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Correlation functions in a one-dimensional Bose gas 

A G Izergin, V E Korepin and N Yu Reshetikhin 
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Abstract. The problem of calculating correlation functions is considered for the one- 
dimensional Bose gas with a delta-function repulsive interaction between particles. The 
method of calculation based on the algebraic Bethe ansatz is given. 

1. Introduction 

The development of the quantum inverse scattering method ( Q I S M )  [ 13 has resulted in 
a great advance in the investigation of integrable quantum systems in two spacetime 
dimensions. The important success of the method was the scheme of the algebraic 
Bethe ansatz [I ,  21 which generalises the Bethe method [3] of solving the Heisenberg 
magnet. It is the thorough analysis of the structure of integrable models implied by 
the Bethe ansatz that allows the effective approach to calculation of correlation 
functions. In [4,5] this approach was applied to the equal-time two-point correlator 
of currents in the one-dimensional Bose gas which has led to the essential progress in 
studying this correlator, namely the long-distance asymptotics at non-zero [6] and at 
zero temperature [7] was obtained. 

In this paper the approach of [4,5] is generalised to include also the two-point 
correlator of fields as well as any many-point correlator of fields and currents. We 
hope to use the results obtained here to study the long-distance asymptotics of the 
correlators in subsequent papers. 

In this paper the equal-time correlation functions in the non-relativistic one- 
dimensional Bose gas with repulsive delta-function interaction between particles is 
considered. This model was introduced and solved by Lieb and Liniger [8]. It can 
be considered as a result of second quantisation of the non-linear Schrodinger (NS) 

equation and is also called the NS model. The corresponding Hamiltonian is 

H = loL dx(a,++a,++ c++++++ - h + + + ) .  (1.1) 

Here c > 0 is a coupling constant, h > 0 is a chemical potential, L is a length of a 'box', 
+ ( x )  is a canonical Bose field: [ + ( x ) ,  I ,bf (y) ]  = 6 ( x  - y ) .  The periodic boundary condi- 
tions are supposed to be imposed. The Fock (bare) vacuum IO)(+(x)IO) = 0) is not the 
ground state of the Hamiltonian. The ground state In) is constructed as the Dirac sea 
over the bare vacuum. The equal-time correlators investigated below are the mean 
values of the local operator products with respect to the normalised ground-state 
eigenfunction. The simplest of them are the two-point field correlator ( I ,b(x)+ ' (y) )  = 
( n l + ( x ) + + ( y ) l n )  and the two-point current correlator ( j ( x ) j ( y ) )  = (CL j ( x ) j ( y ) ( n )  
( j ( x )  = + + ( x ) + ( x ) ) .  The definition of many-point correlators is also quite evident. 

0305-4470/87/ 144799+ 24$02.50 @ 1987 IOP Publishing Ltd 4799 
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The NS model is the first model to which QISM was applied [ 1,9]. It is essential 
in our approach that one can consider this model as a representative of a class of 
Bethe ansatz solvable models in QISM possessing the same structure of quantum 
‘action-angle’ variables (i.e. the same quantum R matrix). These models can be 
parametrised by functional parameters. So the generalised model is introduced where 
these parameters are considered as arbitrary functions. The dependence of correlators 
on these can be described explicitly which results in useful representations for the 
correlation function. 

To explain this by the simplest example and to introduce the necessary notations, 
let us consider the ‘one-site’ generalised model. The main quantity is the monodromy 
matrix [ 11 of the model. It is the 2 x 2 matrix T ( A )  depending on the complex spectral 
parameter A 

Matrix elements A, B, C, D are operators acting in ‘quantum’ space X. Their commuta- 
tion relations are given by the 4 x 4 matrix R(A,  p )  with c-number matrix elements 

(1.3) 

where 

\ O  0 

f ( A ,  P I  = ( A  - P + ic)/(A - P )  

We suppose also that the bare vacuum IO) 
following properties: 

0 o \  

g ( A ,  P ) = ~ c / ( A  -CL). (1.5) 

exists. This is the vector in X with the 

(1.7) 

Monodromy matrices with properties (1.2)-( 1.6) do exist for arbitrary c-number func- 
tions a ( A )  and d ( A )  [lo] which can thus be considered as free functional parameters. 
Essentially different monodromy matrices are parametrised by different functions r (  A ) 

r ( A )  = a ( A ) / d ( A ) .  (1.8) 

Consider now vectors II;, B(Aj)IO) and covectors (OlII,”=, @ ( A j )  where the following 
normalisation of ‘creation’ and ‘annihilation’ operators is used: 

B(A)= B ( A ) / d ( A )  @ ( A ) =  C ( A ) / d ( A ) .  (1.9) 



Correlation functions in a I D  Bose gas 4801 

Their scalar products can be calculated by means of the commutation relations (1.3) 
and properties (1 .5 )  and (1.6). The following representation is obtained in [ l l ]  for 
scalar products (A:, A F below are arbitrary different complex numbers): 

(1.10) 

The sum here is taken over all the partitions of the initial set 

{A;; / = I ,  . . . ,  N},u{AF; k = i  , . . . ,  N } , = ( A ~ } ~ U { A ~ } ~  

{ A A C } ,  = { A A h  n{ACh { A A B I N - n  = { A ~ } ~  {A ' I N  
into four subsets: 

DC 
{A D B > n  = {A " I N  {A "IN {A } N - n = { A D ) N n { A C I N .  

Subscript m in { A } m  denotes the number of elements in the set. The dependence on 
arbitrary function r ( A )  is written explicitly in (1.10). Functions Z n ( { A } , , ,  { p } , )  do not 
depend on r ( A ) .  Their definition, as well as recursion formulae permitting the calcula- 
tion of any of them, are given in appendix 1 .  

The transfer matrix T ( A )  = A(A) + D ( A )  generates the Hamiltonians of integrable 
systems. Operators T ( A )  at different A commute: [ T ( A ) ,  ~ ( p ) ]  = 0; so eigenvectors of 
T ( A )  do not depend on A. Bethe's eigenvectors IAl, . . . , A N )  and corresponding covec- 
tors (Al , .  . . , ANI are of the form 

N N 

l A l ? " * 9 A N ) =  n B(AJ)/o) (AI,....ANI=(OI n @ ( A l )  ( 1 . 1 1 )  
J = l  J = 1  

where spectral parameters A, are different and satisfy the system of generalised Bethe 
equations 

(1.12) 

The corresponding eigenvalue of T (  A )  is 

T ( A ) I A I , .  . . , A N ) =  t r . , ( A ;  A I ,  . , A N ) I A I , ' .  . , A N )  

( A , ,  . . . , A N / T ( A )  = fb ( A ;  A I , .  . . , A N ) ( ~ I , .  . . , ANI  

I N  = a ( A )  n f ( ~ , ~ , ) + d ( ~ )  n f ( ~ , , ~ ) .  
(1 .13)  

N N 

, = 1  ] = l  

The 'norm' of Bethe's eigenvectors can be obtained from (1.10) by taking the limit 
A: + A: + A, ( j  = 1 , .  . . , N )  and imposing the system (1.12) on A,. The result is [ 113  

The N x N matrix p' here is defined as (compare with (1 .12))  

( ( P o l k  = a p ] / a A k  
N 

(1.14) 

( 1 . 1 5 )  
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We now discuss the relation of the NS model (1.1) to the generalised model considered 
above. It is convenient to use the regularised version of the model, namely the lattice 
NS model introduced in [12]. The monodromy matrix of this model is the product of 
local L operators located at the sites of the one-dimensional space lattice 

T(A.)=LM(A)LM-I (A)  .. . L ( A ) L I ( A )  (1.16) 

where 

L,(A)  = 

Here +, are canonical Bose variables 

(1.17) 1. 1 -fiAA+fcA+L$, -i(cA)”2+z( 1 +;cA$L+,)I/~ ( i(cA)’/2(1 + f ~ h $ ~ $ , ) ’ / ~ $ ,  1 +fiAA+fcA$:$, 

[+n, +;I = am, [+n, +mI=[+:, $+mI=O. (1.18) 

The commutation relations between the matrix elements of the L operator are of the 
same form as those of the monodromy matrix (2.2). The quantum space Z is a tensor 
product of the local Fock spaces S j n  over all the sites 

M 

Z= 0 4,. 
n = l  

(1.19) 

The Fock vacuum 10) is the tensor product of the local Fock vacua w,:  IO)=@;” w , ;  
$,wn = 0. Functions a ( A ) ,  d ( A )  and r ( A )  are 

a ( A )  = (1 d ( A )  = (1 r ( A )  = a ( A ) / d ( A ) .  

The monodromy matrix of the NS model (1.1) is obtained from T ( A )  (2.5) by taking 
the limit A+O, M + m ,  M A = L ;  one has then the correspondence +,- 
( J > + l  $(x) dx)A-’/2; x, = nA.  The function r ( A )  in this limit is 

rNS(A) =exp(-iLA). ( 1.20) 

The Hamiltonian (1.1) can be expressed in terms of the transfer matrix [l] .  Thus 
eigenfunctions of the Hamiltonian are given by (1.11) and (1.12). 

The generalised model considered above was called the one-site model because 
the structure of the monodromy matrix T ( A )  is not specified in (1.2)-(1.15). Neverthe- 
less the existence of an arbitrary functional parameter had resulted in calculating the 
‘norm’ of the Bethe wavefunction (1.14) and (1.15). To calculate correlation functions, 
however, the generalised models with more detailed structure of monodromy matrices 
have to be considered. 

2. Two-site generalised model 

We begin with the construction of the two-site model permitting the calculation of the 
field correlator in the NS model (1.1). Consider first the monodromy matrix (1.2) with 
the following structure (for L, see (1.17)): 

(2.1) 
The quantum space where the matrix elements of T ( A )  act is X= X2O~,,OXIO$jl .  
Each of the four factors at the right-hand side of (2.1) acts non-trivially only in its 
own quantum space and acts as the unit operator in other spaces. Commutation 
relations of matrix elements of T(A) ( i  = 1,2) (these matrix elements are denoted as 

T(A ) = T2(A L, ( A  ) TI ( A  ) LI ( A  ). 
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Ai, Bi, Ci, Di; cf (1.2)) are given by the same formula (1.3). It is also supposed that 
the monodromy matrices Ti (A)  ( i  = 1,2) possess the bare vacua 

Hence the state vector 10) 

10) = IO), 0 wn 0 10) I 0 ~1 (2.3) 

is the bare vacuum for T ( A )  ((1.6) and (1.7)) with functions a ( A )  and d ( A )  given by 

a ( A )  = al(A)a2(A)(1 -;iAA), d ( A )  = dl(A)d2(A)(l+fiAA)2. (2.4) 

All the relations (1.2)-(1.15) are valid also in the two-site model. It is also quite 
obvious that the monodromy matrix (1.16) is a particular case of the generalised model 
corresponding to 

a , ( A )  = (1 -fiAA)M-n-' a 2 ( A )  = (1 -fiAA)"-' d i ( A )  = a T ( A * ) .  

It is, however, of importance that functions ui(A),  d i ( A )  ( i  = 1,2)  in the generalised 
model can be considered as arbitrary functional parameters. This appears to be essential 
in the investigation of correlation functions. 

Further we are interested in correlation functions in the generalised model at the 
continuous limit where A - 0, n A + x, MA + L (matrices T, ( A  ) ( i  = 1,2)  remain arbitrary 
monodromy matrices with the properties described above). At this limit L,(A) = 
1 - i2(x)A,  where 2 ( x )  is the continuous L operator [ l ]  and one has for the mono- 
dromy matrix (2.1) 

T ( A ) =  T,(A)TI(A). (2.5) 

Function r ( A )  in (1.8) is now 

r ( A )  = l ( A ) m ( A )  (2.6) 

where arbitrary functions l ( A )  and m ( A )  are 

l ( A ) = a l ( A ) / 4 ( A )  m ( A ) =  a2(A) /d2(A) .  (2.7) 

The commutators of lattice fields C L l ,  CL:, (Cl,,, C L i  with the matrix elements of T ( A )  do 
not, however, vanish at the continuous limit. Using (1.3), (1.17), (1.18) and (2.1) one 
obtains at A-0 for fields +(x), $'(x) entering (1.1) 

(2.9) 

(2.10) 

(2.11) 
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Using commutation relations ( 1 . 3 )  one can express [4] vectors U, B(A,)lO) and 
(OlU, @(A, )  in terms of vectors U, B,(A,)IO) and (OlU, @!(A,)  ( i  = 1 ,  2 )  (operators B,, C, 
are defined similar to (1.9) as B , ( A )  = B , ( A ) / d , ( A )  and @ , ( A )  = C , ( A ) / d , ( A ) )  

N n B(A,)IO)= c n m(A )&(A 1 n f ( A ,  P)B2(P)IO) (2.12) 
, = I  { A ) = { A " ' J ~ { A ' " )  A E { A ' " J  w E { A ~ ~ l )  

{ A " ' ) , - { A " ' ) = c z  

N 

N 
$(x) fl B(A,)~O)  = -ic"* c /(A"') 

] = I  { A  ) = { A "  ' ) U {  A z ' } u { A ' " ' )  

x n m ( A " ' )  n f ( A " ' ,  A " ' ) f ( A ' " ' ,  A'") 

X n Bl(A"') n B2(A"')IO) 

A l z I  

h l I l  Al:l 

(2.15) 

(2.16) 

N 
(01 n @(A,)$+(x) = ic"2 c /(A" ' )  n f ( A " ' ,  A " ' )  

] = I  { A  ) = { A '  ' ] U  { A '"tu { A "") 

x n l(A'2')f(A'2', A"')f(A"', A"')(OI n Cl(A"') n C2(A(*'). (2.17) 

Formulae (2.14)-(2.17) can be considered as the definition of field operators in the 
two-site generalised model. If one requires that conditions dF(A*)  = a , (  A )  and C:(A) = 
- & ( A )  are satisfied (as in the NS model) then relations (2.16) and (2.17) can be 
obtained by conjugation of (2.14) and (2.15). 

A ! 2 1  A l l l  

3. Field form factor 

The field form factor is a matrix element FN of the field operator $(O) between Bethe 
eigenvectors ( 1 . 1 1 )  of the transfer matrix 

F N ( { ~ c } N - I ,  { ~ ~ i ~ ) = ( ~ f .  . . A C N - ~ / $ ( O ) / A ? .  . . A:). (3 .1 )  

It should be emphasised that spectral parameters entering the sets { A C } N - l  and { A B } N  
satisfy the corresponding system of Bethe equations (1.12). Due to the translational 
invariance the matrix element of the operator $(x) is 

({A c ) N -  1 I $(x)l{A '1 N) 

(3.2) 
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To obtain an explicit representation for the form factor (3.1), one makes use of (2.14), 
(2.13), (1.10) and (1.12). The result is 

. F ~ ( { A ~ } ~ - , ,  { A ~ } ~ ) =  -ic1I2 c 
( A c  I z . i u { A B } \  

= { A  A ) ~r - 1 u { A ” I  h ~ I U { h i l l  I 

(3.3) 
The dependence of the form factor on parameters of the generalised model (i.e. on 
functions r(A), / ( A ) ,  m(A)  defined by (2.6) and (2.7)) is only due to the fact that 
spectral parameters A:, A! in (3.3) are solutions of the Bethe systems (1.12) for {AC}N-I 
and {A So one can make the analytical continuation and consider SN as a function 
of ( 2 N  - 1) independent complex variables A;, A:, this function being defined only 
by the R matrix (1.4) and (1.5). It can be easily proved that this function is symmetric 
in A ~ E { A ~ } , ~ - ,  and A ! E { A ~ } ~ .  

To calculate functions SN the following recursive procedure can also be used. 
Equation (3.3) and the recursion formula for coefficients 2 given in appendix 1 show 
that the principal singularity of .FN at A: + A is the first-order pole, the residue at 
this pole being proportional to SN-l .  If A;+ A: one has (the general case is obvious 
due to the symmetry mentioned above) 

Here terms regular at A B  + A : are not written down. Extracting all the singularities 
of this kind, one can represent .FN as follows: 

It is shown in appendix 2 that (i) functions PN are polynomials in A and (ii) relations 
(3.4) permit the calculation of these polynomials recursively in N beginning with 
N = 1. The first three polynomials are 

9 - 

P2 = - 2 i ~ ” ~ ( i c ) ~  
1 -  

9, = -4ic’”{ (ic)‘ + ( i ~ ) ~ [  ( A  - A f ) ( A  ,” - A E) 

(3.9) 

Formulae (3.6)-(3.9) can also be obtained directly from the representation (3.3). So 
we have demonstrated that the two-site generalised model permits investigation of the 
field form factor (3.1) (or (3.2)). 
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4. Multi-site model 

To investigate form factors of several fields one has to introduce the multi-site gen- 
eralised model. The number of factors in the decomposition of the monodromy matrix 
similar to (2.5) will now depend on the number of fields entering the form factor. 

The following form factors will be studied: 

%,,N, ({AC}Nc,  { A B } , , )  

= ( { A C ) l q q ( x O ) p f J o ( x O ,  . . (PoA(xA)pLBA(xA,  x A + l ) I { A B } )  (4.1) 
where ai = -1,O, 1; 0 xo< x l  <. . . < x ~ + ~  S L a n d  the spectral parameters A: E {AC},, 
and A! E { A B } , ,  satisfy the corresponding Bethe systems (1.12). We use the notations 

Cpl(X) = ++(XI  Cp-l(X) = +(X I  Cpo(x) = 1 (4.2) 

pe, (x,, x,+ 1 1 = exp( 6,qa,, + 1 )  (4.3) 

where operators q,,,+l are operators of the number of particles corresponding to the 
intervals [x,, x,+~) in the NS model 

E + O  Jx, 

The regularisation in the commutation relations of operators +, ++ and 
in such a way that 

is chosen 

Due to the translation invariance one can put xo = 0. To study the form factor (4.1) 
one introduces the ( A  + 1)-site generalised model with the following structure of the 
monodromy matrix (1.2): 

T ( A ) =  L , A + ~ ( A ) T A - I , A ( A ) .  . . To, i (A) .  (4.5) 
This decomposition of the monodromy matrix corresponds to the decomposition of 
the interval [0, L) in the NS model (1.1) into intervals [x,, x ,+~)  for a =0,  . . . , A and 

Matrix elements of matrices T,,,+l(A) are denoted as An, ,+ l (A) ,  B,,,+I(A), 

Co,a+l(A)IO)a,n+l = O  (4.6) 

The state 10) =@: 10)n,a+l is the vacuum for T ( A )  (1.6). Arbitrary functions U , , , + ~ ( A )  
and d,,,+l(A) will be called the parameters of the multi-site model. The formulae 
similar to (2.12) and (2.13) also exist in the multi-site model 

X A + l  Le 

C,,,+l(A) and D,,,+l(A). Matrix T,,,+l possesses the ‘vacuum’ 

A,,,+l(~)lo)a,,+l = ~ a , n + l ( ~ ) l O ) a , o l + l  ~ ~ , c z + l ~ ~ ~ l o ~ a , ~ + l  = d,,m+l(A)lo),,m+l. (4.7) 

(4.9) 
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Operators Ba,,+l(A) = BO1,a+ l (A) /da ,a+ l (A)  and Q = u , u + l ( A )  = Cu,O1+l (A) /da ,a+ l (A)  are 
defined similar to (1.9). 

Turn now to the form factor (4.1). I t  can be readily defined in terms of the 
generalised model described above. The definition of fields $ ( x u ) ,  $ + ( x a )  ( a  = 
0, .  . . , A) in the generalised model is quite obvious from 0 2, where local fields were 
introduced in the two-site model. Operators qa,a+l are defined similar to the operator 
Q ,  of [41 

N N 

qa.o+1 n Ba,a+l(A/) lo)= N n % a + l ( ~ / ) l o )  
/ = I  J = l  

N N 

/ = 1  / = 1  
(Ol fl @a,a+l(AJ)qa,O1+l = N(o /  n @ ~ X , a + l ( ~ / ) *  

Commutation relations (4.4) are also valid in the generalised model. 
Putting (4.8) into (4.1) one obtains the following representation for 9: 

The sum here is taken over all the partitions of the set { A B } N  = {A; ; j  = 1,. . . , N }  into 
(A+1)  subsets{Af}andoverallthepartitionsoftheset { A c } N  in to(A+ 1) subsets{Az}: 

A A 

{ A C } =  U {A:}. 
01 =o  

{ A B ) =  U {A:} 
a =o 

Matrix elements entering (4.10) can be reduced to scalar products (1.10) andsingle-field 
form factors 

I )  C (01 9 @ a . a + l ( A a  ) ( P a , ( X a ) p 8 , ( X a 9  x a + l )  n Ba.a+l (A: )  

A :  

= exp{~.N~,O1+l~(ol  n @u,m+l (Az )pae (xa)  n B a , O 1 + l ( A ~ )  1 0 ) . (4.11) 

Further considerations can be approached in two different ways. The first way is to 
use the explicit representations for scalar products (1.10) and for the form factors of 
fields + ( x ) ,  $'(x) ,  (3.3) and (3.2), which give the representation of the form factor 
(4.1) in terms of the parameters of the generalised model as well as of functions 
Z ( { A } ,  { p } )  described in appendix 1. The second way is to determine the dependence 
of 9 (4.1) on the parameters of the generalised model by studying singularities of 9 
(this method was used in [4] to calculate the form factor of currents). Both methods 
give, of course, the same representation for the form factor (4.1) 

A S  A: 

A 

9 N c N , ( { A C } ,  { A B } )  = c n n I u ( A 2 )  n L1(A: )  
A: part o = l  A C  

(4.12) 
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The sum is taken over the partitions of the sets { A B }  and {A'} as in (4.10). Function 
I y ( A )  is defined as 

Y - l  

(I = o  
/ , (A) = n L P + i ( A ) *  

Functions 9'a*B*e') are represented in terms of functions 2. For a = 0: 

9 '0 .e ." ' ( {~C}N,{~B}N)= 1 fl n 
pan , ,Ac 

Z N  - n ({A DC 1 N - n 3 {A AB 1 N - n exp( e N A B  + @"A, ) *  (4.13) 

The sum here is over all the partitions of the set { A B } N  u { A = } ~  into sets { A A ) . N  and 
{A D } N :  {A U = { A A } N  U {A D } N .  The number of elements in each of these 
four sets is equal to N. For a = F1: 

AC 
X Z n  ({A Dc 1 n 5 {A }n )ZN - n - i ({A 1 N - n - I 9 {A 1 A'- n - I 

X eXp{ e N A B  -k @"A'}. (4.15) 

The sum in (4.14) and (4.15) is taken over all the partitions 

 AB)^ U {A')N-I  = { A A } ~ - 1  U { A D } ~ - i  U {A'Ii  

{ A " } ~ - ~ U { A ' } ~  

card{ A '} = 1 

The scheme of the proof of representation (4.12) is given in appendix 3. 
Now we briefly discuss the structure of representation (4.12). It represents the 

multi-field form factor (4.1) in terms of functions which are, so to say, 
'elementary form factors'. Indeed, function 9(03e,e') is just the function u8-" of [4] 
which defines the form factor of the current. Functions F(*1383e') are just single-field 
form factors of $'(O) and $(O) investigated in detail in § 3 of this paper. Functions 
9 ' a . e . e ' )  satisfy the following relations at A E + A:: 
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They are symmetric in the variables A , C ’ E { A ~ } ~ ~  and in the variables A ~ E { A ~ } ~ ~ ,  
decreasing as O( 1/A) at A + 03, A E {A ”} U {A ‘}. These properties are sufficient to 
calculate the functions recursively by means of (4.16). 

Form factors are thus described for the generalised model. The form factors in the 
NS model (1.1) are the particular case of those corresponding to choosing the parameters 
of the generalised model as l a , a + l ( A )  =exp[-iA(x,+, -x,)] (cf (1.20)). 

In the rest of the paper correlators are considered. 

5. Mean values in the generalised model 

Our aim is to study equal-time correlators in the NS model (1.1). These are defined 
as the normalised mean values of corresponding field operator products with respect 
to the physical ground state In) of the model. This quantity will be obtained in two 
steps. In this section the mean values of operator products with respect to Bethe 
eigenvectors (1.1 1) are studied in the generalised multi-point model. Then one passes 
over to the NS model by giving the corresponding values to the parameters of the 
generalised model (e.g. (1.8)) and taking the thermodynamical limit of the mean value. 
This is done in the next section. The results of 4 9  5 and 6 are the direct generalisations 
of those obtained in [4,5] for the simplest two-current correlator. The necessary proofs 
can be readily restored along the lines of those papers. So only brief discussion and 
final answers are given here. 

We begin by studying properties of matrix elements of the corresponding operator 
products in the generalised multi-site model described in the previous section. Matrix 
elements AX are given by the formula analogous to (4.1); the difference is that sets 

and { A B } N B  are quite arbitrary and are not supposed to satisfy the systems of 
Bethe equations: 

Of primary importance is the analysis of singularities of this matrix element at A S  + A l .  
The structure of singularities is given in appendix 3. The main property is the existence 
of the first-order poles at A: + A f for j = 1, . . . , Nc and k = 1, . . . , N E ,  the residues at 
the poles being expressed in terms of the ‘modified’ matrix element: 

A N ~ N , ( { A  c I N c ,  I A ~ ) N ~ )  

N.. N .  

X . U ~ ~ : ~ ~ B ’ - I ( { A c } N C . - l ,  { A B } ~ g - ~ ) + .  . (5 .2 )  
All the notations used are the same as in appendix 3. 

To obtain the mean value with respect to Bethe eigenvectors one has to put 
N B  = Nc = N, A; = A: = A,, j = 1,.  . . , N and then impose the Bethe system (1.12) on 
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Al. It should be noted that in this case A+ = A- also, A, denoting the number of ( P * ~  

in (5.1). Functions l a . * + , ( A )  are supposed to be smooth. For mean values the notation 
g N  will be used: 

g N ( { A ) N t  { C . a + i l ,  {xm,u+i}) = A N , N ( { A ) N ,  { A ) N ) .  (5.3) 

It follows from (5.2) that B N  is a linear function of variables X ~ , ~ + ~ ( A , )  

X y . y + ~ ( A ) = i d  log ~ ~ . Y + I ( A ) / ~ A .  

The coefficient at X ~ , ~ + ~ ( A ~ )  can also be calculated from (5.2); it proves to be proportional 
to 9 N - l  

(5.4) 

The system (5.4) would define quantities 9,  uniquely if the values of g N  at X ? , ~ + ~ ( A , )  = 
0 were given. So let us define the irreducible part I N  of the mean value BN 

I N  ({A 1 N ,  i Z a , a  + I ) N , A -  I ) 9 N  ( { A  1 N ,  { ja,a + 11 N , A -  1, {o})* (5 .5 )  

It is readily proved that the irreducible part is expressed in terms of the form factor 
(4.1) as follows: 

The representation (4.13)-(4.15) for the form factor results in the following structure 
of the irreducible part: 

The sum here is taken over the partitions 

card{ A :} = card{ A i}. 

Functions dN are ‘Fourier coefficients’ of the irreducible part; they do not depend on 
the parameters 1 7 , y + l ( A )  of the generalised model and are defined by the R matrix only. 
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To construct the solution for the system (5.4) with complementary conditions (5.5) 
one introduces functions 8, 

~ N ( { A + } ,  {A-}, {A},, {XI) 

(5 .8 )  

(5.9) 

(5.10) 

Parameters xmod in (5.9) are defined in the same way as in (5.4). The solution of the 
system (5.4) with the complementary condition (5.7) is now given as 

N 

9, = e N  n f ( A j ,  A k )  n r ( A j )  C fi n l o ( A : )  
J # k  J S I  part, part2 o = 1 A 2 

X n  J - ' ( A & % J { A + } ,  {A-}, { A 0 ) ) 8 , - d A + } ,  {A-}, { A " ) N - ~ ,  {x)). (5.11) 
A ,  

The first sum here is over the partitions 

= { A ' } k U { A " } N - k  

and the second sum is over the partitions 

{A 'L = ( 6 ({A:} U {A;})) U 00). 
o = l  

Formula (5.1 1) is readily established by direct calculations. For the normalised mean 
value one obtains (taking into account (1.14)): 

(5.13) 
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Matrices cpI, = c p ( A , ,  A,) and qO:, = cp(A:',  A Y )  are obtained by differentiation of functions 
'pr in A as cp,, =acp(A,)/aA, 

(5.14) 

The representation (5.12) is the main result of the Q I S M  analysis of operator product 
mean values in the generalised model. It should be noted that at A ,  = 0, A. = 2 one 
has just the two-current mean value investigated in detail in [4]. 

6. Many-point correlators in the NS model 

Turn now to the NS model (1.1). Mean values of operator products in this model are 
given by the general formula (5.12) if one takes functions l a , o + l ( A )  and x,,,+,(A) in 
accordance with the structure of the NS monodromy matrix (1.16) and (1.17) (to be 
compared with (1.20)) 

b, + I ( A ) = ex p [ - i ( x, + - Xu 1 A I 
Xo,o + I  ( A  ) = X u  + I  - Xu Xg = 0 xA+l  = L 

We further consider the model in the thermodynamical limit which is of primary 
interest. In  this limit the length of the box L and the number N of spectral parameters 
in Bethe eigenvectors in (5.12) become infinitely large, the ratio N I L  remaining finite: 

N + E  L + m  p =  N / L < w .  

Correlators are the normalised mean values with respect to the ground state 10). The 
corresponding spectral parameters f i l l  the Fermi zone -q G A S q, the density p ( A , )  = 
(A,+l  - A,)-IL-l satisfying the linear integral equation [8]: 

The parameter q is just the Fermi bare momentum; the function p o ( A )  in (5.14) is now 
po(A)  = 1. The density of the particles N/L in the coordinate space is equal to the 
integral over the Fermi zone: 

NIL= p(A)dh.  r4 
To obtain the correlator one has to take the thermodynamical limit in (5.12). It is 

done quite similar to the case of the two-current correlator, so only the result and 
main points of the proof are given below. The correlator is represented in the following 
form: 
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Here the weight w ( A )  is 

and the d k  are the Fourier coefficients of the irreducible part Zk defined in ( 5 . 7 ) .  The 
function [Ek is the limit of EN-k at N + 03; this function depends on parameters e,, 
on spectral parameters {A:} and on functions X * + + ~ ( A )  (in the NS model X ~ . ~ + ~ ( A )  = 
x ~ + ~  - x a ) .  Function E k ,  k 2 1, is expressed in terms of functions Pa which are solutions 
of non-linear integral equations 

xexp( K ( t ,  s ) P y ( s )  ds) - 1 .  

The solution of (6.6) can be proved to exist and to be unique. 
Let us now make some comments on how the representation (6.3) is obtained. All 

the dependence on spectral parameters {A ”} in (5.12) enters the ratio of the determinants 
and functions EN-k.  The thermodynamical limit of the determinants’ ratio gives the 
weight w ( A )  (6.4). Summing over the partitions { A } N  = {A u { h ” } N - k  results in 
integration over spectral parameters The limit at N+co of function EN-k is 
obtained as follows. First one takes the limit not of the function itself but of the 
equation for this function, obtaining the following system of equations in variational 
derivatives: 

a E k ( { @ a } ,  {xa - l , a }*  {A+}, { A - } ) / a x y , y + l ( A )  = - ( 1 / 2 r )  

f ( A : ,  A )  
x E k ( { e a } ,  {&-,,a}, {A+}, {A-}>+exp(@y) n fl 

a*? A; f ( A ,  A:) 

The normalisation (5.10) means that 

E k ( { e a } ,  (01, {A+}, {A-}=  1. (6.8) 

Function E k  (6.5) and (6.6) is easily seen to be the solution of (6.7) and (6.8). 
The many-point correlation functions of operators $ ( x ) ,  $ + ( x )  and Po(x,  y )  are 

thus obtained. The non-local operator pe(X, y )  (4.3) can be interpreted as a ‘disorder’ 
operator [13]. From the point of view of the Bose gas model, however, the local 
current operator j ( x )  = t ) ’ (x)$(x)  seems to be more natural. This can be obtained by 
differentiating p e ( x ,  y )  at 6 = 0. For example, the following expression is valid for the 
three-current correlator: 

(6.9) 
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7. Two-field correlator 

In this section the two-field correlator is considered in more detail. Operators $(x)$(y) 
and $'(x)++(y) do not conserve the number of particles and the corresponding 
correlators are equal to zero. The correlator $'(x)$(y) depends on x - y  only due to 
the translation invariance, so one can put y=O.  Using the results of the previous 
section, one has this correlator: 

xexp[ - ix (y  j = 1  A:- j =  f: I A ; ) + x ~ '  -4  Pn(t,{A+},{A-})dt]. (7.2) 

Function P,( t )  here is the solution of the following non-linear integral equation: 

(7.3) 

Functions s&({A+}, {A-}, {A'}) are Fourier coefficients of the irreducible part of 
the two-field form factor. As explained in 9 4 (see (4.12)), this form factor is expressed 
in terms of one-field form factors described in § 3 
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So one obtains for the first three terms of the series (7.1) 

This expansion is quite similar from the formal point of view to the corresponding 
expansion for the two-current correlator obtained in [ 51. However, the essential 
difference is in the properties at the strong coupling limit ( c  + CO). Only the first two 
terms of the series similar to (7.6) for the current correlator survive at c + CO. For the 
field correlator all the terms of the expansion (7.6) remain finite at C = C O .  Let us 
demonstrate that it is indeed the case and write down the series at this limit. One has 
that w ( A ) + l ,  Pn( t )+ - l / r  and thus the field correlator at c=03 is 

Here I k ( { A } )  can be obtained from the corresponding form factor at c + a3 as 

(7.10) 

The sum is taken over partitions { h C } k  = {AF~},, U { h ; b } K - , ,  and { A ~ } ~  = { A F ~ } ~ - ~  U 

The expression for the correlator at c + CO is thus obtained, and differs from the 
well known formulae of [14,15]. Let us now explain the relation of (7.9) to the results 
of those papers. 

It was shown in [16] that at C + C O  the field correlator in the Bose gas can be 
obtained by means of the Jordan-Wiegner transform. To do this one must use the 
following representation of the Bose field +(x)  in terms of the auxiliary Fermi field 
4(x) :  

+(x)=exP(iT jxm 4+(Y)4(Y) dY)4(Y). (7.11) 

{ A f b }  K - n + 1. 

The physical vacuum (ground state) In) is now defined by the relations 

(7.12) 



4816 A G Izergin, V E Korepin and N Yu Reshetikhin 

(7.14) 

The Lenard formula is obtained from this expression as follows. One does the ordering 
of the exponential with respect to the bare vacuum (putting all the operators 4+ to 
the left of operators 4)  

Here No is the normal ordering symbol. Putting (7.15) into (7.14) and using (7.13) 
one obtains 

where 

6 ( x )  = exp(- iAx)4(A)(dA/2~).  Ir , 
We next introduce the notation 

{@:(XI, 4-(0)) = 

X(x)  = x-' sin qx 

exp(-iAx)(dA/2rr) = X(x)/rr  

X(x, y )  = X ( x  - y ) ,  

(7.17) 

(7.18) 

D(x) = ka0 Ok k! Ix 0 (h j = ]  dyj)dk(x, ( y } ) .  (7.20) 

To obtain the representation (7) one takes the integrals over y, and uses (7.18) for a 
function X ( x ,  y ) .  The terms containing X ( y , ,  yl) in (7.20) must be considered separ- 
ately, the summing up of these resulting in the exponential factor. Let us show how 
the first term of the series (7.7) is obtained from (7.20). To do this one extracts the 
term X(x, O)%(yl, y , )  . . . X(yk ,  y k )  from all the functions dk(x, { Y } ~ ) .  Summing up 
over k and integrating over y,  ( i  = 1, .  . . , k )  results in 

(7.21) ~ ( " ( x )  = exp( -2qx/ T ) X (  x, 0) 

which is just the first term at the right-hand side of (7.7). 
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The extraction of the exponential factor is physically quite understandable and can 
be done directly in the expression (7.14). One represents the field 4 as 

(7.22) 

(the operator &(x)  is defined in (7.17)). The normal ordering of an operator with 
respect to the physical vacuum In) means that all the operators 4; are put to the left 
of 4, and all the operators 4- are put to the left of 4'. This normal ordering is to 
be done by means of the following commutation relations: 

{&(XI, 4 ' ( y ) } =  w x ,  Y)l.rr 
{++(XI, 4 : ( Y ) }  = 6(x - Y )  - X(x, y) l . r r .  

{4*(x) ,  43Y)l = 0 
(7.23) 

Equation (7.15) can be rewritten as 

where N+ means the normal ordering of fields c$+ and fi- is the antinormal ordering 
of fields r , - .  I t  is now easy to see that the extraction of terms containing X ( y , ,  y , )  in 
(7.20) (which are combined to give the exponential factor) is equivalent to the normal 
ordering of the current in (7.24) 

Expanding the exponential (7.25) in the formula (7.14) and going to the Fourier 
transforms of operators 4 ( x )  one comes to the expansion (6.7). 

Appendix 1 

Functions Zn({A}, , , {p} , , )  were introduced and studied in detail in [ll]. Here the 
definition of these functions is given as well as the recursive relations permitting the 
calculation of any of them. 

Function Z,,({A}n, {p} , , )  is equal to the partition function of a model on a square 
n x n lattice. The states k = 1 , 2  are related to the links of the lattice. The Boltzmann 
weight at a site is determined by the states at the links adjacent to the site. If the 
horizontal links with states k, ,  k4 and the vertical links with states k2, k3 enter the site 
located at the ith row and the kth column of the lattice then the Boltzmann weight 
prescribed to the site is 

k l k 2 W i 3 k 4 =  k , k l R ( A i ,  P j ) k , k ,  

where the matrix R(A,  p )  is defined in (1.4) 

IIR(A,CL)l l=*2R(h,pL22=f(CL,~)  

12R(A, CL)12=21R(A, C L ) 2 1 =  1 

21R(A, F)12 = 12R(Ar P)2I = ACL, A ) .  
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Boundary conditions for Zn are defined so that ki = 1 for all the links going from the 
upper side and from the left side of the lattice and k, = 2 for all the links going from 
the lower side and from the right side. The definition of Zn is thus given. 

At A n  -$ p,, the partition function Z,, is reduced to Z n - l  according to the rule 

( A l . l )  

(the terms regular at An + p,, are not included here). It is not difficult to establish that 
Z,,({A}”,  {p},,) = O( l/Aj)(O(l/pk)) if AJ +CO ( p k  +CO) and all the other variables are 
fixed. So extracting all the singularities 

one comes to the conclusion that the function P,, is a polynomial in  each variable Ai 
or p k .  This permits one to recover Pn from P,,-l by means of ( A l . l )  using the Lagrange 
interpolation formula. 

Appendix 2 

Equations (3.4) and (3.5) result in the following relations for the polynomials PN: 
N 

~ N ( { A ~ } N - I ,  {AB}~)lA:=~:=ic ( A E + i c )  n (Ayl+ic) 
J - 2  

Let us show that pN is a polynomial of degree N - 2  in any of A:, A:. The equivalent 
statement is that the function F N ( { A C } N - ,  , { A B } N )  decreases as (A:)-’ at A:+cc (and 
other variables fixed) and as at ,+:+CO. The form factor SN is a symmetric 
function of A:; consider its dependence on A:. Using the commutation relations (1.3) 
one obtains after some algebra the explicit dependence of 9N on A: as follows: 

Due to the Bethe equations (1.12) functions r ( A f l )  and r ( A F )  are expressed in terms 
of A:, A:; this results in 

(A2.3) 
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Now the asymptotical behaviour is quite evident. The asymptotics in A: is 
established in a similar way. 

So P, is a polynomial of degree N - 2 in each A. Returning to (A2.1) one concludes 
that this formula permits the determination of the values of 9, (considered as a 
polynomial in A:) at ( N  - 1 )  points A: ( j  = 1 , .  . . , N - 1 )  provided that P,+, is known. 
This implies that the polynomial 9, can be restored by means of the Lagrange formula. 
Thus the rule of the recursive calculation of P, is given. 

Appendix 3 

Using (4.10) and (4.11) one arrives at the following expression for 9,: 

n 43 .P+l (A ,B)  n S(A,Bt A;) 
A; 

.9,= c c 
( A ~ } = u ~ = ~ { A , B I  ( A ‘  )=u~=,,{A:) - < P  

A 

x fl n l a , a + I ( ~ B C )  n f ( ~ ; ,  A:) n e x p ( ~ , K , , + , )  
A $  A :  L1 =o  

x 0 n a=a,a+l(A:)cpaa(xa)  n ~ a , a + l ( ~ : )  0 . (A3.1) ( / A $  I )  
Below we give the main points of two different proofs of the formula (4.12). 

The first proof is based on the analysis of singularities of the right-hand sides of 
(4.12) and (A3.1). The structure of the singularities and the asymptotical behaviour 
prove to be the same. The most important are the first-order poles at A: + A f .  As 
A: + A ? ,  one has for (A3.1) (other possibilities are easily restored due to the symmetry 
in A: and in A;) that 

Now the Bethe equations (1.12) must be taken into account. Putting those into the form 

(A3.3) 

one expresses the functional variable lA .A+l (A , )  in terms of other variables la ,L1+l(  A]), 
a # A .  .F can therefore be considered as independent of lA ,A+l .  I t  makes possible 
arbitrary independent variations of spectral parameters A:, A k” supposing that they 
nevertheless satisfy the Bethe equations and variables l m , a + l ( A , )  ( a  = 1,. . . , A - 1) are 

A f ( A , ,  A k )  

k fi f ( Ak 9 A,) 
n 6 , a + 1 ( 5 )  = n 
L1 = O  
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Here 

To prove (4.12) one first establishes that the singularities of the right-hand side 
calculated by means of (4.13)-(4.15) are in agreement with (A3.4). Then the proof is 
quite similar to the one for the current form factor given in [4]. 

The second way to establish the validity of (4.12) uses the direct resummation over 
subpartitions in (A3.1). The proof is given below in the important particular case 
A+ = A- = 1, A. = 0 (the general case is considered similarly). The proof is made in 
three steps. 

(i) Using the formula (1.10) for scalar products one has from (A3.4): 

9= 1 li*(A2B)f(h2B, A ? ) l o i ( A ; ) f ( A ! ,  A:) 
P a n B  paflc  

X h i  ( A  F ) f ( A  C 3 A F ) f ( A  f 9 A E ) 11 I ( A  ," If(A:, A ?  loi ( A Y  

x f( A F, A F lo I ( A  t )f( A t', A f )f( A t , A )Z ({  A f B  L {A F' 1 1 

x Z({A,DC}, { A O " " } ) l l * ( A ; * ) f ( A ; ' ( ' ,  A f C ) f ( A f B ,  A Y )  

X Z ( { A  f " } ,  {A;*C})Z({A?C}, (A3.5) 

The sum here is taken over partitions part,, partc 

{ A ~ }  = {A:,} U { h , D B }  U {A?,} U ( ~ 7 ~ )  U {A:} 

{ A ~ } = { A ~ ~ } U { A ~ ~ } U { A ; * ~ ) U { A ~ ~ } U { A ~ }  

where card{A:} = card{Af} = 1. All the product signs here are omitted (which products 
must be taken is clear from (A3.1) and (1.10)). The notations 

{ A t } = { A ~ B } u { A t C }  { A ~ } = { A ~ B } u { A ~ B }  

are used. 
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(ii) Further, one expresses l I2  in terms of lol by means of the Bethe equations (1.12). 
(iii) The following partition of A', A C  is made: 

{A F} = {,itC} U {A FC} U {A E }  {A;} = { A ~ ~ } u  {A?') 

{ A 3 = { A 3 u { A , D C }  { h F , } = { A ~ ' } u { A f E } u { A ~ }  

card{ A F} = card{ A E} = card{ A F }  + 1 

=card{A:,}+l. (A3.6) 

Now one makes the resummation in (A3.5) according to the partition (A3.6) obtaining 
formula (4.12) for A+ = A- = 1 ,  An = 0 

(A3.7) 

Appendix 4 

Let us show that formula (4.8) permits us to obtain the coordinate representation of 
the Bethe eigenvectors. To be more concrete, consider the case of the X X X  Heisenberg 
magnetic chain with A - 1 sites; the spin operator in the a t h  site is S,. The correspond- 
ing parameters of the generalised model are 

I p , p + l ( A )  = ( A  +iSp)/(A -isp). (A4.1) 

Operators B,,,,,(A) in this model are proportional to the spin creation operators at 
the site (Y 

B,,u+l(A) = ( A  -iS-)-'S:. (A4.2) 

Denote n ,  = card{A"} in (4.8). Putting (A4.1) and (A4.2) into (4.8) one obtains 

N A "= n B(Aj)IO)= n n (Ay-iSm)-'la(Ay) 
J = l  { A  ) =Ut=,{ A } LI =o J = I  

A "- " 
x I5 n n lj f ( A ; , m  I5 (S,)"+). (A4.3) 

For the homogeneous chain with spin S one can rewrite this formula as a sum over 
permutations: 

u = O p = n + l  j = I  k = l  U =o 

N N N 

(A4.4) 

Here nj is the number of equal aJ. As (Si)' = 0 at S = f one has ai < a* < , . . < a N  in 
(A4.4), so in this case the well known formula ofthe coordinate Bethe ansatz is restored. 
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