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AbstracL We present a new algorithm for simulating landom walk which is simple, 
versatile and efficient. It uses recursive function calls and can be used to obtain unbiased 
samples with any &en length distribution. This mkes it panicularly useful in disordered 
geometries where the effective mnnectivity constant is not known apion. When applying 
it to self-avoiding random walks on hvo-dimensional media with quenched randomness, 
we find evidence for at least WO new renormalization group fixed p i n k .  

1. Introduction 

Self-avoiding random walks (SAWS) are one of the simplest critical phenomena. Being 
a model for randomly bent linear polymers, they have been studied in great detail with 
various methods, among them exact enumerations [l-31 and Monte Carlo simulations 
[4]. The most important parameters describing SAW are the critical exponents U and 
y, and the connectivity constant p. They are defined via the number 2 of different 
SAWS of length N and their average end-to-end distance R, = [(R2)]1y2 as 

2, - p N  Ny-‘ R, - N u .  (1) 

In two dimensions, the critical exponents are known exactly to be v = 3/4 and 
y = 43/32! [SI. This agrees with the values obtained from extrapolations of exact 
enumerations which also give the most precise value for f i .  

Monte Carlo simulations, on the other hand, seem the most efficient method 
for specific geometries and in three dimensions. Among the numerous proposed 
methods, the pivot algorithm and its modifications [4] seem to be the fastest in the 
absence of walls or other obstacles, but they become very inefficient in complicated 
geometries. In such cases, the method proposed by Beretti and Sokal [6] seems to 
be the most efficient one known so far. 

In the present paper we shall introduce a new algorithm which is similar to the 
incomplete enumeration method of [7,8], which is itself similar to the BerettiSokal 
algorithm. However, using a recursive function seems more promising as it seems to 
be easier to apply, more flexible and more intuitive. Thus one of its main advantages 
will be that it can be easily applied in complex geometries. 

To illustrate this, we shall apply it to the problem of SAWS in media with quenched 
randomness. This has attracted much attention in recent years [9-261. On the one 
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hand, it is of interest as a model for polymers in disordered media, on the other hand 
it serves as a playground for testing methods devised for dealing with random systems 
[lo, 121. The results of these studies so far have been frustratingly inconclusive, and 
they have not yet lead to any agreement between different researchers. 

Following the above authors, we model the randomness by excluding randomly 
chosen sites on a regular lattice. The fraction of excluded sites is p. Let us denote 
by Z,(C) the number of walks starting from the origin in configuration C of the 
randomness. This ’partition sum’ is a random variable whose distribution does not 
depend on the origin due to translational invariance. As noted in [lo], its average 
value is given trivially by (Z,(C)) = p N Z S 1 ,  where Zg) is the ‘ordered partition 
sum’ used in equation (1). Also, the weighted average end-to-end distance (‘annealed 
average’) 

is trivially the same as that for the ordered case, for all p .  In contrast to that, the 
‘quenched average’ 

is different, as is the geometric average of ZN(C). Here the sums are formed 
only over configurations which support at least one SAWt. The important question 
is whether the exponents describing the asymptotic behaviour of R z ( p )  and Z N ( p )  
are the same as for the ordered case, and whether they depend on p .  A priori one 
might expect the value p = p ,  to be singled out, where p ,  is the critical point for site 
percolation. 

It is often said that the quenched average is the ‘correct’ average. As pointed 
out in [22], this has to be taken with a pinch of salt, since it depends on whether 
the location of the polymer (Le. one of its ends) is fixed or not. In the latter case, 
one has to average over all locations and effectively the annealed average equation 
(2) applies. Thus, for example, the simulations performed in [14,15] refer to the 
annealed average, and should not be compared with those presented below. 

Besides choosing the proper weights, one also has to fix the set of configurations 
over which the averages are taken [q. For the annealed averages, the set of aN 
configurations seems most natural. For quenched averages, this does not make much 
sense. In that case, one can either take all configurations which support at least one 
SAW or one can take only those configurations which support arbitrarily long SAWS. 
The latter means that the Starting point of the SAW has to be in an infinite cluster. 
While these two ensembles must give the same critical behaviour above p, ,  it is not 
a priori clear whether this is also true for p ,< p, .  

The main reason why there is, as yet, no agreement about these scaling laws is 
that up to now there was no efficient Monte Carlo approach which would @e the 
mrreet ensemble. The problem is that close to pc  the random variable Z,(C) has 

- 

t instead of thal, one muld also take geometric averages of Z,(C) + 1 over aU configurations, as done, 
for eample. in p3]. Notice that equation (5) of that paper contains some misprintr;. Its “ e c t  version 
does not exclude thal i o g Z N ( p ) l N  lends to 0 for II + CO. 
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an extremely wide variance. With any Monte Carlo sampling procedure with tixed 
acceptance probability, one either runs into the problem that most configurations 
do not give any long SAW or that in some configurations the number of accepted 
SAWs is so large that one runs out of CPU time. The same problem appears in exact 
enumerations as performed in [ll,20,21,23,24]. These authors have enumerated all 
SAWS for small N (typically N = 2&30 in two dimensions) on randomly chosen 
configurations, and averaged these over typically some @-lo4 samples. In (211 SAWS 
of length up to N = 35 were used. But as shown in [20], the author of [2l] was 
not able to get an unbiased sample since he had to interrupt several runs for which 
Z,(C) was obviously too large had to be interrupted. 

It is the purpose of the present paper to present a new Monte Carlo approach 
which worb in any configuration, and which allows Ndependent acceptance 
probabilities to be chosen. For SAWS on percolation clusters, these acceptance 
probabilities are set such that the number of walks with length N is essentially 
independent of N (except for ve'y small N since the number of accepted SAWs 
should not be larger than the number of different SAWS). 

2. The algorithm 

The basic ingredient in our algorithm is a recursively called subroutine taking as 
arguments a site X and the number N of steps already performed. Let us denote this 
subroutine 'WALK(X,N)'. When called, it tirst checks whether the site X is accessible for 
a walker and not yet part of the present SAW. This is done using an array S(X), each 
element of which can take two values: S(X)=O means that the site is blocked or was 
already visited hy the present SAW. In that case, the subroutine is left immediately. 
If S(X)=l, indicating that the site is free, a random number RND is chosen between 
0 and 1. If RND is larger than a pre-set value P(N), the subroutine is also left. Only 
if S(X)=l and RND<P(N), the site X is marked as being occupied by setting S(X)=O, 
and the statistics is updated to include the walk. After that, the subroutine WALK 
is called 2d times with N replaced by Ntl and with X replaced by its 2d neighbours 
(we assume to work on a ddimensional lattice). Finally, the site is again set free by 
putting S(X)=l, and the subroutine i s  left. 

Calling this routine with arguments (X, N )  = (0.0) for some given configuration 
C = {S} gives a sample where each walk of length N is included with probability 
r, = n,"==, P( N). For the routine to stop in a finite time, one obviously needs 
bmN+- nNpN = 0. 

If P ( N )  is chosen to be 1 for N < Nu and 0 for N > No, this gives a very 
simple way of enumerating all SAWS of length up to N,. After a couple of more 
or less obvious optimizations, it also seems to be the most efficient method for 
enumerating SAWS on the square lattice. On a DECstation 2100 (12 MIPS) it achieves 
approximately 3.98 SAWs ps-' (independent of N), compared with, for example, 
2.49 SAWS ps-I obtained in [2] in a Masscomp 5700 computer, and 2347 SAWS ps-' 
obtained in 131 on a Thinking Machines 64k CM-2 (where, however, R, was not 
computed; according to the authors, computing R, would have increased CPU time 
by a factor 3). 

A very elegant and efficient hybrid method which enumerates all SAWS with 
N < N, and continues each randomly so as to get a grand canonical ensemble 



1026 P Grassberger 

for No < N < NI is obtained by putting 

N < Nu 
P ( N )  = q Nu < N < N I  (4) {: N > N I .  

We used the latter to test the method against the known values of p ,  v and y on an 
ordered square lattice. 

When applying the method to disordered systems, the main problem is that 
we cannot work with a fixed (i.e. configuration independent) P ( N ) .  E3v most 
configurations this would give too few long SAWS, while it would need excessive 
CPU time for others. Thus we have to use some learning schedule which finds the 
optimal P ( N )  for each configuration. 

For walks with length < N, = 100 in two dimensions, we proceeded as follows. 
We first created disorder configurations by a Leath-type algorithm [27. We then 
selected values for No and q such that the algorithm with P( N )  set as in equation (4) 
terminated in some reasonable time for all configurations. This implied, in particular, 
that q < ( p p ) - I .  At the percolation threshold ( p ,  = 0.592745 [28], p = 2.638158 
[l]) we used e.g. Nu = 11, q = 0.58. With this choice, on most configurations we 
will not have any SAW with length 100 in our sample, but we will have enough SAWS 
of length 2 Nu to make a good estimate for the effective connectivity %onstant' 

pN(c) = zN(c)/zN-I(c) (5) 

p ( N )  = l//LN(c) (6) 

for these intermediate values of N .  We then replace P( N )  for these values of N by 

increase Nu by 1 unit iI ZNo(C) has not yet reached a preset value (approximately 
4ooo), and call again WALK(O.0). This is repeated until ZN(C) is larger than some 
other preset value (approximately 200) for all N or until No = N I .  In cases where 
equation (6) would give P ' ( N )  > 1, we replace it by P'( N) = 1 and increase 
No by 1 unit. The latter guarantees that we do not get blocked by configurations 
where medium-length SAWS are abundant but long ones are very rare. For the above 
parameter settings, the average number of iterations for this procedure to yield an 
accepted sample was s 5. 

In this way we obtained an unbiased sample of SAWS for each configuration which 
did support at least one SAW. It took approximately 16 s on a DECstation 2100 to 
produce a sample which contained in the average approximately 5000 SAWS for every 
N < 100. This allowed to take averages over more than lo4 configurations for each 
value of p .  This seems to be by far the largest unbiased sample available so far, 
though it was obtained with rather modest computational effort (approximately 200 h 
on low-cost work stations). The only samples of comparable size were those used 
in [18,19,25], but it is far from obvious that they represent unbiased samples of the 
quenched ensemble$. 

t It was pointed out to me by J Machta thal my estimate of Rz(p)  need not be mmpletely unbiased even 
if the sample itself Q without bias. lhis Q due to the pflicular averaging in equation (3). which would 
suppress in one and the Sdme mn6guration regions where the walks proliferate at late stages, mmpared 
with regions where the number of walks had already increased earlier. I am indebted 10 J Machta for 
this remark, but I do not think that it lead 10 any substantial bias in the present Rsults. 

- 
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The efficiency of our method increases with p, and it is highest for p = 1. When 
p is decreased below pc, one might believe that the fluctuations should also decrease 
and the efficiency improve. But this is not true. We have not found any efficient 
way of dealing with configurations which allow many medium-long SAWS but none of 
length N,. As we have pointed out, our algorithm is not completely blocked by such 
configurations, but it still has to by all medium-long SAWS in order to be sure that 
none of them gives a continuation of full length. This can be very time consuming. 
It virtually never happens for p > pe, but it frequently happens for p < p,, and slows 
down the overall performance there. 

Before leaving this section I want to suggest that recursive algorithms like the 
present one should be used more frequently in statistical mechanics. Previously, 
recursive algorithms were found to be. useful for sandpile models [29] and for 
percolation 1301, but many more applications exist. First of all, the present algorithm 
can be uivially modified to apply to random media with imperfect exclusion of some 
sites as well. If we attribute a potential v; to site i, then we have just to replace 
the space-independent array P ( N )  by a space-dependent array P( N, i) U. e-@“,. A 
similar modification could be used for polymers at the theta point or for stretched 
polymers. Another obvious extension (respectively simplification) of the present 
algorithm produces directed SAWS in random media [31] which can then be used to 
model growth phenomena in such media. Finally, a last obvious modification would 
lead to non-self avoiding walk (Le. to ordinary diffusion) in random absorptive media 

The modilications needed to obtain algorithms for a wriery of models are minimal. 
XI show this, we show in the appendix a menu driven and fully commented BASIC 
program. Although it provides state-of-the-art algorithms for simulating models in at 
least five different universality classes and displays the clusters on the screen, it is less 
than one page long! Among others, it can simulate SAWS, percolation and Wolffs 
algorithm for the king model [33]. Model 5 is a stochastic variant of the Abelian 
sandpile model [34,29] similar to the models studied in [OS] and [36]. It seems to be 
the simplest such model and is critical only when mass is conserved in the average, 
i.e. for p = 1/2. YWs shows that criticality in sandpile models is a codimension 1 
phenomenon as in other systems, even if the order parameter is hidden in the more 
common anants. Up to now, no detailed studies of models 5 and 6 have been made, 
and the criticality of the latter is not clear. 

1321. 

3. Numerical results 

3.1. End-to-end distances 

Our results for @ ( p )  at p = p, = 0.592745 are given in figure 1. Since the 
main question is whether the model falls into the same universality class as ordinary 
SAWS, and since the latter are known to involve substantial corrections to scaling, we 
chose to show the ratio m / R f i .  Here R, is the mean end-to-end distance on 
the ordered square lattice. Besides the data for the quenched average and for all 
(SAW-supporting) configurations we also show in figure 1 the results for the annealed 
average, and for ‘infinite’ clusters only. The latter are clusters with ‘chemical’ radius 
1, > 200, which should be sufficiently large. Here the chemical radius 1, is defined as 
the number of steps during which a Leath-type algorithm does not die out. Formally, 

__ 
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it is defined as E, = supi vi, where T~ is the ‘chemical distance’ of site i from the 
origin, i.e. ri is the minimal number of steps on the c k t e r  which are needed to reach 
site i from the origin. 

D 

3 1.3 - 

s 1.2 . 

. 
1.1. 

I 1 
1 IO 100 

N 

Figore 1. Log-log plot of mean square end-toend distances at p = p c  on randomly 
diluted square latlices, divided by the corresponding averages in lhe absena of 
randomness. Diamonds represent quenched averages. RZ(p)/R&, taken over all 
configurations which support at least m e  s*w of Ihe required length. Qosses ( x )  
represent quenched averages over permlaling clusters only, pluses (+) represent 
annealed averages. For the lalter cht statistid m m  are “ely large for large N, 
and are responsible for Ihe deviation f” unily. For the quenched averages, the ermrs 
are roughly of lhe size of the symbols. 

- 

In figure 1 we see a linear increase of log[R2(p)/Rk] with log N, indicating a 
power behaviour with exponent 

U’ = U +- 0.035 z t  0.003 = 0.783 f 0.003. (7) 
This shows unambiguously that the quenched average does indeed give a different 
universality class. 

Our result agrees with theoretical predictions [Z], but contradicts most recent 
numerical investigations. In particular, it disagrees with the conclusion drawn in [ZO] 
from very short SAWS (N < ZO), though our results for such short SAWS essentially 
agree with those of [ZO] (for N = 20, e.g., we find Rz = 86.4 i 0.2 instead of 
86.95 f .4). Our conclusion agrees qualitatively with that of [Zl], though it was 
shown in [ZO] that these simulations involved two serious mistakes: first, annealed 
averages were estimated; and second, configurations needing very much mu time 
were dropped. What was not realized in [ZO] is that these two mistakes partly cancel, 
so the simulations of 1211 were not too inaccurate after all. Finally, the disagreement 
of our results with those of [18,19,u] indicate that the samples used in these Monte 
Carlo simulations were probably not unbiased. 
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In contrast to the quenched average (where the statistical error bars are much 
smaller than the size of the symbols), the annealed average shows very large statistical 
fluctuations, but is compatible with (R2) /R& being constant (see figure 1). The 
fluctuations are easily understood from the fact that only very few configurations give 
the dominant contributions to this average. We should also point out the strong 
even/odd oscillations which are typical for SAWS on square lattices. 

Finally, the quenched averages over the 'infinite' clusters are consistently 
somewhat larger than the total averages, as expected [SI. But the exponent (best 
estimate U" - Y = 0.036 f 0.003) is compatible with being the same as at p = p,. 

Values of RZ(P)/R& for different values of p are compared in figure 2 There 
we show only quenched averages, but we checked that the annealed averages gave 
(R2)  = R& independently of p. If we restrict the averaging over 'infinite' clusters 
(which in practice meant I ,  > 2 N ) ,  we see a clear increase in R2(p)/R& both 
for p = 0.5 and for p = 0.75, indicating that the problem is also in a different 
universality class from ordinary SAWS. While the exponent could be the same for 
p > p ,  as for p = p,, we clearly see a larger exponent, U"' - v = 0.065 f 0.005, 
for p = 0.5. Indeed, both data sets (in particular that for p = 0.75) show upward 
cuwatures, indicating that the correct asymptotic exponent could even be larger and 
the same for p > p ,  and p < p,. 

i_ 

1.3 - 
& 

& 1.2 - 
Y . - 
Y 

1.1 - 

1 10 100 
N 

- 
Figure Z Scaled mean square end-lo-end distances, R z ( p ) / R k .  'The dots are the data 
f" Sgure 1 for p = pc  = 0.592745, and b e  other data are: for all SAW-supporting 
clusters a1 p = 0.75 (diamonds), for 'infinite' clusters a1 p = O S  (rectangles), and Cor all 
SAW-supporting dusters at p = 0.5 (cmses). In all cases, quenched averages are shown. 

When taking the average over all clusters which support at least one SAW, we get 
the same behaviour when p > p ,  (not shown in figure 2). But for p < p,, we see 
in figure 2 a clear cross-over to a much smaller value for the exponent, ruling out 
an exponent larger than for SAWS on regular lattices. But since we were not able 
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to obtain very long S A W  for p < pc  (see the discussion in section 2), we do not 
know whether the asymptotic behaviour is that of SAWS on regular lattices or whether 
Rz(p)  increases even slower. 

These surprising results do not seem to have been predicted by any of the existing 
theories. 

3.2. Numbers of SA ws 
We first checked that the (annealed) averages of ZN(C) were indeed simply given 
by p N Z $ ) ,  where 2:) had been obtained by our algorithm on regular lattices. Here 
the average is over all configurations, Le. the normalization is done by dividing with 
the total number of configurations. But statistical fluctuations were again very large 
except for very small N. 

These anomalous statistical Ructuations should be absent in the quenched entropy 

- ~ 

s N ( P )  = (log z N ( c ) )  (8) 

where the summation runs over all configurations with Z,(C) > 0, both in the 
denominator and in the numerator necessary for normalization. 

'RI show this, we plotted S , ( p )  - l o g ( p N Z ; ) )  and iog[(Z,(C))/(pNZ~)))l 
against log N in figure 3, for p = p,. According to the theoretical expectation the 
latter should be exactly equal to 1, which is indeed the case. In contrast, S N ( p )  is 
much smaller than p N  2:). 

If we define S N ( p )  by restricting ourselves to SAW-supporting configurations (dots 
in figure 3), we find that it scales linearly with N .  If, however, we include all 
configurations, then S N ( p )  has to be smaller by a factor < N2-' with T = 2.055 
[37] due to the normalization. A sublinear increase S,,,(p) - N'-O when taken over 
all configurations (and with log0 replaced by 0) is indeed seen in figure 3 (diamonds), 
but with a = 0.075f .003. This is definitely larger than 7 -2, and shows that clusters 
must have much more than N points in order to support an Nstep SAW. We should 
mention that a stretched exponential increase of logZ,(C) had been predicted in 
[17], but with a very dif€erent exponent. 

This difference in the asymptotic behaviour of S N ( p )  and log[(Z,(C))] reflects 
the fact that the distribution of Z,(C) is extremely wide. In figure 4 we show the 
distribution of its logarithm for 8 = 100 and p = p,. We see an approximately 
log-normal distribution. The distribution is narrower for ?, # p c .  For p > p,, the 
lower cutoff of the distribution increases faster than the upper, while for p < p ,  the 
upper cutoff decreases to 0. 

To show that the width of the entropy distribution also scales roughly linearly with 
N, we show in figure 5 the variance of the entropy per monomer at p = per 

(9) 
1 

[bSN(p)/NIZ = -[(logzN(C)2) NZ - s N ( p ) z l '  

We see very strong finite-length corrections, which give a decrease in the wriance at 
small N, but asymptotically it Seems to stay constant or even to increase. 

The wide distribution of Z,(C) is suggestive of a multifractal distribution [38]. 
This is typically obtained in multiplicative random processes. In the present case, 
Z,(C) would be produced by a multiplicative random processes if the effective 
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SAW'. /m pma1atirm clmterr 
1.3 

1031 

b r e  I Quenched (dols) and annealed (crosses) entmpy diRerenoes (with respect lo 
the ordered square ialtice) per monomer at p = pc, plotted against N on a log-log 
plot. The m r s  of the quenched averages are of the size of the dots. while the errors of 
the annealed averages can be eslimated from the deviations from a horizontal line. The 
diamonds represent quenched averages normalized by dividing over all mnfigurations, 
including those which do not suppal any SAW. 

o IO 10 30 40 50 60 10 

s 

Figure A Dishbulion of lhe entropy S for N = 1W and p = pc. 

connectivity constants pLN defined in equation (5) were to form a random sequence, 
as obtained typically in a mean-field treatment. In that case we would have 
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sw'il. 01 Perrr1.tian C1Y.tepII 
I 

Figure 5 Variance of the entropy per monomer, equation (9). against N on doubly 
logarithmic plof for p = ps. 

where f(z) is a cap-convex function with max, f (z )  = 0. In order to test this, we 
plotted in figure 6 the quantity N-' log P( S) against S I N ,  for three different values 
of N .  The heights of the three curves are, in principle, fixed by normalization, and 
were chosen here so that the three curves have the same maxima. The agreement 
between them is far from perfect It would be much better if we had used 
as the scaling variablc instead of S I N ,  but we believe that this is a finite-length 
correction as also manifested in figure 5. Thus we interpret figure 6 as an indication 
that equation (10) is indeed correct 

4. Conclusions 

Using a new Monte Carlo procedure, we have been able to resolve some of the 
problems concerning SAW in two-dimensional quenched random media. In particular, 
we have shown that the end-to-end distance scales with a new exponent Y' > o at 
the percolation threshold p = p,, but not only there. If we restrict ourselves to 
infinite clusters, then the end-to-end distance increases for p < p ,  even faster than 
at p = p,, while it seems to increase for p > pc  at least with the same exponent. 
Otherwise, if we average over aU clusters which cany at least one SAW, we obtain 
a larger exponent than for ordered lattices only for p 2 p e .  All this refers to the 
quenched ensemble, and we checked that the annealed averages of the end-to-end 
distance are the same as on ordered lattices. 

For the quenched average of the entropy (i.e. the logarithm of the number of 
SAWS), we found a stretched exponential as predicted in [a] only if we take averages 
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0.1 0.2 0.1 0.1 0.5 0.6 

S/.V 

Figure 6. Plot of N-'logP(S) against S I N .  where S h the entropy and P(S) 
it6 probabiliry distribution, for p = p c  and for three different values of N :  N = 20 
(crosses), N = 40 (no symbols), N = 100 (diamonds). The curves are arbilrarily shifted 
vertically so lhat they have the same maximal value. 

over all clusters, including those which do not support any SAW. The distribution of 
the entropy seems to be multifractal. 

Apart from these results on SAWS in random media, we believe that the main 
result of this paper is the Monte Carlo procedure itself. Its main aspect is an 
extremely simple recursively called subroutine. It is most simple in applications to 
non-self-avoiding walks. When called at point I and length N, it just calls itself at 
the neighbouring points of I and with length N - 1. When used for self-avoiding 
walks as in the present paper, it first sets a flag at I immediately after entering, 
checks that no flags have been set before going to neighbouring points, and clears 
the Bag before returning to the calling routine. 

This algorithm can be regarded as a recursive implementation of the incomplete 
enumeration of [7,8] or as a statistical variant of enrichment methods. It is also 
similar to the method in 161. Its main advantage over these methods is its flexibility, 
simplicity and intuitiveness. It was the latter which made feasible the somewhat tricky 
schedule for finding optimal enhancement factors to counterbalance the attrition. 

Variants of this recursive algorithm should be very usefull in all situations where 
one needs simulations of random walks with absorption or attrition, be they self- 
avoiding or not. More generally, we propose that recursive algorithms should find 
many more applications in statistical physics. Applications to percolation and to 
sandpile models, with routines surprisingly similar to that for SAWS, were given in 
[29,30]. The simplicity and similarity of the different algorithms is illustrated by the 
BASIC routine in the appendix 
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CLEAR ,400000 ' allocate 400 KB stack 
DEFSNG "P" ' declare "P" as REAL 

PRINT " Multi - purpose routine for Stat Mech on 100 x 100 lattice" 
PRINT I' Which model:" 
PRINT ' I  self-avoiding random walks (p-c = .37905) ......... 1" 
PRINT I' SAW'S on crit. percolation clusters (p-c = .6395) .. 2" 
PRINT .. bond percolation (p-c = . 5 )  ....................... 3" 
PRINT " Ising - Wolff model (p-c = .58579) ................ 4" 
PRINT " self-organised criticality (p-c = . 5 )  ............. 5" 
INPUT " ? " ; e  ' ask for model selection 
PRINT "": PRINT "" 

INPUT " p = ";P ' ask for control parameter 

BOX 259,159 TO 460,360 ' draw frame around lattice 
FILL COLOR =O ' "PBOX" will later fill box 

with white color 
IF Q)3 OR Q=2 THEN Hot-Start ' create random configuration 

REPEAT 
I=260+ 2*RND(100) ' random x-coord. in [260.4581 
J=160+ 2*RND(100) I random y-coord. in [160,3581 

IF Q=3 THEN MODE =1: PBOX 260,160 TO 459,359 ' reset lattice 
MODE = 3  * set "XOR" mode for graphics 
Connect (1,J) ' start cluster 

PRINT .. self-organised Ising (p-c = .5) ................... 6" 

IF Q(>5 THEN C=POINT(I,J) ELSE C=l ' give Color at point (1,J) 

UNTIL INKEYSO"" ' stop when any key is pressed 

END 

DEF PROC Connect (I, J) 
IF POINT(I,J)=C THEN ' color at (1,J) = start color ? 

BOX I,J,2,2 ' change color black (--) white 
IF RND(I)(P THEN IF J(358 THEN COnneCt(I.Jt2) 
IF RND(I)(P THEN IF J>160 THEN Connect(1.J-2) 
IF RND(l)(P THEN IF I(458 THEN Connect(It2.J) 
IF RND(l)(P THEN IF I>260 THEN Connect(1-2,J) 
IF O(3 THEN BOX I.J.2.2 ' chanue color back (for SAW'S) . . . .  

ELSE 

ENDIF 
IF Q)4 THEN BOX I,J,2,2 ' change color anyhow (for SOC) 

RETURN 

DEF PROC Hot-Start 
FOR I=260 TO 458 STEP 2 

FOR 5.160 TO 358 STEP 2 

NEXT ' reverse spin at (i.j) with 
IF RND(1)).59724 THEN DRAW BOX I,J,2.2 

NEXT ' probability 1-p-crit for 
RETURN ' site percolation 

Figure Al. A multi-purpox mutine written in OMlCRON BASIC lor the Atan ST computer, 
for simulating six different models. 
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Appendix 

In figure AI we give a multi-purpose routine written in OMICRON BASIC for the Atari 
ST computer, for simulating six different models. At least the first five models are 
each in a different universality class. The clusters are displayed on the screen, using 
the video memory instead of an array to store the configuration, and using 2 x 2 
pivels per site. The function RWD(x) gives a pseudorandom real number in [0,1] if 
z = 1, while it gives an integer E [0, r) if I is integer and > 1. PBOX fills a rectangle 
with the color set by FILL COLOR, while BUX draws a 2 x 2 box. MODE=i sets the 
usual graphics mode while MODE=3 sets the XUR graphics mode. Enally, the function 
P O I N T ( i , j )  gives back the colour at this point. 
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