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Abstract. We discuss the modifications needed to free the Einstein-Hilbert action of 
gravitation from all second derivatives of fields, and give explicitly the resulting action 
applicable to either metric or vierbein variables. Variation of this action leads to Einstein's 
equations without boundary conditions. It vanishes for flat space-time and contains one 
arbitrary real parameter. 

1. Introduction 

The addition of surface integrals to the gravitational action has been used extensively 
(Gibbons and Hawking 1977, DeWitt 1967, Regge and Teitelboim 1974a, b) to satisfy 
various criteria, This procedure is equivalent to adding a four-divergence to the 
gravitational Lagrangian density. It is well known (Lanczos 1949) that the resulting 
equations of motion remain unchanged, but less well known is the fact that, on 
variation, there is a remaining boundary term which must be argued away. 

We were led to this analysis of surface integrals and the gravitational action during 
our investigation of the canonical formalism for a purely vierbein (rather than metric) 
action. By purely vierbein we mean that the action cannot be written in terms of 
the metric tensor g,,, but only in terms of the vierbein fields La&. Such an action 
may not be invariant under local rotations of the vierbein fields La,, but can be 
made so by implementation of the constraints which act as generators of the local 
transformations. 

In 5 2 we discuss the variation of the gravitational Hilbert action in both the metric 
and vierbein cases and show that it yields not only Einstein's equations but also an 
integral over the boundary dM. This integral can be eliminated by imposing boundary 
conditions, or by adding to the action another surface integral whose variation precisely 
cancels it. We discuss the possible integrals and, in § 3, derive the most general 
additional integral which eliminates all second derivatives from the original action, 
The resulting action takes the value zero for flat space-time. 

At all stages we discuss both the metric and the vierbein cases, except when they 
are entirely equivalent, and restrict ourselves to pure gravity only. That is, we do not 
discuss the coupling of gravity to other matter fields, since this would not improve 
our knowledge of the problems we wish to discuss. Our results are indeed independent 
of any such couplings. 

The sign conventions used are those of Misner et a1 (1973) apart from K (equation 
(2.7)). Other technical data may be found in the appendix. 
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2. Variation of the action 

We will take as our starting point the action 

I ( g ) = j  J_48R(g)d4x 
M 

( 2 . 1 )  

treated as a (second-order) functional of the metric tensor gap. Under arbitrary 
variations of gap and its first and second derivatives, the change in I is 

with the Einstein tensor 

G ,U = R  ,” -1 2R(g)g,,. 

The second term in ( 2 . 2 )  can be written as an integral over the boundary aM as 

( 2 . 3 ~ )  

or more conveniently, as 

( 2 . 3 6 )  

Of course, if M is closed, i.e. aM is zero, this term vanishes. The vector n e  occurring 
in ( 2 . 3 ~ )  and ( 2 . 3 6 )  is the outward unit normal to aM, with n 2  = T l ,  and *3g is the 
determinant of the induced metric on aM, the upper signs where aM is space-like, 
and the lower signs where aM is time-like. In computing SI we have only allowed 
variations of g l l y  with Sg,,, = 0 on dM. This means that on aM, only the derivatives 
of g,, in the normal direction (i.e. normal derivatives) will vary. Thus 

S k , y , a )  = naS(g,,) 

2,” = gPY.hn I n  . 

with 
A 2  

At this point we note that in the equivalent formalism for vierbein fields La, the 
change in the action is 

whose second term can be written as 

- 2 J 7 g ( L a ”  - n a n ” / n 2 ) S ( L a , , , ) n a  d3x I,, 
which is equal to ( 2 . 3 ~ )  or ( 2 . 3 6 )  when the relations 

glAY = LllllL””, n a = Lavnv, 
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are used. Note that 

Ga, = La"G,, 

and that by J T g  we mean the determinant of La,, treated as a 4 x 4 matrix. 
In order for the stationarity of the action (2.1) under such variations to follow 

from Einstein's equations G,, = 0 only, regardless of the boundary term ( 2 . 3 ~ )  or 
(2.3b), one must insist on one of the following. 

(a) s ( J F g ) , , n "  = 0 on aM, as well as SgaP = 0 on aM. This condition would 
eliminate a large number of interesting solutions of Einstein's equations (e.g. 
Schwarzschild, Robertson-Walker) and is unnecessarily restrictive. 

(b) The space-time manifold M is closed, i.e. aM = 0. Then the surface integrals 
(2.3a, b ) ,  (2.5) are zero. 

(c) the addition to I of a surface integral to cancel this boundary term (2.3b) 
which will not affect the equations of motion. 

Our approach here is to determine the most general term that can be added to 
the action I that satisfies (c) and also eliminates second derivatives from I. This latter 
condition is necessary for example in the path integral formalism (Itzykson and Zuber 
1980, Gibbons et a1 1978) and also in canonical formalism, because of the problems 
with definitions of momenta for second-order actions (Ostragradski 1850, Ellis 1975)f. 
We wish to eliminate all second derivatives rather than simply those terms containing 
g,v,oo or La,,oo (in an obvious notation) because we wish to include boundaries aM 
(or parts of aM) more general than t = constant. We also wish as far as possible to 
treat space and time on the same footing. 

Gibbons and Hawking (1977) have shown that the addition to the gravitational 
action (2.1) of the surface integral I 

t Castellani er ai ( 1982) studied the first-order formalism for gravity using vierbein fields (orthonormal 
frames) as variables. First-order formalism means that the connections (either metric/afine or vierbein/spin) 
are varied independently of the fields. This leads to extra (second-class) constraints which relate the 
different components of connections and fields. When these constraints are eliminated by using Dirac 
rather than Poisson brackets, the remaining constraint algebra is the same as for second-order formalism 
(Nelson and Teitelboim 1978). The Hamiltonian, however, differs by terms quadratic in constraints. 
$This surface integral (2.6) was apparently first written down by York (1972) in his analysis of the ADM 
(Azowi t t ,  Deser and Misner 1962) decomposition of space-time. He wrote the gravitational Lagrangian 
2 - 4 g R  as 

where i,j = 1 , 2 , 3 ;  A ,  Y = 0, 1 , 2 , 3 ;  and U *  is the unit time-like normal to the space-like hypersurfaces which 
foliate the space-time; a*  is the acceleration u*,.u". The second term may be transformed to a boundary 
term in the action by the formula 

[JThgA*], ,  d4x = n 2 A * n A J ~ d 3 x  5, 1, 
where nh is the unit normal to the boundary 8.W. When the boundary consists of two closed space-like 
surfaces X I  and Z2 (12 to the future of Z,), n, = U ,  on &, and n, = -U* on X I .  Then this term in the action 
becomes 

- 2 J a M K v m d 3 x  

since a'u, = 0, and can be cancelled by the addition of (2.6). 
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will, on variation, cancel the boundary term (2.36). Here K is the trace (in the metric 
induced on M )  of the second fundamental form (or extrinsic curvature 1 of aM, defined: 

(2.7a) 
by 

with 

K = (g” ”  - n ”n ”In 2iK,, 

KFy = nW,,. = nK%” - rZyna. (2.7b) 

However, this is not the only possibility because there are other integrals, surface or 
volume, whose variation is equal to ( 2 . 3 b  ) when only normal derivatives are allowed 
to vary. The most obvious is the surface expansion term, defined by 

but this has the disadvantage that, even when written as a volume integral 

(2.9) 

its second derivatives (of gap)  do not cancel all those of the original action, although 
its second normal derivatives (i.e. gw,,apnanP) do, as can be seen by comparison with 
(2.2). The same is true for 2jJ, K d2,  which can be written as a volume integral 

[d’%(gK” -n” ‘n” /n2)gPPgl ly,a] ,P d 4 x I, 

(2.10) 

and whose second derivatives also do not cancel those in (2.2), but whose second 
normal derivatives do. In (2.9) and (2.10) the vector n“ is arbitrary inside M,  but as 
hitherto agrees with the normal on aM. 

3. Removal of second derivatives 

The standard method for removing second derivatives from an action is integration 
by parts. When we use the definition of the four-dimensional affine connection YEu 
as a function of gap and its first derivatives, obtained from the covariant conservation 
of gap, the gravitational action (2.1) can be written as 

where the first term in (3.1) is only quadratic in  first derivatives of gFu. The second 
term can be simplified to 

(gWAgnY - gwLYgOLh )],A d4x (3.2) 

+ Our definition of the second fundamental form agrees with that of Hawking and Ellis (1973) but differs 
from that of Misner ef a1 (1973) and also Arnowitt et a[  (1962) by a sign. Our definition ensures that, for 
example, for a two-sphere embedded in a Hat three-geometry, K is positive and equal to 2 / r .  
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or written as a surface integral? 

(3 .3)  

and we check that, if we again allow only normal derivatives of g,, to vary on aM, 
the variation of this term (3 .3)  is equal to (2 .36) .  

Similarly, in the vierbein case we write the action (2 .1)  

I i L )  = J-48 B,, ,B, '~L~"L~" -LaaLbF)  d4x 
M 

+ 2  ~ g L a , , , ( L a " n " - L a v n " )  d3x I,, ( 3 . 4 ~ )  

and note that the variation of its second term is also equal to (2 .36) .  This second 
term of (3 .4a) ,  when written as a four-volume divergence, is 

(3 .46 )  

The spin connection Bwob is defined as a function of the vierbein fields La, and their 
first derivatives by their covariant conservation 

Lay,, =La , , ,  - r z , L a a  +BuabLbw = 0 

and explicitly 

B u a b  = $LiLb"La"[L'v(Lca,p -Lcw,a) -Lca(Lcv,, -Lcw,v) +L',(Lca,v -Lcv,a)I* (3.5) 

It is important to note here that the two divergences (i.e. metric (3 .2)  or vierbein 
(3 .46 ) )  obtained by integration by parts are not equal. They differ by the volume 
integral of a divergence which contains no second derivatives. In fact, our four 
candidates, namely the metric term (3 .2) ,  the vierbein term (3 .46 ) ,  the expansion term 
(2 .8)  and the extrinsic curvature term (2 .6) ,  all differ by a surface integral of the form 

where q5 refers to either the metric tensor g," or the vierbein fields La,, and Vq5 means 
surface derivatives of 4 (i.e. within 8M) only. The addition of terms of the form of 
(3.6) to I will change the expressions for momenta in terms of fields and velocities 
since, when written as volume integrals, they do contain velocities (but not acceler- 
ations). At the same time the expressions for the potentials as functions of fields will 
also change, so that the combined effect is to leave the field equations (i.e. Einstein's 
equations) unchanged. 

f It is interesting to compare this expression with equation (1.2) of Regge and Teitelboim (1974a), which 
is the analogous integral over a two-surface with metric g. DeWitt (1967) obtained this term in the 
Lagrangian (itself being a three-dimensional surface integral) by insisting that, for asymptotically flat metrics, 
the Lagrangian coincides asymptotically with that of the linearised theory of gravity. Regge and Teitelboim 
obtained this extra term in the Hamiltonian rather than the Lagrangian by a completely different route. 
They insisted that, asymptotically, this term must be added to the canonical Hamiltonian in order that the 
resulting total Hamiltonian give the correct (Einstein) equations of motion. 
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We will consider the combined action 

which is the original action (2.1) less the metric divergence term (3.2) plus a further 
volume integral, whose most general form we wish to determine. In (3.7) again q5 
represents either the metric or vierbein fields, the two cases to be separately examined. 
It is interesting to note that the volume integral of any four-divergence can be added 
to (3.7) provided the corresponding surface integrand is zero. Now, clearly the function 
F has no second derivatives, as already indicated, since these have already been 
eliminated from the rest of the action, and we do not want to reintroduce them. The 
inclusion of second derivatives would permit further terms in the Lagrangian and 
hence in the action. For a discussion of the metric case see e.g. Rund and Lovelock 
(1972). Further, since the boundary term (2.36) has already been cancelled out by 
subtraction of the metric divergence term, we need that SF = 0 which in turn implies 
that 

aF/a4 = (aF/a(a&u,, (3.8) 

and thus does not contribute to the equations of motion (Einstein's equations) for 4. 
For the vierbein case, the most general function F that is quadratic+ in first 

derivatives is 

F ( L )  = J T g  L a ~ , ~ b p , u L c ~ L d Y L e P L ~ H a b c d e f  (3.9) 

where Habcdef  is simply a sum of products of Kronecker deltas. The equation of motion 

dF/aL,, = (aF/aL,,,,),, (3.10) 

restricts the form of Habcdef ,  as do the symmetries inherent in the expression (3.9) for 
F. The most general form consistent with these symmetries is 

Habcdef = ce (6 a d s  bf - "'8 bd ) + p [a be (6 "daft - 6 d c 6  a f )  + 6 ac (6"'s de - a b d a f e ) ]  

+ [,bC ( g d p  - " f )  + S"'(Sbf#d - Sf'S " ) I  + 6 [ p  (&'e - SfCSd')] 

(3.11) 

for constants CY, p, y and 6. Substitution into (3.10) leads easily to y = S = 0, a + 2p = 0. 
Therefore the function F can be written as 

In the metric case, a trivial calculation shows that there is no function quadratic 
in metric first derivatives which will also satisfy (3.8), i.e. in the metric case, the 
function F = 0. 

- Index contractions limit the function F to even order in first derivatives. We only consider the quadratic 
case, and suggest that this is not unreasonable since the original action I contains quadratic, but no quartic 
or higher terms. 
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4. Conclusion 

We have arrived at the action 

(4.1) 

which contains the arbitrary parameter a .  The case a = 0 corresponds to the metric 
action TT - I T  whereas the case Q = 1 corresponds to the analogous purely vierbein 
action BB -BB (cf equation (3.4a)). We insist that the action I ‘  (4.1) is the most 
general one that is free of second derivatives but which, on variation, produces 
Einstein’s equations without boundary conditions. It can be more succinctly written 
as 

I ’  = a JTg Bva,Bacb(La”Lba - LaaLbY) d4x I 
+ (1  - Q j JM 4% g,” (r”,r - r;”r L j  d4x (4.2) 

and we have found no restriction on the parameter a.  It is interesting to note that, 
since both the spin connection and the affine connection are zero for flat space-time, 
I’ is also then zero. 

The surface expansion term (2.8) and 2 j a M K  dX term (2.6), when added to the 
original action I (2.1), cannot be written in the form of (4.2), for any value of a ,  
because, as shown in § 2, neither one eliminates all the second derivatives from I .  
Further, both of these terms arise as surface integrals, and when expressed as volume 
integrals ((2.9) and (2.10) respectively), the integrands depend on an arbitrary vector 
n a  as well as the metric. The metric term (2.2) and the vierbein term (3.4b) do not 
have such ambiguity. 

We should point out that of our four candidates, to reiterate, the metric term 
(2.2), the vierbein term (3.46), the surface expansion term (2.8), and 2 JJMK dC (2.6), 
only 2 j J M K  dX is invariant under general coordinate transformations. Of course, if 
ah4 = 0 then all four terms vanish. When a = 0 the action (4.2) is not general coordinate 
invariant, whereas when a = 1 it is not invariant under local vierbein rotations. When 
a is neither 0 nor 1, this action has neither invariance. The addition of a non-invariant 
integral is similar to the addition to the Lagrangian of a gauge-fixing term (like, e.g., 
the term proportional to (a,A )’ in quantum electrodynamics), where here ‘gauge’ 
means coordinates. It is sometimes convenient to use specific coordinates even when 
the resulting theory will be coordinate invariant. However, the value of the action I ’  
depends on the coordinates used. 

Finally, if we define momenta conjugate to the vierbein fields La,, from (4.2), by 

SI‘/6La,,, = 7Tauu =a7jaG”+(1-a)7T’Q*” (4.3) 

UA (4.4) 
where here u A  is the unit normal to the (arbitrary) three-dimensional space-like 
foliations of space-time, then the customary vierbein rotation constraint is 

in an obvious notation, and let 
= 7 T w A  
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proportional to a, and not zero unless a is. This means that the action is not invariant 
under local four-dimensional vierbein rotations unless it is the purely metric action 
corresponding to a = 0. When a # 0, this invariance must be restored by the imposition 
of the new rotation constraints, which are 

j a b  = 7 T [ a / ~  L b l ,  +2a (J-", L [ ~ ' " ' L ~ J A ) , , ~ ~  = 0.  

The importance of vierbein rotation invariance and its full significance for canonical 
quantisation is currently under investigation. 
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Appendix 

Any four-vector fv can be decomposed into components parallel and normal to a 
given unit four-vector m a  as follows: 

fu = f m v  +fa(Sa ' ,  - m a m u / m z )  

where f = fmm " / m  In particular, for partial four-derivatives, we have 

f." = f m u  +f .a(8au -m"mv/m2)  

with f = f,,,m ' / m 2 .  
All Greek (coordinate) indices a, ,8 take the values 0: 1, 2, 3, as do the Latin 

(vierbein) indices. Greek indices are raised and lowered using the metric tensor g,, 
and its inverse g"", and Latin indices using S a b  (Euclidean) or v a b  (Minkowski). The 
calculations are done using a Euclidean metric but our conclusions are unaffected by 
a change in signature. 
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