You may also like

Generalised coherent states and group representations on Hilbert spaces of analytic functions

To cite this article: C C Gerry 1983 J. Phys. A: Math. Gen. 16 L1

View the article online for updates and enhancements.
View article online

Generalized coherent states of light interacting with a nonlinear medium, quantum superpositions and dissipative processes Filippo Giraldi

- Generalized coherent states and extrema positive operator valued measures Teiko Heinosaari and Juha-Pekka Pellonpää

Generalized Bargmann functions, their growth and von Neumann lattices A Vourdas, K A Penson, G H E Duchamp et al.

LETTER TO THE EDITOR

Generalised coherent states and group representations on Hilbert spaces of analytic functions

Christopher C Gerry
Division of Science and Mathematics, University of Minnesota, Morris, Minnesota 56267, USA

Received 20 October 1982

Abstract

Using the example for the group $\operatorname{SU}(1,1)$, we obtain the basis functions of a Hilbert space of analytic functions from the Perelomov definition of generalised coherent states. The Lie algebra in this space has the form of a Holstein-Primakoff representation appropriate for $\operatorname{SU}(1,1)$.

As pointed out by Bargmann (1970), representations of Lie groups can be constructed by realising the elements of the Lie algebra as bilinear products of the boson annihilation and creation operators a and a^{+}. With these boson operators represented by operators defined over a Hilbert space of entire analytic functions, the BargmannHilbert space \mathscr{H}_{B}, one can also construct group representations as Hilbert spaces of entire analytic functions. As is well known, the aforementioned Hilbert space \mathscr{H}_{B} is closely related to the coherent states associated with the canonical algebra of a and a^{+}operators and the eigenstates $|n\rangle$ of the number operator $N=a^{+} a$ (Schweber 1962).

On the other hand, generalised coherent states for an arbitrary Lie group have been considered by Perelomov (1972). One might expect that an alternative way of constructing a representation of a Lie group on a Hilbert space of analytic functions is to exploit the generalised coherent states in a fashion similar to the ordinary coherent states. In this letter we shall indicate how this is possible for the group $\operatorname{SU}(1,1) \sim$ $\mathrm{SO}(2,1) \sim \mathrm{Sp}(2)$. We show that in this Hilbert space of analytic functions, which we shall call Perelomov-Hilbert space \mathscr{H}_{P}, the $\mathrm{SU}(1,1)$ group generators have the form of a Holstein-Primakoff (1940) representation.

The $\mathrm{SU}(1,1)$ Lie algebra consists of the three elements $\left\{\boldsymbol{K}_{0}, K_{+}, K_{-}\right\}$which satisfy the commutation relations

$$
\begin{equation*}
\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm}, \quad\left[K_{-}, K_{+}\right]=2 K_{0} \tag{1}
\end{equation*}
$$

The Casimir invariant is

$$
\begin{equation*}
Q=K_{0}^{2}-\frac{1}{2}\left(K_{+} K_{-}+K_{-} K_{+}\right) \tag{2}
\end{equation*}
$$

whose eigenvalues we shall denote as $k(k-1)$. We consider here only the representation known as the positive discrete series $\mathscr{D}^{+}(k)$ for which the operator K_{0} is diagonal,

$$
\begin{equation*}
K_{0}|k, n\rangle=(k+n)|k, n\rangle, \tag{3}
\end{equation*}
$$

where $n=0,1,2, \ldots$ and $k>0$. The basis $\{|k, n\rangle\}$ is complete and satisfies the orthonormality condition $\langle k, m \mid k, n\rangle=\delta_{m n}$. The state $|k, n\rangle$ is generated from the
'ground state' $|k, 0\rangle$ through the relation

$$
\begin{equation*}
|k, n\rangle=[\Gamma(2 k) / n!\Gamma(n+2 k)]^{1 / 2}\left(K_{+}\right)^{n}|k, 0\rangle \tag{4}
\end{equation*}
$$

(Barut and Fronsdal 1965).
According to Perelomov (1972), coherent states for the $\mathscr{D}^{+}(k)$ representation are given by

$$
\begin{equation*}
|\xi, k\rangle=D(\alpha)|k, 0\rangle \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
D(\alpha) & =\exp \left(\alpha K_{+}-\alpha^{*} K_{-}\right) \tag{6}\\
& =\exp \left(\xi K_{+}\right) \exp \left(\beta K_{0}\right) \exp \left(\gamma K_{-}\right) \tag{7}
\end{align*}
$$

where $\alpha=-(\tau / 2) \mathrm{e}^{-\mathrm{i} \varphi}, \xi=-\tanh (\tau / 2) \mathrm{e}^{-\mathrm{i} \varphi}, \beta=\ln \left(1-|\xi|^{2}\right)$ and $\gamma=-\xi^{*}$. Expanding the exponential in (7) and using the expression of equation (4), we have from (5)

$$
\begin{equation*}
|\xi, k\rangle=\left(1-|\xi|^{2}\right)^{k} \sum_{n=0}^{\infty}\left(\frac{\Gamma(n+2 k)}{n!\Gamma(2 k)}\right)^{1 / 2} \xi^{n}|k, n\rangle . \tag{8}
\end{equation*}
$$

The reproducing kernel for these states is

$$
\begin{equation*}
K\left(\xi^{\prime}, \xi ; k\right)=\left\langle\xi^{\prime}, k \mid \xi, k\right\rangle=\left(1-\left|\xi^{\prime}\right|^{2}\right)^{k}\left(1-|\xi|^{2}\right)^{k}\left(1-\xi^{\prime *} \xi\right)^{-2 k} \tag{9}
\end{equation*}
$$

and unity is resolved as

$$
\begin{equation*}
I=\frac{2 k-1}{\pi} \int \frac{\mathrm{~d}^{2} \xi}{\left(1-|\xi|^{2}\right)^{2}}|\xi, k\rangle\langle\xi, k| . \tag{10}
\end{equation*}
$$

Now from equation (10) and the orthonormality of the states $\{|k, n\rangle\}$ we have

$$
\begin{equation*}
\delta_{m n}=\langle k, m| I|k, n\rangle=\frac{2 k-1}{\pi} \int \frac{\mathrm{~d}^{2} \xi}{\left(1-|\xi|^{2}\right)^{2}}\langle k, m \mid \xi, k\rangle\langle\xi, k \mid k, n\rangle . \tag{11}
\end{equation*}
$$

From equation (8) we have

$$
\begin{equation*}
\langle k, n \mid \xi, k\rangle=\left(1-|\xi|^{2}\right)^{k}[\Gamma(n+2 k) / n!\Gamma(2 k)]^{1 / 2} \xi^{n} . \tag{12}
\end{equation*}
$$

We define the functions $u_{n k}(\xi)=A_{n k} \xi^{n}$, where

$$
A_{n k}=[\Gamma(n+2 k) / n!\Gamma(2 k)]^{1 / 2}
$$

such that from equations (11) and (12) we have

$$
\begin{equation*}
\delta_{m n}=\int \mathrm{d} \mu_{k}(\xi) u_{n k}^{*}(\xi) u_{m k}(\xi) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \mu_{k}(\xi)=[(2 k-1) / \pi] \mathrm{d}^{2} \xi\left(1-|\xi|^{2}\right)^{2 k-2} . \tag{14}
\end{equation*}
$$

We shall take the functions $u_{n k}(\xi)$ as an orthonormal basis in the space \mathscr{H}_{P} with the measure of equation (14).

These functions $u_{n k}(\xi)$ provide a representation of $\mathrm{SU}(1,1)$ such that $\mathscr{H}_{\mathrm{P}} \sim \mathscr{D}^{+}(k)$. To see this we write the operator K_{0}, for a particular k, as

$$
\begin{equation*}
K_{0}^{(k)}=\xi \mathrm{d} / \mathrm{d} \xi+k \tag{15}
\end{equation*}
$$

such that

$$
\begin{equation*}
K_{0}^{(k)} u_{n k}(\xi)=(n+k) u_{n k}(\xi) \tag{16}
\end{equation*}
$$

Since $[\mathrm{d} / \mathrm{d} \xi, \xi]=1$, we have $\mathrm{d} / \mathrm{d} \xi \sim b, \xi \sim b^{+}$where b and b^{+}are boson operators defined in an auxiliary Fock space, \mathscr{F}_{n}. Thus we may write equation (15) in this space as

$$
\begin{equation*}
K_{0}^{(k)}=b^{+} b+k . \tag{17}
\end{equation*}
$$

The $\mathrm{SU}(1,1)$ Lie algebra may be completed in \mathscr{F}_{n} by writing

$$
\begin{align*}
& K_{+}^{(k)}=b^{+}\left(2 k+b^{+} b\right)^{1 / 2} \tag{18}\\
& K_{-}^{(k)}=\left(2 k+b^{+} b\right)^{1 / 2} b . \tag{19}
\end{align*}
$$

Equations (17)-(19) constitute the Holstein-Primakoff representation of $\operatorname{SU}(1,1)$. Based on the fact that $S U(1,1)$ for $k=\frac{1}{2}(l+N / 2)$ is a dynamical group for the N-dimensional isotropic harmonic oscillator, Mlodinow and Papanicolaou (1980) have used this Holstein-Primakoff representation to develop a large N expansion in quantum mechanics for a class of potentials of the form $V=\alpha r^{2}+\beta r^{2 \nu}$. Within a given l-sector, fairly accurate results are obtained for the ground states. (On the other hand, from the path integral in the $\mathrm{SU}(1,1)$ coherent state representation (Gerry 1982, Gerry and Silverman 1982) we have recently obtained the large N limit as a semiclassical limit (Gerry et al 1982). From this we obtain a phase integral quantisation rule which gives all the energy levels.)

More details will be presented elsewhere.

References

Bargmann V 1970 in Analytic Methods of Mathematical Physics ed R Gilbert and R Newton (New York: Gordon and Breach) p 27
Barut A O and Fronsdal C 1965 Proc. R. Soc. 287A 532
Gerry C C 1982 Phys. Lett. B to be published
Gerry C C and Silverman S 1982 J. Math. Phys. to be published (November)
Gerry C C, Togeas J B and Silverman S 1982 submitted for publication
Holstein T and Primakoff H 1940 Phys. Rev. 581098
Mlodinow L D and Papanicolaou N 1980 Ann. Phys. 128314
Perelomov A M 1972 Commun. Math. Phys. 26222
Schweber S S 1962 J. Math. Phys. 3831

