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Abstract. A principle of uniform density of periodic orbits in the phase space of a 
Hamiltonian system with bound classical motion is proposed and used to obtain information 
about the semiclassical quantum eigenvalue spectrum. It supplies a more refined statistic 
than the ‘one state per Planck cell’ rule for the average semiclassical density of states, 
namely the limiting behaviour of a certain correlation function of the density of states. 
Unlike the average, this correlation shows markedly different behaviour for systems with 
integrable and ergodic classical motion. 

1. Introduction 

Through the rule that there is one quantum state per Planck cell in phase space, 
classical mechanics supplies an ‘average’ semiclassical density of states (n( E ) )  for a 
system with bound motion. The question addressed here is whether it can supply a 
more refined ‘average’ like the correlation function for the density of states ( n ( E ) n ( E  + 
A E ) ) .  We shall argue that, for the two extreme cases of integrable classical motion 
and ergodic classical motion, information can indeed be obtained on not quite this 
but a closely related correlated function. The results for the two are markedly different. 

The starting point is a remarkable connection established a decade or so ago by 
Gutzwiller (1967,1969,1970,1971) (with important subsequent contributions by Balian 
and Bloch (1970, 1971, 1972, 1974) and Berry and Tabor (1976, 1977a,b)) between 
the quantum enirgy spectrum of bound motion and those special trajectories which 
close and retrace themselves-periodic orbits. For fixed energy E the number of such 
orbits with period less than t increases rapidly with t and their paths fill the energy 
surface ever more densely. The connection is a semiclassical one, applying when 
Planck’s constant can be considered small, and supplies an infinite sum of oscillatory 
corrections to the average density of states (n( E ) ) ,  each one associated with a particular 
periodic orbit (or a particular family of them). The idea is that the oscillatory corrections 
ultimately generate the true spiky density of states with a 8 function at each energy 
level (figure 1). 

Formally this connection makes our original question redundant-classical 
mechanics supplies through periodic orbits complete information on the semiclassical 
density of states. The problem is that given a Hamiltonian there is in general no way 
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Figure 1. The average density of states (bold) with the first of an infinite set of oscillatory 
corrections (broken) whch yield, ultimately, the true density of states-a S function at 
each energy level. 

of enumerating its periodic orbits explicitly or systematically-they are deeply buried 
in its structure. So our question is really; can correlation information be extracted 
directly from the classical Hamiltonian without explicit knowledge of periodic orbits? 
To show that it can we will begin, in D 2 ,  with the periodic orbit sum and show that 
one feature (the behaviour near the origin) of a certain correlation function does not 
actually depend on the details of these orbits at all-only on whether they occur in 
families (integrable system) or are isolated (ergodic system). 

The principle that is proposed and used to derive the result on the correlation 
function is that for any Hamiltonian system, periodic orbits, counted with their natural 
weighting, are uniformly dense in phase space. This ‘principle of uniformity’ is 
formulated in § 3 using S function apparatus. The interpretation of the 6 function 
expressions for general systems is subtle. However for the two extremes of ergodic 
and integrable motion there is no difficulty and we restrict attention to these. 

2. Correlation function 

In this section we construct our correlation function and present the results on it. The 
principle by which they are justified is explained in the next section. The periodic 
orbit sum gives the semiclassical density of states 

; ( E )  = h-’  A j ( E )  exp(iajrr/2) exp(ih-’Sj(E)). fi+o periodic 
orbits] 

The middle line defines the usual classical density of states-one state per Planck cell, 
volume (27d1)~ ,  in 2N-dimensional phase space with Hamiltonian H ( q , p ) .  The last 
line specifies the periodic orbit sum. The sum is over individual periodic orbits in the 
case of ergodic systems and periodic tori in the integrable case. In both cases repetitions 
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(multiple traversals) of primitive orbits are counted as separate orbits, and the repetition 
number m runs throught all positive and negative integers m = i l ,  *2,. . . . The 
quantities A, S, a,  v are all classical (h  independent) and have the following meanings. 
A, is a real positive amplitude of the orbit j (Berry and Tabor 1977b, Gutzwiller 1971). 
S, is its action mj $ p  - dq where mj is its repetition number. Both AI and Sj depend 
on the energy E which parametrises the orbit. v is unity for isolated periodic orbits 
and $( N + I )  for periodic tori and finally aj is an integer connected with the Morse 
index of the orbit but we need not be specific because it will cancel out in our application. 

It may be noted that while each individual term in ; ( E )  vanishes in comparison 
.with ( n ( E ) )  as h +  0, periodic orbits are infinitely numerous-the sum is certainly not 
absolutely convergent. There are difficulties in applying the periodic orbit method to 
systems such as are described by KAM theory which are neither fully integrable nor 
fully ergodic. (It is not quite clear how to evaluate orbit amplitudes for the stable 
isolated periodic orbits which occur in such systems in contrast to the unstable ones 
of ergodic systems.) This is the reason for the present restriction to the two extremes. 

A well defined correlation function for the density of states can now be set up. It 
is not the most obvious form ( i ( E ) n " ( E  +AE)). Rather the correlation involves n" 
evaluated at two different values of the parameter h on which it depends implicitly. 
It is convenient to work with the reciprocal h-' and write explicitly n"(E; h-'). We 
define the average ( a )  as an average over all values of A - ' :  

(This procedure is reminiscent of that used by Balian and Bloch (1974) who take 
Fourier transforms with respect to h-I). Using the fact that n' is real we then obtain 
directly 

(n ' (E;  h - ' ) ; ( E ;  h-' +Ah-')/(h-')'(h-' +Ah-')") 

= c A,Ak exp(ir(aJ  - ak)/2)(exp(ih-'(S, - S , ) ) )  exp(iAh-'S,) 
J k  

=E A: exp(iAh-'S,). ( 5 )  
J 

The last equality follows because the average in (4) is, in the absence of strict degeneracy 
among orbit actions, the Kronecker delta 6,. In the case that there is strict degeneracy 
among some set of orbits (or tori), as might be forced by symmetry for example, then 
they should be counted as a single contribution in the sum (5) with Af replaced by 
the square of the sum of the amplitudes of degenerate orbits. 

In words then the correlation function ( 5 )  is the Fourier transform of the density 
of periodic orbit actions taken with weighting A: (figure 2 ) :  

;P 

( ) = 1 I A?S(S-  S,) exp(iAA-IS) dS. 
I --CO 

Complete knowledge of this weighted action density would, therefore, yield complete 
information on the correlation function. Unfortunately one has, a priori, no knowledge 
of either. We claim though that one feature of the weighted action density, its asymptotic 
form for large actions, is accessible directly from classical mechanics via a unqormity 
principle on the density of periodic orbits in phase space. This principle is justified 
in the next section. Our results are easily stated now. 
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Figure 2. As they get larger, the actions S, of periodic orbits j become more and more 
closely spaced, but their amplitudes A, decrease (as indicated by the heights of the S 
spikes). All repetitions of orbits (both positive and negative) count as separate orbits. The 
Fourier transform of the function shown is a correlation function of the semiclassical 
density of states. 

In both integrable and ergodic systems the periodic orbits become more numerous 
with increasing S, but the amplitudes decrease. For integrable systems these two effects 
compensate so that the weighted action density tends to a constant as S + 00, while 
for ergodic systems it goes like IS\. That is, with (Y and j3 constants to be supplied in 
(22) and (23): 

Integrable 

Ergodic 
c 

j with 
IS, I < I SI 

with the consequence, from the Fourier transform relationship (6), 

Integrable 

In the integrable case this result of zero correlation is consistent with the Poisson 
distribution predicted by Berry and Tabor (1976). In the ergodic case the negative 
result is consistent with level repulsion (given one level it is less than averagely likely 
to find another nearby). It should be noted however that although the results apply 
to Ah-' + 0, they are not describing structure on the scale of the level spacing, about 
which much is known from other arguments (Berry 1981). This is because the correla- 
tion function averages over all h-' and at high h-' the levels are closely spaced in h-' 
so that there are many in the interval Ah-'.  Indeed the ergodic result is reminiscent 
of that for the tail of the correlation function for the density of eigenvalues of a random 
matrix (Porter 1965, Dyson 1962) which is used with increasing confidence to model 
that of ergodic Hamiltonian systems (Pechukas 1984). 

3. Principle of uniformity 

(Note: a derivation of this principle in its simplest context-an area preserving map 
rather than the Hamiltonian flow required here-is given in appendix 2.) 

Consider a Hamiltonian function H ( r )  which defines a steady bounded flow in 
2N-dimensional phase space ( r  = q, p ) .  Let r, be the point to which ro moves in time 
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t. We may then define in phase space a function of r which is a 6-function of unit 
total integral on the invariant manifold swept out by r,, 

( 6 ( r - r f ) ) l =  lim If 6(r - r f )d t .  
T-+m 2 T  -7 

If r lies on the invariant manifold of r, it will ultimately be hit by rl and the integral 
in ( 1  1) is non-zero, otherwise it is zero. That the function has unit total integral over 
r easily follows by interchanging the order of integration. The bar though the integral 
sign indicates that, for a reason which arises later, we choose to exclude an aribitrarily 
small interval about t = 0 from the range of integration. 

In the two extreme cases of integrable and ergodic motion we can exhibit ( 1  1) 
explicitly: for almost all r, 

where Z(r), the N action functions, are convenient constants of the motion of the 
integrable system. The denominators of (12) and (13) are respectively d V/dE at r,, 
where V is the volume of phase space with energy less than E, and ( 2 ~ ) ~  (as is easily 
shown by changing to action angle variables). The content of (12) and (13) is that the 
time spent by the point r, in any part of the invariant manifold is, by Liouville's 
theorem proportional to the 'infinitesimal separation' of neighbouring 'planes' of the 
confining constants. 

As indicated, equations (12) and (13) apply for almost all r,-the excluded r, being 
those lying on the periodic orbits of the system. We will, however, wish to use (12) 
and ( 13) specifically for such points on periodic orbits, and it is not difficult to formulate 
a sense in which ( 12) and ( 13) hold for these points as well. It involves slight smearing over 
the initial position r, in ( 1  1). If E measures the degree of smearing, and 6, denotes the 
consequent modified integrand, then ( 1  1 )  should read 

(6(r-r , ) ) l=l im lim - S,(r-r , )dt  ~ - m 2 T  'f -T 
where the limit E += 0 is taken after T + CO. The principle of uniformity will rest on the 
assumption that these two limits may be interchanged. 

We now construct a function in phase space which picks out periodic orbits of 
period t irrespective of their energy. We might try 

or strictly lim 6, ( r, - r,) 
E - ,  

a(r0- rr) 

considered as a function of r, (remembering of course that r, depends on ro implicitly). 
This function certainly takes the value zero for points ro which do not return to 
themselves after time f, i.e. points not on the desired orbits, and the value infinity on 
them. All points on the same periodic orbit share the same period of course. But for 
this very reason the infinity is too strong. The integral of S(ro-rf)  over a little phase 
space volume containing a point for which r,= r, is given by Idet(dr,/dr,- 1)I-l which 
is infinite because the matrix drf/t3ro- 1 has less than full rank-a condition associated 
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with the continuum of points satisfying ro = r, locally. The rank loss is unity for the 
one-dimensional continuum of points of an isolated periodic orbit and N for a periodic 
torus. 

The difficulty is exactly rectified by replacing (14) by the following construction 
with finite integral evaluated in appendix 1 

(It is in the denominator here, where r in ( 1  1 )  is set equal to ro that the need to exclude 
r = O  from the range of integration arises.) The lost rank of the matrix (ar,/aro- 1) is 
balanced by the dimensionality of the 8-function in the denominator. Thus for an 
isolated orbit of an ergodic system the denominator contains, from (12) the one- 
dimensional 8-function 8(  H( ro) - H(r,))balancing the unit loss and leaving a (2N - 
1) -dimensional 8-function. For a periodic torus the denominator contains the N-fold 
8-function 8(Z(ro) - Z(rf)), which reduces (15) to an N-dimensional &function. The 
denominators are in themselves meaningless since they are infinite for all ro (not just 
periodic orbits of period t)-every phase space point of a bound Hamiltonian system 
lies on its own invariant manifold. The object ( 1  5) should strictly be considered as a 
complete entity. Indeed in the cases (integrable and ergodic) where ( 15) is to be used, 
the denominator exactly cancels part of the numerator. 

The proposed principle of uniformity can now be stated. The average density of 
periodic orbits in phase space as defined by the average of (15) over all possible return 
times t is unity: 

, r~ 

provided that the two limits are interchangeable. The proposal is that they almost 
always are so. Periodic orbits are almost always dense in phase space and (16) identifies 
that weighting of the orbits which renders their density uniform. There is a well known 
exception-the multidimensional harmonic oscillator with incommensurate frequencies 
which has no periodic orbits except straight lines through the origin. Evidently, there, 
the two limits are not interchangeable, but it is plausible that the slightest perturbation 
of this perfectly linear system restores the dense set of periodic orbits together with 
the relation (16). Obviously a proof of this conjecture would be desirable. In one 
special case only so far as we are aware has uniformity previously been proposed and 
proved-that of motion on a surface of constant negative curvature (Bowen 1971). 

To obtain the results required (7 ) ,  (8) some manipulation is now necessary. The first 
step is to examine only the periodic orbits of fixed energy that arise in (16). Fixing 
the energy E fixes the period of each orbit so that there is a discrete set of return times 
$. A function which is a weighted 8-function on each such time is easily constructed 
using (15) 

defining the 'intensity' weightings 4. (Both t, and I j  are functions of energy E.) It is 
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the time average of (17) which is to be used. This reads, using (16), 

I J  = 2 T / 6 ( H ( r o ) - E ) d r : " - 2  - d V  T 
jI,]<T T-+X IdEl  

and constitutes a sum rule for the intensities r j  of periodic orbits. It is worth emphasising 
that this, like the desired sum rule (7,8) is giving information about long orbits only-in 
fact any finite subset of orbits, e.g. short ones, can be ignored in the sum. To connect 
the two sum rules we must relate orbit intensities r j  to orbit amplitudes Aj, and time 
T to action S. The intensities are derived in appendix 1 and comparison with the 
amplitudes (Berry and Tabor 1977b, Gutzwiller 1971) yields 

lm/tlA2(2.rr)21d V/dEI for an isolated periodic orbit returning in I = i  time t after m repetitions. (19) 

J2.rr)"+'A2 for a periodic orbit in an N-torus family. (20) 

The required relation between T and S is easily derived. The ratio S / T  is the 
average, over all periodic orbits in the energy surface, of the time averaged rate of 
increase of action p * q  around each (e.g. for an integrable periodic orbit this latter 
average is I .  aH/dI  = I .  0) .  Since periodic orbits fill the energy surface uniformly, 
S /  T simply reduces to the average of p -  4 over the energy surface 

d V  - ' 
'= 1-1 1 ( p * q ) 6 ( H ( r ) - E ) d Z N r =  
T d E  

=l-l d V  -' j p . - B ( H ( r ) - E ) d  a r -  dV-'NV. 
d E  J P  2 N  - / d E  1 

With one final observation we can obtain the desired results. It concerns only the 
ergodic case and it is that the repetition number m in (19) can be taken as unity in 
the sum. This is because the periodic orbits in an ergodic system proliferate exponen- 
tially (as is indeed verifiable from the present analysis) and in consequence almost all 
long orbits are primitive (Iml= 1 ) .  Since these orbits determine the sum the replacement 
/ m /  = 1 is indeed justified. 

Substituting (19), (20) into (18) and using (21) we have, as claimed, 

S2  Ergodic. 
2 (dV/dEI2 

( 2 ~ ) '  N2V2 

21dV/dE12 
Integrable. 

(2  7r) + I  NV 

c I J =  
lSjl<S S+w 

(m N2V2 S2  Ergodic. 
2 (dV/dEI2 

v . -  

21dV/dE12 i (2 7r) + I  NV 

t 1, = 
lSjl<S S+w 

Integrable. 

It is worth noting that there is a well studied class of system, billiards (motion in a 
two-dimensional enclosure with hard walls), for which the ratio SldV/dEI/V has a 
simple interpretation, namely the period of the orbit. This follows from the constancy 
of the speed of the particle implying p - q  = 2E, constant. In fact billiards admit a much 
simplified derivation of the results which has been presented elsewhere (Hannay 1983). 

4. Summary 

A uniformity principle for the density of periodic orbits in phase space has given us 
information on a higher statistic than the average semiclassical density of states (one 
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state per Planck cell). The statistic is a certain correlation function involving the 
density of states evaluated not at two different energies but at two different values of 
Planck's constant. The complete behaviour of this correlation function would require 
intimate knowledge of the periodic orbits, but its behaviour at the origin is governed 
by coarser properties supplied by the uniformity principle and is markedly different for 
integrable and ergodic systems. 

Formally the dotnain of validity of the uniformity principle is the same as that of 
the Poincare' recurrence theorem (Amold 1978), so it includes all bound Hamiltonian 
systems but excludes dissipative dynamical systems. We restricted attention however 
to the two extreme cases of integrable and ergodic systems because in order to calculate 
the periodic orbit intensities I one needs an interpretation of the quantity ( 6 ( r -  r t ) ) r  
in the denominator of (15). This is not obvious in the intermediate case with its stable 
orbits and KAM structure. Correspondingly there is no rule for the calculation of the 
orbit amplitudes A in the Gutzwiller path sum in this case. It is, incidentally, the same 
denominator which prevents the use of the uniformity principle in dissipative systems, 
where its value falls to zero for typical r because r, asymptotically approaches an 
attracting set. The ratio ( 1  5 )  is therefore indeterminate. 
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Appendix 1 

For the cases of (i)  an isolated periodic orbit of an ergodic system and (ii) a torus of 
periodic orbits in an integrable system we shall evaluate the orbit (or torus) intensity 
I(11) 

(Al. l )  

where is a domain of phase space containing just one periodic orbit (or one periodic 
torus) of period t .  We shall at first consider the orbit to be primitive rather than a 
multiple traversal. The general case of an m-fold repetition can then be written down 
directly. 

(i) Isolated periodic orbit of an ergodic system 
In the neighbourhood of an arbitrary point of the orbit we introduce phase space 

coordinates H, T, Q, P as follows. H is the Hamiltonian function. Let it have the 
value E on the orbit concerned. T measures time along orbits-the plane H = E, T = 0 
is chosen to intersect the orbit transversely (but otherwise arbitrarily). This ensures 
that H and T are canonically conjugate, i.e. the Poisson brackets {H, T }  equals unity. 
P and Q are a complementary canonical pair of vectors: {Pi, Qj} = 6iJ for 1 s i, j s N - 1, 
and {Pi, H} = {Pi, T }  = { Qi, H }  = { Qi, T }  = 0. They are zero on the orbit, thus measuring 
deviation from it, but otherwise arbitrary. 
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From (12) then (A1.1) becomes, in obvious notation, 

- Hr) S ( T - T, ) S ( Q - Q,)  S (  P - P,) d H  d T d QN-' dPN-' .  
6 (H - Hr 1 

(A1.2) 

Now the last two 8-functions isolate the local family of periodic orbits in phase space. 
They do not merely select the orbit of period exactly t because both this orbit and its 
neighbouring periodic orbits have transverse coordinates Q, P which are, to first order, 
unchanged after time t. Only the one has exactly closed at time t, its neighbours have 
either not yet closed or are already retracing themselves. On the local family we have 

S ( T -  T,)=ldt /dEl- 'S(H-E),  (A1.3) 

which removes the d H  integral, and the d T integral trivially yields the period t because 
the argument of the integral is T independent. Thus (A1.2) reduces to 

I = l d V / d E l t  S ( Q - Q , ) S ( P - P , ) d N - ' Q d N - ' P  (A1.4) 

(A1.5) 

II 
= IdV/dElt/det(M-l)/-', 

where M is the 2( N - 1)  x 2( N - 1) matrix of unit determinant: 

(A1.6) 

(This matrix is actually the same as that describing the linear part of the induced map 
on the PoincarC surface of section H = E, T = 0.) 

Finally if the orbit is an mth repetition rather than a primitive orbit the d T  integral 
yields not the full period t but the primitive period t / m  so 

I = Id V/dEI I t /  ml Idet( M - I)[-', (A1.7) 

where M is the mth power of the primitive mapping matrix. 
(ii) Torus of periodic orbits 
Here it is convenient to use action angle variables Z, 8 = {II, . . . , IN, e, ,  . . . , O N } .  
From the appropriate form (13), (Al . l )  becomes directly 

I = l d t / d E 1 ( 2 ~ ) ~  [ ~ ( Z - Z , ) / S ( Z - Z r ) ] ~ ( 8 - 8 , )  dNZdNB (Al.8) 

= I d t / d E l ( 2 ~ ) ~ "  S ( 8 - 8 , )  dNZ (A1.9) 

(A1.lO) 

II 
I 

= / d t / d E l ( 2 ~ ) ~ ~  (det a( 8 - e,)/aII-l 

= Idt/dEl(2~)~~t-~ldet(aw/aZ)l-~ 

= / d t /dE  1 ( 2 ~ ) ' ~ ~ t - ~  ldet(a2H/aZ2)1-'. 

(A l . l l )  

(Al .  12) 

Here the first equality used the 8 independence of the integrand. The third equality 
used the relation 8 - 8, = or where o = aH/az is the frequency vector of the motion. 
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If the orbits are mth repetitions rather than primitive there is no change in the result 
(A1.12) provided that, as always, we mean by t the full period of the orbit rather than 
the primitive one ( t l m ) .  

Appendix 2 

To bring out the essence of the principle of uniformity we may consider briefly its 
application in its simplest context-an area preserving mapping of a domain of area 
A onto itself. We shall, moreover, restrict the discussion to the simplest case of this, 
where the map is an ergodic one. Consider accumulating successive iterates r,, of some 
arbitrary initial point r,. The ergodicity means that these iterates will eventually fill 
out the whole area uniformly. This may be expressed by the equation 

l N  1 
(6(r-r , ,))= lim - C 6(r-r,,)=-, 

N+m N A 
(A2.1) 

independent of r and r,. This is at least true in the sense of arbitrarily small (narrow) 
smearing of the point r,. That the constant is indeed 1 / A  is easily checked by 
integrating with respect to r over the whole area A. 

Now the principle of uniformity for this especially simple situation follows by 
taking r = r, in (A2.1) and examining what the resulting equation means: 

(6(ro- rn)) = 1/A a constant, independent of r,. (A2.2) 

The average is over all values of the iteration number n. Each contribution 6(ro- rn)  
is itself a set of 6 spikes in the domain (figure 3). There is a spike for every initial 
position ro which returns to itself after n iterations-the ‘periodic’ points of period n 
(or any factor of n ) ,  or equivalently the fixed points of the nth iterate of the map. 
Each 6 spike in 6(ro-r,,) evidently has its own weight-the derivative Jacobian 
Idet(ar,/dr,- 1)1 (which will generally be different, though periodic points which are 
iterates of one another are easily shown to have equal weights). So the direct assertion 
of (B.2) is that these spiked functions average out to uniformity. 

Figure 3. The function S(ro - r4) for a (hypothetical) area preserving map of a rectangle 
onto itself. The 8 spikes lie on periodic points of period 4 (least period 1 ,  2 or 4) and their 
heights indicate the orbit intensities (Jacobian derivatives). If all periods were plotted 
there would be a uniformly dense ‘grass’ of 6 spikes. 
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* 
,I 

Id1 . . . . . . . . . . .  
t ,  . . . . . . . . . .  #I 

. 

I . . . . . . . . . . ,  
. . . . . . . . . . . . .  
,I . . . . . . . . . . .  
#I . . . . . . . . . .  
I . . . . . . . . . . , ,  

( 8  . . . . . . . . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . .  

. 

, i  

,I 

,I 

,I . 

I C 1  . 
. 

. 

. . 
. . 

Ib l  

. . . 

. . . 

. 

Figure 4. Periodic points of period 2, 3,  4, 5, 6 of 
h o l d ’ s  ‘cat’ map x’ = 2x + y mod 1 ,  y’ = 

x + y  mod 1 .  Such linear maps exhibit uniformity 
precisely. 
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The analogue of the sum rule (18) is obtained by integrating (A2.2) with respect to 
r,. This yields a sum rule for the weights of periodic points 

(A2.3) 
paints of 

periods N 

This emphasises the important point that uniformity owes its truth to high-order 
periodic points. Because of the division by N, any finite subsection of periodic points, 
for example low-order ones, has zero net weight. Figure 4 for example shows the 
periodic points of a simple ergodic map-the linear map on the unit torus defined by 
x’ = 2x + y mod 1, y ‘  = x + y mod 1 (Arnold’s ‘cat’ map). The high-order periodic points 
do not ‘avoid’ low-order ones to achieve uniformity, they do so simply by being 
uniformly distributed themselves, and since in this case each order has equal net weight, 
they just overwhelm the low orders on average. 
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