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Abstract
The fidelity of two pure states (also known astransition probability) is a
symmetric function of two operators, and well founded operationally as an
event probability in a certain preparation-test pair. Motivated by the idea that
the fidelity is the continuous quantum extension of the combinatorial equality
function, we enquire whether there exists asymmetric operational way of
obtaining the fidelity. It is shown that this is impossible. Finally, we discuss
the optimal universal approximation by a quantum operation.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

For two pure quantum statesπ = |ϕ〉〈ϕ| andτ = |θ〉〈θ | on the spaceH, which we assume
throughout to be of dimensiond < ∞, the (pure state) fidelity is

F(π, τ) = Trπτ = |〈ϕ|θ〉|2.
Its operational justification is as follows: suppose we test the system for being in stateτ ,
described by the projection valued measure (PVM)(τ,1l − τ ), then the probability of an
affirmative answer, the actual preparation beingπ , is F(π , τ ). It is one of the features of
quantum theory that the same probability arises if the system is prepared in stateτ , and is
tested forπ , see the discussion in chapter 2 of [1]. This is reflected in the symmetry ofF:
F(π , τ ) = F(τ , π).

By restricting attention to a set of orthonormal vectors|x〉, x ∈ X , one has

F(|x〉〈x|, |y〉〈y|) = δxy =
{

1 if x = y

0 if x �= y
.

Thus, onX ×X , F represents the test for equality of two given elements fromX . Observe that
this characterization is symmetric in the two variables: we can imagine a classical computing
machine taking as inputx andy fromX , which outputsδxy ∈ {0,1}.
0305-4470/01/357095+07$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7095
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2. The problem

The question arises whether or not an operational justification forF is possible that is
symmetrical too, like the one just given for the identity-predicate (which it generalizes, as we
observed). Note that in the above discussion one ofπ , τ figures as a state, whereas the other
is a projection of a test. Hence, two possibilities seem natural: either both have to be given
as quantum states, or both as tests. In either case we want to find a procedure to sample the
binary distribution(Trπτ,1 − Trπτ) once, i.e. produce the first outcome with probability
Trπτ , and the second with probability 1− Trπτ . These two problems will be made precise
in the following subsections, and given answers.

2.1. Two states

A would-be fidelity estimator for two unknown states is a map

F : π ⊗ τ 
→ (Trπτ)z1 + (1 − Trπτ)z0

wherez0, z1 are the (orthogonal) idempotent generators of a two-dimensional commutative
algebra1. As is immediate, this is indeed uniquely extendible to a trace preserving linear map
on B(H) ⊗ B(H). It is even positive—on the separable states! But not on the whole state
space: for example, consider the pure state vector

|ψ〉 = 1√
2
|00〉 +

1√
2
|11〉

in H ⊗H, with orthogonal unit vectors|0〉 and|1〉. Then it is easily checked that it must map
to (−1)z1 + 2z0 underF.

In fact, it will turn out useful to write the mapF in different terms: since it maps states
linearly to binary probability distributions, it is atest, which means there is an operatorF such
that Trπτ = Tr ((π ⊗ τ )F ), i.e.

F(π ⊗ τ ) = Tr ((π ⊗ τ )F )z1 + Tr ((π ⊗ τ )(1l − F))z0

and it is well known that the unique solution to this equation is the flip operatorF : |φ〉⊗|θ〉 
→
|θ〉 ⊗ |φ〉, which has eigenvalue 1 on the symmetric subspace, and−1 on the antisymmetric
subspace; in particular it is not positive.

It is interesting to note that we encountered here what is called anentanglement witness (as
introduced by Terhal [2]): a linear map positive on products but negative on certain entangled
states which it ‘certifies’. The operatorW = F ∗(z1) (using the dual mapF∗ of F with respect
to the Hilbert–Schmidt inner product) is the operator version of this entanglement witness: it
has the property

Tr ((π ⊗ τ )W) = Trπτ � 0

but for some entangled states it has negative expected value.
Let us state our finding as a theorem:

Theorem 1. There is no positive linear map F such that for all π , τ

F (π ⊗ τ ) = (Trπτ)z1 + (1 − Trπτ)z0.

Equivalently there is no positive operator F such that for all π , τ

Trπτ = Tr ((π ⊗ τ )F ).

1 Note that the restriction to one copy ofπ , τ each is crucial: if we were allowed to use the preparation device forπ ,
τ indefinitely often, then we could do a tomography (consult, for example, [3]) or any other statistical reconstruction
of the states, and actuallycompute Trπτ .
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2.2. Two tests

Suppose we are given the PVMM = (π,1l−π)⊗ (τ,1l− τ ) onB(H)⊗B(H) as a black box.
What we can do is feed it with an arbitrarily prepared state, and combine the outcomes into two
groups. Observe that if we allow multiple uses of the black box we can do a tomography2 of M
(dual to the tomography of states [3]). This motivates the restriction to a single application of
M 3. Note that we make no assumptions other than statistical on the observables, in particular
we impose no conditions on the measurement devices regarding their post-measurement states
(see again the remark in footnote 3).

Preparing a stateρ on B(H) ⊗ B(H) and using it withM, we are supplied with one of
four outcomes (11, 10, 01, 00), after which we employ a statistical decision rule: ifij was
measured, we vote for 1 with probabilitypij ∈ [0,1]. This is the most general form of the
procedure, and we can calculate

Pr{1} = p11Tr (ρ(π ⊗ τ )) + p10Tr (ρ(π ⊗ (1l − τ ))) + p01Tr (ρ((1l − π) ⊗ τ ))

+p00 Tr(ρ((1l − π) ⊗ (1l − τ )))

= (p11 − p10 − p01 + p00)Tr (ρ(π ⊗ τ )) + (p10 − p00)Tr (ρ(π ⊗ 1l))

+ (p01 − p00)Tr (ρ(1l ⊗ τ )) + p00 Trρ

= (p11 − p10 − p01 + p00)Tr (ρ(π ⊗ τ )) + (p10 − p00)Tr (ρ1π)

+ (p01 − p00)Tr (ρ2τ ) + p00.

This is a polynomial inπ andτ with a bilinear, a linear, and a constant part. Hence, for this
to be equal to Trπτ , necessarily

p10 = p01 = p00 = 0

forcingp11 = 1 (chooseπ = τ ). So, we have to look for a stateρ satisfying

Trπτ = Tr (ρ(π ⊗ τ )).

However, by theorem 1 there does not even exist a solution 0� ρ � 1l to this equation.
Our result can be understood as another new feature of quantum information as compared

to classical information: whereas there is an identity test for classical data, symmetrical in
the two inputs, the corresponding natural quantum version, namely the fidelity, is forbidden
by the quantum mechanical laws: not only are we unable to access the precise value of it, we
cannot even once sample the corresponding Bernoulli variable.

Thus, we have exhibited a new no-go theorem regarding quantum mechanics, in the line
of the no-cloning theorem [5].

2 Since we want to reconstruct a set of selfadjoint operators(A1, . . . , An) onH, it is sufficient to know the values
of TrρAi for a spanning set of statesρ. Formally this is the same as state tomography, as it rests on the Hermiticity
of the Hilbert–Schmidt inner product TrA∗B for operators.
3 It may be amusing to note that in the case of two qubits (i.e.H = C

2) and with the promise thatM obeys the
projection postulate for the post-measurement states,two applications ofM are sufficient to achieve the goal:M is a
complete von Neumann measurement consisting ofπ ⊗ τ, π ⊗ τ⊥, π⊥ ⊗ τ, π⊥ ⊗ τ⊥.

Apply M once (on an arbitrary initial state), then swap the qubits (which is unitary), and applyM a second time.
A suitable combination of the in-total 16 outcomes makes the outcome ‘1’ occur with probability Trπτ (observe
that this equals Trπ⊥τ⊥). More explicitly, denoting the outcomes as (X, Y), whereX is the operator from the first
measurement, andY from the second, combine(π ⊗ T , τ ⊗ P ) and(π⊥ ⊗ T , τ⊥ ⊗ P ), whereP andT run over the
sets{π, π⊥}, {τ, τ⊥}, respectively, for the outcome ‘1’. (In fact, a single application of(π,1l − π) followed by an
application of(τ,1l − τ ) does the same job.)

The reason that we did not consider this to be allowed is that it assumes the projection postulate, apart from
obviously working only with qubits.) This adds another peculiarity to ‘why two qubits are special’ [4].
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3. Universal approximation for two states

After failing to find allowed procedures to sample the fidelity distributionF (π , τ ), we resort
to approximating this ideal behaviour in an optimal way.

To find the optimal approximation to the fidelity estimator, we have to minimize the
expression

δ(A) = max
π,τ

| Tr ((π ⊗ τ )A) − Trπτ |

with respect to 0� A � 1l. We may assume that the optimalA is invariant under the actions

π ⊗ τ 
−→ τ ⊗ π

and

π ⊗ τ 
−→ UπU † ⊗ UτU † U ∈ U(H).

The reasoning is the same as for universal cloning [6] and Bloch vector flipping [7] machines:
because of the invariance of the fidelity function and triangle inequality, an optimal solution
cannot become worse if we average it over the group action using the Haar measure.

Since the squared representation of the unitary group has exactly two irreducible
components, thesymmetric and theantisymmetric subspaces,S andA, respectively, with
corresponding projectors�S and�A, the most generalA to consider has the form

A = σ�S + α�A 0 � σ, α � 1.

To evaluateδ(A) choose an orthonormal basise1, . . . , ed of H. Then

S = span

{
fi = ei ⊗ ei , fij = ei ⊗ ej + ej ⊗ ei√

2
: i < j

}

and note that thefi, fij form an orthonormal basis ofS.
Now by unitary invariance we may assume that

π = |e1〉〈e1|
and

τ = (u|e1〉 + v|e2〉) (u〈e1| + v〈e2|) u, v � 0, u2 + v2 = 1.

Hence, noting Trπτ = u2,

δ(A) = max
u,v

∣∣σ Tr ((π ⊗ τ )�S) + α Tr ((π ⊗ τ )�A) − u2
∣∣

= max
u,v

∣∣α + (σ − α)Tr ((π ⊗ τ )�S) − u2
∣∣

and calculating

Tr ((π ⊗ τ )�S ) = ‖�S |e1〉 ⊗ (u|e1〉 + v|e2〉)‖2
2

= |(〈e1| ⊗ 〈e1|)(|e1〉 ⊗ (u|e1〉 + v|e2〉))|2 + |(〈e2| ⊗ 〈e2|)(|e1〉 ⊗ (u|e1〉 + v|e2〉))|2

+

∣∣∣∣〈e1| ⊗ 〈e2| + 〈e2| ⊗ 〈e1|√
2

(|e1〉 ⊗ (u|e1〉 + v|e2〉))
∣∣∣∣
2

= u2 + 0 +
v2

2
= 1 +u2

2
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we end up with

δ(A) = max
0�u2�1

∣∣∣∣α + (σ − α)
1 +u2

2
− u2

∣∣∣∣
= max

0�x�1

∣∣∣∣σ + α

2
+

(
σ − α

2
− 1

)
x

∣∣∣∣
= max

{
σ + α

2
,1 − σ

}
.

To minimize this we have to chooseα = 0 andσ = 2/3. The optimal test is thus

A = 2
3�S

achievingδ(A) = δmin = 1/3.
The general case ofn copies of the two states, andm samples to be produced, is discussed

in the appendix.
In fact, from the proof of optimality we can derive a strengthening of our previous theorem

1: there isno operational quantum extension of the classical identity test at all:

Theorem 2. There is no test T on H ⊗ H (i.e. 0 � T � 1l ⊗ 1l), such that for all states π , τ
on H

τ = π ⇒ Tr ((π ⊗ τ )T ) = 1

τ ⊥ π ⇒ Tr ((π ⊗ τ )T ) = 0.

Proof is by observing that the maximum definingδ(A) is achieved foru2 = Trπτ ∈ {0,1} in
the above calculation.

Complementing this result, note that wecan, however, obtainpartial information on the
fidelity. For example, the optimal testT = 2

3�S has the property that

Tr ((π ⊗ τ )T ) > 1
2 iff Tr πτ > 1

2

Tr ((π ⊗ τ )T ) < 1
2 iff Tr πτ < 1

2.

4. Summary

We have argued that the fidelity of pure states is the quantum generalization of the classical
identity-predicateδxy, and have shown that an operational basis for it, similar to the classical
way, does not exist. Indeed, there does not exist any quantum operation behaving likeδxy on
all orthogonal sets of states. Finally, we have discussed the univeral optimal approximation to
the fidelity function, in the simplest case.
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Appendix. The general case

In this appendix we demonstrate a possible attack on the general case. Unfortunately we find
the final optimization problem so hard to solve that we leave the solution open.
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Givenn copies of each state we want to produce as close an approximation tom samples of
F(π, τ) = (Trπτ,1−Trπτ) as possible, i.e. a POVMA indexed by{0, 1}m which minimizes

δ(A) = max
π,τ

‖A(π⊗n ⊗ τ⊗n) − F(π, τ)⊗m‖1

where we writeA (π⊗n ⊗ τ⊗n) for the distribution on{0, 1}m induced by measuringA on
π⊗n ⊗ τ⊗n. Obviously we can assume thatA is supported onHn

+ ⊗ Hn
+, whereHn

+ is the
symmetric subspace inH⊗n, i.e. the set of all vectors invariant under tensor factor permutation.

By the familiar averaging argument we can assume that all elements ofA are invariant
under the action of the unitary groupU(H). This action decomposesHn

+ ⊗ Hn
+ into

n + 1 orthogonal subspacesSl : the restriction toSl is irreducible with highest weight
(2n − l, l,0, . . . ,0), l = 0, . . . , n. In particular, they all have multiplicity one (for these
representation theoretical details we refer the reader to [8]). Denote the subspace projection
ontoSl by Sl .

SinceF(π, τ)⊗m has the constant value(Trπτ)k(1 − Trπτ)m−k on the sets

Tk = {xm ∈ {0,1}m : xm has exactlyk 0’s}
we may assume that an optimalA is constant on theTk as well. Introducing the angleγ
between|φ〉 and|θ〉, so that Trπτ = cos2 γ and 1− Trπτ = sin2 γ , we can define

fk = A(π⊗n ⊗ τ⊗n)(Tk)

pk = F(π, τ)⊗m(Tk) =
(
m

k

)
(cos2 γ )k(sin2 γ )m−k

and thus write

‖A(π⊗n ⊗ τ⊗n) − F(π, τ)⊗m‖1 =
m∑

k=0

|fk − pk|.

Observe that with

Fk = A∗(1Tk) =
∑

xm∈Tk
Axm

one hasfk = Tr ((π⊗n ⊗ τ⊗n)Fk).

By invariance we can write

Fk =
n∑

l=0

αklSl with αkl � 0
m∑

k=0

αkl = 1.

Now, applying invariance once more, we get

fk = Tr

((∫
U(d)

dU(U⊗2nπ⊗n ⊗ τ⊗nU∗⊗2n)

)
Fk

)
.

The integral itself is an invariant state, hence of the form
n∑

l=0

βl

1

Tr Sl
Sl with βl � 0

n∑
l=0

βl = 1

and by invariance—third time pays for all—theβ l depend solely on Trπτ . In fact, it is easily
seen that they all are universal homogeneous polynomials in cosγ and sinγ of total degree
2n.

This makes it seem rather unlikely that we can find

δ(A) = max
0�γ�π/2

m∑
k=0

∣∣∣∣∣
(
m

k

)
(cos2 γ )k(sin2 γ )m−k −

n∑
l=0

αklβl(cosγ, sinγ )

∣∣∣∣∣
let alone minimize this over theαkl.
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