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Abstract
We give a detailed proof of the conjecture that the asymptotic entanglement
cost of preparing a state ρ is equal to limn→∞ Ef (ρ

⊗n)/n where Ef is the
entanglement of formation.

PACS numbers: 03.67.-a, 03.65.Ta

1. Introduction

One of the central issues in quantum entanglement theory is to determine how to optimally
convert between different entangled states shared by distant observers Alice and Bob. More
precisely, one is interested in the conversion of m pairs of particles, with each pair in a state
ρ, into n pairs, each in another state ρ ′, by means of local quantum operations and classical
communication (LOCC) [1], so that the asymptotic ratio m/n is minimal. Of course, the
perfect transformation by LOCC

ρ⊗m → ρ ′⊗n

is usually impossible. Therefore, one permits imperfections and requires only asymptotically
perfect transformations: the state ρ⊗m is transformed into some state ρ ′

n, which for large n

approaches ρ ′⊗n with a chosen distance measure D:

lim
n→∞ D(ρ ′

n, ρ
′⊗n) = 0.

If the final state ρ is a two-qubit singlet state 1√
2
(|01〉 − |10〉)(which we will denote by |�−〉),

then the process of conversion is called distillation [2]. If, instead, it is the initial state that is
in the form of singlets, then one refers to formation [1]. In this paper we are interested in the
latter process. We will call the optimal asymptotic yield the entanglement cost, and denote it
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by Ec. In [3] it was shown that for a pure state ρ = |ψ〉〈ψ |, Ec is equal to the entropy of either
of its reductions, e.g. ρA = TrB(ρ). Thus, to produce |ψ〉⊗n one needs m ≈ nS(ρA) singlets,
i.e. the initial state has to be |�−〉⊗nS(ρA).

That result suggested the following stochastic method for the production of ρ out of
singlets [1]. One decomposes ρ into an ensemble ρ = ∑

i pi |ψi〉〈ψi | of pure states. Then
one picks a state |ψi〉 according to the probability distribution {pi}, makes the state |ψi〉 from
initially shared singlets, and finally forgets the identity of the state. Therefore, one needs
on average

∑
i piS(ρA

i ) singlets (where ρA
i is the reduction of |ψi〉). One can choose the

ensemble which minimizes the above average, with the corresponding minimal cost being
called the entanglement of formation of ρ [1], which we will denote by Ef (ρ).

The above scenario can be improved if we realize that it might be more economical to
produce the state ρ⊗n all at once than it is to produce its n constituents one by one (see, e.g.,
[4]). Thus, the proposed optimal cost should be revised to [5]

E∞
f (ρ) = lim

n→∞
Ef (ρ

⊗n)

n
. (1)

(In the following we will argue that the limit on the right-hand side of this equation exists.) This
quantity is believed to be equal to the entanglement cost of preparing the state ρ, Ec(ρ). The
definition of the entanglement cost, however, refers to a deterministic number of input singlets,
while in the stochastic method the number of input singlets is a random variable. Furthermore,
it is not clear that the stochastic method is really the optimal way to produce the state ρ. In this
paper we resolve these issues by proving that E∞

f (ρ) is equal to the entanglement cost Ec(ρ).
Our result is in a sense dual to that of Rains [6] concerning the entanglement of distillation.
He showed that the entanglement of distillation, if defined in a way analogous to our definition
of the entanglement cost, is equal to the expected yield of a stochastic protocol for generating
output singlets.

To begin, let us sketch our approach. In our proof, we will first show that E∞
f (ρ) � Ec(ρ),

i.e. that there exists a formation protocol that achieves the asymptotic rate m
n

≈ E∞
f (ρ), by

explicitly constructing such a protocol based on the law of large numbers in both its classical
and quantum [7] forms. Next, we will show that E∞

f (ρ) � Ec(ρ). The latter inequality
will be derived using only some general properties of the entanglement of formation, such as
its monotonicity under LOCC operations and its quite strong continuity properties, proved by
Nielsen [8]. Such an approach, focusing on abstract features of quantum information-theoretic
quantities, has already proven to be fruitful in the domain of quantifying entanglement as well
as in the study of quantum channel capacities [9, 10], providing a simple view of intricate
topics. To illustrate its power we will now sketch the proof of the inequality E∞

f (ρ) � Ec(ρ).
As mentioned before, the entanglement of formation is monotonically decreasing under

LOCC operations [1], i.e.

Ef (ρ) � Ef (L(ρ)) (2)

for any state ρ and LOCC operation L. Moreover, the entanglement of formation is continuous
[8] in the sense that for states ρ and ρ ′ we have∣∣Ef (ρ) − Ef (ρ

′)
∣∣ � 5D(ρ, ρ ′) log2 dim H + 2η(D(ρ, ρ ′)) (3)

where ρ and ρ ′ are supported on the Hilbert space H and η(x) = −x log2 x, under the
assumption that D(ρ, ρ ′) is sufficiently small. D is the Bures distance, given by D(ρ, ρ ′) =
2
√

1 − F(ρ, ρ ′) with F(ρ, ρ ′) = Tr
√

ρ1/2ρ ′ρ1/2. (Note that the normalization factor for D

is not completely standardized. We have made our choice to agree with [8].) The function
F is called the Uhlmann fidelity or square-root-fidelity [11, 12]. Inequality (3) implies that
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if two states are close to one another, then so are their densities of entanglement. A similar
continuity result has been proved in [13] for the relative entropy of entanglement [14].

Now, in order to prove E∞
f � Ec, consider the optimal formation protocol, i.e. the

sequence of LOCC operations �n producing states ρn ≈ ρ⊗n out of |�−〉⊗m, so that m/n

tends to Ec. If we take large n, so that D(ρ⊗n, ρn) is small, then by continuity (3) we have

Ef (ρ
⊗n)

n
≈ Ef (ρn)

n
. (4)

Since ρn = �n(|�−〉〈�−|⊗m), from the monotonicity of Ef we obtain

Ef (ρn)

n
� Ef (|�−〉〈�−|⊗m)

n
= m

n
. (5)

Now, by definition, the left-hand side of equation (4) tends to E∞
f , while the last term of

estimate (5) tends to Ec, hence we obtained the required inequality.
Since we used only two properties of the entanglement of formation, we can rephrase the

result in a more general setting. Consider any function f , which can be regularized, i.e. for
which the limit f ∞(ρ) = limn→∞ f (ρ⊗n)

n
exists. Now, if f is monotonic and continuous in the

sense of equation (3), then f ∞ is a lower bound for Ec. This supports the view, according to
which the dual measures of entanglement, entanglement of distillation ED and entanglement
cost Ec are in a sense extreme ones [9].

2. Entanglement cost and entanglement of formation

Let us now pass to the fully rigorous part of the paper. Analogous to the definition of asymptotic
reducibility in [15] (cf [16]), we define the asymptotic entanglement cost for the preparation
of a bipartite state to be

Ec(ρ) = inf

{
E | ∀ε > 0, δ > 0, ∃m, n,L,

∣∣∣∣E − m

n

∣∣∣∣ � δ

and D(L(|�−〉〈�−|⊗m), ρ⊗n) � ε

}
(6)

where |�−〉 is the singlet state in C2 ⊗ C2, L is an LOCC superoperator and D is again the
Bures distance.

Our main result is the following:

Theorem 1. The asymptotic entanglement cost of preparing a state ρ is given by

Ec(ρ) = lim
n→∞

Ef (ρ
⊗n)

n
(7)

where Ec(ρ) is defined in equation (6) and Ef (ρ) is the entanglement of formation of ρ, defined
as

Ef (ρ) = min
E={pi ,|ψi 〉}

∑
i

piE(|ψi〉〈ψi |) (8)

and E(|ψ〉〈ψ |) is the von Neumann entropy of the reduced density matrix of |ψ〉.
To make sense of the above claim, we note that the sequence

(
Ef (ρ

⊗n)/n
)

has a well
defined limit. This is a consequence of the fact that if a sequence (an) satisfies an � cn for
some constant c and an + am � an+m for any m, n, then (an/n) is convergent [17]. It is easy
to see that our sequence satisfies the conditions.

We begin by proving that Ec obeys a form of additivity that is highly desirable for an
asymptotic cost function, and that will be useful in what follows.
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Lemma 1. Ec(ρ
⊗k) = kEc(ρ) for all k = 1, 2, . . . .

Proof. One direction is simple: since a protocol to approximate ρ⊗k is just a protocol to
approximate k copies of ρ, Ec(ρ

⊗k) � kEc(ρ). The first step in demonstrating that the
inequality holds in the opposite direction will be to show that in the definition of Ec, n can be
taken to be arbitrarily large. Suppose not, in other words, that for fixed ε, δ > 0, it is impossible
to choose n � N , m, and L such that |Ec(ρ) − m/n| � δ and D(L(|�−〉〈�−|⊗m), ρ⊗n) � ε.
By the definition of Ec(ρ) and the fact that the set of LOCC operations is closed, this implies,
however, that there exist n < N , m, and L such that Ec(ρ) = m/n and L(|�−〉〈�−|⊗m) = ρ⊗n.
Setting r = �N/n� and applying L⊗r to |�−〉〈�−|⊗mr then violates the assumption that n could
not be taken arbitrarily large.

Now, to complete the proof, we will pick n � k in order to efficiently approximate some
number of copies of ρ⊗k . Formally, we write n = rk + s, where r and s are non-negative
integers and s < k. If we produce an approximation to within ε of ρ⊗n starting from m

singlets and then throw away the extra s copies of ρ, we are left with an approximation to
within ε of ρ⊗rk that still required m singlets. The waste, however, becomes insignificant since
|E − m/n| → |E − m/rk| as n → ∞. �

Note that full additivity of Ec(ρ), i.e. Ec(ρ ⊗ σ) = Ec(ρ) + Ec(σ ) would be a stronger
statement, possibly requiring additivity ofEf . With that technical lemma concluded, theorem 1
becomes a consequence of the following two lemmas.

Lemma 2. Let the entanglement of formation of a (finite-dimensional) density matrix ρ be
Ef (ρ) = ∑

i piEf (|ψi〉〈ψi |) where the optimal ensemble is given by {pi, |ψi〉}ki=1. We have
Ef (ρ) � Ec(ρ).

Proof. In the limit of large n, we will approximate ρ⊗n by

ρ
T

(n)
δ1

=
∑

s∈T
(n)
δ1

|ψs〉〈ψs | (9)

where T
(n)
δ1

is the (strongly) typical set defined as follows. All states |ψs〉 (unnormalized)
in this set are tensor products of states

√
pi |ψi〉 and they are such that every state

√
pi |ψi〉

occurs pin ± δ1n logpi
(2)/k times in the tensor product. (We assume that pi < 1 for all i.

Otherwise, ρ is a pure state.) This implies that the total probability ps = 〈ψs |ψs〉 for a state
|ψs〉 is bounded as

2−n(H( �p))+δ1) � ps � 2−n(H( �p))−δ1) (10)

where H( �p) is the Shannon entropy of �p = (pi). The density matrix ρ
T

(n)
δ1

is basically the

state ρ⊗n constructed by cutting off the unlikely sequences of states and then renormalizing4.
In order to bound the fidelity for this approximation, we add these unlikely sequences of states
with probability 0 in the sum. For any δ1 > 0, ε1 > 0 and n sufficiently large we have by
the asymptotic equipartition theorem [18] that the total probability p

T
(n)
δ1

for the typical set is

larger than 1 − ε1, where ε1 → 0 as n → ∞. Thus, using the joint concavity of F [11], we
can bound

F(ρ⊗n, ρ
T

(n)
δ1

) �
√

1 − ε1. (11)

4 Note that we are using an approximation to ρ⊗n which is based on the optimal decomposition for the entanglement of
formation and not on the eigendecomposition of ρ which is used in Schumacher compression [7]. Both approximations
converge to ρ⊗n in the limit of large n.
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Consider the density matrix ρ
T

(n)
δ1

and its decomposition in terms of the states |ψs〉.
Each state |ψs〉 can be obtained from a set of EPR pairs by entanglement dilution [3]. In
particular, let |ψs〉 be a state in which every state |ψi〉 occurs pin ± δ1n logpi

(2)/k times.
Starting from a set of maximally entangled EPR pairs, we do entanglement dilution for
each state |ψi〉⊗pin±δ1n logpi

(2)/k . For any δ2 and ε2 greater than zero there exists an n such
that starting from (pin + δ1n logpi

(2)/k)[Ef (|ψi〉〈ψi |) + δ2] EPR pairs we can obtain an

approximation to |ψi〉⊗pin±δ1n logpi
(2)/k which has square-root-fidelity larger than 1 − ε2. Since

there are k states in the optimal ensemble (and k is finite), we can therefore approximate
the (normalized) state |ψs〉 with square-root-fidelity |〈ψ |ψ ′〉| � (1 − ε2)

k , starting from
n

∑
i piEf (|ψi〉〈ψi |) + n(O(δ1) + O(δ2)) EPR pairs, with ε2 → 0, δ1 → 0, and δ2 → 0

for n → ∞.
The approximation of ρ

T
(n)
δ1

by ρ ′
T

(n)
δ1

= ∑
s∈T

(n)
δ1

|ψ ′
s〉〈ψ ′

s |, where |ψ ′
s〉 is the approximation

of |ψs〉 which we obtain by entanglement dilution starting from the set of EPR pairs, has the
property that

F(ρ
T

(n)
δ1

, ρ ′
T

(n)
δ1

) �
∑

s∈T
(n)
δ1

|〈ψs |ψ ′
s〉| � (1 − ε2)

k ≡ 1 − ε3 (12)

where ε3 → 0 for n → ∞, since k is finite. Furthermore, since we can make every state |ψ ′
s〉

starting from a given set of EPR pairs, we can make any convex combination, for example
ρ ′

T
(n)
δ1

, of the states |ψ ′
s〉 (see [19] and also [20]), starting from this same set of EPR pairs.

Finally, we can use the triangle inequality for the Bures metric, and equations (11) and
(12) to obtain that

D(ρ⊗n, ρ ′
T

(n)
δ1

) � 2
√

1 −
√

1 − ε1 + 2
√

ε3 (13)

which is the desired result. �

The lemma can be applied to bound Ec(ρ) from above by Ef (ρ
⊗k)/k where k is any fixed

number of copies of ρ, using lemma 1. Consequently, we have that

E∞
f (ρ) � Ec(ρ). (14)

Let us now prove the converse of this relation.

Lemma 3. E∞
f (ρ) � Ec(ρ).

Proof. The basic idea of the proof, as sketched in the introduction, is to use the continuity of
the entanglement of formation [8] and its monotonicity under LOCC operations. Throughout
the proof we will use the notation An = Ef (ρ

⊗n)/n. Now suppose that the lemma does not
hold, so that lim An > Ec(ρ). It follows that there exists an integer N , such that for all k > N ,

|Ak − lim An| < $ = lim An − Ec(ρ)

4
> 0. (15)

Let ρk = L(|�−〉〈�−|⊗m) be an approximation to ρ⊗k . Now, supposing that ρ is supported on
Hilbert space H, fix ε such that 5ε log dim H−2ε log ε = $. It then follows from equation (3)
and our choice of ε that if D(ρ⊗k, ρk) < ε then

|Ef (ρ
⊗k) − Ef (ρk)| < k$. (16)
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Now we will apply the definition of Ec(ρ) to fix k. From the definition of Ec, equation (6),
and the proof of lemma 1, we have that there exists a k > N as well as m and L such that∣∣∣∣Ec(ρ) − m

k

∣∣∣∣ � $ (17)

and D(ρ⊗k, ρk) < ε, where ρk = L(|�−〉〈�−|⊗m). Next, we can bound∣∣∣∣lim An − Ef (ρk)

k

∣∣∣∣ � |lim An − Ak| +

∣∣∣∣Ak − Ef (ρk)

k

∣∣∣∣ < 2$ (18)

by using equations (15) and (16). This gives Ef (ρk) > k(lim An − 2$). On the other hand,
by equation (17), we have

Ef (|�−〉〈�−|⊗m) = m < k(Ec(ρ) + $) (19)

which finally yields

Ef (ρk) − Ef (|�−〉〈�−|⊗m) > k(lim An − Ec(ρ) − 3$) = k$ (20)

a contradiction since the entanglement of formation cannot increase under LOCC operations.
�

3. Alternative definitions of the asymptotic cost

While Ec(ρ) is perhaps the most natural function to associate with the asymptotic cost of
preparing a bipartite state, other definitions would have been consistent with our discussion
in the introduction. An example of a different but perhaps useful definition of the asymptotic
entanglement cost is the following:

Ealt (ρ) = inf

{
E | ∀ε > 0, δ > 0, ∃N |

(
∀n > N ∃m,L,

∣∣∣∣E − m

n

∣∣∣∣ � δ

and D(L(|�−〉〈�−|⊗m), ρ⊗n) � ε

)}
. (21)

The difference between Ec and Ealt is that for fixed fidelity and cost the former only
requires the existence of a single n such that ρ⊗n can be approximated efficiently, while the
second requires that there exist a threshold N such that for all n > N the state ρ⊗n can be
approximated efficiently. One consequence of this difference is that it is immediately clear
that Ealt is additive in the sense of lemma 1, while some work was required to prove that Ec

was. Indeed, a priori, one might not expect the two definitions to agree. Suppose, for example,
that for fixed ε there exists a protocol to make an approximation ρn of ρ⊗n from m singlets,
with the approximation satisfying D(ρn, ρ

⊗n) = ε. In order to produce an approximation to
ρ⊗nk from km singlets, one might think that applying this protocol k times would be a good
strategy. One finds, however, that for ε > 0,

lim
k→∞

D(ρ⊗nk, ρ⊗k
n ) = lim

k→∞
2
√

1 − (1 − ε2)k = 2. (22)

The protocol, therefore, generally fails to produce a good approximation for large k. This
example suggests that the existence of a threshold N beyond which approximations to some
given fidelity are always possible is a very difficult condition to satisfy. Nonetheless, by
applying the results of the previous section, it is actually easy to see that the definitions
Ec and Ealt are equivalent, so that the extra condition can be met without increasing the
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asymptotic unit cost. First, note that the argument of lemma 2 actually also works for Ealt so
that Ealt (ρ) � E∞

f (ρ). Next, since the definition of Ealt is more stringent than that of Ec,
we have that Ec(ρ) � Ealt (ρ). Combining these inequalities with the result of lemma 3, we
obtain

E∞
f (ρ) � Ec(ρ) � Ealt (ρ) � E∞

f (ρ) (23)

so that these two definitions of the entanglement cost always agree.
A final pair of alternative definitions for the asymptotic entanglement cost would use the

trace distance

d(ρ, σ ) = 1
2 Tr |ρ − σ | (24)

in place of the Bures distance. Lemma 1 is easily seen to hold for d since its proof uses only
axiomatic properties of all metrics and stability with respect to tensor products but no other
properties specific to D. The status of lemmas 2 and 3 is slightly more involved. The trace
distance and Bures distance are related by the following inequalities [21]:

D

4
(ρ, σ )2 = 1 − F(ρ, σ ) � d(ρ, σ ) �

√
1 − F(ρ, σ )2 =

√
D2

2
− D4

16
(25)

which show that d and D are equivalent metrics and bounds them in terms of each other
by functions that are independent of the dimension of the underlying Hilbert space, H. In
other words, d and D are equivalent metrics even in the asymptotic regime. To be concrete,
applying the right-hand inequality to equation (13), for example, is sufficient to show that
lemma 2 also holds for the trace distance. In order to prove lemma 3, we used the continuity
relation, equation (3), but effectively only required the weaker inequality

|E(ρ) − E(σ)| � B D(ρ, σ ) log dim H + C (26)

where B and C are constants and H is the supporting Hilbert space. Applying equation (25),
however, gives an inequality of the form

|E(ρ) − E(σ)| � B
√

d(ρ, σ ) log dim H + C (27)

which again is sufficient to carry through the rest of the proof. Therefore, all our conclusions
hold even if the entanglement cost is defined using the trace distance. Indeed, they should hold
for any metric equivalent to the Bures metric in which the equivalence is given by a function
that is independent of the dimension of H.

4. Conclusions

We have given two rigorous definitions of the asymptotic cost of preparing a bipartite mixed
state ρ and shown them both to be equal to the regularized entanglement of formation, E∞

f (ρ),
resolving an important conjecture in the theory of quantum entanglement. Furthermore, we
have shown that this asymptotic cost is fairly insensitive to the choice of metric on density
operators. In particular, the Bures distance and trace distance result in identical asymptotic
costs.

An important problem left open by this work is the question of actually evaluating E∞
f (ρ).

Even the non-regularized function Ef (ρ) is notoriously difficult to calculate; its value is only
known for some very special cases [4, 22]. If it turns out that Ef is not additive for tensor
products, then, in spite of the results of this paper, determining the asymptotic cost of preparing
a state remains quite a formidable problem.
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