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Abstract
Calogero–Moser systems are classical and quantum integrable multiparticle
dynamics defined for any root system �. The quantum Calogero systems
having 1/q2 potential and a confining q2 potential and the Sutherland systems
with 1/ sin2 q potentials have ‘integer’ energy spectra characterized by the
root system �. Various quantities of the corresponding classical systems,
e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the
classical Lax pair matrices etc, at the equilibrium point of the potential are
investigated analytically as well as numerically for all root systems. To our
surprise, most of these classical data are also ‘integers’, or they appear to
be ‘quantized’. To be more precise, these quantities are polynomials of the
coupling constant(s) with integer coefficients. The close relationship between
quantum and classical integrability in Calogero–Moser systems deserves fuller
analytical treatment, which would lead to better understanding of these systems
and of integrable systems in general.

PACS numbers: 02.20.−a, 02.30.Ik, 03.65.−w, 11.30.−j

1. Introduction

The contrast and resemblance between classical and quantum mechanics and/or field theory
has been a good source of stimulus for theoretical physicists since the inception of quantum
theory at the beginning of the twentieth century. In spite of the well-publicized differences such
as the instability (stability) of the hydrogen atom in classical (quantum) mechanics, the photo-
electric effect and tunnelling effects, classical and quantum mechanics share many common
theoretical structures (in particular, the canonical formalism) and under certain circumstances
provide (almost) the same predictions, as exemplified by the correspondence principle and
Ehrenfest’s theorem.

In this paper, we discuss issues related to the quantum and classical integrability in
Calogero–Moser systems [1–3], having a rational potential with harmonic confining force

0305-4470/02/337017+45$30.00 © 2002 IOP Publishing Ltd Printed in the UK 7017

http://stacks.iop.org/ja/35/7017


7018 E Corrigan and R Sasaki

(the Calogero systems) and/or a trigonometric potential (the Sutherland systems). This is
a part of a program for establishing a quantum Liouville theorem on completely integrable
systems. As is well known, a classical Hamiltonian system with finitely many degrees of
freedom can be transformed into action-angle variables by quadrature if a complete set of
involutive independent conserved quantities can be obtained. It is a good challenge to formulate
a quantum counterpart of the ‘transformation into the action-angle variables by quadrature’.
Calogero–Moser systems are expected to provide the best materials in this quest. They are
known to be integrable at both quantum and classical levels, and the integrability is deeply
related to the invariance of the Hamiltonian with respect to a finite (Coxeter, Weyl) reflection
groupG� based on the root system �.

Calogero–Moser systems for any root systems were formulated by Olshanetsky and
Perelomov [4], who provided Lax pairs for the systems based on the classical root systems,
i.e. the A,B,C,D and BC type root systems. A universal classical Lax pair applicable to
all the Calogero–Moser systems based on any root systems including the E8 and the non-
crystallographic root systems was derived by Bordner–Corrigan–Sasaki [5] which unified
various types of Lax pairs known at that time [6, 7]. A universal quantum Lax pair applicable
to all the Calogero–Moser systems based on any root systems and for degenerate potentials was
derived by Bordner–Manton–Sasaki [8] which provided the basic tools for the present paper.
These universal classical and quantum Lax pairs are very closely related to each other and also
to the Dunkl operators [9, 8], another well-known tool for quantum systems. For quantum
systems, universal formulae for the discrete spectra and the ground state wavefunctions as well
as the proof of lower triangularity of the Hamiltonian and the creation–annihilation operator
formalism etc have been obtained by Khastgir–Pocklington–Sasaki [10] based on the universal
quantum Lax pair. In this respect, the works of Heckman and Opdam [11, 12] offer a different
approach based on Dunkl operators.

The quantum Calogero and Sutherland systems have ‘integer’ energy eigenvalues
characterized by the root system�. Various quantities of the corresponding classical systems,
for example minimum energy, frequencies of small oscillations, the eigenvalues of the classical
Lax pair matrices etc, at the equilibrium point of the potential are investigated in the present
paper. Some of these problems were tackled by Calogero and his collaborators [13–15], about
a quarter of a century ago. They showed, mainly for the A-type theories, that the eigenvalues
of Lax matrices at equilibrium are ‘integers’, and that the equilibrium positions are related to
zeros of classical polynomials (Hermite, Laguerre etc). The present paper provides systematic
answers, both analytical and numerical, to these old problems and presents new results, thanks
to the universal Lax pair [5, 8], which are applicable to all root systems. To our surprise, most
of the classical data are ‘integers’, and appear to be ‘quantized’.

The present paper is organized as follows. In section 2 we recapitulate the basic ingredients
of the Calogero–Moser systems and the solution mechanisms, the reflection operators and the
root systems, the quantum and classical Hamiltonian and potentials (section 2.1), the discrete
spectra (section 2.2), classical Lax pairs (section 2.3) in order to introduce notation. In
section 3 the properties of the classical equilibrium point and its uniqueness, its representation
in terms of the Lax pairs, are discussed. The importance of the pre-potential W , which is
the logarithm of the ground state wavefunction (2.6), is stressed. The formulation of the
spin exchange models [16–19], by ‘freezing the dynamical freedom at the equilibrium point’
[20] is explained. Their definition is also based on a root system � and a set of vectors
R. The uniqueness of the equilibrium point and the minimality of the classical potential as
well as the maximality of the pre-potential are proved universally. The explanation of the
highly organized nature of the energy spectra of the spin exchange models [16, 21] in terms
of the Lax pairs at equilibrium is one of the motivations of the present paper. Sections 4
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and 5 contain the main results—the classical data of the Calogero systems (section 4) and of
the Sutherland systems (section 5). In section 4.1 we show that the minimum energies are
‘integer valued’. A general ‘virial theorem’ is derived based on the classical potential and the
pre-potential. In section 4.2 the determination of the classical equilibrium points is discussed.
For Ar and Br the equilibrium points are known to be given by the zeros of the Hermite
and Laguerre polynomials [13, 14]. For the other root systems, the equilibrium points are
determined numerically. In section 4.3 the Lax pair matrices (L and M) at the equilibrium
points are shown to satisfy classical versions of the creation–annihilation operator relations. As
a consequence, the eigenvalues of the M matrix at equilibrium are shown to be equally spaced.
The eigenvalue–multiplicity relation of the M matrix at equilibrium is shown to be the same
as the height–multiplicity relation of the chosen set of vectors R. The eigenvalues of L+L− at
equilibrium are also evaluated. In section 5.1 the minimum energy of the Sutherland system
is shown to be ‘quantized’ since it is identical with the ground state energy of the quantum
system. The equilibrium position of theAr Sutherland system is known to be ‘equally spaced’
(5.14). We show in section 5.2.2 that the equilibrium positions of BCr and Dr Sutherland
systems are given as zeros of Jacobi polynomials, which is a new analytical result. The
equivalence to the classical problem of maximizing the van der Mond determinant is also
noted. The Jacobi polynomials are known to reduce to simple trigonometric (Chebyshev etc)
polynomials for three specific values of α and β (5.35), in which the zeros are again ‘equally
spaced’. We show that these three cases are utilized for the spin exchange models based on
BCr root system by Bernard–Pasquier–Serban [18]. The eigenvalues of the LK (5.32) and M
matrices at the equilibrium are all ‘integer valued’. In particular, the eigenvalue–multiplicity
relation of the LK matrix at equilibrium is shown to be the same as the height–multiplicity
relation of the chosen set of vectorsR. In this case, the ‘height’ is determined by the ‘deformed
Weyl vector’ � (2.10) in contrast to the ordinary Weyl vector δ (2.11) which determines the
height–multiplicity relation for the M matrix in Calogero system discussed in section 4. The
final section is devoted to comments and discussion. In the appendix, we discuss a remarkable
constant matrix K (2.40) which plays an important role in many parts of Calogero–Moser
theory. It is a non-negative matrix with integer elements only. For any root system � and set
of vectors R its eigenvalues are all ‘integers’ with multiplicities. The eigenvectors of the K
matrix span representation spaces of the Weyl group whose dimensions are the multiplicities
of the corresponding eigenvalues.

2. Calogero–Moser systems

In this section, we briefly summarize the quantum and classical Calogero–Moser systems
along with as much of the appropriate notation and background as is necessary for the main
body of the paper. A Calogero–Moser model is a Hamiltonian system associated with a root
system� of rank r. This is a set of vectors in Rr invariant under reflections in the hyperplane
perpendicular to each vector in �:

� � sα(β) = β − (α∨ · β)α α∨ = 2α

α2
α, β ∈ �. (2.1)

The set of reflections {sα, α ∈ �} generates a finite reflection groupG�, known as a Coxeter
(or Weyl) group. For detailed and unified treatment of Calogero–Moser models based on
various root systems and various potentials, we refer to [8, 10].

The dynamical variables of the Calogero–Moser model are the coordinates {qj } and
their canonically conjugate momenta {pj }, with the canonical commutation (Poisson bracket)



7020 E Corrigan and R Sasaki

relations (throughout this paper we put h̄ = 1):

(Q) : [qj , pk] = iδjk [qj, qk] = [pj , pk] = 0
(C) : {qj , pk} = δjk {qj, qk} = {pj , pk} = 0

}
j, k = 1, . . . , r.

These will be denoted by vectors in Rr ,

q = (q1, . . . , qr) p = (p1, . . . , pr ).

In quantum theory, the momentum operator pj acts as a differential operator:

pj = −i
∂

∂qj
j = 1, . . . , r.

2.1. Hamiltonians and potentials

We will concentrate on those cases in which bound states occur, meaning those with discrete
spectra. In other words, we deal with the rational potential with harmonic confining force
(to be called Calogero systems [1] for short) and trigonometric potential (to be referred to as
the Sutherland systems [2]):

(Q) : HQ = 1

2
p2 + VQ VQ =



ω2

2
q2 +

1

2

∑
ρ∈�+

gρ(gρ − 1)ρ2

(ρ · q)2

1

2

∑
ρ∈�+

gρ(gρ − 1)ρ2

sin2(ρ · q)

(2.2)

(C) : HC = 1

2
p2 + VC VC =



ω2

2
q2 +

1

2

∑
ρ∈�+

g2
ρρ

2

(ρ · q)2

1

2

∑
ρ∈�+

g2
ρρ

2

sin2(ρ · q) .
(2.3)

In these formulae, �+ is the set of positive roots and gρ are real positive coupling constants
which are defined on orbits of the corresponding Coxeter group, i.e. they are identical for roots
in the same orbit. For crystallographic root systems, there is one coupling constant gρ = g for
all roots in simply laced models, and there are two independent coupling constants, gρ = gL
for long roots and gρ = gS for short roots in non-simply laced models. Throughout this paper,
we put the scale factor in the trigonometric functions to unity for simplicity; instead of the
general form a2/sin2 a(ρ · q), we use 1/sin2(ρ · q). We also adopt the convention that long
roots have squared length ρ2

L = 2, unless otherwise stated.
The Sutherland systems are integrable, both at the classical and quantum levels, for the

crystallographic root systems, that is those associated with simple Lie algebras: {Ar, r � 1},3
{Br, r � 2}, {Cr, r � 2}, {Dr, r � 4}, E6, E7, E8, F4 andG2 and the so-called {BCr, r � 2}.
On the other hand, the Calogero systems are integrable for any root systems, crystallographic
and non-crystallographic. The latter are H3,H4, whose Coxeter groups are the symmetry
groups of the icosahedron and four-dimensional 600-cell, respectively, and {I2(m),m � 4}
whose Coxeter group is the dihedral group of order 2m.

These potentials, classical and quantum, both rational and trigonometric, have a hard
repulsive singularity ∼1/(ρ · q)2 near the reflection hyperplane Hρ = {q ∈ Rr , ρ · q = 0}.
3 For Ar models, it is customary to introduce one more degree of freedom, qr+1 and pr+1, and embed all of the roots
in Rr+1.
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The strength of the singularity is given by the coupling constant gρ(gρ − 1)(Q),
(
g2
ρ(C)

)
,

which is independent of the choice of the normalization of the roots. This repulsive potential
is classically (quantum mechanically, gρ > 1) insurmountable. Thus the motion is always
confined within one Weyl chamber both at the classical and quantum levels. This feature
allows us without loss of generality to constrain the configuration space to the principal Weyl
chamber (	 is the set of simple roots):

PW = {q ∈ Rr |ρ · q > 0, ρ ∈ 	}. (2.4)

In the case of the trigonometric potential,due to the periodicity of the potential the configuration
space is further limited to the principal Weyl alcove

PWT = {q ∈ Rr |ρ · q > 0, ρ ∈ 	,ρh · q < π} (2.5)

where ρh is the highest root.
The potentials of the quantum and classical systems are expressed neatly in terms of a

pre-potential W which is defined through a ground state wavefunction φ0 of the quantum
Hamiltonian HQ (2.2). Since φ0 can be chosen real and positive, because it has no nodes, it
can be expressed by a real smooth function W , to be called a pre-potential, in the principal
Weyl chamber (PW) (2.4) or the principal Weyl alcove (PWT ) (2.5) by

φ0 = eW (2.6)

HQφ0 = E0φ0. (2.7)

The pre-potential W and the ground state energy E0 are expressed entirely in terms of the
coupling constants and roots [8, 10]:

W =


−ω

2
q2 +

∑
ρ∈�+

gρ logρ · q
∑
ρ∈�+

gρ log sin(ρ · q)
(2.8)

E0 =


ω

 r
2

+
∑
ρ∈�+

gρ


2�2.

(2.9)

The deformed Weyl vector � is defined by

� = 1

2

∑
ρ∈�+

gρρ (2.10)

which reduces to the Weyl vector δ when all the coupling constants are unity:

δ = 1

2

∑
ρ∈�+

ρ. (2.11)

By plugging (2.6) into (2.7) and (2.2), we obtain a simple formula expressing the quantum
potential in terms of the pre-potentialW [8, 10]:

(Q) : VQ = 1

2

r∑
j=1

[(
∂W

∂qj

)2

+
∂2W

∂q2
j

]
+ E0 (2.12)
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Table 1. The degrees fj at which independent Coxeter invariant polynomials exist.

� fj = 1 + ej � fj = 1 + ej

Ar 2, 3, 4, . . . , r + 1 E8 2, 8, 12, 14, 18, 20, 24, 30
Br 2, 4, 6, . . . , 2r F4 2, 6, 8, 12
Cr 2, 4, 6, . . . , 2r G2 2, 6
Dr 2, 4, . . . , 2r − 2; r I2(m) 2,m
E6 2, 5, 6, 8, 9, 12 H3 2, 6, 10
E7 2, 6, 8, 10, 12, 14, 18 H4 2, 12, 20, 30

and similarly,

(C) : VC = 1

2

r∑
j=1

(
∂W

∂qj

)2

+ Ẽ0 Ẽ0 =


ω
(∑

ρ∈�+
gρ

)
2�2.

(2.13)

In the context of super-symmetric quantum mechanics [8, 22] the quantities ∂W/∂qj are called
super-potentials. In this paper, we will not discuss super-symmetry at all and we stick to our
notion ofW being a pre-potential. The difference between the quantum and classical potential
is 1

2

∑r
j=1 ∂

2W
/
∂q2

j plus the zero point energy ωr/2, for the rational cases. These are both
quantum corrections, being of the order h̄. It should be noted that the quantum Hamiltonian
(2.2) with the potential (2.12) can be expressed in a ‘factorized form’

HQ =
r∑
j=1

(
pj − i

∂W

∂qj

)(
pj + i

∂W

∂qj

)
+ E0 =

r∑
j=1

(
pj + i

∂W

∂qj

)† (
pj + i

∂W

∂qj

)
+ E0 (2.14)

which is obviously positive semi-definite apart from the constant term E0. Therefore it is
elementary to verify, thanks to the simple formulae(

pj + i
∂W

∂qj

)
eW = 0 j = 1, . . . , r (2.15)

that φ0 = eW satisfying (2.7) is the lowest energy state.

2.2. Discrete spectra

2.2.1. Rational potentials. The discrete spectrum of the Calogero systems is an integer times
ω plus the ground state energy E0. In other words, the energy eigenvalue E depends on the
coupling constant gρ only via the ground state energy E0. The integer is specified by an r-tuple
of non-negative integers �n = (n1, . . . , nr ) by [10]

E�n = ωN�n + E0 N�n =
r∑
j=1

njfj nj ∈ Z+ (2.16)

and the set of integers {fj } are listed in table 1 for each root system �. These are the degrees
at which independent Coxeter invariant polynomials occur. They are related to the exponents
ej of the root system � by

fj = 1 + ej j = 1, . . . , r. (2.17)

One immediate consequence of the spectra (2.16) is the periodicity of motion. Suppose, at
time t = 0, the system has the wavefunction�0 then the system returns to the same physical
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state after T = 2π/ω. Let us introduce a complete set of wavefunctions indexed by the r-tuple
of non-negative integers �n,

φ�n

and express the initial state �0 as the linear combination

�0 =
∑

�n
a�nφ�n.

Then, at time t the wavefunction is given by

�(t) =
∑

�n
a�nφ�n e−iE�nt = e−iE0t

∑
�n
a�nφ�n e−iω(

∑r
j=1 njfj )t .

In other words, we have

�(T ) = e−iE0T
∑

�n
a�nφ�n e−i2π(

∑r
j=1 njfj ) = e−iE0T

∑
�n
a�nφ�n = e−iE0T �0.

For some root systems, the quantum state returns to �0 earlier than T = 2π/ω. The
corresponding classical theorem, or rather its generalization for the entire hierarchy, is given
as proposition III.2 in [23]. It is interesting to note that the 1/(ρ · q)2 interactions do not
disturb the periodicity of the harmonic potential.

2.2.2. Trigonometric potentials. The discrete spectrum of the Sutherland systems is indexed
by a dominant weight λ as follows,

Eλ = 2(λ + �)2 (2.18)

in which � is the deformed Weyl vector (2.10). This spectrum can be interpreted as a ‘free’
particle energy

E = 1
2p

2

in which the momentum p ∈ Rr is simply given by

p = 2(λ + �).

A dominant weight is specified by an r-tuple of non-negative integers �n = (n1, . . . , nr ) by

λ = λ�n =
r∑
j=1

njλj (2.19)

in which λj is the j th fundamental weight. We extract explicitly the part of Eλ which depends
linearly on �n, and write

Eλ�n = 2

λ2
�n + �2 + 2

r∑
j=1

njλj · �
 . (2.20)

2.3. Classical Lax pairs

The classical equations of motion for the Hamiltonian HC are known to be written in a Lax
pair form:

q̇j = pj ṗj = −∂HC

∂qj
⇐⇒ d

dt
L = [L,M]. (2.21)
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Table 2. Functions appearing in the Lax pair.

V (u) x(u) y(u)

Rational 1/u2 1/u −1/u2

Trigonometric 1/sin2 u cot u −1/sin2 u

2.3.1. Universal Lax pair. Here we will summarize the universal formulation applicable to
any root system � for both the rational (ω = 0 case) and trigonometric potentials [5]. The
inclusion of the harmonic confining potential (ω �= 0) needs a further construction which will
be discussed at the end of this section. (For the universal quantum Lax pair, which we will
not use in this paper, we refer to [8, 10].) The universal Lax pair operators read

L(p, q) = p · Ĥ + X X = i
∑
ρ∈�+

gρ(ρ · Ĥ )x(ρ · q)ŝρ (2.22)

M(q) = i

2

∑
ρ∈�+

gρρ
2y(ρ · q)(ŝρ − I) I : identity operator (2.23)

in which the functions x(u) and y(u) are listed in the table 2. The operators Ĥ j and ŝρ obey
the following commutation relations:

[Ĥ j , Ĥ k] = 0 (2.24)

[Ĥ j , ŝα] = αj (α
∨· Ĥ )ŝα (2.25)

ŝα ŝβ ŝα = ŝsα(β) ŝ2
α = 1 ŝ−α = ŝα. (2.26)

Let us choose a set of D vectors R,

R = {µ(1), . . . , µ(D)|µ(a) ∈ Rr } (2.27)

which form a single orbit of the reflection (Weyl) groupG�. That is, any element of R can be
obtained from any other by the action of the reflection (Weyl) group. Let us note that all these
vectors have the same length, (µ(a))2 = (µ(b))2, a, b = 1, . . . ,D, which we denote simply
as µ2. They form an over-complete basis4 of Rr :∑

µ∈R
µjµk = δjkµ

2D/r j, k = 1, . . . , r. (2.28)

In terms of R, L and M are D ×D matrices whose ingredients Ĥ j and ŝρ are defined by

(Ĥ j )µν = µjδµν (ŝρ)µν = δµ,sρ(ν) = δν,sρ(µ). (2.29)

The Lax operators are Coxeter covariant,

L(sα(p), sα(q)) = ŝαL(p, q)ŝα M(sα(q)) = ŝαM(q)ŝα (2.30)

and L (M) is (anti-) Hermitian,

L† = L M† = −M (2.31)

implying real and pure imaginary eigenvalues of L and M, respectively. For various examples
of the sets of vectors R see the appendix.
4 The Ar case needs a special attention, since it has one additional degree of freedom due to the embedding (see
footnote 3).
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2.3.2. Minimal-type Lax pair. A set of weights � = {µ} is called minimal if the following
condition is satisfied:

2ρ · µ
ρ2

= 0,±1 ∀µ ∈ � and ∀ρ ∈ �. (2.32)

A representation of Lie algebra � is called minimal if its weights are minimal. All the
fundamental representations of the Ar algebras are minimal. The vector, spinor and anti-
spinor representations of theDr algebras are minimal representations. There are three minimal
representations belonging to the simply laced exceptional algebras—the 27 and 27 of E6 and
the 56 of E7; E8 has no minimal representations.

When R is a set of minimal weights �, the representation of the operator ŝρ simplifies,

(ŝρ)µν =

δµ−ν,ρ
δµ−ν,−ρ if
δµ−ν,0


ρ∨ · µ = 1
ρ∨ · µ = −1
ρ∨ · µ = 0.

(2.33)

In this case, a Lax pair with a different functional dependence from the universal Lax pair
(2.22) (2.23) is possible for the trigonometric potential systems, which we call a minimal-type
Lax pair

Lm(p, q) = p · Ĥ +Xm Mm(q) = D + Ym. (2.34)

The matrixXm has the same form as before but with a different functional dependence on the
coordinates q,

Xm = i
∑
ρ∈�+

gρ(ρ · Ĥ )xm(ρ · q)ŝρ xm(u) = 1/sin u. (2.35)

The matrix Ym is an off-diagonal matrix,

Ym = i

2

∑
ρ∈�

gρρ
2ym(ρ · q)ŝρ ym(u) = x ′

m(u) = −cosu/sin2 u. (2.36)

The diagonal matrix D is defined by

Dµν = δµ,νDµ Dµ = − i

2

∑
��β=µ−ν

gββ
2z(β · q) z(u) = −1/sin2 u. (2.37)

This type of Lax pair has been known from the early days of Calogero–Moser [4].

2.3.3. Lax pair for Calogero systems. Lax-type representations of the Hamiltonian HC (2.3)
for the Calogero systems (ω �= 0) are obtained from the rational Lax pair for the ω = 0
case discussed above. The canonical equations of motion are equivalent to the following Lax
equations for L±,

d

dt
L± = {L±,HC} = [L±,M] ± iωL± (2.38)

in which M is the same as before (2.23), and L± and Q are defined by

L± = L± iωQ Q = q · Ĥ (2.39)

with L, Ĥ as earlier (2.22), (2.29). It is easy to see that the classical commutator [Q, L] is a
constant matrix (see section 4 of [8] and section II of [24]):

QL− LQ = iK K ≡
∑
ρ∈�+

gρ(ρ · Ĥ )(ρ∨· Ĥ )ŝρ . (2.40)
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We will discuss this interesting matrix K in some detail in the appendix. If we define Hermitian
operators L1 and L2 by

L1 = L+L− L2 = L−L+ (2.41)

they satisfy Lax-like equations, and classical conserved quantities are obtained:

L̇k = [Lk,M]
d

dt
Tr Lnk = 0 k = 1, 2. (2.42)

This completes the brief summary of Calogero–Moser systems, the quantum and classical
Hamiltonians, the discrete spectra and their classical Lax representations.

3. Classical equilibrium and spin exchange models

Here we discuss the properties of the classical potential VC , the pre-potential W and Lax
matrices L,M,L1,2 near the classical equilibrium point:

p = 0 q = q̄. (3.1)

For the classical potential the point q̄ is characterized as its minimum point,

∂VC

∂qj

∣∣∣∣
q̄

= 0 j = 1, . . . , r (3.2)

whereas it is a maximal point of the pre-potential W and of the ground state wavefunction
φ0 = eW :

∂W

∂qj

∣∣∣∣
q̄

= 0 j = 1, . . . , r. (3.3)

In this connection, it should be noted that condition (2.15) (p + i∂W/∂qj ) eW = 0 is also
satisfied classically at this point. In the Lax representation, it is a point at which two Lax
matrices commute,

0 = [L̄, M̄] 0 = [L̄m, M̄m] 0 = [L̄(1,2), M̄] (3.4)

in which L̄ = L(0, q̄), M̄ = M(q̄) etc and dL̄/dt = 0 etc at the equilibrium point. The value
of a quantity A at the equilibrium is expressed by Ā.

By differentiating (2.13), we obtain

∂VC

∂qj
=

r∑
l=1

∂2W

∂qj∂ql

∂W

∂ql
. (3.5)

Since ∂2W/∂qj∂qk is negative definite everywhere,

∂2W

∂qj∂qk
=


−ωδjk −

∑
ρ∈�+

gρ
ρjρk

(ρ · q)2

−
∑
ρ∈�+

gρ
ρjρk

sin2(ρ · q)
(3.6)

we find that the equilibrium point of W is a maximum and the two conditions (3.2) and (3.3)
are equivalent:

∂VC

∂qj

∣∣∣∣
q̄

= 0 j = 1, . . . , r ⇐⇒ ∂W

∂qj

∣∣∣∣
q̄

= 0 j = 1, . . . , r. (3.7)
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By differentiating (3.5) again, we obtain

∂2VC

∂qj∂qk
=

r∑
l=1

∂2W

∂qj∂ql

∂2W

∂ql∂qk
+

r∑
l=1

∂3W

∂qj∂qk∂ql

∂W

∂ql
.

Thus at the equilibrium point of the classical potential VC , the following relation holds:

∂2VC

∂qj∂qk

∣∣∣∣
q̄

=
r∑
l=1

∂2W

∂qj∂ql

∣∣∣∣
q̄

∂2W

∂ql∂qk

∣∣∣∣
q̄

. (3.8)

If we define the following two symmetric r × r matrices Ṽ and W̃ ,

Ṽ = matrix

[
∂2VC

∂qj∂qk

∣∣∣∣
q̄

]
W̃ = matrix

[
∂2W

∂qj∂qk

∣∣∣∣
q̄

]
(3.9)

we have

Ṽ = W̃ 2 (3.10)

and

eigenvalues(Ṽ ) = {w2
1, . . . , w

2
r

}
eigenvalues(W̃ ) = {−w1, . . . ,−wr} wj > 0 j = 1, . . . , r.

(3.11)

That is Ṽ is positive definite and the point q̄ is actually a minimal point of VC .
As mentioned above, the classical potential VC tends to plus infinity at all the boundaries

(including the infinite point in PW ) of PW (PWT ). Since it is positive definite (see (2.3)), VC
has at least one equilibrium (minimal) point in PW (PWT ). Next we show that it is unique in
PW (PWT ). Suppose there are two classical equilibrium points q̄(1) and q̄ (2),

∂W

∂qj

∣∣∣∣
q̄(1)

= ∂W

∂qj

∣∣∣∣
q̄ (2)

= 0 j = 1, . . . , r

then (see (2.13))

VC(q̄
(1)) = VC(q̄

(2)) = Ẽ0.

Let us consider a space P of paths of finite length q(t), 0 � t � 1, connecting these two
equilibrium points, q(0) = q̄(1) and q(1) = q̄(2). For each path q(t) there is maximum

m[q(t)] = max
0<t<1

VC(q(t)).

Since m[q(t)] > Ẽ0, there is a minimum ofm[q(t)] in the space of paths P:

Min = min
q(t)∈P

m[q(t)].

Let us denote the extremal path achieving Min by qC(t) and qC(tM) = q̄C be its maximal
point. By definition of q̄C , it is an extremal point of VC with one negative eigenvalue of
∂2VC/∂qj∂qk in the direction of qC(t). However, from (3.11) we know it is impossible. Thus
the assumption of two extremal points q̄(1) and q̄(2) is false.

A few remarks are in order. Most of the discussion in this section, except for those
depending on the explicit form ofW (3.6), are valid in any classical potentials of multiparticle
quantum mechanical systems. The dynamics of the pre-potentials W (2.8), or rather that
of −W , for the rational and trigonometric and hyperbolic potentials has been discussed by
Dyson [25] from a different point of view. It was also introduced by Calogero and collaborators
[13, 14] in the context of determining the equilibrium but without the connection with the
quantum ground state wavefunction.
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At the end of this section, let us briefly summarize the basic ingredients of the spin
exchange models associated with the Calogero (Sutherland) system based on the root system
� and with the set of vectors R [20]. They are defined at the equilibrium points (3.1) of the
corresponding classical systems. Here we call each elementµ ofR a site to which a dynamical
degree of freedom called spin is attached. The spin takes a finite set of discrete values. In the
simplest, and typical case, they are an up (↑) and a down (↓). The dynamical state of the spin
exchange model is represented by a vectorψSpin which takes values in the tensor product of D
copies of a vector space V whose basis consists of an up (↑) and a down (↓):

ψSpin ∈ D⊗Vµ. (3.12)

The Hamiltonian of the spin exchange model HSpin is

HSpin =


1

2

∑
ρ∈�+

gρρ
2 1

(ρ · q̄)2 (1 − P̂ρ)

1

2

∑
ρ∈�+

gρρ
2 1

sin2(ρ · q̄) (1 − P̂ρ)
(3.13)

in which {P̂ρ}, ρ ∈ �+ are the dynamical variables called spin exchange operators. The
operator P̂ρ exchanges the spins of sites µ and sρ(µ),∀µ ∈ R. In terms of the operator-
valued Lax pairs

LSpin =


i
∑
ρ∈�+

gρ(ρ · Ĥ ) 1

ρ · q̄ P̂ρ ŝρ

i
∑
ρ∈�+

gρ(ρ · Ĥ ) cot(ρ · q̄)P̂ρ ŝρ
(3.14)

MSpin =


− i

2

∑
ρ∈�+

gρρ
2 1

(ρ · q̄)2 P̂ρ(ŝρ − I)

− i

2

∑
ρ∈�+

gρρ
2 1

sin2(ρ · q̄) P̂ρ(ŝρ − I)

(3.15)

the Heisenberg equations of motion for the trigonometric spin exchange model can be written
in a matrix form

i[HSpin, LSpin] = [LSpin,MSpin]. (3.16)

Since the MSpin matrix satisfies a sum up to zero condition,∑
µ∈R

(MSpin)µν =
∑
ν∈R
(MSpin)µν = 0 (3.17)

one obtains conserved quantities via the total sum of LkSpin:[HSpin,Ts
(
LkSpin

)] = 0 Ts
(
LkSpin

) ≡
∑
µ,ν∈R

(
LkSpin

)
µν

k = 3, . . . . (3.18)

These are necessary ingredients for complete integrability.
The rational spin exchange model needs some modification similar to those for the

Calogero systems. We define

L±
Spin = LSpin ± iωQ̄ Q̄ = q̄ · Ĥ . (3.19)
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Then the Heisenberg equations of motion in a matrix form read

i
[HSpin, L

+
SpinL

−
Spin

] = [L+
SpinL

−
Spin,MSpin

]
(3.20)

and conserved quantities are given by

Ts
((
L+

SpinL
−
Spin

)k) ≡
∑
µ,ν∈R

(
L+

SpinL
−
Spin

)k
µν

k = 3, . . . .

Let us emphasize that the current definition of completely integrable spin exchange models
is universal, in the sense that it applies to any root system � and to an arbitrary choice of the
set of vectors R. It contains all the known examples of spin exchange models as subcases.
For the Ar root system and for the set of vector weights, R = V (A.12), the trigonometric
spin exchange model reduces to the well-known Haldane–Shastry model [16], the rational
spin exchange model reduces to the so-called Polychronakos model [17]. For the BCr root
systems with trigonometric interactions, a spin model has been proposed with R chosen to
be the set of short roots �S , or rather, to be more precise, its r-dimensional degeneration. In
this case, complete integrability is known only for three different values of the coupling ratio
gS/gL [18]. For BCr root systems with rational interactions, a spin model with r sites has
been proposed [19].

As is clear from the formulation, the dynamics of spin exchange models depends on the
details of the classical potential VC orW at the equilibrium point and on R. It is quite natural
to expect that the highly organized spectra of the known spin exchange models [16–21] are
correlated with the remarkable properties of the Lax matrices at the equilibrium point—for
example, the integer eigenvalues and their high degeneracies. These will be explored in the
following two sections.

A determination of the energy spectrum of specific spin exchange models is not pursued
in the present paper.

4. Classical data I: rational potential

Next, we will obtain various data of the classical Calogero systems extracted from the
potentials, pre-potentials, Lax matrices etc, near the equilibrium point. First, we will derive
universal properties which are valid in any root system. Those results depending on specific
root systems will be discussed afterwards.

4.1. Minimum energy

Let us consider equations (3.2) and (3.3) for determining the classical equilibrium, which for
the rational case reads

∂VC

∂qj

∣∣∣∣
q̄

= 0 ⇒
∑
ρ∈�+

g2
ρ

ρ2ρj

(ρ · q̄)3 = ω2q̄j j = 1, . . . , r (4.1)

∂W

∂qj

∣∣∣∣
q̄

= 0 ⇒
∑
ρ∈�+

gρ
ρj

(ρ · q̄) = ωq̄j j = 1, . . . , r. (4.2)

By multiplying q̄j with both equations, we obtain the virial theorem for the classical potential
VC , ∑

ρ∈�+

g2
ρ

ρ2

(ρ · q̄)2 = ω2q̄2 (4.3)



7030 E Corrigan and R Sasaki

and a relationship

ωq̄2 =
∑
ρ∈�+

gρ
ρ · q̄
(ρ · q̄) =

∑
ρ∈�+

gρ. (4.4)

By combining these, we arrive at the minimal value of the classical potential (2.13):

VC(q̄) = ω2q̄2 = ω

∑
ρ∈�+

gρ

 = Ẽ0. (4.5)

As stated before, this is the ground state energy E0 minus the zero point energyωr/2. Although
it is a classical quantity, it has the general structure of a coupling constant(s) times an integer:

Ẽ0 =
{
ωg × #�/2 simply laced

ω(gL × #�L + gS × #�S)/2 non-simply laced.
(4.6)

Here, #� is the total number of roots, #�L (#�S) is the number of long (short) roots, and
#� = #�L + #�S .

4.2. Determination of the equilibrium point and eigenvalues of W̃

Once the equilibrium position q̄ = (q̄1, . . . , q̄r ) of the pre-potential W is determined, one
can define a Coxeter invariant polynomial of one variable, say x, to encode the data. For Ar
it is

∏r
j=1(x − q̄j ) and for Br (Dr) it is

∏r
j=1

(
x − q̄2

j

)
, since the set of {q̄1, . . . , q̄r} and{

q̄2
1, . . . , q̄

2
r

}
(or rather {±q̄1, . . . ,±q̄r}) are invariant under the Weyl group of Ar and Br ,

respectively. As shown below, these are classical orthogonal polynomials for the classical
root systems (after suitably scaling x): the Hermite polynomials for Ar [4, 13], and the
associated Laguerre polynomials for Br (Cr andDr ) [4]. For an arbitrary root system�, such
polynomials can be defined through a Lax matrix for a proper choice of R by det(yI − Q̄),
in which Q̄ = q̄ · Ĥ is the diagonal matrix Q (2.39) at equilibrium. In fact, for Ar and the
choice of vector weights, this is the Hermite polynomial Hr+1(x) (with x = y), and for Br
(Dr) and the set of short roots (vector weights), it is the Laguerre polynomial L(α)r (x) (with
x = y2). For the exceptional and non-crystallographic root systems, the polynomials have not
to the best of our knowledge been identified or named. We strongly believe and have several
pieces of numerical evidence that the polynomials for non-classical root systems have ‘integer
coefficients’ like the Hermite and Laguerre polynomials. We have not been able to determine
these polynomials exactly, except in the case I2(m) with special coupling ratios ge = go = g,
(4.32)–(4.34).

After determining q̄ we will evaluate the eigenvalues of W̃ ≡ W ′′|q̄ and Ṽ ≡ V ′′|q̄ in this
subsection and various Lax pair matrices L̄, M̄,Lk etc in section 4.3.

With the integer spaced quantum spectrum (2.16), apart from the E0 term, one could
simply associate the following effective quadratic potential,

Veff = 1

2

r∑
j=1

(ωfj )
2q̃2
j (4.7)

in certain normal coordinates q̃j . We will show later that the classical potential VC has the
same behaviour as above when expanded at the equilibrium point, in other words,

Spec(Ṽ ) = ω2 {f 2
1 , . . . , f

2
r

}
. (4.8)

Considering the relation Ṽ = W̃ 2 (3.10), this is equivalent to showing

Spec(W̃ ) = −ω{f1, . . . , fr } = −ω{1 + e1, . . . , 1 + er}. (4.9)
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Since the exponents {ej } satisfy the relation
r∑
j=1

ej = #�/2 = hr/2 (4.10)

where h is the Coxeter number, we have a simple sum rule (see footnote 4)

Tr(W̃ ) = −ω(r + #�/2) = −ωr(1 + h/2). (4.11)

4.2.1. Ar . Calogero and collaborators discussed this problem about quarter of a century ago
[4, 13]. In these cases, the root vectors embedded in Rr+1 are given by

Ar = {ej − ek, j, k = 1, . . . , r + 1|ej ∈ Rr+1,ej · ek = δjk}. (4.12)

The equations (4.2) read

r+1∑
k �=j

1

q̄j − q̄k
= ω

g
q̄j j = 1, . . . , r + 1. (4.13)

These determine
{
x̄j =

√
ω
g
q̄j
}
, j = 1, . . . , r + 1 to be the zeros of the Hermite polynomial

Hr+1(x) [26].
The matrix W̃ is given by

W̃ jk = −
ω + g

∑
l �=j

1

(q̄j − q̄l )2

 δjk + g
1

(q̄j − q̄k)2
(4.14)

and is equal to (−ωI + iM̄)jk for the representation of the Lax matrix M̄ (2.23) in terms of
the Ar vector weights (A.12). From the general result in section 4.3 (4.43), we obtain

Ar : Spec(W̃ ) = −ω{1, 2, . . . , r + 1}. (4.15)

The general result on the relationship between q̄ and Ẽ0 (4.5) translates, in this case, to the
classical result

r+1∑
j=1

x̄2
j = r(r + 1)

2
(4.16)

in which {x̄j }, j = 1, . . . , r + 1 are the zeros ofHr+1(x). These are some of the earliest results
concerning integer eigenvalues associated with the Calogero–Moser classical equilibrium
points. The original results [13, 15] depended heavily on specific properties of Hermite
polynomials. Here we have emphasized the universal structure rather than particular properties
of specific systems.

4.2.2. Br (Dr). In this case, the root vectors are expressed neatly in terms of an orthonormal
basis of Rr by

Br = {±ej ± ek,±ej , j, k = 1, . . . , r|ej ∈ Rr ,ej · ek = δjk}. (4.17)

Let us note that the rational Cr and BCr systems are identical with the Br system. Assuming
q̄j �= 0, equations (4.2) read

r∑
k �=j

1

q̄2
j − q̄2

k

+
gS/2gL
q̄2
j

= ω

2gL
j = 1, . . . , r (4.18)
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and determine
{
q̄2
j

}
, j = 1, . . . , r , as the zeros of the associated Laguerre polynomialL(α)r (cx),

with α = gS/gL − 1, c = ω/gL, [4, 26]. The general result on the relationship between q̄ and
Ẽ0 (4.5) translates in this case to the classical result

r∑
j=1

x̄j = r(r + α) (4.19)

in which {x̄j }, j = 1, . . . , r , are the zeros of L(α)r (x). The subcase with gS = 0, that is
Dr,

{
q̄2
j

}
, j = 1, . . . , r , are the zeros of the associated Laguerre polynomial [4, 26],

rL(−1)
r (cx) = −cxL(1)r−1(cx) (4.20)

for which one of the q̄j is zero. (This also means that the {q̄j } of Br for gS/gL = 2 or
α = 1 are the same as the non-vanishing {q̄j } ofDr+1. This can be understood easily from the
Dynkin diagram foldingDr+1 → Br . Let us note that another Weyl invariant ofDr , q̄1 · · · q̄r ,
is trivial (zero) in the present case.) By summing (4.18) over j , we obtain another sum rule
for the inverse square of the zeros,

gS

r∑
j=1

1

q̄2
j

= rω or
r∑
j=1

1

x̄j
= r

α + 1
. (4.21)

This formula implies that the Dr limit or gS → 0 (α → −1) limit is singular. In other
words, in this limit one of the q̄j must vanish, otherwise the left-hand side of (4.21) goes to
zero, whereas the right-hand side is a constant. This singularity explains the difference of the
spectrum of W̃ for Br and Dr in units of −ω,

� Spec(W̃ )
Br 2, 4, 6, . . . , 2r − 2, 2r
Dr 2, 4, 6, . . . , 2r − 2, r

(4.22)

verified by direct computation. This is to be compared with table 1. It is easy to understand
via a scaling the coupling constant independence of the spectrum of W̃ for Ar and Dr root
systems. However, for the non-simply laced root systems, Br, F4 and I2(even), with two
independent coupling constants, gL and gS , the coupling independence of the spectrum of W̃
is rather non-trivial.

In fact, Szegö derived equations (4.13) and (4.18) while tackling the problem of
maximizing φ0 = eW (theorem 6.7.2 [26]) in a slightly different notation and setting—without
VC , quantum mechanics or the Lax pairs. However, he did not mention (4.21).

4.2.3. Exceptional root systems (F4 and Er, r = 6, 7, 8). In each of these cases, we have
calculated the equilibrium position numerically, and evaluated the spectrum of W̃ . For F4,
various ratios of gS/gL have been tried and we have verified that the spectrum of W̃ is
independent of the coupling ratio. The results are tabulated in units of −ω:

� r Spec(W̃ )
F4 4 2, 6, 8, 12
E6 6 2, 5, 6, 8, 9, 12
E7 7 2, 6, 8, 10, 12, 14, 18
E8 8 2, 8, 12, 14, 18, 20, 24, 30

(4.23)
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4.2.4. I2(m). In this case, the root vectors are given by

I2(m) = {
√

2(cos((j − 1)π/m), sin((j − 1)π/m)) ∈ R2, j = 1, . . . , 2m}. (4.24)

The complete set of quantum eigenfunctions are obtained by separation of variables in terms
of two-dimensional polar coordinates [4, 10],

(q1, q2) = r(sin ϕ, cosϕ) (4.25)

which of course separate the pre-potential and the ground state wavefunction:

W =
{
g(m log r + log sinmϕ)− ω

2 r
2 m odd

ge(m/2 log r + log sin(mϕ/2)) + go(m/2 log r + log cos(mϕ/2))− ω
2 r

2 m even.

(4.26)

The equilibrium points are easily obtained,

r̄2 = mg

ω
ϕ̄ = π

2m
m odd r̄2 = m(ge + go)

2ω
tan

mϕ̄

2
=
√
ge

go
m even

(4.27)

together with the values of the second derivatives:

∂2W

∂r2

∣∣∣∣
q̄

= −2ω
∂2W

∂ϕ2

∣∣∣∣
q̄

= −m2g m odd (4.28)

∂2W

∂r2

∣∣∣∣
q̄

= −2ω
∂2W

∂ϕ2

∣∣∣∣
q̄

= −m2(ge + go)/2 m even. (4.29)

These translate into the spectrum of W̃ in Cartesian coordinates:

I2(m) : Spec(W̃ ) = −ω{2,m} m odd or even. (4.30)

The case G2 is the m = 6 dihedral root system treated above.
It is relatively easy to derive the explicit form the Coxeter invariant polynomials for I2(m)

when

ge = go = g. (4.31)

In these cases, the pre-potential W and the equations for the equilibrium position look the
same for even or odd m. If we choose for R the set of vertices Rm of the regular m-gon
associated with I2(m), (A.36), we obtain a degree m polynomial in y, det(yI−Q̄). By scaling

y =
√

2mg
ω
x we obtain

det(yI − Q̄) ∝

∏m
k=1

(
x − sin

[
2kπ
m

+ π
2m

])
m even∏m

k=1

(
x − sin

[
2kπ
m

+ π
m

])
m odd

 ∝ Tm(x) (4.32)

in which Tm is the Chebyshev polynomial of the first kind (5.49),

Tm(x) = cosmϕ x = cosϕ. (4.33)

They satisfy the orthogonality∫ 1

−1

Tm(x)Tl(x)√
1 − x2

dx ∝ δml. (4.34)

The general theory of Coxeter invariant polynomials for the arbitrary coupling case ge �= go
will be published elsewhere.
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4.2.5. Hr . In this case, we have evaluated the equilibrium points numerically and verified
the following:

H3 Spec(W̃ ) = −ω{2, 6, 10} (4.35)

H4 Spec(W̃ ) = −ω{2, 12, 20, 30}. (4.36)

In all the cases, from section 4.2.1 to 4.2.5 the 1 part in the spectrum of W̃ , i.e. fj = 1 + ej , is
always due to the confining harmonic potential −ωq2/2 in the pre-potentialW .

4.3. Eigenvalues of Lax matrices

The Lax pair operators L,M,L± etc (2.22), (2.23), (2.39) are D × D matrices if a set of
vectors R forming a single orbit of the reflection (Coxeter) group with D elements is chosen.

4.3.1. Universal spectrum of M. Let us denote by v0 a special vector in RD with each
element unity:

v0 = (1, 1, . . . , 1)T ∈ RD D = #R or v0µ = 1 ∀µ ∈ R. (4.37)

Let us note that the condition for classical equilibrium (4.2) can be written simply in terms of
L− as ∑

ν∈R
(L̄−)µν = 0 L̄− ≡ L−(0, q̄)

since
∑

ν∈R(ŝρ)µν = 1. Similarly, from (2.23) we obtain sum up to zero conditions∑
ν∈R

Mµν = 0
∑
µ∈R

Mµν = 0.

It should be stressed that the above two conditions are essential for deriving the quantum
conserved quantities [8, 10]. These can be expressed neatly in matrix–vector notation as

L̄−v0 = 0 vT0 L̄
+ = 0 M̄v0 = 0 vT0 M̄ = 0 (4.38)

inspiring the idea that v0 is the classical (Coxeter invariant) ground state of a matrix counterpart
of the Hamiltonian (M̄) and L̄− is an annihilation operator. The analogy goes further when
we evaluate the Lax equation for L± (2.38) at the classical equilibrium to obtain

[M̄, L̄±] = ±iωL̄±. (4.39)

However, the commutator of L+ and L− does not produce M̄ but the constant matrix K (see
(2.40) and the appendix),

[L̄+, L̄−] = [L̄ + iωQ̄, L̄− iωQ̄] = −2ωK (4.40)

together with the relation

[M̄, [L̄+, L̄−]] = 0 (4.41)

since K and M̄ commute (A.5). Relation (4.39) simply means that the eigenvalues of M̄ are
integer spaced in units of iω. We obtain

M̄v0 = 0 M̄L̄+v0 = iωL̄+v0, . . . , M̄(L̄
+)nv0 = inω(L̄+)nv0 (4.42)

implying L̄+ is a corresponding creation operator. This also means that there is a universal
formula,

Spec(M̄) = iω{0, 1, 2, . . . ,} (4.43)
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with possible degeneracies. The following sum rules (trace formulae) (4.45) and (4.46) are
useful. Let us note the simple formula

(ŝρ − I)µµ =
{−1 ρ · µ �= 0

0 ρ · µ = 0
(4.44)

and the fact that, for a fixed ρ, the number of µ in R such that ρ ·µ �= 0 is almost independent
of ρ, depending only on its orbit (|ρ|) and R. Let us denote this number by FR

ρ . On taking
the trace of M̄, we obtain

Tr(M̄) = i

2

∑
ρ∈�+

gρF
R
ρ

ρ2

(ρ ·q̄)2 . (4.45)

This formula simplifies for the simply laced root systems. In those cases, we arrive at a simple
relation between Tr(W̃), which is independent of R, and Tr(M̄), which depends on the choice
of R, by comparing with (3.6),

Tr(M̄) = −FR i

2
(ωr + Tr(W̃)) = i

4
ωrhFR � : simply laced (4.46)

in which (4.11) is used. This formula provides a non-trivial check for the numerical evaluation
of the eigenvalues of M̄ , since the right-hand side (except for the factor iω/4) is an integer
determined by � and R.

For Ar (Br) with vector weights (or with short roots) M̄ has no degeneracy but high
multiplicities occur for theDr vector or spinor weights. Here is the summary of the spectrum
of M̄ (in units of iω) with [multiplicity] for the classical root systems:

� R D Spec(M̄)
Ar V r + 1 0, 1, . . . , r − 1, r
Br �S 2r 0, 1, 2, . . . , 2r − 1
Dr V 2r 0, 1, 2, . . . , r − 1[2], . . . , 2r − 2
D4 S 8 0, 1, 2, 3[2], 4, 5, 6
D5 S 16 0, 1, 2, 3[2], 4[2], 5[2], 6[2], 7[2], 8, 9, 10
D6 S 32 0, 1, 2, 3[2], 4[2], 5[3], 6[3], 7[3], 8[3], 9[3],

10[3], 11[2], 12[2], 13, 14, 15

(4.47)

For the minimal weights of the exceptional root systems Er , we obtain

� R D Spec(M̄)
E6 27 27 0, 1, 2, 3, 4[2], 5[2], 6[2], 7[2], 8[3], 9[2], 10[2],

11[2], 12[2], 13, 14, 15, 16
E7 56 56 0, 1, 2, 3, 4, 5[2], 6[2], 7[2], 8[2], 9[3], 10[3], 11[3],

12[3], 13[3], 14[3], 15[3], 16[3], 17[3], 18[3], 19[2],
20[2], 21[2], 22[2], 23, 24, 25, 26, 27

(4.48)

These are consistent with the trace formula for M̄ (4.46), since

FV(Ar) = 2 FV(Dr) = 4 F S(Dr) = 2r−2 F 27(E6) = 12 F 56(E7) = 24.

(4.49)

For example, FV(Ar) = 2 can be seen easily. For the typical choice ρ = e1 − e2, µ = e1

and µ = e2 are the only two vectors having non-vanishing scalar product with ρ.
Let us define the height of a vector µ ∈ Rr by its scalar product with the Weyl vector, i.e.

(2.11),

δ · µ ∈ R. (4.50)
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The set of heights of all vectors in R, denoted by δ · R,

δ · R = {δ · µ|µ ∈ R} (4.51)

together with its maximum hmax ≡ max(δ · R), are independent of the choice of the positive
roots. The above results on the spectrum of the Lax matrix M̄ at equilibrium (defined by R)
(4.47)–(4.48) are summarized neatly by the set of heights of the vectors in R shifted by hmax:

Spec(M̄) = iω{δ · µ + hmax|µ ∈ R}. (4.52)

The eigenvalues and multiplicities of M̄ in the root-type Lax pairs of simply laced
crystallographic root systems can also be understood as the height and multiplicities of �.
These are mirror symmetric with respect to the midpoint, including multiplicity. The maximum
multiplicity is always the rank r occurring twice in the middle. The highest eigenvalue (in
units of iω) is 2h− 3, where h is the Coxeter number. If the lower half is shifted by −(h− 1)
(h − 1 is the maximal height) and the higher half by −(h − 2), then the eigenvalues range
from −(h− 1) to h− 1, precisely the range of the height of the roots. The multiplicities of M̄
are just the numbers of roots with that height. The following tables summarize the spectrum
of M̄ in the root-type Lax pairs for the simply laced classical root systems obtained by direct
computation:

� h R D Spec(M̄)
Ar r + 1 � r(r + 1) 0, 1[2], . . . , r − 1[r], r[r], r + 1[r − 1], . . . , 2r − 2[2], 2r − 1
D4 6 � 24 0, 1, 2[3], 3[3], 4[4], 5[4], 6[3], 7[3], 8, 9,
D5 8 � 40 0, 1, 2[2], 3[3], 4[4], 5[4], 6[5], 7[5], 8[4], 9[4], 10[3], 11[2],

12, 13,
D6 10 � 60 0, 1, 2[2], 3[2], 4[4], 5[4], 6[5], 7[5], 8[6], 9[6], 10[5], 11[5],

12[4], 13[4], 14[2], 15[2], 16, 17
D7 12 � 84 0, 1, 2[2], 3[2], 4[3], 5[4], 6[5], 7[5], 8[6], 9[6], 10[7], 11[7],

12[6], 13[6], 14[5], 15[5], 16[4], 17[3], 18[2], 19[2], 20, 21,

(4.53)

The spectrum of M̄ with the long roots of the Br is very interesting. The highest eigenvalue
is 2h− 5 = 2h∨ − 3, in which h∨ is the dual Coxeter number and the highest multiplicity is
r − 1, the number of the long simple roots. The spectrum is mirror symmetric with respect to
the midpoint. If the lower half is shifted by −(h∨ − 1) and the higher half by −(h∨ − 2), the
eigenvalues range from −(h∨ −1) to h∨ −1, which is the range of the height of the roots. Thus
we conclude that the spectrum of M̄ with the long roots is again the same as the distribution
of the Br long roots with respect to the height:

� h h∨ R D Spec(M̄)
B4 8 7 �L 24 0, 1, 2[2], 3[2], 4[3], 5[3], 6[3], 7[3], 8[2], 9[2], 10, 11
B5 10 9 �L 40 0, 1, 2[2], 3[2], 4[3], 5[3], 6[4], 7[4], 8[4], 9[4], 10[3],

11[3], 12[2], 13[2], 14, 15
B6 12 11 �L 60 0, 1, 2[2], 3[2], 4[3], 5[3], 6[4], 7[4], 8[5], 9[5], 10[5],

11[5], 12[4], 13[4], 14[3], 15[3], 16[2], 17[2], 18, 19
B7 14 13 �L 84 0, 1, 2[2], 3[2], 4[3], 5[3], 6[4], 7[4], 8[5], 9[5], 10[6],

11[6], 12[6], 13[6], 14[5], 15[5], 16[4], 17[4], 18[3],
19[3], 20[2], 21[2], 22, 23

(4.54)

The spectrum of root-type M̄ (4.53), (4.54), (4.56), (4.57) can be expressed succinctly in terms
of the Weyl vector δ,

Spec(M̄) =
{
δ · µ + hmax, for δ · µ < 0
δ · µ + hmax − 1, for δ · µ > 0

∣∣∣∣µ ∈ �(�L)

}
(4.55)
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in which as before hmax ≡ max(δ ·�) or max(δ ·�L). The spectra for F4 in terms of�L and
�S are the same, reflecting the self-duality of the F4 root system. The situation is about the
same as in the Br cases. The highest multiplicity is 2, which is the number of long (short)
simple roots:

� h h∨ R D Spec(M̄)
F4 12 9 �L 24 0, 1, 2, 3, 4[2], 5[2], 6[2], 7[2], 8[2], 9[2], 10[2], 11[2],

12, 13, 14, 15,
F4 12 9 �S 24 0, 1, 2, 3, 4[2], 5[2], 6[2], 7[2], 8[2], 9[2], 10[2], 11[2],

12, 13, 14, 15,

(4.56)

� h R D Spec(M̄)
E6 12 � 72 0, 1, 2, 3[2], 4[3], 5[3], 6[4], 7[5], 8[5], 9[5], 10[6], 11[6],

12[5], 13[5], 14[5], 15[4], 16[3], 17[3], 18[2], 19, 20, 21
E7 18 � 126 0, 1, 2, 3, 4[2], 5[2], 6[3], 7[3], 8[4], 9[4], 10[5], 11[5],

12[6], 13[6], 14[6], 15[6], 16[7], 17[7], 18[6], 19[6], 20[6],
21[6], 22[5], 23[5], 24[4], 25[4], 26[3], 27[3], 28[2], 29[2],
30, 31, 32, 33

E8 30 � 240 0, 1, 2, 3, 4, 5, 6[2], 7[2], 8[2], 9[2], 10[3], 11[3], 12[4],
13[4], 14[4], 15[4], 16[5], 17[5], 18[6], 19[6], 20[6], 21[6],
22[7], 23[7], 24[7], 25[7], 26[7], 27[7], 28[8], 29[8], 30[7],
31[7], 32[7], 33[7], 34[7], 35[7], 36[6], 37[6], 38[6], 39[6],
40[5], 41[5], 42[4], 43[4], 44[4], 45[4], 46[3], 47[3],
48[2], 49[2], 50[2], 51[2], 52, 53, 54, 55, 56, 57

(4.57)

The eigenvalue (the height of the root) where the multiplicity changes corresponds to the
exponent. When the multiplicity changes by two units, which occurs only in Deven, there are
two equal exponents. We do not have analytic proofs of these facts.

The situation for the non-crystallographic root systems is different since the ‘integral
heights’ are not defined for the roots. The highest eigenvalue is not 2h− 3. The places where
the multiplicity changes, counted from the centre of the spectrum, are not the exponents but
3, 5 and 7 (3 + 7 = 10 = 5 + 5 = h for H3) and 7, 13, 17 and 23 (7 + 23 = 13 + 17 = 30 = h

for H4). It is known that H3 (H4) is obtained from D6 (E8) by ‘folding’. The above integers
are the exponents of D6 and E8. The rest of the exponents of D6 (E8) are inherited by H3

(H4). The pair D6 and H3 (E8 and H4) share the same Coxeter number h. For other aspects
of the M̄ spectra of root-type Lax pairs ofHr , we do not have an explanation to offer. Here is
the summary of the spectrum of M̄ for the root-type Lax pairs of Hr :

� h R D Spec(M̄)
H3 10 � 30 0, 1, 2[2], 3[2], 4[3], 5[3], 6[3], 7[3], 8[3], 9[3],

10[2], 11[2], 12, 13
H4 30 � 120 0, 1, 2, 3, 4, 5, 6[2], 7[2], 8[2], 9[2], 10[3], 11[3],

12[3], 13[3], 14[3], 15[3], 16[4], 17[4], 18[4], 19[4],
20[4], 21[4], 22[4], 23[4], 24[4], 25[4], 26[4], 27[4],
28[4], 29[4], 30[3], 31[3], 32[3], 33[3], 34[3], 35[3],
36[2], 37[2], 38[2], 39[2], 40, 41, 42, 43, 44, 45

(4.58)

In all these root-type cases, the highest multiplicity is equal to the rank r. The spectra of M̄
for the simply laced root systems are consistent with the trace formula for M̄ (4.46), since

F�(Ar) = 2(2r − 1) F�(Dr) = 8r − 14 F�(E6) = 42
(4.59)

F�(E7) = 66 F�(E8) = 114 F�(H3) = 26 F�(H4) = 90.
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For crystallographic root systems, i.e. Ar,Dr and Er , F� = 4h − 6 and F� is twice the
maximal eigenvalue of M̄ for all the cases listed above.

Finally, for I2(m) in the m-dimensional representation (A.36):

� h R D Spec(M̄)
I2(2n + 1) 2n + 1 R2n+1 2n + 1 0, 1, . . . , 2n− 1, 2n
I2(2n) 2n R2n 2n 0, 1, . . . , 2n− 2, 2n− 1

(4.60)

4.3.2. Spectrum of L̄1 and L̄2. Next let us consider the spectra of L̄1 = L̄+L̄− and
L̄2 = L̄−L̄+, the generators of the conserved quantities (2.42). Note first that a classical
analogue of the creation–annihilation operator commutation relation of a harmonic oscillator
reads [L+, L−] = −2ωK , see (4.40). By using the information on K in the appendix, we can
derive the spectrum of L̄1 = L̄+L̄− and L̄2 = L̄−L̄+ for specific choices of R.

Let us explain the method using the simplest examples. First, Ar with vector weights
embedded in Rr+1 (A.12). The K matrix has the following form,

K = g
(
v0v

T
0 − I

)
with the highest eigenvalue at v0 (A.15), (A.6):

Kv0 = grv0.

Since L̄1,2 are simultaneously diagonalizable with M̄ (3.4), it is natural to assume that
{(L̄+)mv0} form the eigenvectors for L̄1,2. In fact, we have

L̄1v0 = 0 L̄1L̄
+v0 = L̄+([L̄−, L̄+] + L̄+L̄−)v0 = 2ωL̄+Kv0 = 2ωgrL̄+v0

(4.61)
L̄2v0 = ([L̄−, L̄+] + L̄+L̄−)v0 = 2ωKv0 = 2ωgrv0

and we arrive at

Ar(V) : Spec(L̄1) = 2gω{0, r, r − 1, . . . , 1} (4.62)

Ar(V) : Spec(L̄2) = 2gω{r, r − 1, . . . , 1, 0}. (4.63)

In this case, it is easy to see that L̄2 + ω2Q̄2 also has integer eigenvalues.
Next, let us considerDr with vector weights (A.22), or Br with the short roots (A.19). In

these cases, we have (A.24) and (A.21),

Dr(V) : K = g
(
v0v

T
0 − I − SI

)
Br(�S) : K = gL

(
v0v

T
0 − I − SI

)
+ 2gS SI

in which SI is the second identity matrix. It is 1 for the elements (ej ,−ej ), (−ej ,ej ), j =
1, . . . , r and 0 otherwise. The L± satisfy simple commutation relation with SI , and

SI (L
±)m = (−1)m(L±)mSI. (4.64)

We have (in units of 2gω for the simply laced root systems)

� R D Spec(L̄1)

Ar V r + 1 0, r, r − 1, . . . , 2, 1
Dr V 2r 0[2], 2(r − 1)[2], . . . , 2[2]
Br �S 2r 0, 2(r − 1)gL + 2gS, 2(r − 1)gL, 2(r − 2)gL + 2gS,

2(r − 2)gL, . . . , 2gL + 2gS, 2gL, 2gS

(4.65)

In these cases, the spectrum of L̄2 + ω2Q̄2 also consists of integer eigenvalues.
It is interesting to note that for other cases the spectrum of L̄1 does not always consist

of integers; for example, the spinor weights of Dr , the set of roots for Ar,Dr etc and for
the exceptional Er and non-crystallographic root systems Hr . Here we list only the integer
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eigenvalues of L̄1 in units of 2gω (the total number of integer eigenvalues including multiplicity
is denoted by #I ):

� R D #I Spec(L̄1)

A3 � 12 10 0[3], 2, 4[2], 6[3], 8
A4 � 20 14 0[4], 4[3], 5, 6[3], 9, 10[2]
A5 � 30 20 0[5], 4[3], 6[6], 8[2], 10[2], 12[2]
A6 � 42 30 0[6], 3, 4[5], 6[5], 7, 8[3], 10[4], 14[3], 15[2]

(4.66)

� R D #I Spec(L̄1)

D4 S 8 8 0[2], 2[2], 4[2], 6[2]
D5 S 16 8 0[2], 2, 4, 6, 10[2], 12
D6 S 32 16 0[3], 1[2], 3, 4[2], 5, 7, 8, 11, 12, 15, 19, 20
D7 S 64 14 0[5], 2, 3, 5, 6, 9, 15, 21, 30, 31
D4 � 24 24 0[4], 2[3], 4[4], 6[4], 8[3], 10, 12[4], 16
D5 � 40 26 0[5], 2[2], 4[3], 6[6], 8[2], 10[3], 12, 14, 16[2], 18
D6 � 60 38 0[6], 2, 4[4], 6[7], 8[2], 10[7], 12[3], 14[2], 16[2],

20[2], 24[2]
D7 � 84 49 0[7], 2, 4[5], 6[8], 8[3], 10[7], 12[3], 14[4], 16[2],

18[2], 20[3], 24[3], 30

(4.67)

The results for the exceptional root systems are in units of 2ω for F4:

� R D #I Spec(L̄1)

F4 �L 24 12 0[2], 6gL, 2(gL + 2gS)[2], 4(2gL + gS), 4(gL + 2gS),
2(5gL + 4gS), 8(2gL + gS), 12(gL + gS)[3]

F4 �S 24 12 0[2], 2gL + gS[2], 3gS, 2(2gL + gS), 2(gL + 2gS),
2gL + 5gS, 6(gL + gS)[3], 4(gL + 2gS)

(4.68)

For the simply laced Er in units of 2gω:

� R D #I Spec(L̄1)

E6 27 27 15 0[3], 2[3], 4, 6, 8, 10, 16[3], 18, 20
E7 56 56 23 0[3], 1[2], 3, 4[2], 5, 7, 8[2], 9, 11, 12,

15, 16, 18, 20, 27, 32, 35, 36
E6 � 72 29 0[6], 6[9], 12[8], 18[2], 24, 30[2], 36
E7 � 126 31 0[7], 6[8], 8, 10, 12[3], 14[2], 16[2],

18[2], 24, 36, 48, 50, 56
E8 � 240 55 0[8], 6[11], 12[6], 18[3], 24[5], 30[9],

36[4], 54, 60[2], 84[3], 90[2], 96

(4.69)

The results for the non-crystallographic root systems are

� R D #I Spec(L̄1)

H3 � 30 15 0[3], 2, 3, 5[6], 8[2], 10[2]
H4 � 120 48 0[4], 5[4], 10[7], 15[18], 20[3], 25[2], 30[10]

(4.70)

All the eigenvalues are ‘integers’ for I2(m) in the m-dimensional representation (A.36):

� R D #I Spec(L̄1)

I2(2n + 1) R2n+1 2n + 1 2n + 1 0, 4n + 2[2n− 1], 8n + 4
I2(2n) R2n 2n 2n 0, 8gen, 8gon, 4(ge + go)n[2n− 4], 8(ge + go)n

(4.71)
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5. Classical data II: trigonometric potential

5.1. Minimum energy

Let us start this subsection by recalling that the classical minimum energy 2�2 (2.9) is, in fact,
‘quantized’. In this section, we discuss only the crystallographic root system � with which a
Lie algebra g� is associated. If all the coupling constants are unity gρ = 1, � = δ, and the
Freudenthal-de Vries (‘strange’) formula leads to

2�2 = dim(g�)ρ2
hh

∨

12
(5.1)

in which dim(g�) is the dimension of the Lie algebra g�, ρh is the highest root and h∨ is the
dual Coxeter number. This gives the classical minimum energy formula for the simply laced
root systems (in the unit of g2 and with α2 = 2):

� E0 � E0 � E0 � E0 � E0

Ar r(r + 1)(r + 2)/6 Dr r(r − 1)(2r − 1)/3 E6 156 E7 399 E8 1240

(5.2)

For the non-simply laced root systems, the classical minimum energy formula is given by

� E0

Br r
(
2g2

L + 4r2g2
L − 6gLgS + 3g2

S + r(−6g2
L + 6gLgS)

)/
6

Cr r
(
g2
S − 6gSgL + 6g2

L − 3g2
Sr + 6gSgLr + 2g2

Sr
2
)/

3

F4 28g2
L + 36gLgS + 14g2

S

G2 4g2
L + 4gLgS + 4g2

S

/
3

(5.3)

in which long roots have ρ2
L = 2, except for the Cr case where a different normalization

ρ2
L = 4 is chosen.

By taking the trace of W̃ (3.6), we obtain

Tr(W̃ ) = −
∑
ρ∈�+

gρρ
2

sin2(ρ · q̄) . (5.4)

For the simply laced root systems, this is related to VC(q̄) (2.3) and thus to E0 (2.13):

Tr(W̃ ) = −2VC(q̄)/g = −2E0/g = −4�2/g � : simply laced. (5.5)

As in the Calogero systems (4.46), Tr(M̄) is related to Tr(W̃ ). By taking the trace of M̄ , we
obtain

Tr(M̄) = i

2

∑
ρ∈�+

gρF
R
ρ

ρ2

sin2(ρ · q̄)2 (5.6)

on recalling the earlier definition of FR
ρ (4.44). This formula simplifies for the simply laced

root systems to

Tr(M̄) = − i

2
FR Tr(W̃) = 2iFR�2/g � : simply laced. (5.7)

As in the Calogero case, this formula provides a non-trivial check for the numerical evaluation
of the eigenvalues of M̄ . Since the Lax matrix L̄ is off-diagonal, (L̄)µµ = 0 and we have a
trivial trace formula:

Tr(L̄) = 0. (5.8)
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5.2. Determination of the equilibrium point and eigenvalues of W̃

Since the quantum energy levels of the Sutherland systems are not integers (time a constant)
spaced but (2.20)

Eλ�n = 2

λ2
�n + �2 + 2

r∑
j=1

njλj · �


it is not obvious what to expect for the eigenfrequencies of the small oscillations near the
equilibrium point. In other words, what are the corresponding spectra of Ṽ or equivalently of
W̃? An educated guess would be that, just as in the rational potential situation, we assume the
parts of the spectra which are linear in the integer labels �n correspond to the eigenfrequencies
of the small oscillations near the equilibrium point. That is, we expect

Spec(Ṽ ) = {(4λ1 · �)2, . . . , (4λr · �)2} (5.9)

and

Spec(W̃ ) = −{4λ1 · �, . . . , 4λr · �} (5.10)

which we will show presently. For the simply laced root systems, we have a simple relation

� = g

2

∑
ρ∈�+

ρ = g

r∑
j=1

λj (5.11)

which implies a simple sum rule

Tr(W̃ ) = −4�2

g
= −2E0

g
� : simply laced (5.12)

which has been derived before (5.5) via a different route. The equations determining the
equilibrium position (3.3) read∑

ρ∈�+

gρ cot(ρ · q̄)ρj = 0 j = 1, . . . , r

and can be expressed in terms of the L matrix at equilibrium:

L̄v0 = 0 = vT0 L̄. (5.13)

The ‘ground state’ v0 (4.37) is also annihilated by M̄:

M̄v0 = 0 = vT0 M̄.

These relations are valid for any R. As in the Calogero case, the equilibrium positions
q̄ = (q̄1, . . . , q̄r ) can be easily identified for the classical root systems. For the exceptional
root systems, the equilibrium positions are determined numerically. We shall discuss each
case in turn.

5.2.1. Ar . In this case, the equilibrium position and the eigenvalues of the Lax matrices can
be obtained explicitly. This is the reason why the Haldane–Shastry model is better understood
than other spin exchange models. The equations determining the equilibrium position (3.2)
and (3.3) read

r+1∑
k �=j

cos[q̄j − q̄k]

sin3[q̄j − q̄k]
= 0

r+1∑
k �=j

cot[q̄j − q̄k] = 0 j = 1, . . . , r + 1
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and the equilibrium position is ‘equally spaced’,

q̄ = π(0, 1, . . . , r − 1, r)/(r + 1) + ξv0 ξ ∈ R : arbitrary (5.14)

due to the well-known trigonometric identities,

r+1∑
k �=j

cos[π(j − k)/(r + 1)]

sin3[π(j − k)/(r + 1)]
= 0

r+1∑
k �=j

cot[π(j − k)/(r + 1)] = 0 j = 1, . . . , r + 1.

This enables us to calculate most quantities exactly. For example, we have

W̃ jk = g
(1 − δjk)

sin2[(j − k)π/(r + 1)]
− gδjk

∑
l �=j

1

sin2[(j − l)π/(r + 1)]
j, k = 1, . . . , r + 1

(5.15)

and

Ar : Spec(W̃ ) = −2g{r, (r − 1)2, . . . , (r + 1 − j)j, . . . , 2(r − 1), r} (5.16)

in which the trivial eigenvalue 0, coming from the translational invariance, is removed. This
agrees with the general formula (5.10) of the W̃ spectrum (i.e. the j th entry is 4λj · �, and
obviously satisfies the above sum rule (5.2), (5.12)). The spectrum (5.16) is symmetric with
respect to the middle point, λj ↔ λr+1−j , reflecting the symmetry of the Ar Dynkin diagram.
It is easy to see that W̃ is essentially the same as the Lax matrix M̄ with the vector weights
(R = V, see (A.12)):

M̄ = −iW̃ . (5.17)

(This is consistent with (5.7), since FV = 2, see (4.49)).

Ar Universal Lax pair (V). The other Lax matrix with the vector weights reads (j, k =
1, . . . , r + 1)

(L̄)jk = ig(1 − δjk) cot[π(j − k)/(r + 1)] (5.18)

Ar(V) : Spec(L̄) = g

{
0[2],±2,±4, . . . ,±(r − 1) r : odd
0,±1,±3, . . . ,±(r − 1) r : even

}
(5.19)

with the common eigenvectors (h = r + 1)

u(a), (u(a))j = e2iajπ/h a = 0, 1, . . . , r u(0) ≡ v0, (5.20)

satisfying

L̄u(a) = gλau
(a) λa =

{
0 a = 0
r + 1 − 2a a �= 0

(5.21)

M̄u(a) = igµau(a) µa = 2a(r + 1 − a). (5.22)

These are well-known results [4, 14].
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Ar minimal-type Lax pair (V). The minimal Lax pair matrices in the vector weights read
(j, k = 1, . . . , r + 1)

(L̄m)jk = ig(1 − δjk)/ sin[π(j − k)/(r + 1)] (5.23)

(M̄m)jk = ig
(1 − δjk)

sin2[(j − k)π/(r + 1)]
− igδjk

∑
l �=j

cos[(j − l)π/(r + 1)]

sin2[(j − l)π/(r + 1)]
. (5.24)

They have common eigenvectors with integer eigenvalues (h = r + 1):

v(a,±), (v(a,±))j = e±iajπ/h a = 1, 3, 5, . . . ,�h (5.25)

L̄mv
(a,±) = ±g(h− a)v(a,±) (5.26)

M̄mv
(a,±) = ig(ah− (a2 + 1)/2)v(a,±). (5.27)

The above spectrum of M̄m can be derived easily from the following relation between L̄m and
M̄m (see equation (5.8) of [23]),

R1/2M̄mR
−1/2 − R−1/2M̄mR

1/2 = −i(R1/2L̄mR
−1/2 + R−1/2L̄mR

1/2) (5.28)

in which R ≡ e2iQ̄. We note that R±a/2v0 = v(a,±) and use the spectrum of L̄m. The above
relationship is a special case of the general formulae which are valid in any root systems
having minimal weights,

R−1/2L̄mR
1/2 = L̄ +K R1/2L̄mR

−1/2 = L̄−K (5.29)

R1/2M̄mR
−1/2 = M̄ − iR1/2L̄mR

−1/2 (5.30)

R−1/2M̄mR
1/2 = M̄ + iR−1/2L̄mR

1/2 (5.31)

in which the constant matrix K is defined in (2.40). These mean, for example, that the spectrum
of L̄m and L̄±K are the same and those of M̄ and M̄m ± iL̄m are the same. We will see many
examples later.

Ar root-type Lax pair. The L̄-matrices of the Ar root-type Lax pair do not have integer
eigenvalues, although the quantities L̄2 do. Let us tentatively say that L̄ has

√
integer

eigenvalues. (Recall that Tr(L2) is proportional to the Hamiltonian.) However, a new type of
L-matrix having all integer eigenvalues can be defined by

L̄K = L̄ + K̃ K̃ =
∑
ρ∈�+

gρ |ρ · Ĥ |ŝρ [K̃, M̄] = 0 (5.32)

in which K̃ is a non-negative matrix closely related to the K-matrix defined by (2.40). The
absolute value in the definition of K̃ means K̃µν = ∑

ρ∈�+
gρ |ρ · µ|(ŝρ)µν, µ, ν ∈ R. This

type of Lax matrix has been obtained (see section 8.3, equation (8.22) in [10]) by incorporating
a spectral parameter (ξ ) into the Lax pair and taking a limit (say, ξ → −i∞). For R = � {set
of minimal weights}, we have K̃ ≡ K and L̄K has the same spectrum as the minimal-type
L̄m due to relation (5.29). The spectra of L̄K are very simple, whereas those of M̄ of the root
type are sums of those of W̃ , i.e. 4λj · �, with varied multiplicities:

Ar(�) : Spec(L̄K) = g{±2[r],±4[r − 1], . . . ,±2(r − 1)[2],±r} (5.33)
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� R D Spec(M̄)
A3 � 12 0, 6[4], 8[3], 12[2], 14[2]
A4 � 20 0, 8[4], 12[6], 16[2], 20[6], 24
A5 � 30 0, 10[4], 16[6], 18[3], 20[2], 26[6], 28[4], 32[2], 34[2]
A6 � 42 0, 12[4], 20[6], 24[8], 32[6], 36[8], 40[2], 44[6], 48
A7 � 56 0, 14[4], 24[6], 28[2], 30[6], 32[3], 38[6], 44[8], 46[4],

48[2], 54[6], 56[4], 60[2], 62[2]
A8 � 72 0, 16[4], 28[6], 32[2], 36[6], 40[6], 44[6], 52[8], 56[10],

64[6], 68[8], 72[2], 76[6], 80

(5.34)

The eigenvalues of M̄ are of the form i
∑r

j=1 aj (4� · λj ), in which aj = 0, 1. The relation
between Tr(W̃) and Tr(M̄) (5.7) is satisfied, since F�(Ar) = 2(2r − 1), see (4.59).

5.2.2. BCr and Dr. The analytical treatment of the classical equilibrium position of the
BCr andDr Sutherland system has not been reported, to the best of our knowledge, except for
the aforementioned three cases when the coupling ratio gS/gL takes special values [18, 20].
We will show in this subsection, that the equilibrium position is given in terms of the zeros
of Jacobi polynomials. The Jacobi polynomials P (α,β)r are known to reduce to elementary
trigonometric polynomials, Chebyshev polynomials etc for three cases,

(i) α = β = −1/2 (ii) α = β = 1/2 (iii) α = 1/2 β = −1/2 (5.35)

which will be identified later with the three cases discussed in [18, 20].
Let us start from the pre-potential of the BCr Sutherland system,

W = gM

r∑
j<k

log [sin(qj − qk) sin(qj + qk)] +
r∑
j=1

{gS log sin qj + gL log sin 2qj } (5.36)

= gM

r∑
j<k

log [(−1/2)(cos 2qj − cos 2qk)] +
r∑
j=1

{gS log sin qj + gL log sin 2qj} (5.37)

which depends on three independent coupling constants, gL, gM and gS , for the long, middle
and short roots, respectively. Here we have adopted the following representation of the BCr
roots in terms of an orthonormal basis of Rr :

BCr = {±ej ± ek,±ej ,±2ej , j, k = 1, . . . , r|ej ∈ Rr ,ej · ek = δjk}. (5.38)

We look for the solutions {q̄j } of (3.3),

∂W

∂qj
= 0 j = 1, . . . , r

which read

−2gM

r∑
k �=j

sin 2q̄j
cos 2q̄j − cos 2q̄k

+ gS
cos q̄j
sin q̄j

+ 2gL
cos 2q̄j
sin 2q̄j

= 0 j = 1, . . . , r. (5.39)

For non-vanishing gS and gL, sin 2q̄j = 0 cannot satisfy the above equation. Thus by dividing
by sin 2q̄j we obtain

r∑
k �=j

1

x̄j − x̄k
+
gS + gL

2gM

1

x̄j − 1
+
gL

2gM

1

x̄j + 1
= 0 j = 1, . . . , r (5.40)

in which

x̄j ≡ cos 2q̄j . (5.41)
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These are the equations satisfied by the zeros {x̄j} of Jacobi polynomial P (α,β)r (x) [26] with

α = (gL + gS)/gM − 1 β = gL/gM − 1. (5.42)

The solution (the equilibrium position) is shown to be unique.
Next, let us consider the Dr case; the pre-potential is simply

W = g

r∑
j<k

log [(−1/2)(cos 2qj − cos 2qk)] (5.43)

and the equations for its equilibrium point read

sin 2q̄j

r∑
k �=j

1

cos 2q̄j − cos 2q̄k
= 0 j = 1, . . . , r. (5.44)

These can be decomposed into two parts,

sin 2q̄1 = 0 = sin 2q̄r ⇐⇒ cos 2q̄1 = 1 cos 2q̄r = −1 (5.45)

and
r−1∑

k=2,�=j

1

x̄j − x̄k
+

1

x̄j − 1
+

1

x̄j + 1
= 0 j = 2, . . . , r − 1 (5.46)

in which {x̄j }, j = 2, . . . , r − 1 are defined as before (5.41). The latter part (5.46) are the
equations that the zeros {x̄j } of the Jacobi polynomialP (1,1)r−2 (x) or the Gegenbauer polynomial

C
3/2
r−2(x) satisfy.

Note, the problem of finding the maximal point of the Dr pre-potentialW is the same as
the classical problem of maximizing the van der Monde determinant

V dM(x1, . . . , xr ) =
r∏
j<k

(xj − xk) (5.47)

under the boundary conditions

1 = x1 > x2 > · · · > xr−1 > xr = −1. (5.48)

Now let us show that the three special cases (5.35) are also characterized by equally
spaced q̄j , that is q̄j − q̄j+1 is independent of j .

(i) For α = β = −1/2 ⇔ gL/gM = 1/2, gS = 0, which is a special case of Cr obtained
from the Dynkin diagram folding A2r−1 → Cr . Jacobi polynomial P (−1/2,−1/2)

r (x) is
known to be proportional to Chebyshev polynomial of the first kind Tr(x), which can be
expressed as

Tr(x) = cos rϕ x = cosϕ. (5.49)

The zeros are equally spaced in ϕ:

ϕ̄j = (2j − 1)π

2r
⇔ cos 2q̄j = cos

(2j − 1)π

2r
⇔ q̄j = (2j − 1)π

4r
j = 1, . . . , r. (5.50)

The Dynkin diagram foldingA2r−1 → Cr explains this situation neatly. By imposing the
following restrictions on the dynamical variables

qj = −q2r+1−j j = 1, . . . , r (5.51)
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in the pre-potential of A2r−1 Sutherland system,

WA2r−1 = g

2r∑
j<k

log sin(qj − qk)

it reduces to that of Cr with the coupling relation gL/gM = 1/2:

WA2r−1→Cr = 2g
r∑
j<k

log [sin(qj − qk) sin(qj + qk)] + g
r∑
j=1

log sin 2qj . (5.52)

The equilibrium point of the aboveA2r−1 pre-potential is given in general by

q̄j = jπ

2r
+ ξ j = 1, . . . , 2r (5.53)

in which ξ is an arbitrary real constant, reflecting the ‘translational invariance’ of the
pre-potential. By imposing the restrictions (5.51) on the above equilibrium point, we find
ξ = −(2r + 1)π/4r , which turns the general A2r−1 equilibrium point (5.53) to that of
Cr (5.50). It is interesting to note that the above equilibrium point (5.50) is given by the
deformed Weyl vector (2.10) with gM = π/2r, gL = π/4r and a choice of positive roots
{ej − ek} for j < k.

(ii) For α = β = 1/2 ⇔ gL/gM = 3/2, gS = 0, which is also a special case of Cr . Jacobi
polynomial P (1/2,1/2)r (x) is known to be proportional to Chebyshev polynomial of the
second kind Ur(x) which has a simple expression as a trigonometric polynomial:

Ur(x) = sin(r + 1)ϕ

sin ϕ
x = cosϕ. (5.54)

The zeros are equally spaced in ϕ:

ϕ̄j = jπ

r + 1
⇔ cos 2q̄j = cos

jπ

r + 1
⇔ q̄j = jπ

2(r + 1)
j = 1, . . . , r. (5.55)

(iii) For α = 1/2, β = −1/2 ⇔ gL/gM = 1/2, gS/gM = 1. In this case, we have

P (1/2,−1/2)
r (x) ∝ sin[(2r + 1)ϕ/2]

sin[ϕ/2]
x = cosϕ.

The zeros are equally spaced in ϕ:

ϕ̄j = 2jπ

2r + 1
⇔ cos 2q̄j = cos

2jπ

2r + 1
⇔ q̄j = jπ

2r + 1
j = 1, . . . , r. (5.56)

This equilibrium point is also obtained as a deformed Weyl vector (2.10) for gM =
π/(2r + 1). For α = −1/2, β = 1/2, Jacobi polynomial P (α,β)r is proportional to another
trigonometric polynomial. But this case is not compatible with positive coupling constants
gρ and will not be discussed here.

In this connection, let us remark on the dynamical implications of another well-known
Dynkin diagram folding, Dr+1 → Br . By restricting one of the dynamical variables of Dr+1

Sutherland system to its equilibrium position

qr+1 = 0 (5.57)

its pre-potential,

WDr+1 = g

r+1∑
j<k

log [sin(qj − qk) sin(qj + qk)]
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reduces to that of Br with the coupling relation gS/gM = 2:

WDr+1→Br = g

r∑
j<k

log [sin(qj − qk) sin(qj + qk)] + 2g
r∑
j=1

log sin qj . (5.58)

This means that the equilibrium position of the reduced Br system (5.57), the zeros of
P (1,−1)
r (x), is given by that of the original Dr+1 system, i.e. the zeros of P (1,1)r−1 (x) plus
x = −1. In other words, the following identities hold,

(r + 1)(x + 1)P (1,1)r−1 (x) = 2rP (1,−1)
r (x) r = 1, 2, . . . (5.59)

which are trigonometric counterparts of (4.20).
In the following, we summarize the spectra of W̃ , L̄, M̄ , L̄m, M̄m of the Dr Sutherland

system which are evaluated numerically, with the vector weights V and the roots �. The
spectra are all ‘integer valued’, except for L̄. The combinations (5.32) L̄K = ±K̃ + L̄ are
integer valued having the same spectra as L̄m for R = V, see (5.29). It is interesting to
note that L̄2 is integer valued for R = V, but the eigenvalues are not all integers for R = �.
The spectrum of W̃ is

Dr : Spec(W̃ ) = −g{4(r − 1), 4(2r − 3), . . . , 2j (2r − 1 − j), . . . , 2(r − 2)(r + 1),

r(r − 1)[2]} (5.60)

which agrees with the general formula (5.10) of the W̃ spectrum, i.e. the j th entry is 4λj · �,
and obviously satisfies the sum rule (5.2), (5.12). The two-fold degeneracy reflects the Dynkin
diagram symmetry corresponding to the spinor and anti-spinor fundamental weights, λS ↔ λS̄ .

Dr universal Lax pair (V). The spectrum of M̄ is

Dr(V) : Spec(M̄) = ig{0, 4(r − 1)[2], 4(2r − 3)[2], . . . , 2j (2r − 1 − j)[2], . . . ,

2(r − 2)(r + 1)[2], r(r − 1)[2], 2r(r − 1)} (5.61)

which is essentially the duplication of that of W̃ , except for the lowest, i.e. 0, and the highest
eigenvalues, 2r(r − 1). The latter is exactly twice the eigenvalue of those belonging to λS
(λS̄). Let us note that the identity between the traces of W̃ and M̄ (5.7) is also satisfied, since
FV(Dr) = 4, see (4.49). As in the Ar vector weight case (5.17), these can be understood by
the close relationship between W̃ and M̄:

M̄ = i

(
A B

B A

)
W̃ = −A + B. (5.62)

The r × r matrices A and B are

Ajj = g

r∑
k �=j

(
1

sin2(q̄j − q̄k)
+

1

sin2(q̄j + q̄k)

)
= −W̃ jj Bjj = 0 (5.63)

Ajk = −g 1

sin2(q̄j − q̄k)
Bjk = −g 1

sin2(q̄j + q̄k)
. (5.64)

Thus to each eigenvector v of W̃ with eigenvalue −λ, W̃v = (−A +B)v = −λv, corresponds
to an eigenvector V with eigenvalue iλ:

V =
(
v

−v
)

M̄V = i

(
A B

B A

)(
v

−v
)

= iλV. (5.65)

The L̄ matrix with the vector weights has the following decomposition,

L̄ =
(
C D

−D −C
)

SI L̄ = −L̄SI SI =
(

0 Ir

Ir 0

)
(5.66)
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in which Ir is the r × r identity matrix and

Cjk = ig(1 − δjk) cot(q̄j − q̄k) Djk = ig(1 − δjk) cot(q̄j + q̄k) j, k = 1, . . . , r.

(5.67)
Since L̄ commutes with M̄, L̄V provides another independent eigenvector with the same
eigenvalue M̄(L̄V ) = iλ(L̄V ),

L̄V =
(
C D

−D −C
)(

v

−v
)

= (C −D)v

(
1

1

)
except for the duplicated eigenvalue r(r − 1) and the lowest and the highest. The zero mode
(the eigenvector corresponding to the lowest eigenvalue) is v0 which is annihilated by L̄. The
eigenvectors of W̃ belonging to the duplicated eigenvalue −r(r − 1) are

vs = (1, 0, . . . , 0)T vs̄ = (0, 0, . . . , 1)T

corresponding to the conditions cos 2q1 = 1 and cos 2qr = −1. The corresponding
eigenvectors of M̄ are both annihilated by L̄,

L̄

(
vs

−vs

)
= 0 L̄

(
vs̄

−vs̄

)
= 0.

The spectrum of L̄ is
√

integer :

Dr(V) : Spec(L̄) = g{0[4],±2
√

2,±2
√

6,±4
√

3, . . . ,±2
√
(j − 1)(j − 2), . . . ,

± 2
√
(r − 1)(r − 2)}. (5.68)

Dr minimal-type Lax pair (V). The minimal Lax pairs have integer spectrum,

Dr : Spec(L̄m) = g{0[2],±2,±4, . . . ,±2(r − 2),±2(r − 1)} (5.69)

and

� h R D Spec(M̄m)

D4 6 V 8 6[2], 12[2], 16[2], 22[2]
D5 8 V 10 8[2], 20[2], 22[2], 32[2], 38[2]
D6 10 V 12 10[2], 28[2], 30[2], 42[2], 52[2], 58[2]
D7 12 V 14 12[2], 34[2], 42[2], 52[2], 66[2], 76[2], 82[2]
D8 14 V 16 14[2], 40[2], 56[2], 62[2], 80[2], 94[2], 104[2], 110[2]

(5.70)

The lowest eigenvalue is h, the Coxeter number, and the highest eigenvalue is rh − 2. The
two-fold degenerate eigenvalues of W̃ , r(r − 1) are always contained.

Dr root-type Lax pair. The L̄K matrices have simple spectra. They are mirror symmetric with
respect to zero. The highest multiplicity is the rank r and the highest (lowest) eigenvalue is
2(h − 1), with interval 2. Thus the multiplicity distribution of the eigenvalues of L̄K of the
root-type Lax matrix is the number of roots having the specified (2 times the) height. We have
encountered the same distributions (shifted parallelly) in the eigenvalues of M̄ in Calogero
systems.

� h R D Spec(L̄K)
D4 6 � 24 ±2[4],±4[3],±6[3],±8,±10
D5 8 � 40 ±2[5],±4[4],±6[4],±8[3],±10[2],±12,±14
D6 10 � 60 ±2[6],±4[5],±6[5],±8[4],±10[4],±12[2],±14[2],±16,±18
D7 12 � 84 ±2[7],±4[6],±6[6],±8[5],±10[5],±12[4],±14[3],±16[2],

±18[2],±20,±22
D8 14 � 112 ±2[8],±4[7],±6[7],±8[6],±10[6],±12[5],±14[5],±16[3],

±18[3],±20[2],±22[2],±24,±26

(5.71)
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Here is the summary of the spectra of the L̄K (Lm)matrices (5.26), (5.33), (5.69), (5.71). The
eigenvalues are 2 times the ‘height’ which is determined by the deformed Weyl vector �:

Spec(L̄K) = {2� · µ|µ ∈ R}. (5.72)

This formula applies to all the other L̄K (Lm) matrices, (5.78), (5.79), (5.85), (5.86), (5.89),
(5.92), (5.95), (5.98). This is to be compared with the formulae for the spectra of M̄ matrices
of Calogero system (4.52), (4.55), in which the ‘height’ is determined by the Weyl vector δ.
The difference is visible in the non-simply laced root systems (5.78), (5.79), (5.85), (5.86),
(5.95), (5.98).

� R D Spec(M̄)
D4 � 24 0, 12[6], 20[6], 24[6], 32[3], 36[2]
D5 � 40 0, 16[2], 20[4], 28[5], 36[10], 40[2], 44, 48[4], 52[4], 56[4], 64, 68[2]
D6 � 60 0, 20[2], 30[4], 36[5], 48[5], 50[4], 56[7], 60[2], 66[4], 68[4], 76[4],

78[4], 80[2], 84, 86[2], 92[4], 96[2], 104, 108[2]
D7 � 84 0, 24[2], 42[4], 44[5], 60[5], 66[4], 68, 72[5], 80[6], 84[6], 86[4],

96[4], 102[4], 104[5], 108[2], 114[4], 116[4], 122[2], 124[4],
128[2], 132, 140[4], 144[2], 152, 156[2]

D8 � 112 0, 28[2], 52[5], 56[4], 72[5], 80, 84[4], 88[5], 100[9], 108[10], 112[2],
116[4], 124, 128[8], 136[4], 140[6], 144[4], 152[4], 156[4], 160[5],
164[4], 172[4], 180[4], 184[2], 188, 196[4], 200[2], 208, 212[2]

(5.73)

The relation between Tr(W̃) and Tr(M̄) (5.7) is satisfied, since F�(Dr) = 8r−14, see (4.59).

Next, let us summarize the spectra of W̃ , M̄ and L̄ of the Br Sutherland system which
are evaluated numerically. The set of short roots �S is chosen for the Lax pairs. They are all
‘integer valued’, except for L̄. As in the Dr case L̄2 is integer valued. The spectrum of W̃ is

Br : Spec(W̃ ) = −{4(r − 1)gL + 2gS, 4((2r − 3)gL + gS), . . . ,

2j ((2r − 1 − j)gL + gS), . . . , 2(r − 1)(rgL + gS),

r((r − 1)gL + gS)} (5.74)

which agrees with the general formula (5.10) of the W̃ spectrum, i.e. the j th entry is 4λj · �,
and obviously satisfies the sum rule (5.2), (5.12). The last piece corresponds to the spinor
fundamental weight.

Br root-type Lax pair (�S). The spectrum of M̄ is

Br(�S) : Spec(M̄) = i{0, 4(r − 1)gL + 2gS[2], 4((2r − 3)gL + gS)[2], . . . ,

2j ((2r − 1 − j)gL + gS)[2], . . . , 2(r − 1)(rgL + gS)[2],

r((r − 1)gL + gS)} (5.75)

= i4� · {0, λ1[2], λ2[2], . . . , λr−1[2], λr} (5.76)

which is essentially the duplication of that of W̃ , except for the lowest, i.e. 0, and the eigenvalue
belonging to the spinor weight. Let us note that the identity between the traces of W̃ and M̄
(5.7) is not satisfied, since Br is not simply laced. It is simply the lack of the contribution
from the ‘anti-spinor weight’ which is removed by the Dynkin diagram folding (5.57). The
eigenvectors of W̃ belonging to the degenerate eigenvalue −r((r − 1)gL + gS) are

vs = (1, 0, . . . , 0)T
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corresponding to the condition cos 2q1 = 1. The explanation of the duplication of the M̄
spectrum is essentially the same as in the Dr case. The spectrum of L̄ is

√
integer:

Br(�S) : Spec(L̄) = √
gL{0[2],±2

√
gS,±2

√
2(gL + gS), . . . ,

±2
√
j ((j − 1)gL + gS), . . . ,±2

√
(r − 1)((r − 2)gL + gS)}. (5.77)

To be more precise,
√

integer means that the spectrum of L̄2 is a quadratic polynomial in gL
and gS with integer coefficients. For gL = gS = g it reduces to that of minimal Lax matrix
L̄m ofDr (5.69). For gS = 0 it reduces to that of the Lax matrix L̄ ofDr (5.68). The modified
Lax matrix L̄K (see (5.32)) has simple integer spectrum, see formula (5.72):

Br(�S) : Spec(L̄K) = {±gS,±(2gL + gS),±(4gL + gS), . . . ,

±(2(r − 1)gL + gS)}. (5.78)

Br root-type Lax pair (�L). The L̄K matrices have simple spectrum:

� R D Spec(L̄K)
B4 �L 24 ±2gL[3],±4gL[2],±6gL,±2(gL + gS),±2(2gL + gS),

±2(3gL + gS)[2],±2(4gL + gS),±2(5gL + gS),
B5 �L 40 ±2gL[4],±4gL[3], . . . ,±8gL,±2(gL + gS),±2(2gL + gS),

±2(3gL + gS)[2],±2(4gL + gS)[2],±2(5gL + gS)[2],±2(6gL + gS)
±2(7gL + gS)

B6 �L 60 ±2gL[5],±4gL[4], . . . ,±10gL,±2(gL + gS),±2(2gL + gS),
±2(3gL + gS)[2],±2(4gL + gS)[2],±2(5gL + gS)[3],±2(6gL + gS)[2]
±2(7gL + gS)[2],±2(8gL + gS),±2(9gL + gS)

(5.79)

The spectra of M̄ can be expressed succinctly in terms of the fundamental weights {λj }, whose
expression in terms of the coupling constants gL and gS can be found in (5.74). The entry λj
means that the corresponding eigenvalue is i4� ·λj etc:

� R D Spec(M̄)
B4 �L 24 0, λ1[2], λ4[2], λ2[5], λ3[6], (λ1 + λ2), (λ2 + λ4)[2], (λ1 + λ3)[4],

(λ2 + λ3)

B5 �L 40 0, λ1[2], λ5[2], λ2[5], λ3[5], (λ1 + λ5)[2], λ4[4], (λ1 + λ2),

(λ2 + λ5)[2], (λ1 + λ3)[4], (λ1 + λ4)[4], (λ3 + λ5)[2], (λ2 + λ3),

(λ2 + λ4)[4], (λ3 + λ4)

B6 �L 60 0, λ1[2], λ6[2], λ2[5], λ3[5], (λ1 + λ6)[2], (λ1 + λ2), λ4[5], λ5[4],
(λ2 + λ6)[2], (λ1 + λ3)[4], (λ1 + λ4)[4], (λ1 + λ5)[4], (λ2 + λ3),

(λ3 + λ6)[2], (λ4 + λ6)[2], (λ2 + λ4)[4], (λ2 + λ5)[4], (λ3 + λ4),

(λ3 + λ5)[4], (λ4 + λ5)

B7 �L 84 0, λ1[2], λ2[5], λ7[2], λ3[5], (λ1 + λ2), (λ1 + λ7)[2], λ4[5], λ5[5],
(λ1 + λ3)[4], λ6[4], (λ2 + λ7)[2], (λ1 + λ4)[4], (λ2 + λ3), (λ3 + λ7)[2],
(λ1 + λ5)[4], (λ1 + λ6)[4], (λ2 + λ4)[4], (λ4 + λ7)[2], (λ2 + λ5)[4],
(λ5 + λ7)[2], (λ2 + λ6)[4], (λ3 + λ4), (λ3 + λ5)[4], (λ3 + λ6)[4],
(λ4 + λ5), (λ4 + λ6)[4], (λ5 + λ6)

(5.80)

Cr Lax pair (V). Here let us summarize the spectra of W̃ , M̄ and L̄ of the Cr Sutherland
system which are evaluated numerically. The set of vector weights V is chosen for the Lax
pairs. They are all ‘integer valued’, except for L̄. As in theBr andDr case L̄2 is integer valued.
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The spectrum of W̃ is

Cr : Spec(W̃ ) = −{4((r − 1)gM + gL), 4((2r − 3)gM + 2gL), . . . ,

2j ((2r − 1 − j)gM + 2gS), . . . , 2(r − 1)(rgM + 2gL),

2r((r − 1)gM + 2gL)} (5.81)

which agrees with the general formula (5.10) of the W̃ spectrum, i.e. the j th entry is 4λj · �,
and obviously satisfies the sum rule (5.2), (5.12). The spectrum of M̄ is

Cr(V) : Spec(M̄) = i{0, 4((r − 1)gM + gL)[2], 4((2r − 3)gM + 2gL)[2], . . . ,

2j ((2r − 1 − j)gM + 2gS)[2], . . . , 2(r − 1)(rgM + 2gL)[2],

2r((r − 1)gM + 2gL)} (5.82)

= i4� · {0, λ1[2], λ2[2], . . . , λr−1[2], λr}, (5.83)

which is essentially the duplication of that of W̃ , except for the lowest, i.e. 0, and the highest
eigenvalue corresponding to the fundamental weight of the long simple root. This degeneracy
pattern reflects the Dynkin diagram foldingA2r−1 → Cr . Let us note that the identity between
the traces of W̃ and M̄ (5.7) is not satisfied, since Cr is not simply laced. The spectrum of L̄
is

√
integer :

Cr(V) : Spec(L̄) = √
gM {0[2],±2

√
2gL,±2

√
2(gM + 2gL), . . . ,

± 2
√
j ((j − 1)gM + 2gL), . . . ,±2

√
(r − 1)((r − 2)gM + 2gL)}. (5.84)

The modified Lax matrices L̄K (see (5.32)) have simple integer spectra:

Cr(V) : Spec(L̄K) = {±2gL,±(2gM + 2gL),±(4gM + 2gL), . . . ,

± (2(r − 1)gM + 2gL)}. (5.85)

Cr Root-type Lax pair (�L). The L̄K matrices have simple spectrum,

� R D Spec(L̄K)
C4 �M 24 ±2gM [3],±4gM[2],±6gM,±2(gM + 2gL),±2(2gM + 2gL),

±2(3gM + 2gL)[2],±2(4gM + 2gL),±2(5gM + 2gL),
C5 �M 40 ±2gM [4],±4gM[3], . . . ,±8gM,±2(gM + 2gL),±2(2gM + 2gL),

±2(3gM + 2gL)[2],±2(4gM + 2gL)[2],±2(5gM + 2gL)[2],
±2(6gM + 2gL),±2(7gM + 2gL),

C6 �M 60 ±2gM [5],±4gM[4], . . . ,±10gM,±2(gM + 2gL),±2(2gM + 2gL),
±2(3gM + 2gL)[2],±4(2gM + gL)[2],±2(5gM + 2gL)[3],
±4(3gM + gL)[2],±2(7gM + 2gL)[2],±2(8gM + 2gL),±2(9gM + 2gL)

C7 �M 84 ±2gM [6],±4gM[5], . . . ,±12gM,±2(gM + 2gL),±2(2gM + 2gL),
±2(3gM + 2gL)[2],±2(4gM + 2gL)[2],±2(5gM + 2gL)[3],
±2(6gM + 2gL)[3],±2(7gM + 2gL)[3],±2(8gM + 2gL)[2],
±2(9gM + 2gL)[2],±2(10gM + 2gL),±2(11gM + 2gL),

(5.86)

The interpretation of the root-type L̄K eigenvalues in terms of the ‘height’ of the roots is also
valid forCr . The spectra of M̄ can be expressed succinctly in terms of the fundamental weights
{λj }, whose expression in terms of the coupling constants gL and gM can be found in (5.81).
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The entry λj means that the corresponding eigenvalue is i4� · λj etc:

� R D Spec(M̄)
C4 �M 24 0, λ1[2], λ2[5], λ3[4], λ4[2], (λ1 + λ2), (λ1 + λ3)[4], (λ1 + λ4)[2],

(λ2 + λ3), (λ2 + λ4)[2]
C5 �M 40 0, λ1[2], λ2[5], λ3[5], λ4[4], (λ1 + λ2), λ5[2], (λ1 + λ3)[4],

(λ1 + λ4)[4], (λ1 + λ5)[2], (λ2 + λ3), (λ2 + λ4)[4], (λ2 + λ5)[2],
(λ3 + λ4), (λ3 + λ5)[2]

C6 �M 60 0, λ1[2], λ2[5], λ3[5], (λ1 + λ2), λ4[5], λ5[4], (λ1 + λ3)[4], λ6[2],
(λ1 + λ4)[4], (λ1 + λ5)[4], (λ2 + λ3), (λ1 + λ6)[2], (λ2 + λ4)[4],
(λ2 + λ5)[4], (λ2 + λ6)[2], (λ3 + λ4), (λ3 + λ5)[4], (λ2 + λ6)[2],
(λ4 + λ5), (λ4 + λ6)[2]

C7 �M 84 0, λ1[2], λ2[5], λ3[5], (λ1 + λ2), λ4[5], λ5[5], (λ1 + λ3)[4], λ6[4],
λ7[2], (λ1 + λ4)[4], (λ2 + λ3), (λ1 + λ5)[4], (λ1 + λ6)[4],
(λ1 + λ7)[2], (λ2 + λ4)[4], (λ2 + λ5)[4], (λ2 + λ6)[4], (λ3 + λ4),

(λ2 + λ7)[2], (λ3 + λ5)[4], (λ3 + λ6)[4], (λ3 + λ7)[2], (λ4 + λ5),

(λ4 + λ6)[4], (λ4 + λ7)[2], (λ5 + λ6), (λ5 + λ7)[2]

(5.87)

In the rest of this section, we list the results on the exceptional root systems using tables
since most of the methods and concepts have now been explained.

5.2.3. Er . First we list the eigenvalues of W̃ (the coupling constant and minus sign removed):

� r Spec(W̃ )
E6 6 32[2], 44, 60[2], 84
E7 7 54, 68, 98, 104, 132, 150, 192
E8 8 116, 184, 228, 272, 336, 364, 440, 540

(5.88)

Of course they are equal to {4� ·λj }. The degeneracies inE6 spectrum reflect the symmetry in
Dynkin diagram. First, let us show the eigenvalues of the Lax matrices for the set of minimal
weights 27 of E6 and 56 of E7. In these cases, the spectrum of minimal-type L matrix and
that of modified LK are the same:

� R D Spec(L̄m)
E6 27 27 0[3],±2[2],±4[2],±6[2],±8[2],±10,±12,±14,±16,
E7 56 56 ±1[3],±3[3],±5[3],±7[3],±9[3],±11[2],±13[2],

±15[2],±17[2],±19,±21,±23,±25,±27,

(5.89)

The eigenvalues of minimal M̄m and those of M̄ are slightly different. The latter are 4� ·λj
and their sums but those of the former are different:

� R D Spec(M̄m)

E6 27 27 0[3], 16[2], 32, 38[2], 46[2], 52[2], 60, 62[2], 68[2], 72[2],
80[2], 88[2], 92, 94[2], 110[2], 118[2]

E7 56 56 27[2], 61[2], 7[2], 83[2], 101[2], 113[2], 115[2], 127[4], 141[2], 149[2],
151[2], 161[2], 171[2], 179[4], 189[2], 197[2], 203[2], 205[2], 211[2],
227[2], 241[2], 245[2], 247[2], 271[2], 289[2], 299[2]

(5.90)
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� R D Spec(M̄)
E6 27 27 0, 32[4], 44[2], 60[6], 64, 76[2], 84[4],

92[2], 104[2], 116[2], 120,
E7 56 56 0, 54[3], 68[2], 98[3], 104[4], 122[2], 132[4], 150[5],

152, 166[2], 172[2], 186[2], 192[6], 202[2], 204, 218[2],
230[2], 236[2], 246[2], 248, 260[2], 282[2], 296[2], 302

(5.91)

The relation between Tr(W̃) and Tr(M̄) (5.7) is satisfied, since F 27 = 12 in E6 and F 56 = 24
in E7, see (4.49).
Root-type Lax pair

� h R D Spec(L̄K)
E6 12 � 72 ±2[6],±4[5],±6[5],±8[5],±10[4],±12[3],±14[3],±16[2]

±18,±20,±22
E7 18 � 126 ±2[7],±4[6],±6[6],±8[6],±10[6],±12[5],±14[5],±16[4],

±18[4],±20[3],±2[3],±24[2],±26[2],±28,±30,±32,±34
E8 30 � 240 ±2[8],±4[7],±6[7],±8[7],±10[7],±12[7],±14[7],±16[6],

±18[6],±20[6],±22[6],±24[5],±26[5],±28[4],±30[4],
±32[4],±34[4],±36[3],±38[3],±40[2],±42[2],±44[2],
±46[2],±48,±50,±52,±54,±56,±58

(5.92)

In all cases, the highest multiplicity of L̄K is the rank r and the highest eigenvalue is 2(h− 1)
with interval 2. Thus the multiplicity distribution of the eigenvalues of L̄K of the root-type
Lax matrix is the number of roots having the specified (2 times the) height. As in all the other
cases, the eigenvalues of M̄ are of the form i

∑r
j=1 aj (4� · λj ), in which aj = 0, 1:

� h R D Spec(M̄)
E6 12 � 72 0, 32[4], 44[4], 60[10], 64[2], 76[4], 84[8], 92[10], 104[4],

108[2], 116[8], 120[4], 128, 136[4], 144[2], 148[2], 164[2]
E7 18 � 126 0, 54[2], 68[4], 98[4], 104[5], 122[2], 132[7], 150[7], 152[4],

158, 166[2], 172[4], 186[4], 192[10], 200, 202[4], 204[4],
218[4], 220[2], 230[2], 236[6], 246[6], 248[4], 254, 260[4],
270[2], 272[2], 282[4], 284[2], 290, 296[6], 314[2], 316[2],
324, 334[2], 336[2], 342, 364[2], 380[2]

E8 30 � 240 0, 116[4], 184[4], 228[7], 272[6], 300[4], 336[9], 344, 364[9],
388[4], 412[6], 440[11], 452[4], 456[4], 480[6], 500[6], 520[6],
540[14], 548, 556[6], 564, 572[2], 592[8], 608[6], 624[6],
636[6], 65[8], 668[6], 684[2], 700[8], 712[4], 724[8], 740[2],
752[2], 768[10], 776, 792[2], 804[6], 812, 816[2], 828[2],
840[2], 852[2], 864[2], 876[8], 896[2], 904, 920[2], 940[2],
952[2], 972[2], 980, 992[2], 1032[2], 1060[2], 1076[2]

(5.93)

The relation between Tr(W̃) and Tr(M̄) (5.7) is satisfied, since F�(E6) = 42, F�(E7) = 66
and F�(E8) = 114, see (4.59).

5.2.4. F4. The eigenvalues of W̃ are

F4 : Spec(W̃ ) = −{20gL + 12gS, 36gL + 24gS, 24gL + 18gS, 12gL + 10gS}
= −4� · {λ1, λ2, λ3, λ4, } . (5.94)
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The eigenvalues of the modified Lax matrix L̄K are simple:

� R D Spec(L̄K)
F4 �L 24 ±(10gL + 6gS),±(8gL + 6gS),±(6gL + 6gS),±(6gL + 4gS),

±(4gL + 4gS),±(6gL + 2gS),±(2gL + 4gS),±(4gL + 2gS),
±4gL,±(2gL + 2gS),±2gL[2]

F4 �S 24 (6gL + 5gS),±(6gL + 4gS),±(6gL + 3gS),±(4gL + 3gS),
±(4gL + 2gS),±(2gL + 3gS),±(4gL + gS),±(2gL + 2gS),
±(2gL + gS),±2gS,±gS[2]

(5.95)

The interpretation of the root-type L̄K eigenvalues in terms of the ‘height’ of the roots is also
valid for F4. The eigenvalues of M̄ can be expressed succinctly in terms of the fundamental
weights {λj }, which are listed in (5.94). The entry λj means that the corresponding eigenvalue
is i4� · λj etc:

� R D Spec(M̄)
F4 �L 24 0, λ4[2], λ1[4], λ3[4], (λ1 + λ4)[2], λ2[6],

(λ1 + λ3)[2], (λ2 + λ4)[2], (λ1 + λ2)

F4 �S 24 0, λ4[4], λ1[2], λ3[6], (λ1 + λ4)[2], λ2[4],
(λ3 + λ4), (λ1 + λ3)[2], (λ2 + λ4)[2]

(5.96)

5.2.5. G2. The eigenvalues of W̃ are

G2 : Spec(W̃ ) = −{4gL + 8gS/3, 8gL + 4gS, }
= −4� · {λ1, λ2}. (5.97)

The eigenvalues of the modified Lax matrix L̄K are simple:

� R D Spec(L̄K)
G2 �L 6 ±(4gL + 2gS),±(2gL + 2gS),±2gL
G2 �S 6 ±(2gL + (4gS/3)),±(2gL + (2gS/3)),±2gS/3

(5.98)

The eigenvalues of M̄ can be expressed succinctly in terms of the fundamental weights
{λj }, which are listed in (5.97). The entry λj means that the corresponding eigenvalue is
i4� · λj etc:

� R D Spec(M̄)
G2 �L 6 0, λ1[2], λ2[3],
G2 �S 6 0, λ1[3], λ2[2],

(5.99)

6. Comments and discussion

We have shown that the classical Calogero and Sutherland systems at their equilibrium points
have very interesting properties. The equilibrium point is related to the zeros of classical
polynomials of Hermite, Laguerre and Jacobi types. The second derivatives of the potential
have ‘integer eigenvalues’, and various Lax matrices also have ‘integer eigenvalues’ at the
equilibrium point. Most of these results are obtained by numerical evaluation and it remains
a real challenge to derive these ‘integer eigenvalues’ analytically.

In this connection, it is interesting to compare with the situation of another well-known
set of integrable multiparticle dynamical systems based on crystallographic root systems—the
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Toda systems. Since the non-affine Toda molecule systems do not have a finite equilibrium
point, we only consider the affine Toda molecule of the root system �,

H = 1

2
p2 + VToda(q) VToda(q) = 1

β2

r∑
j=0

nj eβαj ·q (6.1)

in which {α1, . . . , αr } are the simple roots of � and

α0 = −
r∑
j=1

njαj n0 = 1 (6.2)

is the Euclidean part of the additional affine simple root. The integers {nj }, j = 1, . . . , r are
called Coxeter labels and β is the real coupling constant. The above potential is so chosen as
to have the equilibrium point

q̄ = (0, 0, . . . , 0). (6.3)

The eigenvalues of the second derivatives of the potential

V ′′
Toda(0) =

r∑
j=0

njαj ⊗ αj (6.4)

are not integers but so-called affine Toda masses
{
m2

1, . . . ,m
2
r

}
, corresponding to the Perron–

Frobenius eigenvector of the incidence matrix of the root system �, [28]. Since the Lax pair
of the Toda molecules is expressed in terms of the coordinates q and the Lie algebra generators
corresponding to � [29], the eigenvalues of the Lax pair matrices at the equilibrium point are
completely determined by the chosen representation of the Lie algebra.

Note added in proof. The equilibrium positions of BCr Sutherland systems and Jacobi polynomials were discussed
in [30]. We thank A Perelomov for this information.
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Appendix. Eigenvalues of the K matrix

Here we show that the constant matrix K defined in (2.40),

K ≡
∑
ρ∈�+

gρ(ρ · Ĥ )(ρ∨· Ĥ )ŝρ (A.1)

has a remarkable property that its eigenvalues are all integer × coupling constant. The K̃
matrix (5.32) has a similar property. This matrix plays an important role in the theory of
classical r-matrix of Calogero–Moser systems [27]. First, we note that it is Coxeter invariant
and symmetric,

ŝσKŝσ = K ∀σ ∈ � KT = K (A.2)

implying that the eigenvalues are real, and the eigenvectors span representation spaces of the
Weyl group whose dimensions are the multiplicities given in the tables below. As simple
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examples, we indicate, for the Ar root system, the decomposition of R into the irreducible
representations of the Weyl group, which is the symmetric group. The diagonal elements of
K are all vanishing,

Kµµ =
∑
ρ∈�+

gρ(ρ · µ)(ρ∨· µ)δµ,sρ(µ) = 0 (A.3)

since µ − sρ(µ) = (ρ∨ · µ)ρ = 0 is necessary for the Kronecker delta to be non-vanishing.
Thus it is traceless,

Tr K = 0 (A.4)

which is also obvious from the definition as a commutator (2.40). Another important property
is that it commutes with M,

[K,M] = 0 (A.5)

at the general position q for both Calogero and Sutherland systems. All the matrix elements
of K are non-negative and the eigenvector for the highest eigenvalue (the Perron–Frobenius
eigenvector) is in fact v0 (4.37), which is a singlet representation of the Weyl group:

Kv0 = λPFv0 λPF = 2µ2

∑
ρ∈�+

gρ

/ r = 2µ2Ẽ0/ωr. (A.6)

Other important eigenvectors of K are given by

Qv0 (A.7)

in which Q is defined by (2.39) and v0 is the above Perron–Frobenius eigenvector introduced in
(4.37). For all possible values of the coordinates q = (q1, . . . , qr), it is always an eigenvector
of K,

KQv0 = λQQv0 (A.8)

in which the eigenvalue λQ is expressed by boldface fonts in the formulae from (A.13) to
(A.37). This eigenvalue is usually r (rank) fold degenerate and the corresponding eigenvectors
form an ever present r-dimensional irreducible representation of the Weyl group. Exceptional
situations of additional degeneracies occur in A7 root-type (A.17), D4,D6 and E6 root-type
(A.26), (A.31) and H3 and H4 root-type (A.34). For the cases when R is the set of minimal
weights, (A.13), (A.23) and (A.29), λQ is related to λPF by the Coxeter number h:

λQ = λPF − gh. (A.9)

For the crystallographic simply laced root-type cases, (A.17), (A.26) and (A.31), we have

λQ = (h− 6)g. (A.10)

If the set R consists of minimal weights (2.32), all the matrix elements of K are either
1 or 0 times the coupling constant. If the set R coincides with the set of all roots � for a
crystallographic simply laced root system, the matrix element of K is characterized by the
inner products of the roots (the roots are normalized as α2 = 2),

Kαβ = g


4 if α · β = −2 i.e. α = −β
1 if α · β = 1
0 otherwise

(A.11)

and a similar statement holds for non-simply laced crystallographic root systems.
We list the spectrum of K, i.e. set of eigenvalues with [multiplicity] for all � and for

typical choices of the set of single Coxeter (Weyl) orbits R for which the typical Lax pairs are
known. For the simply laced root systems, we omit the coupling constant g in the spectrum.
In these formulae h denotes the Coxeter number.
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(1) Ar with vector weights embedded in Rr+1, i.e.

R = V = {ej , j = 1, . . . , r + 1|ej ∈ Rr+1,ej · ek = δjk} (A.12)

� h R D µ2 Spec(K)
Ar r + 1 V r + 1 1 r,−1[r]

(A.13)

corresponding to the following decomposition into the irreducible representation of the
Weyl group:

(1 + r) = 1 ⊕ r. (A.14)

In this case K has a very simple expression in terms of v0:

K = g
(
v0v

T
0 − I

)
I : identity matrix. (A.15)

The matrix elements of K are also characterized by the inner products:

Kµν = g

{
1 if µ · ν = 0
0 otherwise

µ, ν ∈ V. (A.16)

(2) Ar with roots R = �,

� h R D µ2 Spec(K)
A2 3 � 6 2 6, 3[2],−3[2],−6
A3 4 � 12 2 8, 4[3], 2[2],−2[3],−6[3]
A4 5 � 20 2 10, 5[4], 2[5],−1[4],−6[6]
A5 6 � 30 2 12, 6[5], 2[9], 0[5],−6[10]
A6 7 � 42 2 14, 7[6], 2[14], 1[6],−6[15]
A7 8 � 56 2 16, 8[7], 2[27],−6[21]
A8 9 � 72 2 18, 9[8], 3[8], 2[27],−6[28]
A9 10 � 90 2 20, 10[9], 4[9], 2[35],−6[36]
A10 11 � 110 2 22, 11[10], 5[10], 2[44],−6[45]
A11 12 � 132 2 24, 12[11], 6[11], 2[54],−6[55]
A12 13 � 156 2 26, 13[12], 7[12], 2[65],−6[66]
Ar r + 1 � r(r + 1) 2 2h, h[r], (h − 6)[r],

2[(r + 1)(r − 2)/2],−6[r(r − 1)/2]

(A.17)

corresponding to the following decomposition into the irreducible representations of Ar
Weyl group,

r(r + 1) = 1 ⊕ r ⊕ r ′ ⊕ (r + 1)(r − 2)/2 ⊕ r(r − 1)/2 (A.18)

in which r and r ′ are two distinct r-dimensional irreducible representations.
(3) Br with short roots:

R = �S = {±ej , j = 1, . . . , r|ej ∈ Rr ,ej ·ek = δjk} (A.19)

� h R D µ2 Spec(K)
Br 2r �S 2r 1 2gL(r − 1) + 2gS,−2gS[r],−2gL + 2gS[r − 1]

(A.20)

The Cr in the vector representation R = V = {±ej }, j = 1, . . . , r is the same as above
if the coupling constants are interchanged, gS ↔ gL. Similarly to the Ar vector weight
case (A.15), we have

K = gL
(
v0v

T
0 − I − SI

)
+ 2gSSI (A.21)

in which SI is the second identity matrix. It is 1 for the elements (ej ,−ej ), (−ej ,ej ), j =
1, . . . , r and 0 otherwise.
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(4) Dr with the vector weights:

R = V = {±ej |j = 1, . . . , r} (A.22)

� h R D µ2 Spec(K)
Dr 2(r − 1) V 2r 1 2(r − 1), 0[r],−2[r − 1]

(A.23)

Similarly to the Cr vector weight case (A.21), we have an expression

K = g
(
v0v

T
0 − I − SI

)
. (A.24)

This K matrix is also characterized by the inner product as in (A.16).
(5) Dr with the (anti) spinor weights:

R = S = 1
2 {±e1 ± · · · ± er } with even (odd) number of − signs (A.25)

� h R D µ2 Spec(K)
D4 6 S 8 1 6, 0[4],−2[3]
D5 8 S 16 5/4 10, 2[5],−2[10]
D6 10 S 32 3/2 15, 5[6],−1[15],−3[10]
D7 12 S 64 7/4 21, 9[7], 1[21],−3[35]
D8 14 S 128 2 28, 14[8], 4[28],−2[56],−4[35]
D9 16 S 256 9/4 36, 20[9], 8[36], 0[84],−4[126]
D10 18 S 512 5/2 45, 27[10], 13[45], 3[120],−3[210],−5[126]
D11 20 S 1024 11/4 55, 35[11], 19[55], 7[165],−1[330],−5[462]

(A.26)

The characterization of the spinor K matrix is a bit different:

Kµν = g

{
1 if µ · ν = (r − 4)/4
0 otherwise

µ, ν ∈ S. (A.27)

(6) Dr with the roots i.e. R = �:

� h R D µ2 Spec(K)
D4 6 � 24 2 12, 4[9], 0[6],−6[8]
D5 8 � 40 2 16, 6[4], 4[10], 2[5], 0[5],−6[15]
D6 10 � 60 2 20, 8[5], 4[21], 0[9],−6[24]
D7 12 � 84 2 24, 10[6], 6[7], 4[21], 0[14],−6[35]
D8 14 � 112 2 28, 12[7], 8[8], 4[28], 0[20],−6[48]
D9 16 � 144 2 32, 14[8], 10[9], 4[36], 0[27],−6[63]
D10 18 � 180 2 36, 16[9], 12[10], 4[45], 0[35],−6[80]
D11 20 � 220 2 40, 18[10], 14[11], 4[55], 0[44],−6[99]
Dr 2(r − 1) � 2r(r − 1) 2 2h, 2(h− 1) [r − 1], (h − 6)[r],

4[r(r − 1)/2], 0[r(r − 3)/2],−6[r(r − 2)]

(A.28)

(7) Er with the minimal weights:

� h R D µ2 Spec(K)
E6 12 27 27 4/3 6, 4[6],−2[20]
E7 18 56 56 3/2 27, 9[7],−1[27],−3[21]

(A.29)
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These K matrices are characterized by

Kµν = g

{
1 if µ · ν = 1/3
0 otherwise

µ, ν ∈ 27

(A.30)

g

{
1 if µ · ν = 1/2
0 otherwise

µ, ν ∈ 56.

(8) Er with the roots i.e. R = �:

� h R D µ2 Spec(K)
E6 12 � 72 2 24, 6[26], 0[15],−6[30]
E7 18 � 126 2 36, 12[7], 8[27], 0[35],−6[56]
E8 30 � 240 2 60, 24[8], 12[35], 0[84],−6[112]
Er h � D 2 2h, (h − 6)[r], (h/3 + 2)[(r − 1)(r + 2)/2],

0[(D − r(r + 1))/2],−6[D/2 − r]

(A.31)

(9) F4 with the long roots i.e. R = �L:

� h R D µ2 Spec(K)
F4 12 �L 24 2 12(gL + gS), 12gS[2], 4(gL − gS)[9], 0[4],−6gL[8]

(A.32)

(10) G2 with the long roots i.e. R = �L:

� h R D µ2 Spec(K)
G2 6 �L 6 2 6(gL + gS), 3(gL − gS)[2],−3(gL + gS)[2], 6(−gL + gS)

(A.33)

(11) Hr with the roots i.e. R = �:

� h R D µ2 Spec(K)
H3 10 � 30 1 10, 4[5], 3[3], 0[9],−2[7],−5[5]
H4 30 � 120 1 30, 15[4], 10[9], 0[70],−5[36]

(A.34)

These K matrices for H3 and H4 are characterized by

Kαβ = g


1 if α · β = −1 i.e. α = −β
1/2 if α · β = 1/2

(3 ± √
5)/4 if α · β = (1 ∓ √

5)/4
0 otherwise.

(A.35)

(12) I2(m) in the m-dimensional representation consisting of the vertices of the regular m-gon
R = Rm:

Rm = {
√

2(cos(2kπ/m + t0), sin(2kπ/m + t0)) ∈ R2|k = 1, . . . ,m}
(A.36)

t0 = 0, (π/2m) for m even (odd).

� h R D µ2 Spec(K)
I2(2n + 1) 2n + 1 R2n+1 2n + 1 2 2(2n + 1), 0[2n− 2],−(2n + 1)[2]

2n(go + ge), (−1)nn(go − ge)[2],
I2(2n) 2n R2n 2n 2 0[2n− 6],−n(go + ge)[2],

−(−1)n2n(go − ge)

(A.37)
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