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Absmet  Both quantum and classical analyses are performed to study the barrier crossing 
dynamics in a driven quartic oscillator. The regions of phase space with regular classical 
motion are found to be smaller than the size of a quantum state. However, coherent 
tunnelling is still possible due to the existence of Floquet states localized on two small 
regular islands. "he  quantum evolution of localized wavepackets and the classical evolution 
of the corresponding distributions show similar coherence properties although the degree 
of coherence is quantally enhanced. 

The study of quantum tunnelling for double well potentials in the presence of a periodic 
time-dependent driving force has been the object of recent theoretical work [l-31. 
Among the numerous applications stimulating these studies are: ( a )  macroscopic 
quantum tunnelling [4], ( b )  the possibility of tunnelling rate enhancement through 
double quantum wells in semiconductor superlattices [ 5 ] ,  ( c )  intramolecular and 
intermolecular hydrogen transfer processes [6], ( d )  tunnelling processes of hydrogen 
isotopes and muons between interstitial sites in metals [7], and (e) Josephson junctions 
in the presence of a microwave field [8]. 

Reichl and Zheng [ I ]  have studied classically the one-dimensional quartic double 
well potential in the presence of a monochromatic external field and found the 
appearance of chaotic trajectories with initial energy lower than the barrier height and 
which are able to increase their energy and cross over the barrier. The phase space 
chaotic layers increase with the strength of the field, the spreading of chaos being 
maximum, at a given field strength, for external frequencies close to the harmonic 
frequency within each well. 

This barrier crossing due to energy diffusion is therefore a pure classical effect 
related to chaos and, therefore, should not be called tunnelling. Here we will use this 
term to name pure quantum processes that connect phase space regions which are 
classically separated. 

The interplay between chaos and tunnelling is the subject of recent work by Lin 
and Ballentine [2]. They study the quartic potential in the presence of a sinusoidal 
driving force. For the parameters chosen in the Hamiltonian, the one-period strobo- 
scopic classical phase space has a small regular island in each well embedded in a 
dominant chaotic sea. Figure 1 shows these islands and some chaotic trajectories. Lin 
and Ballentine solved the time-dependent Schrodinger equation in a truncated basis 
set for different initial wavepackets. If the centre of the initial packet lies within the 
chaotic sea, then the packet spreads rapidly over the chaotic phase space which extends 
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Figure 1. Stroboscopic plots for several trajectories initiated along the p = O  axis revealing 
the two regular islands and the 4:  I periodic orbit near the left island. 

across the two wells. On the other hand, if the initial packet is centred at one of the 
regular islands, coherent tunnelling is observed with a rate several orders of magnitude 
greater than that corresponding to the undriven system. 

The purpose of this work is twofold. First we want to give a formal explanation 
to Lin and Ballentine’s observations using an adequate quantum formalism. Secondly, 
we intend to establish a connection between the classical and quantum mechanics of 
this system in order to separate the purely quantum effects from those with a classical 
analogy. 

We begin by presenting the quantum formalism and our quantum analysis. We 
then perform the classical analysis and its comparison to the quantum results. Finally, 
we present our conclusions. 

(a) The FIoquet formalism. The model Hamiltonian has the following form: 

H = p 2 / 2 m  t Bx4- Dx’t Ax cos(wUt). (1) 

The values chosen for the parameters in this equation are from Lin and Ballentine [ 2 ] ,  
namely m = 1, B = 0.5, D = 10, A = 10 and wu = 6.07. 

In order to carry out the quantum analysis of our system we have used the Floquet 
formalism which is specially adequate for Hamiltonians with periodic time dependence 
[ 9 ] .  The time evolution for such systems is completely determined by the one-period 
propagator. The diagonalization of this operator gives the so called Floquet states xi; 
the eigenvalues can be written in the form exp(-iEJ), where the quasi-energies E; are 
real and obtained modulus 27r. Thus for times t = nT ( n  integer and T = 2 ? r / o u )  any 
solution + of the time-dependent Schrodinger equation can be written as 

4 = 1 c, exp( -iE,t)x,. (2) 
i 

The time-dependent Schrodinger equation for our system is invariant under the two 
sets of transformations 

x+-x  t + t +  T / 2  

and 

x+-x  t t T / 4 +  - t  -t TI4 complex conjugation. 
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As a consequence of these properties, the one-period time evolution operator is 
completely determined from the evolution operator for one quarter of a period. This 
fact can be used to reduce significantly the computational time involved in the calcula- 
tion of Floquet states and quasi-energies. 

In our computations we have used Lin and Ballentine's basis set which consists of 
the lowest 115 eigenfunctions of a harmonic oscillator with frequency o = 6.25. We 
have propagated this basis set for a quarter of a period and from here the one-period 
evolution matrix was obtained. Further diagonalization of this matrix produced the 
Floquet states and quasi-energies. The results are stable against changes in o and in 
the number of basis functions used. 

Some of the Floquet states are presented in figure 2. We have used the Husimi 
representation which for any state Ix) is defined as 

P ( x , P ) =  (2nfi)-'l(a(x, P)1X)I2 (3) 

where ( a ( x ,  p)I is a coherent state of the harmonic oscillator chosen for the basis set. 
The Floquet states in panels (a ) ,  (b)  are localized on the regular islands shown in 

figure 1. This is so in spite of the fact that the size of such islands is not large enough 
to support a quantum state in a semiclassical sense; the state in panels ( c ) .  ( d )  are 
also localized although on unstable periodic orbits within the chaotic sea. On the other 
hand, panel (e) shows a more delocalized state. Localization and delocalization of 
this kind are frequent features observed in quantum systems with classical chaotic 
motion [lo-121. For the sake of comparison we give in panel ( f )  the Husimi representa- 
tion for the lowest stationary state in the undriven system. 
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Figure 2. H u s h !  representations of several Floquet states for driven system ( a ) - ( e ) .  Panel 
(1) gives the Husimi representation of the lowest stationary state for the undrivcn system. 
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(b) 7he autoconelalion function. Given a solution I + ( t ) )  of the time-dependent 
Schrodinger equation corresponding to an initial state I+(O)), then the autocorrelation 
function or survival probability is defined by 

c(r) = I(+(o)l+(o)12. ( 4 )  

in inkfn-a!icn cencerning the !-nxe!!ing precess and its coheTe--ce degree. 'I?..ese 

The autocorrelation function has proven to be very useful in the extraction of dynamical 
information from the system time evolution [13 ] ;  in particular, we are interested here 

functions are also specially adequate to study the classical-quantum correspondence 
which will be carried out later. 

For our purposes we have chosen as initial states 14) three Gaussian coherent 
wavepackets located at ( a )  x = - 1 . 5 ,  p = 0 (the centre of the left regular island of figure 
1); ( b )  x = -2, p = 0 (within the island but displaced from its centre), and (c) x = 
4.15,p=O (within the chaotic sea). Cases ( a )  and ( c )  were also studied by Lin and 
Ballentine [2]. The time evolution I + ( t ) )  of these packets was obtained using (2). The 
correlation functions corresponding to these cases are given in figure 3. Only values 
for times equal to integer number of periods are presented. Figures 3 ( a )  and 3 ( b )  
show one period of a low frequency oscillation which is due to the coming back of 
the initial packet after tunnelling two times through the barrier. This oscillation persists 
for longer times with no further decay and is a consequence of the tunnelling coherence 
already observed by Lin and Ballentine [2]. The lack of coherence reported by these 
authors in case (c) is also revealed in the correlation function in panel (c) which shows 
a fast decay to a low amplitude random high frequency oscillation with some revivals 
reaching 30% of the initial probability. This fast decay takes place in parallel with the 
spreading of the packet over the two wells giving rise to a fast incoherent barrier 
crossing. Panel ( b )  presents an additional coherent oscillation whose period is approxi- 
mately four times the period of the driving term and which is caused by the fast 
oscillations of the packet within the well (remember that it was initially displaced from 
the centre of the regular island). 

Figure 3. Quantum survival probabilities (equation 
(4)) for the initial wavemckets corresponding to the I 
cases ( a ) ,  ( b )  and (c) dlscussed in thetext. The time 
unit is a pkriad of the driving force. 

a0 

Let us now analyse these results in terms of the Floquet states contributing to the 
initial packet in each case. This contribution is cI =(4(0)lxI) in (2) and takes part in 
the spectrum which is defined as 

I ( E )  =? I(+(O)lXi)l*S(E -4). ( 5 )  

I ( E )  is given in figure 4 for the three cases studied. 
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Figure 4. Spectra (equation ( 5 ) )  corresponding to 
the same wavepackets as in figure 3. 

The spectra corresponding to cases ( a )  and ( b )  show as a similar feature a dominant 
contribution coming from the same two Floquet states with very close quasi-energies; 
the Husimi representations of these states are given in panels ( a )  and ( b )  of figure 2. 
They look alike but, in the coordinate representation, one of the states is positive for 
all x values whereas the other changes sign from left to right wells. Therefore, symmetric 
and antisymmetric superposition of these two states produces wavepackets respectively 
located in each well, whose time evolution will give rise to completely coherent 
tunnelling with a rate determined by the quasi-energy splitting. This splitting is 0.0281 
from which a tunnelling time of 112 periods is readily found. All this explains the 
dominant coherent component of the tunnelling process for the wave packets of cases 
(a) and ( b ) .  In particular, since approximately 80% of the initial packet ( a )  is made 
u p  of these two localized states, the survival probability reaches 80% of the initial 
value after the first tunnelling period. In case (6) the value is 60%. The incoherent 
component is due to the participation of other pairs of Floquet states with different 
splittings on one hand and individual delocalized states on the other. The tunnelling 
rate obtained here is in total agreement with Lin and Ballentine's result [Z]. They 
estimated the rate for the undriven system to be several orders of magnitude slower. 
If the packet is made up of the superposition of the two lowest states for the undriven 
system the rate will be determined by the energy splitting between these two states. 
We have found this splitting to be of the order of lo-'' confirming the drastic effect 
of the driving term. This considerable increase in the tunnelling rate can be understood 
as a reduction of the effective barrier in the driven system, which is consistent with 
the fact that the Floquet states represented in figures 2 ( a ) , ( b )  have the two regions 
of maximum probability closer than in the case of the two lowest states for the undriven 
system (cf figure 2 ( f ) ) .  

In case ( c )  the spectrum (figure 4(c)) shows similar contributions from many 
Floquet states such as those in figure 2 ( d ) ,  (e). They are poorly localized like the one 
in figure 2 ( e )  or show localization on unstable periodic orbits as the one in figure Z(d) .  
All of them have almost zero probability values within the regular phase space regions. 
The fast decay in C(f) is related to the obvious lack of correlation in I ( E ) ,  and the 
revivals of the wavepacket a consequence of the discrete nature of the spectrum. 

The classical correlation function which is a classical analogue to (4) may be written 
[13] as 

C(r) = T r d O ) d f )  ( 6 )  
where Tr stands for the classical trace (integral over the phase space coordinates), 
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p ( 0 )  is the Wigner phase space distribution corresponding to the initial wavepacket 
and p ( t )  is the classical Linuville evolution of p ( 0 ) .  

The integral in (6) was evaluated by Monte Carlo sampling of initial conditions 
with a Gaussian random number generator corresponding to the distribution p(0) .  The 
same cases ( a ) ,  ( b )  and (c)  have been studied classically. A total of 500 trajectories 
were used in each case and the Hamilton equations were numerically integrated to get 
the values of p ( t ) .  The results are stable against changes in the number of trajectories 
and in the accuracy of the integrator. The correlation functi ns calculated in this way 
are presented in figure 5. For cases ( a )  and ( b )  they decay relatively slowly to a 
non-zero average value which is larger for case ( a ) .  The high frequency oscillation 
appearing in case ( b )  has a periodicity equal to that observed in the corresponding 
quantum case (cf figure 3) meaning that its origin is a classical one: the regular 
trajectories in the island need four periods to come back closer to their initial point. 
This is due to a 4: 1 resonance periodic orbit which appears near the boundary of the 
island within the chaotic sea [l]. Some of the chaotic trajectories in the neighbourhood 
of this periodic orbit mimic for shorrt times its motion as can he seen in figure 1. The 
regular trajectories within the island and close to its boundary also feel the resonance 
region. The non-zero long time value of the autocorrelation function and the fact that 
the above oscillation persists for long times indicates that part of the initial distribution 
of trajectories remains coherently localized in one well. This is confirmed by following 
the evolution of the initial distribution in phase space. Since the initial distribution in 
case ( a )  was located closer to the centre of the island the 4:l oscillations almost 
disappear; on the other hand the portion of the packet which remains coherently 
localized in one well case increases in this case giving rise to a higher long time average 
in the autocorrelation function. 

9 

0 1  

Figure 5. Classical autocorrelation functions (equa- 
tion ( 6 ) )  for the same cases as in figure 3. 1 0  10 ,bo 110 am 2 

Case ( c )  which corresponds to a distribution located within the chaotic sea gives 
an autocorrelation function with a fast decay to almost zero due to the exponential 
divergence of the chaotic trajectories which dominate the initial distribution in this 
case. Most of these trajectories are able to gain enough energy to cross over the harrier 
producing a long time distribution completely delocalized over the two wells. 

In summary, there are features in the autocorrelation functions which are common 
in both classical and quantum cases. For example, the coherence in the evolution of 
the wavepacket could have been anticipated from a classical study. The 4: 1 additional 
frequency has also a classical origin. Finally, in case ( e )  both classical and quantum 
correlation functions show the same fast decay and incoherence and the barrier crossing 
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has its main origin in the energy diffusion of the chaotic trajectories. There are, on the 
other hand, typically quantum features like the low frequency tunnelling oscillation 
in cases ( a )  and ( b ) .  There is also a quantum enhancement of the classical coherence 
in these two cases; namely the quantum survival probability after a tunnelling period 
is approximately 50% greater than the classical long time value in case (a) and 300% 
greater in case ( b ) .  Finally, some quantum revivals appear in the autocorrelation 
function for case ( c )  with no classical analogues. 

From the results of the present work we can extract the following conclusions. The 
coherence properties of the time evolution of localized wavepackets in the driven 
quartic oscillator is determined by the localization properties of the Floquet states 
contributing to the wavepacket. In particular, the coherent tunnelling has been associ- 
ated with the participation of a pair of Floquet states localized on two islands of 
regular motion which exist in the classical phase space. Symmetric and antisymmetric 

later oscillate between wells with a tunnelling rate determined by their energy splitting. 
This splitting is much higher than the corresponding to the lowest pair of states in the 
undriven system, and can be interpreted as a reduction of the effective barrier caused 
by the driving force. Packets localized on classically chaotic regions of phase space 
are superposition of several delocalized and periodic orbit localized Floquet states. 
These packets spread rapidly over the whole chaotic region which extends over the 
two wells. 

The coherence in the quantum evolution of the packets initially located on the 
stable islands has a classical analogue, namely the coherence of the trajectories trapped 
in the stable islands which do not dephase in a similar way as the trajectories for a 
harmonic oscillator. Since the island localization for the pair of Floquet states respon- 
sible for such coherence also covers part of the near chaotic regions, the coherence 
observed in the quantum evolution of these packets is greater than that of the classical 
analogues. Tunnelling is a pure quantum effect superimposed to this coherence. 
Classical distributions of trajectories initially located within the chaotic sea show the 
same fast decay observed in their quantum analogues. In this case some apparently 
quantum beats corresponding to partial revivals of the wavepacket appear as quantum 
features without classical counterparts. 

and undriven systems is the main cause of the drastically different behaviours observed 
in their classical and quantum dynamics. 
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