1, h2])|v=v1−ε
v=u1

= Q(v1)[h1(v1)h
′
2(v

−
1 ) − h2(v1)h

′
1(v

−
1 )]

−Q(u1)[h1(u1)h
′
2(u1) − h2(u1)h

′
1(u1)] (39)

and

lim
ε→0+

∫ u2

v1+ε

(h1L[h2] − h2L[h1]) dv = lim
ε→0+

(QW [h1, h2])|v=u2
v=v1+ε

= Q(u2)[h1(u2)h
′
2(u2) − h2(u2)h

′
1(u2)]

−Q(v1)
[
h1(v1)h

′
2

(
v+

1

) − h2(v1)h
′
1

(
v+

1

)]
. (40)
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Thus,∫ u2

u1

(h1L[h2] − h2L[h1]) dv = lim
ε→0+

∫ v1−ε

u1

(h1L[h2] − h2L[h1]) dv

+ lim
ε→0+

∫ u2

v1+ε

(h1L[h2] − h2L[h1]) dv

= Q(v1)[h1(v1)h
′
2(v

−
1 ) − h2(v1)h

′
1(v

−
1 )] − Q(u1)[h1(u1)h

′
2(u1)

−h2(u1)h
′
1(u1)] + Q(u2)[h1(u2)h

′
2(u2) − h2(u2)h

′
1(u2)]

−Q(v1)
[
h1(v1)h

′
2

(
v+

1

) − h2(v1)h
′
1

(
v+

1

)]
= (QW [h1, h2])|v=u2

v=u1
+ Q(v1)h2(v1)

[
h′

1

(
v+

1

) − h′
1(v

−
1 )

]
−Q(v1)h1(v1)

[
h′

2

(
v+

1

) − h′
2(v

−
1 )

]
= (QW [h1, h2])|v=u2

v=u1
+ Q(v1)h2(v1)(−σ1h1(v1)) − Q(v1)h1(v1)(−σ1h2(v1))

= (QW [h1, h2])|v=u2
v=u1

. (41)

The lemma is proven. �

Theorem 6. Given n and l, there exist at most P bound state solutions gn,l(kr) of equation
(¶) with the potential V (r) = − h̄2

2m

∑P
i=1 σiδ(r − ri).

Proof. We define self-adjoint operators

Ln,l[h] = d

dr

(
Qn

dh

dr

)
+ Jn,lh (42)

where Q1 = 1 and J1,0 = ∑P
i=1 σiδ(r − ri) where r ∈ (−∞, +∞) for n = 1 and Qn = rn−1

and Jn,l = rn−1 ∑P
i=1 σiδ(r − ri) − rn−3l(l + n − 2) where r ∈ [0 + ∞) for n � 2. Then

Ln,l[fn,l] = −λiSnfn,l (43)

represents equations (3) and (10) with the vanishing boundary conditions for fn,l
4 and

S1 = 1, Sn = rn−1 where r ∈ [0 + ∞) for n � 2. Here we take −λi since larger k2 = −λi

values correspond to smaller bound state energy levels, E = h̄2

2m
λi . For given n and l, we

consider two eigenvalues of this equation such that −λ1 > −λ2 or λ2 > λ1. Then,

Ln,l[h1] = −λ1Snh1 (44)

and

Ln,l[h2] = −λ2Snh2. (45)

Using equations (44) and (45), we obtain

h2Ln,l[h1] − h1Ln,l[h2] = d(QnW [h2, h1])

dr
= (λ2 − λ1)Snh1h2. (46)

Assume that h2 does not change sign between the two zeros u1 and u2 of h1. Without loss of
generality, we take h1 and h2 positive between u1 and u2. By integrating equation (46) over r
between u1 and u2 and using lemma 2, we get

(QnW [h2, h1])|r=u2
r=u1

= Qn

(
h2

dh1

dr
− h1

dh2

dr

)∣∣∣∣
r=u2

r=u1

= (λ2 − λ1)

∫ u2

u1

Snh1h2 dr. (47)

By inserting h1(u1) = 0, h1(u2) = 0, we obtain

Qn(u2)h2(u2)h
′
1(u2) − Qn(u1)h2(u1)h

′
1(u1) = (λ2 − λ1)

∫ u2

u1

Snh1h2 dr. (48)

4 For n = 2, l = 0, I ′
0(0) = 0 and the value of fn,l vanishes at the boundaries for other cases.
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The right-hand side of equation (48) is positive, but the left-hand side is negative since Qn and
h2 are positive in the interval [u1, u2] and h′

1(u1) > 0 and h′
1(u2) < 0. Thus, the contradiction

shows that h2 should change sign in this interval. The first eigenfunction has no zeros in the
interior and the mth eigenfunction will have m − 1 zeros [10]. From equation (†), we find that
the zeros of fn,l and gn,l are the same for v = kr ∈ (0,∞) and k > 0. Since φA and φB of
equation (15) are positive, gn,l cannot have zeros in the interior of the first and (P + 1)th
intervals5 and by theorem 4, there can be at most one zero in each interval [vi−1, vi] for
i = 2, . . . , P . Thus, there can be at most P − 1 zeros and at most P bound state solutions
gn,l(kr) of which the first eigenfunction has no zeros. The theorem is proven. �

Theorem 7. There exist at most P bound state energy levels of the Schrödinger equation for
the potential V (r) = − h̄2

2m

∑P
i=1 σiδ(r − ri).

Proof. By theorem 2, gn,l are non-degenerate and theorem 6 states that there are at most P
bound state solutions for gn,l . Thus, the transcendental equation X22(k) = 0 for the matrix
X = MP MP−1 · · · M1 has at most P positive real roots where Mis are defined in (21) or (22).
The theorem is proven. �

We note that the matrices Mi can be written as Mi = I + Ni where I is the identity
matrix and Ni is a nilpotent matrix such that N2

i = 0. All entries of Mi matrices are real,
tr(Mi) = 2 and det(Mi) = 1. Thus, Mi ∈ SL(2, R). By using theorem 6, we present a
generalized version of the equation X22(k) = 0 for some generalizations of Mi matrices and
prove theorem 8 for these particular matrices.

Theorem 8. Let the matrices Ui ∈ SL(2, R) and Zi ∈ SL(2, R) be defined as

Ui =
(

1 + ai

f (ζ )

ai

f (ζ )
ebif (ζ )

− ai

f (ζ )
e−bif (ζ ) 1 − ai

f (ζ )

)
(49)

where ai are arbitrary positive real numbers for i = 1, 2, . . . , P and bi are real numbers such
that b1 < b2 < . . . < bP and

Zi =
(

1 + ciIµ(dif (ζ ))Kµ(dif (ζ )) ci[Iµ(dif (ζ ))]2

−ci[Kµ(dif (ζ ))]2 1 − ciIµ(dif (ζ )Kµ(dif (ζ ))

)
(50)

where ci are arbitrary positive real numbers for i = 1, 2, . . . , P and di are positive real
numbers such that d1 < d2 < . . . < dP and f (ζ ) is any real, positive definite, one-to-one
and onto function for ζ ∈ (0,∞). Then, for the matrix U = ( U11 U12

U21 U22

) = UP UP−1 · · · U1(
Z = ( Z11 Z12

Z21 Z22

) = ZP ZP−1 · · ·Z1
)
, equation U22(ζ ) = 0 (Z22(ζ ) = 0) has at most P positive

real roots.

Proof. We take y = f (ζ ) > 0. Then, Ui and Zi matrices reduce to Mi matrices which are
defined in (21) and (22), respectively. By theorem 7, there are at most P positive y values
which satisfy U22(y) = 0 (Z22(y) = 0). Since f (ζ ) is a one-to-one and onto function for
ζ ∈ (0,∞), its inverse exists and ζ = f −1(y). Thus, there are at most P positive real ζ values
which satisfy U22(ζ ) = 0 (Z22(ζ ) = 0). The theorem is proven. �

5 Here we consider only the zeros in the interior and exclude the zero value at the boundary r = 0 for n � 2.
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3. Conclusions

In this paper, we have analyzed the bound state properties of the Schrödinger equation for a
particle of mass m in a potential with P attractive Dirac delta-functions in n dimensions. The
potential is radially symmetric for n � 2. We have obtained transfer matrices to determine the
bound state eigenfunctions and a transcendental equation for the corresponding eigenvalues.
We have proven that, for given n and l, the bound state solutions of the radial equation are non-
degenerate and there are at most P bound state energy levels for a potential with P attractive
Dirac delta-functions. We have shown that for the potential V (r) = − h̄2

2m
σ1δ(r − r1), there

exists one and only one bound state energy level E if σ1r1 > 2l + n− 2 and none otherwise for
n � 2. We have also proven that there always exists at least one bound state for a potential
with any number of attractive Dirac delta-functions for n = 1 or n = 2 with l = 0. For
the bound state solutions of the radial equation, we have demonstrated that gn,l cannot have
two zeros and both gn,l and dgn,l

dv
cannot be zero at two points in an interval between the

locations of consecutive delta-functions. Finally, we have proven that there are at most P
positive roots of equation U22(ζ ) = 0 (Z22(ζ ) = 0) where U = ( U11 U12

U21 U22

) = UP UP−1 · · · U1(
Z = ( Z11 Z12

Z21 Z22

) = ZP ZP−1 · · · Z1
)

and Ui, Zi ∈ SL(2, R) are some particular matrices
which are introduced in theorem 8.

These results may be useful for the study of the attraction of a neutron by a nucleus. By
considering the shell structure of the nucleus and taking attractive delta potentials at some
ri locations, the bound state spectrum of the neutron may be obtained by inserting empirical
values for σi and ri . Our results may also be applied to the bound state spectrum of certain
particles in some novel materials which could be designed with some concentric spherical or
cylindrical strata.

In this paper, we have not considered the properties of more general potentials with Dirac
delta-functions which are not radially symmetric. This is a much more difficult problem which
we would like to examine in the future.
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