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Abstract. The behaviour of an isolated dislocation in a Rayleigh-Benard roll structure is 
studied within a linear elasticity theory of topological defects on a model which includes 
the effect of a large-scale drift flow. The climb velocity is given as a function of the Prandtl 
number, Rayleigh number and wavenumber for both rigid and stress-free boundary condi- 
tions. The effect of a lateral boundary is also briefly discussed. 

1. Introduction 

Convection in a horizontal layer heated from below provides the simplest example for 
pattern evolution of non-equilibrium systems. A spatially uniform conducting state 
becomes unstable at the threshold of a spatially periodic roll structure. However, both 
convection experiments (Croquette and Pocheau 1984) and numerical simulations 
(Greenside et a1 1982, Greenside and Coughran 1984) performed with large-aspect-ratio 
systems usually show that the structure which develops above the threshold has a 
texture composed of domains of rolls interspersed with defects such as dislocations, 
disclinations and grain boundaries. The dynamics of these textured structures is closely 
connected to that of defects. Several attempts (Siggia and Zippelius 1981a, Newell 
1982, Pomeau et al 1983, Manneville and Pomeau 1983, Dubois-Violette et al 1983, 
Cross and Newell 1984, Brand and Kawasaki 1984, Kawasaki 1984b,c) have been 
made recently to develop a theory which can deal with such complicated patterns with 
topological defects and their dynamics. It now seems that this branch of fluid dynamics 
is becoming increasingly like a branch of solid state or condensed matter physics 
requiring the reader to have some familiarity with this field (e.g. Nabarro 1967). 

On the other hand, Siggia and Zippelius (1981b, Zippelius and Siggia 1982, 1983) 
noticed the peculiar roles played by a slowly varying drift flow that is generated by 
the vertical vorticity. It has been argued since then that the drift-flow effect significantly 
changes the conclusions obtained previously about the wavenumber selection criterion 
and stability properties (Cross 1983, Manneville and Piquemal 1983, Busse and Bolton 
1984, Bolton and Busse 1985). 

To provide a further insight into the large-scale-flow effect, we consider in this 
work the dynamics of an isolated dislocation$ in the presence of the vertical vorticity. 

t Present address: Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, 
USA. 
$ Throughout the paper we consider only the edge-type dislocation with the associated phase jump + 2 r .  
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As analysing the full hydrodynamic equations remains well beyond the capacity of 
our computing power, we, as others (Cross and Newell 1984, Greenside and Cross 
1985), elect to concentrate on suitable model systems which reproduce all of the 
qualitative features predicted by the Oberbeck-Boussinesq equations and which also 
allow the calculation of dynamics, including defects, with greater ease. It is hoped 
that the details of the dynamics poorly approximated in such model equations are not 
crucial in understanding the slow pattern evolution of convective systems involving 
defects. A model which includes the effect of the drift flow will be presented in the 
next section, where the defect-phase dynamics (Brand and Kawasaki 1984, Kawasaki 
1984b, c) proposed recently by one of the present authors is extended to take this effect 
into account. The defect-phase dynamics is a method that describes combined dynamics 
of slow deformations of roll pattern (phase) and topological defects in this pattern. 
The analysis is made simpler if one realises that there exist regions where the basic 
equations of motion for a defect can be approximated in such a way as to be derivable 
from a potential even in the presence of the mean-drift flow. In this connection, it 
should be mentioned that Cross and Newell (1984) have explicitly demonstrated that 
there are cases where the (non-linear) phase dynamic equation can have potential even 
when the original full equations have none. To capture the effect more explicitly, we 
analyse the amplitude equations associated with our model in order to calculate the 
climb velocity of the dislocation motion. The climb here is defined as the motion of 
a dislocation along the direction of rolls. We compare the case of convection between 
free-slip (stress-free) boundaries (0 3)  with the one between no-slip (rigid) boundaries 
( §  4). As might be expected, the difference between the boundary conditions leads to 
relatively distinctive behaviour of climbing near zig-zag instabilities in the two cases. 
The last section is devoted to several remarks in view of other theoretical and experi- 
mental findings. Effects of a lateral boundary on the force acting on a dislocation are 
also considered (appendix 2). 

2. General considerations 

We shall work with the equation of motion which is the Swift-Hohenberg model (Swift 
and Hohenberg 1977) for the local amplitude $ of the vertical velocity component, 
supplemented with the z-independent (or vertically averaged) horizontal component 
of drift flow B. Our model equation reads 

where V = (ax, a y )  and Ha is the Swift-Hohenberg functional? 

The parameter E characterises the fluid properties: E = ( R  - RJ/ R,  with the Rayleigh 
number R, having critical value R, ,  and the constants to and T~ set the length and 

t As a matter of fact the original Swift-Hohenberg model has a real order parameter. In this sense this is 
more closely related to the model studied by Cross and Newell (1984). However, in the main part of this 
paper we work with the amplitude equation for the roll structure containing a complex amplitude (e.g. 
Zippelius and Siggia 1983) which is derived from the hydrodynamic equations for Rayleigh-BCnard 
convection. 
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time scales of the periodic roll structures with wavelengths close to 27r/ qo, respectively. 
These constants as well as naturally appear when equation (2.1) is derived from the 
original hydrodynamic equations and they depend on the boundary conditions on the 
top and bottom surfaces which we assume to be perfect conductors throughout this 
work. The actual values of these constants are evaluated in the literature (e.g. Newel1 
and Whitehead 1969, Cross 1980). The presence of the slowly varying drift velocity 
field generates the z-independent component of vertical vorticity U ,  = ( V  x B ) ,  which 
is governed by the equation (Manneville 1983a) 

(a ,  - (TA")w~ = (1/2qZ)i- [ V g *  x VV2+ + CC], (2.3) 

where (T is the Prandtl number, i the unit vertical vector opposite to the direction of 
gravity and cc denotes the complex conjugate. The operator A" distinguishes the two 
boundary conditions and is identified as 

( a  = O )  for rigid boundaries 
( a  = 1 )  

AQ = { ystant (2.4) for free-slip boundaries. 

Our model is slightly different from that of Manneville (1983a), who derived (2.3) 
starting from the well known Oberbeck-Boussinesq equations by a procedure similar 
to the derivation of amplitude equations (Cross 1980). As will be shown later, our 
model (2.1)-(2.4) reduces to the Siggia-Zippelius amplitude equations (Siggia and 
Zippelius 1981b, Zippelius and Siggia 1982, 1983). 

Most simply, a phase-only approximation may be employed by substituting g( r, t )  = 
a, exp i[q * rf 4(r ,  t ) ] ,  r = (x, y )  in the above set of equations, where a. is the eikonal 
value of the amplitude and 4 represents a deformation field due to the presence of 
defects; note that the wavevector q refers to the roll structures without defects and 
may, in general, be different from the critical one, qo.  Furthermore, here we use an 
analogue of the linear elasticity theory of topological defects (Kawasaki 1984~).  Then 
we have 

where Eo is the differential operator which appears by linearising -(2a;7,)-'6HO/ 84 
in the phase gradients due to defects. When we consider the slow steady defect motion, 
an adiabatic approximation for the drift E can be utilised to yield a linearised phase 
equation 

al#l = - ~ 4 ,  E E 0 + c Y ' a ~ ( A " ) - ' V  .V. (2.6) 

Thus, apart from the fact that 4 can be singular in the presence of the defect, the 
phase dynamics possesses a potential, H, within the framework of the present approxi- 
mation; a,4 = -(2a;)-'SH/6~#~t. Therefore, the formalism developed by Kawasaki 
(1984~) can be transcribed to describe the defect-phase dynamics of our model as 
follows. 

Consider the steady dislocation motion with velocity uo. For slow motion we take 

(2.7) 

where 4 = 4(  r - R( t ) )  is the phase around the moving defect at R( t )  with uo = R. Then 

d , 4  = -0 ,  * v#l 

t The parameter 7o has been absorbed into H to render the phase equation of the same form as in Kawasaki 
(19844. 
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we obtain the defect equation of motion (Kawasaki 1984~):  

where 9' is the bare friction tensor and 
9' - R = XI(R) 274(  R)  x 2, (2.8) 

(2.9) 

the subscript 0 referring to the stationary state. In (2.8) X, is the local force acting on 
the defect and is a generalisation of the Peach-Koehler force. As was shown by 
Kawasaki (1984~)  and is discussed in appendix 1, for slow or steady defect motions, 
X, consists of two parts: 

x, = x, + Xf,. (2.10a) 

The static force X, is given by 
X, = -dH/dR, (2.10b) 

in which the phase variable is taken to follow adiabatically the defect motion, while 
the frictional force Xf, arises from the deviation of 4 from its adiabatic value due to 
the defect motion. The latter takes the form 

x,, = -9*( uo) * U0 (2.10c) 

(2.11) 

(2.12) 

with a new tensor parameter ka* which renormalises the bare friction tensor: 

Here the operator I? is defined by 
9 * ( u o )  = -8.rr2a;(2x I ? ) ( i x  k)(E - U, . V ) - ' ( E  + U, . V ) - ' S ( r -  R)l,=R. 

E = E. V = v .  k. 
A related expression for the friction tensor has been found by Dubois-Violette et 

a1 (1983). The equation of motion is thus given by 
[go+ 9*( U,)] * U, = x, * (2.13) 

As expected, the same friction tensor 9* also enters the energy dissipation rate, @ 
(see appendix 1) 

@ =  O O . [ k a 0 + 9 * ( U , ) ] '  U,. (2.14) 
The defect equation of motion (2.13) is then also expressed in the form of the 

conservation law of energy (Siggia and Zippelius 1981a, Kawasaki 1984a); the rate 
of decrease of potential is equal to the energy dissipation rate: 

- v O *  d H / d R = @ ,  (2.15) 
which enables one to evaluate the defect velocity vo.  

The arbitrariness in G discussed in Kawasaki (1984~) will not matter here since 
the original Swift-Hohenberg model without drift flow has a potential and the drift 
flow merely convects the phase field, i.e. it does not produce an extra force on the 
defect core centre. 

The general ideas sketched above will be pursued in the subsequent sections to 
calculate the climb velocity of an isolated dislocation near the convective threshold. 

3. Climb motion for free-slip boundaries 

In order to implement the analysis, we shall study our model in the limit of small 
positive E for a laterally unbound system with the rolls parallel to the y axis. Then, 
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introducing the scaled coordinates (Newel1 and Whitehead 1969, Segel 1969) as 

x = E”2X, Y = E1/4yr _ T =  E t  (3.1) 
and also the complex envelope function A that describes the slow modulation of the 
basic pattern through 

cL(x, Y, t )  = 4 x 3  Y ,  t )  exp(iqox), ~ ( x ,  y,  t )  = PA(I/~)(X,  I: _ ~ ) + 0 ( & 3 / 4 ) ,  (3.2) 

with w,(x,  y ,  t )  = ~ ” ~ w ~ ” ~ ’ ( 8 ,  j’, T )  + O ( E ~ / ~ ) ,  we obtain from (2.1) and (2.3) the ampli- 
tude equations at the first non-trivial order in E. For the stress-free boundary condition, 
they read 

ro d,A = [ E  - .$(a$ + i2q0 dx)2]A - 2iq;lA/’A - iqoroBxA, 

( 8 ,  - a V 2 ) w ,  = 2d,{A*[dx +(l/ i2q0) d:]A+cc}, (3.3) 

ayw, = -V2Bx, 

where 5, = (50/2q0)1’2. When the parameters are specified as (Newel1 and Whitehead 
1969) 

2 ( 1 + a )  
7 0  = - (3.4) 

8 6; = - 1 q;=- 7T2 

2 ’  3T2’ 3 7T2a 
i = 7 ,  37r 

with the units K = d = 1 ( K  is the thermal diffusivity and d the layer depth), the above 
equations (3.3) are nothing other than the amplitude equations derived by Siggia and 
Zippelius (1981b, Zippelius and Siggia 1982, 1983). It is convenient to rewrite (3.3) 
in terms of the scaled variables: 

( E  6o)x + x, (E””5JY + Y ,  ( E / T O ) f + T  

A/AO+ A, Bx/Bo+ Bx, % / W O +  4, 
(3.5) 

where Ao= ( ~ / 2 i q i ) ” ~ ,  Bo= E/qOrO and wo= E ~ ’ ~ / ~ ~ T ~ ~ ~ .  Then (3.3) becomes 

a,A=A+(a, -id$)2A-IA12A-iBxA, ( 3 . 6 ~ )  

Y a T W ,  = (a$+ &&)w, +gdy[A*(dx -id:)A+cc], (3.6b) 

dyw,  = -(a$+ Sdi)Bx,  

with? 

( 3 . 6 ~ )  

In the presence of a dislocation, we set 

A = A,[1+ u ( X ,  Y ,  T ) ]  exp[iq5(X, Y ,  T)] (3.8) 
with the static solution 

Q=t50/El’2)(q-qo). (3.9) A, = (1 - Q2)’/2 eiOX 

At this stage, we follow Siggia and Zippelius (1981b, Zippelius and Siggia 1982, 1983) 
and introduce the following approximations$: (i)  linearisation in U, B, and gradients 

t The parameter g should not be confused with the acceleration of gravity. 
As Siggia and Zippelius (1981a) themselves pointed out, this linearisation approximation breaks down in 

the region Y 2 s  41x1 where the distortion field becomes significant around the dislocation at X = Y = 0. 
See also the last comment in § 5 .  
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of 4 which describe perturbations due to a dislocation, (ii) adiabatic approximation 
for U and o, in the long-wavelength limit. One then finds 

d Tf$ = (1-3Q2 a’, + 2 Qa: - a.,> 4 - B, , 
1 - Q2 

(a:+ 8d%)2Bx = a$[2g( 1 - Q2)d$-2gQd’,]r$, 
( 3 . 1 0 ~ )  

or, equivalently, 

aT4 = {oll(Q)a’,+D,(Q)a:-a4v-(d:+ sa’,)-’a$[2g(i - ~ ’ ) d $ - 2 g ~ d ’ , ] M  (3.10b) 

where 

o l l ( Q ) ~ ( 1 - 3 Q 2 ) / ( 1 - Q 2 ) ,  D,(Q) = 2 0 .  (3.11) 

This linearised (non-local) phase equation (3.10) involves the following instabilities 
(Siggia and Zippelius 1981b, Zippelius and Siggia 1982, 1983). 

(i) Eckhaus instability for Q2 3 f. 
(ii) Zig-zag instability for Q < 0, 2g d Q2/( 1 - Q’). 
(iii) Skewed-varicose instability for Q 3 0. 

Hence one should take note of the non-existence of the (positive) transverse diffusion 
coefficient in the stability domain of the roll pattern. It is also worth remarking that 
retention of the coupling of B, to U (represented by the term -2gQd’,4 in.(3.10)) is 
essential to cause the skewed-varicose instability. 

It is enlightening to rewrite (3.10b) further by the use of the rescaled variables 

(3.12) 

It gives 

with 

(3.13) 

(3.14) 

Although the vd: term is indispensable for inducing the skewed-varicose instability, 
we may neglect this term at high Prandtl numbers as long as we limit ourselves to the 
climb motion in the stability domain which lies far away from the skewed-varicose 
instability line (cross-hatched region in figure l ( a ) ) .  We can also drop the A’(<< 1) 
term to obtain 

(3.15) 

where 4 = 4 ( ~ ,  y - vo_t), and the phase variable is made single-valued by adding a 
source term whe;e O(x) is the unit step function, as is often done (Siggia and Zippelius 

a!+ = (d: -a$-a4, - .  - p ) d  - 2 d ( ~ ) e ( y  - v0_t), 
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1981a).’ The parameter p represents the effect of the generation of the vertical vorticity 
and, at the same time, the degree of proximity to the zig-zag instability which occurs 
at p = a. Since the phase equation now possesses the potential?, the climb velocity uo 
is easily found from (2.13) or (2.15) as in Siggia and Zippelius (1981a) to be given by 
the equation 

2 2 1 / 2  1/2=1* {-p2 + p 4 +  p + [(-p2+ P4+ C L ) * +  uop  1 I 
dP J2u ,  J‘: (3.16) 

The resulting uo as a function of p is plotted in figure l (b) .  Note that the velocity in 
physical units (with K = d = 1) is given by 

U = ( 2 3 / 2 5 y / 7 0 ) & 3 ’ 4 1 Q / 3 / 2 v g .  (3.17) 

It is not entirely meaningless to extend, in figure l (b) ,  the curve to the left of the axis 
of ordinates; since the zig-zag instability takes a long time to develop when one is just 
slightly on the unstable side of the zig-zag instability line, it is still possible (Pocheau 
and Croquette 1984, Croquette and Pocheau 1984) to observe the steady dislocation 
motion. In particular, in the p + 0 limit (absence of mean-drift flow), the climb velocity 
remains finite 

uo=  sin fr)]-’  =0.1098 (3.18) 

where K is the complete elliptic integral of the first kind. 
It is of great interest to test our theoretical results experimentally since the free-slip 

boundary condition is also experimentally realisable (Goldstein and Graham 1969). 

4. Rigid boundaries 

In the case of the no-slip boundary condition, one finds that the vertical vorticity now 
obeys the following amplitude equation: 

(a, - C U ) ~ ,  = 2dy{A*[d, + ( l / i2qo)d~]A+cc},  (4.1) 

with a constant c which may depend on U in general and is as yet undetermined. 
Scaling as before (see (3.5)), we obtain (3.6a), ( 3 . 6 ~ )  and, instead of (3.6b), the 
following equation 

(4.2) 

with, of course, the appropriate parameters for rigid boundaries. In considering slow 
steady dislocation motion, the first term on the left-hand side of (4.2) can be dropped$. 

t It reads 

H = t  d? dy[J, 4 +(a, 412 - (J, 4 l2+(J ;  4 ) 2 + ~ 4 2 1 ,  

where the restriction 
t This is justified for U E * / ~ / ( ~ C <  cu where U is the dislocation climb velocity. This U is evaluated below and 
is found to behave as €’I4, see (4.13). Thus the condition for this adiabatic approximation is well borne out. 

dx d y 4  = 0 is to be understood to preserve the gauge invariance. 
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Thus, we consider the amplitude equations of the following form 

a r A = A + ( d x  -id:)’A-IAI’A-iB,A, (4.3a) 

(&+S&)B, = -C,J&~*(aX -i&)A+cc], (4.3b) 

where 

C1 3 -U-’To/Cg”qo[o. (4.4) 

With the following choice of the parameters (Cross 1980): 

40 = 3.11 7 ,  = 0.148, T~ = (0.5117+ (+) /19 .65~,  
(4.5) 

g“ = 0.6995 - 0.00476’  + 0 . 0 0 8 3 ~ - ~ ,  

one restores the amplitude equations introduced first by Siggia and Zippelius (1981b, 
Zippelius and Siggia 1982, 1983). It should be stressed, however, that (4.36) is not 
systematic in any small parameter, and other non-linearities are present to the same 
order in E which have not been retained. Nonetheless we adhere to this ansatz, 
originally due to Siggia and Zippelius (1981b, Zippelius and Siggia 1982, 1983), and 
expect the ansatz to capture the main effects of vertical vorticity. 

We now proceed with the same approximations as in the free-slip case and we find 
the linearised equation 

a d  ={[(I -3Q2) / (1  - Q2)l&+2QJ2,-a4,)4 

-(a$+ 682,)-’a2,[2g’(l- Q2)a2,-2g’Qa’X]c$, (4.6) 
- 

where g’ = -c,JE. The non-local term arises from the generation of the vertical vorticity. 
Note that this term is already of O ( E ” ~ ) .  Together with this fact, recall that the 
parameter S should be retained to give rise to either the Eckhaus or skewed-varicose 
instabilities (Siggia and Zippelius 1981b, Zippelius and Siggia 1982, 1983). However, 
at moderate Prandtl numbers these two instabilities (as well as the cross-roll instability 
(Busse and Whitehead 1971)) can be neglected near the convective threshold. There- 
fore, so long as we are restricted to a moderate Prandtl number regime, we only have 
to be concerned with the zig-zag and knot instabilities (Busse and Clever 1979, in 
particular their figure l ) ,  the latter being associated with disturbances of large wavenum- 
bers, which cannot be described by our phase dynamics. Thus we may set 6 = 0, and 
we assume in the following that the stability domain of our interest near the zig-zag 
instability remains unaffected by the knot instability. The phase equation is then greatly 
simplified as 

a T 4  = + di( Q)a?’ -J“,c$ (4.7) 

where ell and d, are the longitudinal and transverse diffusion coefficients defined by 

Since the zig-zag instability occurs for 6, < 0, we take hereafter d, > 0. 

That is, making use of the rescaled variables 
The calculation of the climb velocity is almost the same as in the free-slip case. 

x = (d,/JGW, y = J Z Y ,  _ t = d ? T  (4.9) 
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(4.7) reduces to 

with 4 = +($, y - u o j ) .  Therefore, uo satisfies the equation 

a,4 = ( d ~ + a ~ - a : ) + - 2 7 r S ’ ( x ) B ( y - u o _ t )  - -  (4.10) 

(4.1 1) 

which yields 

Thus, the climb velocity is given in physical units (with K = d = 1) by? 

uo = 2-’14[ K(sin Q7r)I-l = 0.1684. (4.12) 

( 4 . 1 3 ~ )  3/4 - 3/2 
u = ( 5 , / T o ) E  D, U0 

(4.13 b) 

where in going to (4,136) from ( 4 . 1 3 ~ )  we have used the scaling factors (4.5), and 
p E 2&u0, fi(+ c1/24050. (4.14) 

It follows as a consequence of (4.13) that the zero-velocity criterion is d, = 0, i.e. it 
falls upon the zig-zag instability line. If the as yet undetermined parameter c (and 
hence c,) is specified as 

0.1659 + 2 3 . 0 3 9 5 8  + 6.1961F2 
f i ( a ) + N ( a ) =  

10.7580-0.0726~-’ +0.1281C2 
(4.15) 

so as to make our transverse diffusion coefficient d, coincide with that of Manneville 
and Piquemal (1983), we obtain from (4.13b) 

V = p  (4.16) 

The dislocation velocity of this form was conjectured by Pocheau and Croquette 
(1984) where p was experimentally determined to be 0.78. The reason for the dis- 
crepancy with our theoretical value 0.4762 is not well understood at this moment and 
may well signal an inadequacy of the linear elasticity treatment of the phase equation 
for dislocation. Note that in this treatment the only effect of the drift flow is to modify 
the diffusion coefficients and hence the value of p should remain unaffected. It is thus 
interesting that the value /3 = 0.84 found by numerical simulation of the amplitude 
equation without the drift flow (Siggia and Zippelius 1981a) is close to the experimental 
value as noted by Pocheau and Croquette (1984). 

Another interesting point to notice in the experimental observations of Croquette 
and Pocheau (Pocheau and Croquette 1984, Croquette and Pocheau 1984) is the fact 
that the climb motion slows down near the sidewall (perpendicular to rolls). Such 
behaviour can be understood as being caused by the repelling force on the dislocation 
exerted by the rigid sidewall. The detailed study of this force, however, will be presented 
in appendix 2. There we show that the condition that rolls are perpendicular to the 
lateral boundary is responsible for the repulsion. 

t In contrast with the free-slip case where the transverse diffusion coefficient is rendered non-existent, for 
rigid boundaries the presence of vertical vorticity just renormalises the bare diffusion coefficients as (4.8). 
Thus, the result of Siggia and Zippelius (1981a), who neglected the drift flow induced by the vertical vorticity, 
can simply be carried over in this case with their diffusion coefficients replaced by the renormalised ones 
(4.8). Note, however, that their equations (3.10) and (3.11a) should be corrected; their parameters a and 
p correspond to our U: and p, respectively. 
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5. Concluding remarks 

We have demonstrated how the presence of the slow drift flow generated by the vertical 
vorticity affects the dislocation motion. Indeed our results demonstrate significant 
modifications of the original theoretical prediction of Siggia and Zippelius (1981a) by 
the drift flow. 

It might be pointed out that our analyses in this paper are greatly facilitated by 
our restriction to the cases with potentials. In particular, in the free-slip boundary 
case where the stability of the roll pattern itself is found in a small fraction of the 
stability diagram (Busse and Bolton 1984, Bolton and Busse 1985), the domain of 
validity of our approximate calculation is rather limited. Nonetheless, we expect that 
the result presented in 0 3 can be meaningfully compared with experiments. 

Since our prediction (4.16) for the dislocation climb for rigid boundaries seems to 
have been well verified by the experiment of Croquette and Pocheau (Pocheau and 
Croquette 1984, Croquette and Pocheau 1984), we comment on the free-slip case by 
comparison with the numerical simulations of the Boussinesq equations performed by 
Siggia and Zippelius (1981a). Firstly, in their results one can clearly see the E depen- 
dence of the climb velocity, which differs from their result of analytic calculations 
based on the amplitude equation without the effect of the drift flow, but in accord 
with our result, figure l (b ) .  Secondly, their simulation data were for 0 2 0 ,  where 
existing theories (Siggia and Zippelius 1981b, Zippelius and Siggia 1982, 1983, Busse 
and Bolton 1984, Bolton and Busse 1985) predict the loss of stability of the roll patterns. 
At the same time, our analysis in § 3 is not expected to be valid for 0 - 0  where the 
proximity to the skewed-varicose instability should be taken into account. With these 
reservations, both the Prandtl number dependence and the order of magnitude of the 
climbing velocity obtained by the simulation (table I1 of Siggia and Zippelius 1981a) 
are in qualitative agreement with our result. It is of prime importance for the approach 
presented here to examine the neglected non-linearities in deformations as well as to 
explore a possibility of extending the results to situations that cannot be described by 

Figure 1. ( a )  Typical stability diagram for our model at high Prandtl numbers as a function 
of the Prandtl number D and Q = (to/ ~ " ' ) ( 9  - qO) for the free-slip boundary condition. 
zz and sv stand for the zig-tag and skewed-varicose instabilities respectively. The stable 
roll pattern falls between the two curves. The arrows indicate two representative paths of 
increasing the parameter p. ( b )  Dimensionless climb velocity uo as a function of the 
parameter p U-'/ QZ. 



Dislocation motion and vertical vorticity 1397 

a potential. Lastly, in the simulation two blobs of vertical vorticity of opposite sign 
were observed near the dislocation core. Although the experiment (with the cylindrical 
container) of Croquette et al (1983) failed to see these blobs, it might well be that the 
amplitude variations (such as an amplitude overshoot as suggested by Manneville 
(Croquette et a1 1983)) are involved in its generation. In that case, the rapid spatial 
(and possibly temporal) variations of the amplitude around the core region should be 
considered, a description of which is beyond the scope of our present approach. 

It has been suggested by several workers (Toner and Nelson 1981, Guazzelli et a1 
1983, Dubois-Violette et a1 1983) that there should be a close analogy between the 
thermoconvective motion of roll structures and the dynamics of the layered smectic A 
liquid crystals. In fact, a slight modification of our model (2.1) and (2.3) can give the 
equations of motion for the smectic A liquid crystals. They read, in appropriate units, 

(5.1) at+ = -A ,  SHOIS4 - B .  V+, 

a , ( V x B ) + V x ( t * B ) = - V + x V  SHo/S+, V . B = O  (5.2) 
with the smectic elastic energy Ho. Here + represents the phase of the one-dimensional 
mass-density wave along the x direction (perpendicular to the layers). Equation (5.1) 
describes the permeation process characterised by the parameter A,. Equation (5.2) 
for the velocity field B now involves the viscosity tensor (Martin er a1 1972) r) via the 
differential tensor operator s* as 

If we take the y axis to point along the layering, the diagonal tensor operator s* has 
components 

1 

( 5 .  B)i VjTijklVkBI. (5.3) 

Equations (5.1) and (5.2) are the simple generalisation of the constitutive equations 
proposed by Dubois-Violette et a1 (1983). Work on the smectic A phase has so far 
been conducted with the conventional linearised description. However, recent theoreti- 
cal studies (Mazenko eta1 1982,1983) of (5.1) and (5.2), and experiments (Bhattacharya 
and Ketterson 1982, Marcerou et al 1984, Galloni and Martinoty 1985, Baumann et 
a1 1985) as well, reveal that certain non-linearities demanded by rotational invariance 
cause the breakdown of the conventional treatment. In this connection, it will be 
fruitful to pursue the question of whether, in the convection problem too, non-linear 
terms in hydrodynamic modes (Newel1 1982, Manneville 1983b, Cross and Newell 
1984, Kuramoto 1984, Brand 1984, Greenside and Cross 1985) and/or the Euclidean 
invariance exert such profound effects on the picture presented in this paper. 
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Appendix 1 

In this appendix, the frictional force X,, will be calculated for steady defect motion. 
For that purpose, a single-valued phase variable is used, so that we introduce a line 
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of phase jump l ( r )  = 0, v( r )  > 0, emerging from r = R (or 5 = 77 = 0) or otherwise 
arbitrary (Brand and Kawasaki 1984, Kawasaki 1984b, c). 

The phase equation (2.6) with (2.7) can be solved readily to give 
+ ( r )  = ~ T ( E  - uo - v) - 'B-  e(T)ve(i)+ 4 ' ( r )  (Al . l )  

with 4' satisfying ( E  - u o - V ) 4 ' = 0 .  The differential operator is defined by (2.12) 
and 6(x) is the unit step function. Equivalently we can take 

m ( r ) = ~ 4 ( r ) = 2 . r r ~ ( ~  -uo . v ) - l k .  e ( v ) ~ e ( 5 ) - 2 a e ( v ) ~ e ( 5 ) + ~ 4 ' ,  (A1.2) 
since m should have a singularity only at r =  R. The function 4' can be ignored 
hereafter because it gives rise to the static force. Then 

m = 2 . n ( ~ - u ~  . v ) - l [ v ( $ - u o ) - i  ~ v ( 6 - u o ) + ~ u 0 1  - e ( T ) v e ( i )  

= 2T( E - u0 . v)-'[; x (12 - uo)S( r  - R )  + v (  e( 7) uo - v e ( [ ) ) ]  (A1.3) 

where 1 is the unit tensor, and we have used the following identities (Kawasaki 1984~) :  
for any two-component vectors B, and B2 

B'BZ-(B' . B , ) l =  - ( i x B 2 ) ( i x B 1 ) ,  ( A l . 4 ~ )  
and 

( i x V ) .  e ( v ) V e ( 5 ) =  - J ( r - R ) .  (Al.46) 
Here we make use of the arbitrariness of the direction of the line 5 = 0  to choose 
uo V e ( 5 )  = 0. Thus we obtain 

(A1.5) m ( r )  = 2 T i x  (e - u , ) ( E  - uo v ) - ' a ( r - R ) .  
Now we calculate the frictional force Xfr, which is (Kawasaki 1984c) 

Xfr = 2TWfr x i (A1.6a) 
with 

wfr = 2a iK - ufr, 
where the tensor operator K is defined by 

It is easy to prove the following property for any differential operator &V): 

Since k ( V )  = - k ( - V ) ,  E(V)  = E(-V) and K(V) = K(-V), we then find that 

m(R)=-2~i~(e+u,)(E+u~.V)-'~(r-~)j~=~ 

ufr  3 m ( R - m ( R 1 vo=o 9 (A1.66) 

1 

E = - V  t K =  - K .  V. (A1.7) 

Cj(V)8(r-R)I,=R= & - v ) a ( r - R ) I r = R .  (A1.8) 

= - ~ ~ ~ x ~ v x ~ u ~ x ~ ~ ~ ~ E - ~ ~ ~ v ~ ~ ~ ~ E + ~ ~ ~ v ~ ~ ~ ~ ~ ~ - R ~ ~ , ~ ,  
=2.rrvuO. (~X~)(E-U~.V)-~(E+Y,.V)-~S(~-R)I~=~. (Al.9) 

Note that m ( R )  has no part independent of uo. Therefore, we immediately find that 

wfr=-4rraikuo. ( i x B ) ( ~ - u ,  . ~ ) - ' ( ~ + u , . v ) - ' a ( r - ~ ) I , = . ,  (A1.lO) 
to obtain the result ( 2 . 1 0 ~ )  with the expression (2.11). 

Alternatively, we can start with (2.19) of Kawasaki (1984~)  which we write as 

Xfr = d r  A( r)V * 6(r ) ,  ( A l . l l )  

where 6 is defined by (2.9). Here, however, A must be taken to be V 4  of the moving 
defect, i.e. m. Then it follows, with the help of (A1.8) and V * 6 = 2aid,4 = -2aiuo - m, 

I XI = Xs + Xfr, 



Dislocation motion and vertical vorticity 1399 

that 

X,, = -2ai d r  m( r)uo - m( r )  I 
= 87r2ai[ix (e+ u o ) ] ( E  + uo * V)- ' [ ix  (e - uol] ( E  - uo * V)-'6(r -R)/ ,=R * uo 

= 8 r 2 a i ( i x  i ) ( i x  i ) ( E +  u o .  V ) - ' ( E  - uo - V)- '6(r-R)lr=R * uo (Al.12) 

leading to the result (2.11). Equation (A1.12) with ( 2 . 1 0 ~ )  also gives the expression 

9 * ( u o )  = 2 a $  drm(r )m(r ) .  (A1.13) I 
The energy dissipation rate @ is now obtained as 

(Al .  14) 

which consists of dissipations occurring at the defect core and in the surrounding 
phase field. Use of the phase equation S H / S +  = 2aia14 yields 

@=XI. u o - 2 a ~ u 0 .  drm( r )m( r )  * uo. (A1.15) I 
This leads to (2.14) with the use of (2.8) and (A1.13). 

Appendix 2 

This appendix is devoted to considering how the presence of a rigid sidewall affects 
the strength of the local force on the dislocation. 

The static distortion of the phase field due to a single dislocation a distance y0/2 
away from the rigid surface (y = 0) in the negative y direction is determined by the 
following boundary-value pro_bleF (see (4.7); throughout this appendix we write 
Dli(D,) and x ( y )  in place of Dll(D,) and X (  Y ) ) :  

(A2.la) ( o,,a: + D, a: - d4,) 4 ( r )  = 2 7 r s ~ ~ ~  a'( X )  e(y +;yo) 

with the Neumann boundary conditiont (Cross 1982) 

ay4 = o  at y=O, (A2.1 b )  

where the parameter s specifies the sign of the phase jump 2 r  of the dislocation, and 
@(x) is the usual unit step function. The appropriate Green function for the bounded 
space (y S 0), GB(r, r'), is given in terms of the one for the unbounded space, G( r, r') ,  
as 

(A2.2) GB( r, r') = G( r - r') + G( r - r:), 

where r' = (x', y ' ) ,  r; = (x', -y') and G satisfies the equation 

G(  r - r') =- G( r, r') 

( Dll a; + D, d: - 8 ; )  G( r, r')  = -S( r - r' ) .  (A2.3) 

Therefore, the boundary-value problem (A2.1) can be solved by locating an image 
dislocation of the same type directly above the true dislocation situated at a distance 

t In the absence of boundary forcing, the phase 6 at the boundary is arbitrary up to a constant. 
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yo /2  above the boundary surface. The dislocation will then experience a force due to 
the image dislocation. Accordingly, we turn to the problem of obtaining an interaction 
force between two dislocations in the unbounded domain. 

Within the theory linearised in the extra phase gradient V $  due to dislocations, 
the phase distortion exerts on the dislocation (with its sign sl) at r the local force 
(Kawasaki 1984c) 

X(X, Y ) z - % ( ~ )  =2.rra~si[f(D,-a:)ay4(*)-~D,,a,d(r)I, (A2.4) 

where a. is the eikonal value of the amplitude and x^ (or E) is the unit vector along 
the x (or y )  axis. The phase distortion 4(x,  y )  at a point r when a dislocation with 
sign s2 is located at the origin can be obtained, once G ( r )  is known, as 

4(x9 Y )  = -2~~2Dl l  dy' a S ( x ,  Y -Y')  

sin p y  CO 

= s2 sgn x [ ;"+ lo dp- exp ( - ( x I p (  D, + p 2 ) 1 / 2  

P J D , ,  
where the term ~ / 2  in the square brackets arises from taking the upper limit of the 
integration over y' to infinity at the last step of the calculation and represents the phase 
jump associated with the dislocation. The well known expressions (Siggia and Zippelius 
1981a, Guazzelli et a1 1983) for the phase distortion field in the two limiting cases may 
be recovered by approximating the integral in (A2.5) as follows: 

for Di"y<< 1 (smectic regime (de Gennes 1972, Pershan 1974, Toner and Nelson 1981, 
Kaw asakit 1984c)) 

sin py  lom dp- P exp (-( 2) ' I 2  1x1~) = tan-' (( 2) '" i) 
for D:"y >> 1 (xy regime$). (A2.6b) 

However, in calculating the interaction force the approximation should be employed 
with circumspection since (A2.4) involves gradients of 4. In fact, except for the case 
D, = 0 where the replacement ( A 2 . 6 ~ )  becomes exact, the approximant (A2 .6~)  fails 
to reproduce the correct behaviour of the force in the smectic regime as given by 
(A2.12~)  below. 

Now the force acting on a dislocation at rl due to another at r2 is readily found, 
by inserting ( A 2 3  into (A2.4), to be 

t In equations (4.176) and (4.19) of this reference, ~ I X I - ' / ~  and Izi erflzl should be replaced by / C ' / ~ ~ X / - ' / ~  

and - IzI erfclzl, respectively. 
$ Note that this terminology implies an analogy to the superfluid with regard to the strain field, not to the 
force between vortices. (In (A2.4) higher spatial derivatives in x were dropped, which must be restored to 
recover an xy symmetry of the force.) 
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where r = rl - r2= (x, y), x = (D,/JDll)x, y JD,~, 
phase jumps of the two dislocations. In particular?, 

- - 

XX(0, Y )  = 0 

and 

1401 

and s1 and s2 are the signs of 

(A2.8) 

(A2.9) 

where it is understood that the limit S+O+ be taken after integration. Carrying out 
the integration and through a little calculation, we finally find (we take y 2 0  for 
convenience) 

X,(Y) = 2rrahs2JqD,S(y) (A2.10) 

with 

S ( z ) =  lo' dt  e-"(1- t2)1/2 

(A2.11) 

Here Z,,(z) and L , ( z )  are the modified Bessel function of the first kind and the modified 
Struve function, respectively. Both large- and small-distance behaviour of X ,  can be 
deduced from inspection of (A2.11) as 

(A2.12a) 

(A2.12b) 

In figure 2, the image force on the dislocation, X,(yo) with s,s2 = 1, or the function 
S(yo)  is illustrated as a function of its separation from the sidewall, y0/2. As expected, 
the force is repulsive, and the closer the dislocation lies to the sidewall, the stronger 
it is repelled by the wall. 

I I I I I 
0 I 2 3 4 5 

1 0 1 2  

Figure& Image force X,(yo)  on thedislocation at a distance y0/2 from the rigid sidewall; 
yo= J D , ~ ~ ,  S(yo)  = X , , ( y o ) / 2 ~ a ; J D , , D ,  with s,s2 = 1. 

f The integral in the expression for X, in (A2.7) is examined and is found to vanish smoothly at x = 0. 
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