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Abstract. An arbitrarily chosen Lagrangian L for non-minimally coupled gravitational and 
electromagnetic fields will usually lead to higher-order field equations, in the sense that the 
functional derivatives of L with respect to the gravitational potential g,, and the elec- 
tromagnetic potential 4, will involve at least the third, instead of merely the second, 
derivatives of these quantities. By temporarily contemplating a five-dimensional formalism 
this paper uncovers an exceptional case in which one is led to second-order equations. The 
result obtained is in agreement with the conclusions reached by Horndeski by quite different 
means. 

1. Introduction 

Einstein's theory of gravitation is governed by a variational principle, the Lagrangian of 
which is, in the absence of a cosmological term, 

L = R + K M  (1.1) 

where R is the scalar curvature of a four-dimensional Riemann space V4 (here of 
signature -2), M is the matter Lagrangian and K is a constant. Moreover, by 
prescription M is to be such that the energy-momentum tensor Tk' which it implies 
coincides with that object which arises from the replacement of the Minkowski metric 
v k l  by the metric g k l  of V4 and of partial by covariant derivatives in the special 
relativistic energy-momentum tensor describing whatever stress-energy-momentum 
may be present. It is just this prescription which characterises what is usually known as 
the principle of minimal gravitational coupling. Theories have occasionally been 
considered in which this principle is abandoned and then M contains the Riemann 
tensor (and possibly its covariant derivatives) explicitly. This has been done, for 
instance by Goenner (1976). As a result of this work Ehrenpreis (1977) later examined 
the case of a non-minimally coupled electromagnetic field in great detail. Again, 
Prasanna (1971) suggested the addition of a term 

to the Einstein-Maxwell Lagrangian, where f i i  is the electromagnetic field tensor. 
It is precisely one particular aspect of the addition of non-minimally coupled 

electromagnetic source terms to the Einstein-Maxwell Lagrangian which I wish to 
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consider here from a formal point of view. It is this: the Einstein-Maxwell equations 
are of the second differential order in the sense that the functional derivatives of L with 
respect to gij on the one hand and the components q5k of the electromagnetic potential 
on the other all involve at most the second derivatives of these quantities. However, as 
soon as one interferes with the principle of minimal gravitational coupling the 
functional derivatives just referred to will usually involve the derivatives of at least the 
third order of the gi, and &, i.e. one arrives at higher-order differential equations. This 
is the case, for instance, in the context of (1.2). The question naturally arises whether it 
is possible to choose non-minimally coupled electromagnetic terms in L so that the 
resulting field equations are still of the second order. 

The answer to the question just posed is in the affirmative: if (1.1) is a minimally 
coupled Lagrangian-in which M is therefore an invariant of fkl-then one can add to L 
a certain further invariant I such that the resulting minimally coupled Lagrangian still 
generates second-order field equations. This result is known from the work of 
Horndeski (1976), who finds I explicitly in a somewhat different context and effectively 
demonstrates its uniqueness. However, the derivation of his result requires work of 
such length that the paper just quoted, long as it is, in fact gives only an outline of a proof 
of his main theorem. Here I therefore approach the problem of constructing I by a 
method, interesting in its own right, which rests upon the consideration of a quadratic 
invariant of the Riemann tensor whose functional derivative happens to vanish in a V4. 
A temporary excursion to a well known five-dimensional formalism leads directly to an 
explicit expression for I. Its functional derivatives with respect to q5k and to gkl are also 
obtained explicitly. Their correctness may be checked by making use of the two 
differential identities which they must satisfy. 

The procedure adopted here strongly suggests, but does not prove, that I is unique, 
That it is'in fact so is shown by the work of Horndeski already quoted. 

2. Five-dimensional Lagrangians 

In a V4 there are five independent quadratic invariants of the Riemann tensor: 

K3 := Rijk,R'Ik1 K4 := ekfmnRklWRmnP4. (2.1) K 1  := R 2  K2 := Ri$" 

It is known that K := K 1 - 4 K 2 + K 3  and K4 are functionally constant, i.e. their 
functional derivatives vanish identically, as is perhaps shown most easily by appealing to 
the calculus of two-spinors (Buchdahll960). Now K is defined in a V,, also when n > 4, 
and then it has the special property that SK/Sgii  does not involve covariant derivatives 
of the Riemann tensor, i.e. it is a second-order differential concomitant of gk l .  This can 
be shown directly by first rewriting K in a different form (see § 3) or by observing that 
covariant derivatives of Rijkl appear in the functional derivatives of K 1 ,  K2  and K3 only 

respectively (Buchdahl 1948). 
In the present context the case n = 5 is of particular interest. Accordingly, let greek 

and italic indices henceforth go over the ranges 1 to 5 and 1 to 4 respectively. At the 
same time, the metric tensor of the Vs and its algebraic and differential concomitants 
will be distinguished by bars. For example, 

in the combinations - 2R i i j  + 2g" R, R - R t i j  + 1 2g O R  and 4ORi ' -2R'" ,  
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The metric of the V5 shall now have the particular form 

(2 .3 )  -2 ds = E w y  dx" dx" =: gij dx' dx '+(dx5+4i  dX')' 

where gii and 4 k  are to depend upon the x 1  alone. Concomitantly the allowed group of 
transformations is to consist of the elements 

(2 .4 )  

The specification (2 .3 )  and (2 .4 )  simply amounts to the transition to a five- 
dimensional view of the gravitational and electromagnetic fields, gii being the metric 
tensor of the 'physical' space-time V4 and 4i (a constant factor aside), the electromag- 
netic potential. In other words, for purely formal purposes the standpoint of the 
familiar Klein-Kaluza theory (Pauli 1958) is temporarily being adopted except to the 
extent that Lagrangians more general than Z? are now contemplated. In particular, 
choose 

E = R + ( r K  (2.5) 

where a is a constant. In four dimensions reproduces the Einstein-Maxwell 
Lagrangian, and it remains to examine g, 

1 2 3 4  x i '  = f i ' ( x ' ,  x2, x3,  x4) x 5 ' = x 5 + e ( x  , X  , X  , X  1. 

3. The invariant I 

The reduction of E to four-dimensional form in the first place requires one to write 
down the components of and its concomitants in terms of Rlijk,  fmn, f,,,and their 
concomitants. This task may be greatly reduced in scope by observing that K is gauge 
invariant, i.e. it cannot contain the explicitly. Accordingly, it suffices to omit from the 
R", all terms which do depend upon explicitly. Replacing the equality sign by the 
sign = in any relation which is valid when terms of the kind in question are rejected, one 
finds that 

* 

(3 .1 )  

from which the various concomitants of RPww follow easily, bearing in mind that 

Then 

Inserting (3 .1 )  in this, will contain certain terms which constitute an invariant of f i i  
alone. Such terms need not be retained explicitly since they represent minimally 
coupled terms in L, i.e. they may be thought of as absorbed in M. Any invariant from 
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which such terms are omitted will be distinguished by an asterisk. Thus (3.3) gives 

z,,* =K3-;RiikJiifk1+ f i i ; k f i i ; k .  (3.4) 

With the abbreviations 
SI := f l J , /  I,, := f ldk t := t', (3.5) 

one finds likewise that 

K2* = K3 + Rijt" + ~ S , S '  

E* = K  -qRijkJ"fkl -4tiiRli +$Rt+(fii;kf;j;k - 2 s ~ ' ) .  

K1* = K1 + iRt. (3.6) 
Hence 

(3.7) 

The appearance of the derivative terms in this must be illusory. In fact, since I?* is 
to be part of a Lagrangian any divergence may be rejected from it. Thus the last two 
terms of (3.7) may be replaced by B := ( 2 f i i ; j k  - f r k ; j , ) f i k ,  having rejected the divergence 
( f i i L k f i j  - 2 f i i ; J i k ) ; k .  NOW 

B = f Z k [ ( 2 f , j ; k  - f i k ; , ) "  - 2RmikfJ  +2Rm$,m]. 

The divergence which appears here vanishes because f [ i j ; k ]  = 0 and one is left with 

B = R,,k$"fkl + 2R,itii, 

use having been made of the identities Ri[,kl] = 0, f ( i j ,  = 0 to rewrite the first term on the 
right. 

Returning to (3.7), K may also be omitted since its functional derivative vanishes. 
Thus there finally remains the invariant 

(3.8) I := -1 f ii f kl Rijki-2fikfi~R,,+~fiiR, 

which must be of the required kind (see also equation (4.3)). 

4. Alternative form of K 

As has been seen, I? and I differ from each other only by irrelevant terms, i.e. (i) those 
which have the form of a divergence and (ii) those which constitute a minimally coupled 
invariant of fii. By writing 8gg: as a determinant of simple Kronecker deltas, it may be 
confirmed directly that 

= ~ G Z ~ ~ ~ p / P R p a Y 6 .  (4.1) 

The calculation of the functional derivative SK/Sg,, is straightforward. It is not 
necessary to go through the details: it suffices to observe that after one integration by 
parts there appears in the variation of I K( - g)1'2 dx a term 

I ( - g ) 1 ' 2 S Z ~ ~ g 6 r ~ a P p v ; p s T Y r ~  dx 

which vanishes because of the identity of Bianchi. It is in this way that higher 
derivatives disappear from S ~ / 8 & , .  Explicitly 

(4.2) 
A w p a - 6 ( p  - 8K/6g&, = $(gp"K $- 8 4 y 6 g  R w ) y p ~ ~ ~ o a p  ), 

which is obviously of the second differential order. For purposes of explicit calculation 
(4.2) does not appear to be useful. 
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It may be noted in passing that ( 3 . 8 )  may be written as 
I = -1 abed SS klmnRabk%dmn.  ( 4 . 3 )  

5. The functional derivative M/S& 

The functional derivative P' := ~3I/Sq5~ can be derived in the usual way and no further 
comment is required. In a few lines one arrives at the result 

( 5 . 1 )  p' = 2 R i j k ' f , ; k  -4R;J'';j -4R"si +2Rs'. 

6. The functional derivative SI/Ggk, 

In contrast to the calculation of P' that of P" := 61/6gjj is a rather lengthy process. Upon 
varying I( - g)"2 dx with respect to gij and integrating by parts where required, one 
arrives at first at an integrand which consists additively of 18 terms. Of these, seven 
involve second derivatives of fsr. Evidently it must be possible to rewrite them so that all 
second derivatives disappear. 

Of the seven terms just referred to, only two have g" as a factor. They are 

g"(4 0 t - t k ' ; k / )  =: gi'D. 

Let . . . indicate any terms free of second derivatives of fsr. Then 

D = f s r  O h r - f k m ; k J 1 m  - f k m f ' m ; k l  +. . . 
= f " ( f s f ; m m  - f m r ; m s  - f m r ; s m )  +. * * * 

Interchange of the order of covariant differentiation merely contributes terms t o .  . . . 
Thus 

D = f"(  f s , ; m  + 2 f m , ; t ) ; m  +. . . 
= f " ' ( f s r ; m  + f m s ; r  + f r m ; s > +  * 

. . . .  - - 

The other five terms of the seven referred to above may be dealt with in the same way, 
even if the details are a little cumbersome. Explicitly, collecting all the terms hitherto 
represented merely by. . . one arrives at the result that 
pi' = - 6 f S f i m ~  i)srm + z t m , ~  imni + 3 f i s f i r ~ ~ ~  + 4 t m ( i ~  i lm - $ t ~  ii - p R  + isi + 2 f m  (1 ;i) 

Sm 

- f ' s ; J j f ' s  - f s r ; ~ s r ; i + g i i (  - $ f s ~ m n R m n , r  -2tsrRsr +$tR + $ f s r ; , , f s r ' m  - s m s m ) .  

( 6 . 1 )  

7. Differential identities 

Consider the variation of L( - g)"' dx, where L is any gauge-invariant Lagrangian, i.e. 
L is a function of the gij  and fk l  only. Thus 

A := S I  L(gijTfkl)(-g)1'2 dx =I (P"Sg; j+P'S~i ) ( -g ) ' '*dx .  
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Suppose the variations to be due to an infinitesimal coordinate transformation which 
vanishes on the boundary. Then 

A := [2P"&;j + P'(&;j(' + c$j [ ' ; , ) ] (  -g)'/ '  dx, I 
where ti is an arbitrary infinitesimal vector field which vanishes on the boundary. 
Integration by parts leads to the conclusion that 

Since t i  is arbitrary within the region of integration and since L is gauge invariant it 
follows that 

PI;, = 0. (7.1) pkl, - 1 kl 
.I  - 2 f  A 

The 'total current' s '  +constant x Pi is thus still conserved. 
The identities (7.1) evidently provide a reliable check upon equations (5.1) and 

(6.1). The required calculations are, however, even lengthier than those which led to 
(6.1). For instance, upon forming the divergence of (6.1) one is at first confronted with 
an expression which consists additively of 41 distinct terms. Of these, 12 cancel 
mutually by inspection as they stand. The remaining 29 fall fairly naturally into several 
groups which can be reduced one by one. The terms which arise from this reduction can 
again be grouped together, to be further reduced. At any rate, the final outcome of all 
this is that (5.1) and (6.1) indeed satisfy (7.1), as required. 

8. Concluding remark 

If (in a v4) Pi,kl  := RijstRk~', the invariant K4 = eiik1Pijkl is also functionally constant. 
However, K4, unlike K, is not defined in a V,, (n Z4). Any procedure of the kind 
adopted above would therefore hinge on finding an appropriate generalisation of K4 to 
a Vs.  The only possibility seems to be this: in place of K4 contemplate (K4*)'" and then 
generalise the latter to a V S ,  i.e. contemplate the invariant 

(8.1) J := ( q 6 ~ ~ ~ ~ p p y s P ~ u w  )1/2 

where q = sgn g. Then it turns out that covariant derivatives of RFvF appear in SJ/Sg(,, 
only in the term 

4 z z f [ R  n ) T F v  (J-' Papub) (8.2) 

and there is no reason why this should vanish. Only in a V4 can one write the Kronecker 
delta as the product of two e tensors so that the expression corresponding to (8.2) 
becomes 

4Eklm(2 [R t)nki(J-leab~dPabCd);ml;n 

and this vanishes because J-'eQbCdPabCd = 1. I therefore gives every impression of being 
unique, in harmony with the result of Horndeski (1976). 
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