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The intensity-fluctuation distribution of Gaussian light 

E. JAKEMAN and E. R. PIKE 
Royal Radar Establishment, Great Malvern, Worcs. 
A4S. received 18th September 1967 

Abstract. We discuss the quantum-mechanical problem of intensity fluctuations in 
samples of Gaussian light and its connection with the corresponding classical scalar 
problem involving fluctuations of random noise power. We obtain an expression 
for the intensity-fluctuation distribution of light with a Lorentzian spectrum, and 
investigate analytically its asymptotic behaviour. Numerical techniques are used to 
evaluate the distribution for various intermediate linewidths, and some examples of 
the corresponding theoretical photon-counting distributions are also given. 

1. Introduction 
With the rapid progress now being made in laser technology it seems reasonable to 

believe that before long information about correlations of excitations in liquids and solids, 
particularly lifetimes (for instance of sound waves) will be obtainable by a study of the 
statistical (coherence) properties of scattered laser light. Such experiments have already 
been successful near critical phenomena where the scattering is very strong (Ford and 
Benedek 1965, Alpert et al. 1965). It will very often be the case that the scattering process 
is a purely random one and the scattered light will be Gaussian in character with a 
Lorentzian spectrum. 

The  statistical properties of the light are contained in the correlations of the randomly 
fluctuating values of, say, the electric field &(Y, t )  at different points of space and time. 
An ideal light detector at a point in space responds not to the electric field itself but to 
the modulus of the square of the positive-frequency part & + ( I / ,  t ) ,  corresponding to 
annihilation of photons; it will also have a finite time constant T .  The information obtain- 
able from a single detector in this type of experiment is therefore contained in the statistical 
behaviour of the quantity 

E ( T )  = Q + ( Y ,  t ) & - ( ~ ,  t )  dt (1) J^: 
where we know that &(Y, t )  arises from a Gaussian light source with Lorentzian spectrum 
of given width I?. In  this paper we calculate the exact probability distribution of E ( T )  
for arbitrary values of r T .  

The problem is a two-dimensional generalization of the scalar problem, considered 
in the classic papers of Rice (1944, 1945) and more completely solved later by Slepian 
(1958), of the fluctuations of random noise power of a sample of finite duration T of 
Gaussian noise 8(t) with a given power spectrum. In this case the probability distribution 
of the quantity 

T 

E,(T) = J @(t )  dt 
0 

is found. This would be the intensity-fluctuation distribution of Gaussian light if the 
classical form P ( t )  were taken for the intensity instead of the quantum-mechanical formula. 
We shall show that the distributions of E,(T) and E ( T )  are quite different. The  classical 
formula has been used incorrectly in the past; we note, for instance, that equation (6.13) 
of the review paper by Mandel and Wolf (1965) is based on the classical instead of the 
quantum-mechanical distribution. 

The  moment generating function for the distribution of E ( T )  has been obtained by 
Glauber (1965) in terms of its Fredholm determinant, but without explicit calculation of 
the eigenvalues. This determinant will be shown to be equivalent to the one appearing 
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in Slepian’s paper referred to above. BCdard (1966) has also obtained Slepian’s form for 
a Fredholm determinant which, however, together with his integral equation and its 
eigenvalues differ somewhat from the equations to be obtained below. Since no reference 
is made to the relevant works of Glauber or Slepian it is not clear where these slight differ- 
ences arise; there is no discrepancy, however, in the practical results. 

In  4 2 the moment generating function is obtained and a connection is made between 
the matrix relations of Glauber and the integral equation of Slepian. In  4 3 the particular 
case of a Lorentzian spectrum is considered and an expression for P(E) as the inverse 
Laplace transform of the generating function is found by summing residues. The  distribu- 
tions in the asymptotic limits of PT much greater than and much less than 1 are derived 
and an approximate form is given for I’T N 1 in $4. The  main results of the paper are 
presented in graphical form in 4 5. 

2. The moment generating function 
The positive-frequency part of the electric field may be expanded in normal modes 

b + ( r ,  t )  = 2 K k e k ( r ,  t )  
k 

where 

the notation is that of Glauber (1963). 
The  Y dependence will be dropped henceforth as we are considering the field at a single 

point only. The  clk are, in general, random variables; for Gaussian light they are un- 
correlated by definition and have the Gaussian distribution (Glauber 1963) 

where the values of (nr,) are given by 

(Ki”@-ic ) = (nk ; ( 5 )  
these are determined by the frequency spectrum of the light. For a Lorentzian spectrum 
centred on wo with half-width at half-height r we have, for instance, 

In  terms of the normal modes the integrated intensity may be written, using equations (1) 
and (21, 

E( T )  = 2 [ al*el*(t)ek(t)ak dt. (7) 
kf 0 

The ek’s are not orthogonal in the restricted interval 0 < t < T and the problem is 
simplified by introducing a new basis set +i(t), which is obtained by a unitary transforma- 
tion S of the ek’s 

= 2 &i+i(t) (8) 
1 

and which is complete and orthonormal in this interval 

Since there are infinitely many such sets we can require the transformation to have the 
further property that the coefficients a, of .“+(t) in the basis #i are statistically independent. 

A5 
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Thus from equations (2)) (8) and ( 9 )  

1: &+(t)$i(t) dt = 2 akski  = ai 
k 

and 
(ai*ak ) = (mk )8ik* 

The integrated intensity in the new basis is found from equations (7)) (8)) ( 9 )  and (10): 
PT 

and the linear nature of the transformation from c(k to ak implies that the probability 
distributions of the a,  are of the form 

1 
P(ak) = - 

%' (mk ) 

The moment generating function Q(s) of P(E) is thus 

T o  perform this integration we make the transformation 

which gives, after integration over the angle variable, 

s($) J ' n e x p { -  IbkI2(l + s ( m k ) ) }  d /bk12  
* k  

= n ( l + s ( m k ) ) - ?  
k 

We shall first show that the ( m k )  are the eigenvalues of the matrix 

in order to make contact with Glauber's result and we shall then find an integral equation 
for the mk's to compare with the work of Slepian. The matrix which diagonalizes M is S,  
for 

S'MSIkk, = 2 s k i t  (ni)1/2el*(t)ej(t) (nj}1'2sjk* dt ST 0 i j  

= 2 (ni)1'2SkItS2r*$,*(t)$,(t)sj,sjk, (nj)1'2 dt 
0 i j r s  

which, using equation (9) and the unitary properties of S, becomes 
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The integral equation for the ( m k )  is obtained by squaring equation (10): 

1: 1; a+(t )a- ( t ’ )~k( t )~ , ,* ( t ’ )  dt dt’ = Ukak’*. 

Taking the expectation value and using equation (1 1) gives 

We now define the first-order correlation function 

and multiply equation (20) by &‘(t’’) and sum over k’ to obtain 

1,’ t ” ) 4 k ( t )  dt = (mk  >$(t”)* 

T o  compare this equation with the integral equation of Slepian’s problem we divide both 
sides by G,(t, t) : 

where (E) is the expectation of E. The  normalized first-order correlation function for 
Gaussian light with Lorentzian spectrum is (Glauber 1965) 

G,(t,t) = (6+(t)b-(t)) = ( E ) / T  (23 1 

so that (22) may be written 

where we have defined the eigenvalues A, as 

On substituting 

into (25) gives the required integral equation of Gaussian RC noise theory 

/leXP( - r l t - t ’ l )@k( t )  dt = h,@k(t’). 

The moment generating function of equation (16) may now be written, using equation (26), 

This Fredholm determinant has been evaluated by Slepian (1958). T o  make a comparison 
we replace Slepian’s variable t by (E)s/2. With a little algebra we find 

Q(s)  = e7 cosy+ - - - s iny  ( ($ ;i ‘ 

where 
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and 
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Q(s) has simple poles at 

Yk being the positive roots of the transcendental equation 

2yYk 
Y k 2  - Y2'  

tany, = - 

( 3 3 )  

(34 )  

3. The probability distribution 

generating function 
The  probability distribution of E is the inverse Laplace transform of the moment 

P ( E )  = -- I f + i m  Q(s) eEsds. ( 3 5 )  2ni C - - Z m  

We evaluate this integral by making use of the fact that the poles of Q(s) are simple and 
hence the residues R(sk) of the integrand are 

The poles all occur on the negative real axis of s. Thus 

the sum being taken over all positive roots of equation (31). At each pole of Q(s) we have, 
of course, 

From equations (30) and (33 ) ,  

Using the factored form of equation (31) 

yk tan i y k  = y 

YkCothY, = - y  

together with equations ( 3 8 )  and (39 ) ,  we find that 

where the positive or negative sign is chosen according as yk  is a solution of (40a) or (40b) 
respectively. Substituting equations (41) into equation (37)  and ordering the terms such 
that yk < ylc+ and yo is the first positive root 

For reasonable values of the parameters the series (42) is rapidly covergent. Indeed, in 
most cases the first two terms give a very accurate result. 
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4. Asymptotic forms 
4.1. y <  1 

the smallest root of equation (40a) : 

Since all other solutions of (40a) and (40b) remain non-zero as y + 0, succeeding terms 
vanish as exp( -yn2/y). Substituting (43) into the first term of (42) leads to 

In  this limit the series (42) for P(E)  is dominated by its first term, corresponding to 

y2 N 2y.  (43) 

and expanding this expression to first order in y we obtain 

As y + 0 (44b) reduces to the asymptotic limit (Mandel and Wolf 1965, equation 4.39) 

4.2. y 1 

when y k  N y. In  this case equation (42) may be written approximately as 
For large but finite values of y the roots of (40a) and (40b) are multiples of n- except 

We have averaged the pre-factor multiplying the exponential terms in (42) and neglected 
the contribution of the region where yn < y. The  sum appearing in (45) is closely related 
to the theta function @,(r /Z : nE/Z(E)y )  and for large y is well approximated by 
( ( E ) ~ / Z T E ) ~ ’ ~  exp( - ( E ) y / 2 E )  (Jeffreys and Jeffreys 1946, p. 48) so that 

where 17 = y /ZE(E) .  In  the limit 7 -+ m this becomes the Dirac delta function 6(E - ( E ) ) .  
The generating function corresponding to the distribution (45b) is of the form 

Y G(s) = - exp(y - x) 
x 

where 
x = ( 2 ( E ) y ~ + y ~ ) ~ ” .  

This differs from Glauber’s result for large y (Glauber 1965, equation 17.56) by the presence 
of the factor y/z .  

4.3. y N 1 
When y is of the order of unity our calculations have shown that P(E)  is well approxi- 

mated, particularly over the region where it is decreasing (&‘/(E) > 0.4), by the first two 
terms of the series (42), corresponding to the first roots of (40a) and (40b). We thus have 
the approximate formula 

1 2Y n2 P(E)  = - exp 2 ( - 1 ) n - l  
( E  ) n = 1.2 Yn2 + Y 2  + 2Y 
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where 
y ,  t an iy ,  = y O < y , < n  

y z  cot $yz = - y T < y z  < 27. 
For small y equation (47) is more complicated than, but rather better than, equation (44b). 
For this case the roots of equations (48a) and (48b) can be taken asy, = ( 2 ~ ) ” ~  and y, = T.  

5. The distribution for arbitrary linewidth 
The  series for P(E) of equation (42) was computed for a set of values of y ranging from 

0.2 through 1.0 up to 20. The  first 25 pairs of roots of equation (31) were computed and 
stored and the summation was carried out by adding pairs of terms at a time until a specified 
small incremental value was reached; the summation was then stopped and the number 
of terms required together with the value of P(E) printed out. The  mean ( E )  was put 
equal to unity, for general values of ( E )  the ordinates are ( E ) P ( E ( E ) ) .  

The  probability distributions are plotted in figure 1. Their general shape may be 
compared with the results of Slepian (1958, figure 1) for the scalar problem, which, as we 
pointed out above, would correspond to a detector which responded to the classical field. 
Both sets of curves tend to exponentials at small y and to a 6 function on unity at large y 
but the detailed behaviour is quite different. In  the limit as y tends to zero the quantum 
noise has a finite probability at the origin while the classical probability curve goes to 
infinity there. At the other limit of large y,  corresponding to the coherence time of the 
source much less than the integration time, the quantum noise curves peak up rather 
more rapidly than the classical ones. 

The  accuracy asked for in the results shown was for P(E)  to differ by less than 0.001 
from its previous value upon the addition of the next pair of terms. For this accuracy at 
y = 0.2 a single pair of terms was sufficient for all values of E down to 0.05. For y = 1.0 
two pairs of terms were needed below 0.35 and as y was increased to 20, more and more 
terms were needed for low values of E.  For y = 20, seven pairs of terms were required 
at 0.55, and for E as low as 0.05, at this same value of y,  twenty-four pairs of terms were 
used. 

The  experimental verification of these distributions would require the inversion of the 
corresponding photon-counting distributions p(n, T ) ,  given by (Mandel 1959) 

p(n ,  T )  = s e x p ( a E ) P ( E )  dE 
n!  (49) 

where E is the quantum efficiency of the detector, since P(E) is not directly available 
experimentally. This inversion has been discussed by Wolf and Mehta (1964) but a 
practical procedure is to compare moments as discussed below. 

The  photon-counting distribution for the problem we have considered is a function 
of a(E) and y only, as can be seen from equations (47) and (49). T h e  former quantity 
is the measured mean number of counts per sample time, say f f .  In  figures 2(a), 2(b), 2(c)  
and 2(d) we give computed examples of photon-counting distributions for various values 
of y and f f .  

The  single feature of each distribution P(E) of most importance, if one can be sure 
that the light is Gaussian and the spectrum Lorentzian, is its variance or second central 
moment which can be shown directly by the method of Rice (1948, p. 88) to be given by 

(e-2Y+2y- 1). (50) 
(E >z 

lT7,z = ___ 
2Y2 

The moments of P(E) are proportional to the factorial moments of p(n) ;  these are given 
by the formula (Glauber 1965) 

C n(n- 1) ... ( n - k +  I)p(n) = -- 
?I d::s)ls = 0 

and have been evaluated by BCdard (1966). Our expression (50) for the mean-square 
noise is a simple analytic form which can also be found from his recurrence relations. 
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Figure 2 .  The photon-counting distributions for the values of fi shown 
( U )  I'T = 0.2 
(b)  I'T = 1.0 
(c) rT  = 5.0 
(d) I'T = 20.0 

These histograms are shown as linked curves for clarity. 
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