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Abstract
Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have
excellent mechanical properties. They are highly flexible and stretchable. Depending on the type
of nanotubes (semiconducting or metallic) they can be used as replacements for metal or
transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors
(FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-
processable materials for flexible and printed electronics. This review introduces the basic
properties of SWNTs, current methods for dispersion and separation of metallic and
semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion.
Recent examples of applications of carbon nanotubes as conductors and semiconductors in
(opto-)electronic devices and integrated circuits will be discussed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Among the various choices of materials for printed and
flexible electronics, single-walled carbon nanotubes (SWNTs)
are unique in the sense that they can be either metallic or
semiconducting. Metallic SWNTs can withstand larger cur-
rent densities than copper or aluminium [1] and their electrical
conductivity is extremely high [2]. Semiconducting SWNTs
are intrinsically ambipolar and show equal hole and electron
mobilities depending on environmental conditions [3, 4].
Carrier mobilities in individual carbon nanotubes reach tens
of thousands of cm2 V−1 s−1 at room temperature [5, 6]. They
are both highly flexible and strong [7]. Networks or thin films
of SWNTs are extremely stretchable without noticeable
changes in conductivity [8]. They are environmentally stable
and durable, and can be processed from dispersions at low
temperatures, which makes them suitable for printing on
plastic substrates. Although the conductivities and carrier
mobilities in SWNT networks, which are limited by

nanotube–nanotube junctions are much lower than those in
individual nanotubes, sheet resistances of less than 100Ω/sq
[9, 10] and effective mobilities of more than 100 cm2 V−1 s−1

[11, 12] are achievable while maintaining high transparency.
Thus, SWNTs seem to be the perfect choice for printable,
flexible and stretchable electronics. Unfortunately, many of
these favourable properties are not easily or simultaneously
accessible. The fundamental problem that prevented SWNTs
from reaching widespread use in electronics over the past
decade was the fact that all methods for SWNT growth pro-
duce a statistical mixture of about 1/3 metallic and 2/3
semiconducting nanotubes with a variety of diameters and
therefore electronic properties [13]. In order to be able to use
SWNTs for either highly conductive electrodes or as semi-
conducting layers, it is necessary to separate the different
types and create stable and reproducible inks/dispersions for
further device processing. There has been tremendous pro-
gress in this field over the last few years [14–17]. At least for
semiconducting SNWTs the purification problem seems to be
solved and it is now possible to tap the full potential of
solution-processed thin film carbon nanotube electronics. In
this review we will describe current methods for dispersing
and sorting semiconducting nanotubes as well as SWNT
deposition and patterning techniques. We discuss the
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application of SWNT networks as conductors for electrodes
and as semiconductors in field-effect transistors (FETs) for
large area and printed electronics. Examples of integrated
circuits based on SWNTs and novel SWNT light-emitting
devices will illustrate the recent progress.

2. Brief carbon nanotube basics

SWNTs are conceptually viewed as rolled-up sheets of gra-
phene, and their electronic properties can be derived from
those of graphene with additional boundary conditions. Each
nanotube can be described by its chiral vector
Ch= n · a1+m · a2 with a1= (a√3/2, a/2) and a2= (a√3/2,
−a/2) as the unit vectors (see figure 1(a)) with the hexagonal
lattice constant a= 0.246 nm of the graphene sheet. The chiral
vector determines how the graphene sheet is rolled-up. Hence,
the pair of indices (n, m) is used to identify each SWNT
species. The chiral angle and diameter of the nanotubes can
be calculated directly from these values [18]. Nanotubes with
n=m, e.g. (6, 6), are called armchair nanotubes and those
with m = 0, e.g. (10, 0), are zigzag nanotubes. Both types are
achiral, that is they have a mirror plane, while all other
SWNTs are chiral (see figure 1(b)). An (8, 4) SWNT is the
mirror image of a (4, 8) nanotube. This led to the somewhat
confusing usage of the word ‘chiralities’ for all different
species of nanotubes, that is, for nanotubes with different
pairs of n and m.

Due to the introduction of periodic boundary conditions
for the wave functions of the infinite graphene sheet in the
circumferential direction, the allowed wave vectors around
the nanotube circumference are quantized, that is they can
take only a set of discrete values. The electronic properties of
SWNTs depend directly on their chiral vector. The simplest
description follows the zone-folding approximation, which
introduces so-called cutting lines for the allowed wave vector
values that run across the reciprocal lattice of the graphene
[19, 20]. When at least one cutting line goes through the K or
K’ point of the graphene the resulting nanotube is metallic.
This is the case for all armchair nanotubes and for those with
(m-n)mod(3) = 0. All other nanotubes with (m-n)mod(3) = 1 or
2 are semiconducting.

The selection of the possible states in k-space leads to the
characteristic density of states (DOS) distribution of carbon
nanotubes. It is dominated by sharp peaks, i.e. the van Hove
singularities (see figure 1(c)), which are a key feature of the
DOS of 1D conductors. This narrow distribution of occupied
and unoccupied states is the origin of the characteristically
narrow absorption and photoluminescence peaks of SWNTs
[21] (see figure 2(a)). The energy differences between cor-
responding van Hove singularities (i.e. E11, E22 etc) scale
with the inverse of the diameter. They are plotted in the
Kataura plot [22, 23] versus diameter and sorted by type. This
enables the identification of metallic and semiconducting
nanotubes from absorption spectra or radial breathing modes
in resonant Raman spectra if the diameter range of the
nanotubes is known [24]. The E11 transitions, or bandgaps, of
semiconducting nanotubes (diameter 0.7–2 nm) range from

about 1.1 eV to 0.4 eV (near-infrared), while the E22 transi-
tions are between 2.2 eV and 0.7 eV (visible to near-infrared).
Semiconducting carbon nanotubes show excitonic photo-
luminescence in the near-infrared (E11 transition), which can

Figure 1. (a) Illustration of chiral vector Ch and chiral angle θ of a
(6, 2) SWNT within a graphene sheet. The armchair (θ= 30°, m= n)
and zigzag configuration (θ = 0°, n= 0) are indicated. (b) Molecular
structures of an armchair (6, 6), zigzag (10, 0) and chiral (8, 4)
carbon nanotube. (c) Density of states (DOS) for a semiconducting
SWNT, typical transitions for light absorption and emission are
labelled (E11, E22, E33).
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be used to identify their species in photoluminescence exci-
tation/emission maps [21]. An absorption spectrum and
excitation–emission map of a sample of dispersed nanotubes
that contains only five different types of semiconducting
SWNTs is shown in figure 2.

3. Dispersion and sorting of carbon nanotubes

There are three major synthesis methods for producing
SWNTs. The most common method is chemical vapour
deposition with metallic catalyst particles such as iron or
cobalt/molybdenum in the gas phase or on support materials
(e.g. MgO). The carbon sources are, for example, CH4, C2H4,
ethanol or CO. Typical commercial processes like HipCO®

[25] and CoMoCat® [26] produce SWNTs with relatively
small diameters (0.7–1.2 nm). The CoMoCat® process is
notable because it allows for preferential growth of the
semiconducting (6, 5) and (7, 6) nanotubes, although some

metallic nanotubes are still present. Another type of SWNT
synthesis relies on the vapourization of carbon in an inert
atmosphere by arc-discharge [27], laser ablation [28] or arc
plasma jet [29]. These methods produce SWNTs with larger
diameters usually in the range of 1–3 nm. Finally, the plasma
torch method provides a comparable synthesis environment to
the arc-discharge growth with high processing temperatures
in the range of 1000–1200 °C [30, 31]. The high temperatures
are created by a dc-driven or radio frequency-induced thermal
plasma. Carbon containing precursor gases such as C2H4 are
used in continuous flow together with metal catalysts like Fe,
Co or Ni, or organometallic compounds like ferrocene or Fe
(CO)5. The plasma torch SWNT growth was developed into a
highly economical process with large scale systems reaching
outputs of several kilograms per day and high quality SWNTs
with diameters of 1.2–1.6 nm.

These commercially available SWNTs come as raw
powders containing SWNTs of various diameters and elec-
tronic type, some soot/amorphous carbon, and possibly
metallic catalyst residue. For further processing the nanotubes
must be dissolved or dispersed. Unfortunately, they are
essentially insoluble in almost all organic solvents [32, 33].
The length of the nanotubes reduces the entropic gain from
interacting with solvent molecules and the strong van der
Waals forces between the SWNTs favour the formation of
tight bundles. Nanotubes can be de-bundled through the
application of strong shear forces, e.g. by sonication or
mechanical milling, but they must be stabilized afterwards to
prevent re-aggregation. This can be achieved in a number of
ways that are well-known from other colloids. SWNTs can be
stabilized in aqueous dispersions by surfactants or tensides.
The surfactant molecules (e.g. sodiumdodecylsulphate (SDS)
[34] or cholates [35]) form a micelle structure around the
SWNTs with the hydrophobic tails pointing toward the
nanotube and the ionic/hydrophilic headgroups toward the
water. Another very efficient dispersing agent for SWNTs in
water is single- or double-stranded DNA of any type [36, 37].
The interaction of the aromatic nucleotide bases with the
nanotubes is strong and results in helical wrapping while the
sugar-phosphate backbone creates a partially negative surface
charge and thus electrostatic stabilization. After sonication or
milling in the presence of the dispersing agent, the SWNT
dispersions are centrifuged at high accelerations (usually
above 200 00 g) to separate individualized SWNTs from
bundles and other residues. Stable dispersions with high
concentrations (few mg/ml) of individualized SWNTs can be
obtained with surfactants or DNA, which is essential for
creating printable SWNT inks. However, all of these disper-
sion processes are largely non-selective, and metallic and
semiconducting SWNTs are dispersed in equal quantities.

The first attempts to separate SWNTs according to their
metallicity or diameter were quite expensive and limited to
very small amounts in the nanogram range, which severely
limited their applicability [37–39]. The first efficient and
scalable separation method was density gradient ultra-
centrifugation (DGU) of SWNTs that were dispersed in a mix
of SDS and cholates. The separation relied on the different
buoyant densities of the SWNTs including their surfactant

Figure 2. (a) Absorbance spectrum of a dispersion of semiconduct-
ing SWNTs selected from HipCO® nanotubes by dispersion with
poly(9, 9-dioctylfluorene) (see inset) in toluene. The E11 transitions
of five SWNT species (labelled) and the corresponding E22

transitions are evident. There are no absorption peaks for metallic
nanotubes. (b) Excitation–emission map of the SWNT dispersion
with each intensity peak corresponding to one of the five nanotube
species.
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shell, which depend on the SWNT diameter but also its
metallicity [40, 41]. A more recent approach is the use of
classic gel-chromatography [42–45]. An agarose gel column
is saturated with SWNTs dispersed in SDS, and a pure SDS
solution is used as the eluent. The metallic nanotubes exhibit
the weakest interaction with the agarose gel and are washed
out first. Semiconducting nanotubes interact more strongly,
depending on their diameter [46]. These differences can be
enhanced by tuning the pH and temperature [47]. It is thus
possible to create nearly single-species dispersions in a scal-
able and reproducible way. This accomplishment can be
regarded as a true breakthrough in this field of research and
enables a range of studies and applications that were impos-
sible until then.

While gel-chromatography separates already dispersed
SWNTs, it is also possible to start directly with the selective
dispersion of only certain types of nanotubes. This is
achieved by mixing the raw carbon nanotube powder with
conjugated polymers in organic solvents such as toluene or
xylene, as originally discovered by Nish et al [48]. Suitable
conjugated polymers are polyfluorenes and polyfluorene
copolymers [48–55], regio-regular polythiophenes [56, 57],
and also polycarbazoles [58, 59]. All of these polymers
preferentially disperse semiconducting SWNTs, although
the degree of selectivity varies. During dispersion the
SWNTs are wrapped by the polymer chains in order to
maximize the π–π electron interaction of the polymer
backbone and the nanotubes. The length of the alkyl-side-
chains that make the polymers soluble in organic solvents
determines to some degree the diameter of the preferentially
stabilized carbon nanotubes. Longer side-chains lead to the
dispersion of nanotubes with larger diameters [50, 56]. The
yield and selectivity also depend on the solvent [60, 61] and
the molecular weight of the polymer. Lower molecular
weights increase the selectivity but decrease the yield of
dispersion [62, 63]; a minimum chain length is required for
effective dispersion [64]. The obtained concentrations of
semiconducting SWNTs in polymer solution can vary from
tens of ng/ml to hundreds of μg/ml. In all cases there is still a
substantial amount of polymer in the dispersion, which helps
to stabilize it. However, its presence would hinder charge
transport in a film produced from such a dispersion, as the
conjugated polymers exhibit orders of magnitude lower
mobilities than the SWNTs. The majority of the unbound
polymer can be removed by filtration of the dispersion and
washing of the obtained SWNT film with a solvent. Alter-
natively, sedimentation of the nanotubes at ultrahigh cen-
trifugation speeds (>250 000 g) creates a pellet that is
recovered and rinsed with a clean solvent. The purified
SWNTs can be redispersed in the pure solvent, e.g. toluene,
and used for spincoating, drop-casting or printing. An ele-
gant but synthetically more challenging route is the use of
conjugated polymers that are degradable after the selection
and dispersion step and can thus be removed easily and
without residue [65–67]. A thorough overview of selective
polymer dispersion has recently been given by Samanta
et al [68].

4. Deposition of nanotube networks

A variety of techniques to deposit SWNTs from dispersion
with different densities and degrees of alignment have been
applied over the years. The most common lab technique for
thin film deposition from solution, spincoating, requires quite
high SWNT concentrations in order to obtain a reasonably
dense surface coverage as shown in figure 3(a). Very often an
adhesion promoter is used to increase coverage, such as
3-aminopropyltriethoxy silane (APTES) [69–71] or poly-L-
lysine [72, 73]. Due to the centripetal forces during spin-
coating and the drying effects at the edges of the sample, the
nanotube distribution is not completely uniform. Interest-
ingly, longer nanotubes appear to become more abundant at
larger distances from the center of the sample [74]. Other
methods for large area deposition of SWNTs from dispersion
include immersing a substrate with an adhesion layer in a
SWNT dispersion, followed by rinsing [75–78], dip-coating
[79, 80], spray-coating [81, 82], and Mayer rod or blade-
coating [83, 84]. The latter can lead to a partial alignment of
the SWNTs, which reduces the sheet resistance.

In general, good nanotube alignment is desirable espe-
cially for semiconducting SWNT networks. An easy way to
obtain well-aligned SWNTs between two electrodes is the
application of an electric field during drop-casting of the
nanotube dispersion. Both high frequency alternating fields
[85–88] and large dc fields [89, 90] are suitable (see
figure 3(b)). Low concentrations of SWNTs are sufficient as
deposition only takes place between the electrodes, which
also avoids post-deposition patterning. However, the uni-
formity of deposition depends critically on the dispersion
quality and this technique is not scalable. Evaporation
assembly techniques that rely on the lyotropic liquid crys-
talline properties of SWNT dispersions at high concentrations
are slightly more suitable for alignment of nanotubes over
large areas. Under controlled drying conditions, aligned thin
stripes or films of nanotubes can be deposited from SWNT
dispersion on semi-immersed substrates [91–94]. The nano-
tubes assemble parallel to the drying line and good linear
SWNT densities (10–20 μm−1) with high degrees of align-
ment are achieved. Strong alignment and very high SWNT
densities of up to 500 μm−1 can be obtained by applying the
Langmuir–Schaefer method to compress nanotubes on a
water surface before transfer [95].

For application in field-effect transistors and circuits most
of the techniques described above require the post-deposition
patterning of the SWNT films to reduce leakage currents and
device cross-talk. This can be done by selective removal of
SWNTs with oxygen plasma while other areas are protected,
e.g. by photoresist. Nevertheless, as the purified source
material is expensive, more frugal, additive deposition tech-
niques, i.e. direct printing of SWNTs, are desirable. Printing
methods that require high viscosity inks such as flexography
(viscosity range 0.05–0.5 Pa s), gravure (0.01–0.2 Pa s), offset
(5–100 Pa s) and screen printing (0.5–50 Pa s) [96] have so far
been rarely reported in literature, although commercial sour-
ces for high viscosity (unsorted) SWNT inks exist. For type-
sorted nanotube dispersions the necessary high SWNT
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concentrations remain yet to be reached, and may not be
economical. High resolution printing methods for low visc-
osity inks, such as inkjet printing (0.001–0.04 Pa s) and
aerosol jet printing (0.001–1 Pa s) are much more suitable for
the dilute carbon nanotube dispersions and have been applied
numerous times to create devices and circuits [61, 97–109].

Many inks are water-based [101, 105] and the surfactants
that stabilize the SWNT ink must be removed after printing
by rinsing. At least on a lab scale, dispersions of surfactant-
free SWNTs in organic solvents such as dimethylformamide
(DMF) [98] or 1-cyclohexyl-2-pyrrolidone (CHP) [103] can
be applied as well. Surface treatment (e.g. adhesion layers or
UV-ozone treatment) and surface energy of the substrate also
play an important role for printing of SWNTs [103, 108] and
can be utilized to improve network density, alignment of the
nanotubes or spatial resolution of the printing process
[100, 110]. Once they are deposited, the strong adhesion of
SWNTs to a suitable substrate allows for many layers of
nanotubes to be printed on top of one another [101]. Thus, the
density of SWNT networks can be tuned from just above the
percolation threshold, for example for the channel of a tran-
sistor, to high density, for example, for injecting electrodes.
Okimoto et al demonstrated the potential of this approach by
fabricating all-carbon transistors using ink-jet printing of
DMF-based SWNT dispersions [98].

Most of the mentioned deposition techniques, especially
those that include slow drying processes and prior removal of
dispersion stabilizers, will lead to SWNT bundles of various
sizes. These may affect the transport properties of the net-
works [111]. In aligned networks thin bundles can improve
the interconnectivity of the nanotubes, as the length of con-
formal contact between SWNTs is beneficial to charge
transport along the bundle. However, thick and disordered
bundles are likely to lead to non-uniform networks, limited
overlap, insufficient electrostatic coupling in field-effect
transistors and large barriers for charge transfer between
bundles [112]. Additional carrier scattering that occurs in
SWNT bundles [113] compared to pristine individual SWNTs

reduces carrier mobility but is negligible compared to the
junction-resistance [114] that dominates nanotube networks at
least for channel lengths above 5 μm.

In comparison to other printable conducting and semi-
conducting materials such as PEDOT:PSS or conjugated
polymers etc [115] carbon nanotube inks are more difficult to
handle and their formulation and stabilization are critical. On
the other hand, being able to print SWNT networks with
different densities [98, 101] and of different types of carbon
nanotubes offers the freedom to create devices with vastly
different properties from the same material with excellent
electronic and mechanical properties suitable for highly
flexible, stretchable and transparent circuits.

5. SWNTs for electrodes

The high conductivity of metallic SWNTs, their low
absorption cross section and mechanical flexibility have made
carbon nanotubes a strong contender as a replacement for
metals or transparent conductive oxides in flexible and
stretchable electronics [116–118]. Early examples include the
use of dense films of SWNTs as anodes in organic solar cells
[119–122], light-emitting diodes [123, 124] and photodiodes
[125]. For these applications it is not strictly necessary to use
only metallic nanotubes if the films are dense enough. Doping
with HNO3 or SOCl2 helps to increase the conductivity. Sheet
resistances of a few hundred Ω/sq and less are readily
achievable [80, 83, 126, 127]. However, in order to achieve
higher transparency for similar sheet resistances, the semi-
conducting nanotubes should be removed [9]. The network
conductance can be increased significantly when very long
(several micrometers and longer) nanotubes are used in order
to reduce the number of intertube junctions that exhibit
resistances of hundreds of kΩ [114]. As most dispersion
methods (ultrasonication/milling) cause more or less damage
and shortening of the nanotubes [128], which decreases the
conductivity of networks and composites, less damaging

Figure 3. Atomic force microscopy images of (a) a random network of spin-coated SWNTs and (b) SWNTs aligned between two electrodes
by application of a dc electric field (25 kV cm−1) during drop-casting.
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methods are pursued. The dry deposition of nanotubes
directly from growth in the gas phase onto filters and sub-
sequent dry-transfer yields highly conductive and transparent
networks as shown by Nasibulin et al [10]. A mild and
scalable process to disperse carbon nanotubes without strong
mechanical forces is their chemical reduction with sodium in
liquid ammonia. The resulting nanotubide salt is soluble in
dimethylsulfoxide and forms a nanotube ink that is stable at
very high concentrations but is also highly air-sensitive [129].
After deposition, for example by spray coating or doctor-
blading under inert atmosphere, the films are re-oxidized to
the neutral species by exposure to dry air. Ostfeld et al
demonstrated that for similar transparencies (80% at 550 nm)
the sheet resistances of such films (about 60Ω/sq) are lower
compared to those produced by conventional SWNT disper-
sions in aqueous surfactant solutions (about 120Ω/sq) [130].
Organic photovoltaic cells that were fabricated with these
SWNT films and ITO as the transparent anode showed almost
identical performance. It is evident that SWNT thin films have
the potential to replace conducting oxides as materials for
transparent electrodes, especially in areas where flexibility
and stretchability are important. However, their relatively
high cost and the question of uniformity over large areas, as
well as possible hot-spots for leakage currents, must be
addressed in the future.

Another interesting aspect for organic and flexible elec-
tronics is the application of carbon nanotubes as electrodes in
organic field-effect transistors. Initially multi-walled and
single-walled carbon nanotubes were added to conducting
polymers such as PEDOT:PSS [132] and polyaniline [133] to
increase the conductivity of these printable electrodes. Also,
dense networks of SWNTs were used as injecting electrodes
for both organic [134] and SWNT transistors [135, 136].
Schottky barriers and the resulting contact resistance between
the semiconductor and the injecting electrode can be a lim-
iting factor for the performance of organic FETs, in particular
for n-type semiconductors that require low work function
contacts [137]. Several studies have shown that SWNT
electrodes or SWNT-decorated electrodes improve charge
injection substantially and thus enhance device characteristics
[134, 138–144]. Unlike other methods for increasing charge
injection, such as modifying the work function of the inject-
ing electrode, the enhancement of injection by carbon nano-
tubes is equal for holes and electrons. Figure 4 shows an
example for the impact of carbon nanotubes on charge
injection into organic semiconductors. Top-gate/bottom-con-
tact transistors with the conjugated polymer F8BT as the
semiconductor show ambipolar transport. However, due to
the large mismatch of both HOMO and LUMO level (highest
occupied molecular orbital and lowest unoccupied molecular
orbital, respectively) with the work function of gold, the
contact resistance is very high and non-ohmic when standard
gold electrodes are used [145]. Coating these electrodes with
a thin film of SWNTs substantially improved both hole and
electron injection and consequently led to almost ohmic
contacts and higher overall source-drain currents [131]. The
underlying mechanism of injection improvement seems to be
the strong electric field enhancement by the one-dimensional

carbon nanotubes. It is thus applicable to any organic semi-
conductor, and highlights the additional advantages of using
SWNT electrodes in organic electronics.

An interesting combination of carbon nanotube networks
and controlled modulation of charge carrier injection is used
in vertical light-emitting field-effect transistors (VFET) as
demonstrated by the Rinzler group [146–148]. Here a dense
network of SWNTs is used as a semi-transparent, percolating
source electrode separated by a thin dielectric layer from the
gate electrode underneath. An organic semiconductor layer is
sandwiched between the source electrode and a top drain
electrode. The voltage applied to the gate electrode modulates
the injection barrier between the source electrode and the
organic semiconductor and enables switching behaviour, and
thus an efficient combination of the drive transistor and the
OLED in a display pixel [148]. This concept can also be
applied to metallic mesh source electrodes [149, 150].
However, the nanotube network provides a nanoscale con-
ducting mesh that is difficult to achieve by any other pat-
terning method.

Figure 4. (a) Schematic illustration of a bottom-contact/top-gate
polymer field-effect transistor with F8BT as the semiconductor. (b),
(c) Ambipolar output characteristics of equivalent transistors with
and without SWNT-coated gold electrodes [131].

6

Semicond. Sci. Technol. 30 (2015) 074001 J Zaumseil



6. SWNT networks as semiconductors

While metallic carbon nanotubes are interesting as transparent
electrodes for organic photovoltaic cells, as shown above,
semiconducting SWNTs can also be used directly as the light-
absorbing donor layer in heterojunction solar cells. As shown
in figure 2(a), SWNTs absorb light in the near-infrared, which
is advantageous for utilizing the whole solar spectrum for
power generation [151, 152]. Their high carrier mobilities
also promise to enable fast charge separation and transport to
the electrodes, which is crucial for efficient solar cells [153].
Often C60 or PCBM serve as the electron acceptor layer in
such photovoltaic cells [151, 154–156]. Again the purity of
the semiconducting nanotube network is important, as
metallic nanotubes would simply quench excitons and thus
lower the efficiency. Energy transfer and charge trapping
within a mix of semiconducting SWNTs would also result in
a loss of power conversion efficiency. Unfortunately so far
the maximum efficiency obtained in such solar cells is only
2.48% [157]. Given the high cost of the nanotube source
material and purification, combined with the limited effi-
ciency even compared to non-optimized organic bulk het-
erojunction solar cells (e.g. poly(3-hexylthiophene) with
PCBM [158]), SWNT solar cells might be of more academic
interest in terms of energy transfer and charge separation
rather than their application.

More promising is the utilization of carbon nanotubes in
field-effect transistors and electronic circuits. Individual
semiconducting carbon nanotubes have been shown to be
applicable in high performance circuits that can operate at
high frequencies [159]. The extremely high charge carrier
mobilities of individual nanotubes and their excellent elec-
trostatic properties that enabled the fabrication of low voltage,
sub 10 nm gate length transistors [160] continue to drive
research in this area, although the initial promise of SWNTs
as the solution to Moore’s law [161] has not yet been fulfilled.
For their application in printed and flexible electronics,
however, the solution processability and flexibility of SWNT
thin films instead of individual nanotubes combined with
properties such as high carrier mobility and good on/off ratios
will be most important.

For printed and flexible electronics, nanotubes will be
used as random or semi-aligned networks, and transistor
channel lengths will be large, i.e. a few micrometers or more.
The density of nanotubes within the transistor channel must
be at least above the percolation limit to allow for current
flow. This limit depends on the length and alignment of the
nanotubes. SWNT thin films can be modelled mathematically
as a finite-sized tube percolation network with variable
intertube coupling [162]. Ideally, densities are much higher
than the percolation limit (>10 SWNT/μm) to ensure high on-
conductance for a given channel width and length and thus
high apparent mobility in a field-effect transistor. This
becomes a problem when metallic nanotubes whose con-
ductivity is not modulated by the gate field are still present.
Depending on their percolation threshold, the off-currents of a
given transistor can be very high [163] and can be reduced

only slightly by ‘striping’ the SWNT film to disrupt the
metallic pathways [164].

The problem of residual metallic nanotubes led to a well-
known trade-off between high on-conductance or apparent
carrier mobility and high on/off current ratios [69, 165]. This
is visualized in figure 5 where the on/off ratios are plotted
versus the measured mobilities for a selection of solution-
processed SWNT transistors that were published over the last
few years. For possible applications of nanotube transistors in
active-matrix OLED displays, the lower boundary for field-
effect mobilities is 5–10 cm2 V−1 s−1 [166]. At the same time
the on/off current ratio should be at least 106 to avoid
unnecessary power consumption and guarantee maximum
brightness contrast for each pixel [167]. High on/off ratios
(105–106) might be reached in SWNT network FETs despite
the presence of residual metallic nanotubes but only for very
sparse networks, which results in low on-conductances and
low apparent mobilities (<1 cm2 V−1 s−1) [168].

The on/off ratio can be improved for denser networks by
increasing the channel length (>25 μm), thus making con-
tinuous metallic pathways less likely. This is demonstrated in
figure 6 for random SWNT network transistors with long
(40 μm) and short (5 μm) channel lengths and equal network
densities with and without residual metallic SWNTs. For
transistors with long channel lengths, the off-currents are
almost the same, irrespective of the presence of metallic
SWNTs. However, as the channel length decreases to 5 μm
the residual metallic nanotubes can bridge the distance and
the off-current increases by several orders of magnitude. For
the transistor without metallic nanotubes, the off-current
remains unchanged and only the on-current increases as
expected [63]. Although longer channel lengths will give

Figure 5. On/off ratio versus mobility performance map of FETs
with solution-deposited, aligned and random SWNT networks,
compiled from references
[12, 50, 56, 63, 69, 77, 84, 86, 91, 95, 169–177].
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good on/off current ratios and high apparent mobilities for
networks that contain some metallic SWNTs, the on-currents
are lower compared to shorter channels and the overall tran-
sistor area increases, which is unfavourable for display pixels
with current-driven OLEDs.

Clearly, the best way to reach maximum on-currents and
minimum off-currents in a nanotube network transistor is to
remove all metallic nanotubes. That is, more than 99% of
SWNTs within the network must be semiconducting. Novel
SWNT sorting methods such as gel-chromatography and
selective polymer dispersion (see above) have recently

enabled such pure semiconducting SWNT inks and thus a
range of transistors and circuits with high mobilities
(>100 cm2 V−1 s−1) and high on/off ratios (106) even with
submicrometer channel lengths were demonstrated
[12, 176, 177].

The next question is, what type of semiconducting
nanotube is best for FETs? The field-effect mobility of carbon
nanotubes scales with the square of the diameter [5], thus
large-diameter nanotubes would be preferable. However, their
bandgap scales with the inverse of the diameter and has a
direct impact on the off-current at least in short channel
devices, so smaller diameter SWNTs with larger bandgaps
would be better for higher on/off ratios [178]. Finally, the
performance limiting factors are contact resistance [179] and
tube–tube junctions [114, 180]. While the intertube junction
resistance restricts the carrier transport within a dense net-
work, the injection barriers at the metal contacts become
limiting for shorter channels. As the channel resistance is
reduced further and further, either by high nanotube densities
or shorter channels, the contribution of the contact resistance
increases. Even for moderately dense networks, the contact
resistance can already be higher than the channel resistance
[63]. A better understanding of charge injection into networks
and charge transfer at nanotube junctions is necessary for
further improvements in device performance.

As we have seen, the field-effect mobility of a semi-
conducting SWNT film is often cited as an important device
parameter because it largely determines the switching speed
and on-conductance of a transistor with a given geometry. In
most cases, the carrier mobility in a field-effect transistor is
calculated from the transconductance in the linear or satura-
tion regime by taking into account the channel length L,
width W, and the capacitance [181]. In a typical thin-film
transistor the gate capacitance is based on the parallel plate
capacitor model and calculated from the thickness and
dielectric constant of the insulating layer. However, deter-
mining the effective capacitance for SWNT network devices
is not as straightforward as for conventional thin film tran-
sistors. Due to the electrostatic coupling of the SWNTs with
each other and thus screening of the gate field, in addition to
the quantum capacitance of SWNTs (CQ = 4.0 · 10

−10 F m−1)
[182], the usual plate–plate capacitor model (CPP) can dras-
tically overestimate the effective capacitance Ceff. For the
calculation of the effective capacitance in a given device, the
linear density of the SWNTs Λ −

0
1 , the SWNT radius R, the

effective dielectric thickness t and the relative permittivity εr
of the dielectric must be taken into account as derived by Cao
et al [183]:
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The difference between the effective and the plate–plate
capacitance is large for low network densities of carbon
nanotubes, as shown in figure 7. But even for high SWNT
densities it should not be neglected, especially when the gate
dielectric is very thin. While the effective capacitance for a

Figure 6. (a) Schematic illustration of bottom-contact/top-gate
transistor with a spin-coated random network of sorted SWNTs and
a PMMA/HfO2 hybrid dielectric. (b) Ambipolar transfer character-
istics of transistors with a long channel length of 40 μm with and
without small amounts of residual metallic nanotubes. (b) Ambipolar
transfer characteristics of transistors with a short channel length of
5 μm with and without small amounts of residual metallic
nanotubes [63].
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nanotube network with a linear density of about 5–10 μm−1

on a 300 nm thick SiO2 dielectric is already very close to the
calculated plate–plate capacitance, the same nanotube net-
work on 50 nm of HfO2 would result in an effective capaci-
tance of only 20% to 40% of the CPP value and thus lead to a
large underestimation of the field-effect mobility. This cal-
culation also implies that for very low SWNT densities
(<1 μm−1) decreasing the dielectric thickness much further,
e.g. by using self-assembled monolayer dielectrics
[177, 184, 185], will not increase the on-currents sub-
stantially. Thicker dielectrics may actually be more suitable in
terms of device stability and breakdown voltages [135].

A serious problem of SWNT transistors has been their
large current hysteresis and shift of threshold voltage, which
would be a fatal deficiency for any application that requires
bias stress stability, such as drive-transistors in OLED display
pixels [166]. For p-type SWNT transistors a large threshold
shift toward negative voltages is observed when they are
operated in air. This effect has been largely attributed to the
presence of water on hydrophilic substrates (e.g. oxides) and
oxygen, which creates electron traps [186]. These also sup-
press electron transport in SWNTs under ambient conditions
[187, 188]. The hysteresis is reduced and electron transport
might be observed after devices are annealed in vacuum,
covered with hydrophobic polymers (e.g. fluoropolymers)
[189–191] or encapsulated with hybrid polymer/oxide films
(see figure 6) [63].

SWNTs are intrinsically ambipolar with equal hole and
electron mobilities (as shown in figure 6) although under
ambient conditions they show a predominantly p-type beha-
viour [192]. For complementary circuits it is advantageous to
have transistors that are either purely n-type or p-type but not
ambipolar. Ambipolarity would lead to large power dissipa-
tion, for example, in complementary-like inverters. In order to
create purely n-type SWNT transistors, molecular doping

techniques have been applied, using polyethylene imine
[193], viologen [194], NADH [195] and other reducing
agents [174, 196]. The long term stability of these chemical
dopants, especially under ambient conditions, remains to be
tested. More permanent electrostatic n-doping is provided by
encapsulation of nanotubes with PECVD-SiNx, which con-
tains fixed positive charges and results in robust n-type
behaviour [197].

Overall, the device performance of SWNT network
transistors has improved drastically over the last few years
with field-effect mobilities and on/off ratios that are compe-
titive with other solution-processable semiconductors. How-
ever, important parameters such as reproducibility, bias stress
stability and control over doping still require further
development.

7. Integrated circuits and applications

An impressive range of integrated circuits that use purified
and sorted semiconducting carbon nanotubes has been
demonstrated over the past few years. Transistors with good
bias stress stability, high on/off ratios and high on-con-
ductance might be used in OLED displays as switch and drive
transistors in a simple 2T1C architecture [166, 167]. Here, the
high carrier mobility of SWNT networks is a clear advantage
over solution-processed organic semiconductors, which rarely
reach carrier mobilities beyond 1–5 cm2 V−1 s−1 [198].
However, the sometimes still poor on/off ratios, threshold
shifts under bias stress, and device-to-device variations for
SWNT transistors are problematic. Nevertheless, several
nanotube transistor driven single OLEDs [71, 78, 199, 200]
and a small active-matrix display [201] were reported.

The requirements for transistors in active-matrix back-
planes for sensing, e.g. pressure sensors or photodiode arrays,
are less rigorous. Only one transistor is needed per pixel and
the drive currents and bias stress are much lower. The
inherent stretchability of SWNT networks is ideal for pressure
sensing arrays that may need to be stretched over curved
objects. Recent examples of backplanes based on SWNT
FETs include flexible visible light/x-ray imagers [202], as
well as conformal pressure and tactile sensor arrays [72, 203].
For such large area applications scalable and low-cost pat-
terning methods are needed. Figure 8 shows the example of a
20 × 20 array of SWNT transistors that were patterned by
gravure printing using silver nanoparticle ink for the elec-
trodes and a barium titanate nanoparticle/poly(methyl
methacrylate) composite for the gate dielectric [77]. The
dielectric layer also served as an etch mask for the nanotubes,
that were deposited by immersion of the PET substrate in a
purified 99% semiconducting SWNT solution for two hours.
The completed transistors showed mobilities of
4.3 ± 1.6 cm2 V−1 s−1 and on/off ratios of 104 to 105. The
device-to-device variability was relatively high but still
impressive for such a simple and low cost printing and pat-
terning technique. Similar results were obtained by screen-
printing of the same materials [78].

Figure 7. Illustration of the ratio between the effective capacitance
(Ceff) as calculated according to equation (1) and the capacitance
based on the parallel-plate model (CPP) for different network
densities and for two different types of gate dielectrics.
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Those printed transistor arrays on PET foil were flexible
and bendable but not necessarily stretchable due to the
mechanical limitations of the dielectric and the electrodes. In
order to make full use of the excellent mechanical properties
of SWNT networks, the other transistor components have to
be optimized as well. A convenient way to enable stretchable
SWNT transistors while maintaining high performance is the
use of electrolyte-gating with soft or rubbery iongels
[204, 205]. In an electrolyte-gated transistor the gate dielectric
is replaced with an electrolyte, for example, an ionic liquid
with a large electrochemical window [206]. When a gate
voltage, and thus an electric field, is applied the anions and
cations drift toward the gate electrode and the semiconductor,
respectively, to form nm thick electric double layers. The
applied gate voltage now drops across these thin double
layers, which leads to very high effective capacitances on the
order of 1–10 μF cm−2. Hence, very high charge carrier
densities can be accumulated at low gate voltages (<2 V).
High on-conductances and low operating voltages are feasible
[199, 207]. For networks of carbon nanotubes, electrolyte-
gating is especially efficient and avoids the problem of tube-
to-tube screening as the ions accumulate around each nano-
tube. The effective capacitance is only limited by the quantum
capacitance of the carbon nanotubes [182, 208, 209]. The
main drawback of electrolyte-gating is the limitation of the
switching speed by the movement of the ions in the electro-
lyte, although the maximum operating frequencies of

electrolyte-gated SWNT transistors are still in the MHz
range [106].

Iongels are printable and flexible and combine the high
ionic mobility of ionic liquids with the mechanical stability of
polymer gels. They have been shown to be highly suitable for
various electrolyte-gated transistors [210–213] including
SWNT transistors [105]. Xu et al used purified (7, 5) SWNT
networks, pre-stretched buckled gold electrodes and an iongel
to create highly stretchable transistors on a PDMS substrate
[204]. The devices could be strained up to 18% before the on-
currents started to drop. Further, combining metallic SWNT
electrodes with semiconducting SWNT networks for metal-
free all-carbon transistors could provide excellent flexibility
and stretchability as well as transparency as recently
demonstrated by Sun et al with dry-transferred CVD-grown
SWNT networks [135].

While individual transistors can be used to study charge
transport in solution-processed or printed SWNT networks,
more complex circuit structures and more rigorous require-
ments on switching speed and device-to-device uniformity are
necessary for future SWNT-based electronics. Basic inte-
grated circuits have already been fabricated using solution-
processed SWNT networks such as complementary inverters
[63, 108, 174, 194, 197, 214, 215], ring-oscillators which
consist of an uneven number of connected inverters
[105, 106, 109, 191, 216, 217], NAND gates [174, 214, 218],
NOR gates [109], D-Flip-Flops [219, 220] and others. These

Figure 8. (a) Schematic of a SWNT deposition, patterning and printing process. (b) Scanning electron micrograph of a SWNT network
deposited on a PET substrate. (c) Photograph of employed inverse gravure printer. (d) Optical micrograph of a single transistor, and (e)
photograph of 20 × 20 device array on a PET substrate. Reprinted with permission from [77], copyright 2013, American Chemical Society.
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circuits are the basis for even more complex devices such as
RF-ID tags [221], static random access memories (SRAM)
[135], shift registers, and so on.

As one of the fundamental building blocks for integrated
circuits, the inverter is a good example to illustrate the
requirements and challenges for SWNT circuits. The most
common inverter design is that of a complementary inverter
consisting of an n-type and a p-type transistor in series and
connected gate electrodes as the input node (see inset,
figure 9). At a given low or high input voltage one transistor
is on and the other is off. Consequently, the output voltage is
high and close to the supply voltage (VDD) or very low
(∼0 V), respectively (see figure 9(b)). The on-currents and
threshold voltages of the two transistors must be matched to

obtain rail-to-rail operation, that is, full inversion of the input
voltage. The complementary inverter design provides high
gain and a large noise margin, which is essential for the
successful integration of a large number of inverters. Power
dissipation is low because current only flows at the inversion
point (see figure 9(c)), that is, only for short periods of time.

Unfortunately, under ambient conditions SWNT network
transistors exhibit mainly hole transport as mentioned above.
In order to create stable n-type behaviour local doping is
required (see above and figure 9) [194, 214]. An alternative to
n-doping of the SWNT network is the incorporation of other
solution-processable, high-mobility semiconductors such as
zinc tin oxide for n-type transistors in combination with
SWNT p-type transistors [222]. Good control over the
threshold voltages is also needed in order to achieve voltage
inversion ideally at half of the supply voltage. On/off ratios of
the individual transistors must be high even at high source-
drain voltages (i.e. supply voltage).

Ambipolar SWNT transistors can be employed to create
complementary-like inverters that are usable for MHz ring-
oscillators [63, 106, 109]. Here, only one semiconducting
layer is necessary and under ideal conditions the hole and
electron mobilities are equal. However, since none of the
transistors can be fully off at any input voltage, the static
current flow and thus power dissipation in ambipolar inverters
is very high. Truly complementary SWNT inverters are
superior in performance but require more processing, which
may lead to device-to-device variations and patterning pro-
blems at higher integration densities.

Despite these challenges the fabrication of short channel
(<200 nm) transistors with very dense and aligned semi-
conducting SWNT arrays from sorted dispersions exhibiting
on-conductances of 197± 38 μS μm−1 and on/off ratios of 105

by Brady et al [176] has again strengthened the endeavour to
create high-performance, low power SWNT thin-film electro-
nics for a post-silicon era. For given parameters, SWNT tran-
sistors could indeed outperform silicon FinFETs in terms of
energy consumption and speed [16]. The numerous examples
of integrated SWNT thin film circuits and the recent demon-
stration of a rudimentary SWNT computer based on aligned
chemical vapor deposition (CVD) grown SWNTs emphasize
the high potential for future carbon nanotube electronics whose
full realization has finally become tangible [223].

A novel and somewhat unusual application of semi-
conducting SWNTs is as nanoscale emitters in near-infrared
light-emitting devices. Light emission from semiconducting
SWNTs can originate either from the impact excitation of
accelerated holes or electrons [224–226] or electron-hole
recombination [91, 227, 228]. Unfortunately, SWNTs are not
particularly good emitters. Their quantum efficiencies reach a
few percent at best and depend somewhat on chirality [229].
This deficiency has been attributed to the high mobility of
excitons along the nanotubes, which enables them to find
quenching sites, such as the tube ends or other defects, very
quickly [230, 231]. However, for a single nanotube species
the photoluminescence line width at room temperature is very
narrow (<40 meV) [232] and directly determined by its
chirality with some influence by the surrounding dielectric

Figure 9. (a) Schematic illustration of an SWNT inverter with doped
n-type (NMOS) and p-type (PMOS) transistors. (b) Voltage transfer
curves (inset shows the circuit diagram of the inverter). (c) Power
characteristics of the inverter during operation. (a) and (b) reprinted
with permission from [214], copyright 2013, American Chemical
Society.
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[233]. Their emission wavelengths between 900 nm and
2000 nm make them interesting for biological imaging
[234, 235] and as nanoscale light sources for on-chip optical
communication [236–238].

So far, there have been no examples of light-emitting
diodes based on s-SWNTs in a conventional vertical stack
structure. It is, however, possible to create a p-i-n-junction in
a single nanotube or an array of SWNTs by employing two
oppositely biased gates in a transistor structure. A clear rec-
tifying behaviour and light-emission can be observed that
originates from electron–hole recombination [239, 240]. Due
to the intrinsic ambipolar transport in un-doped SWNT net-
works the simultaneous accumulation of holes and electrons
within the channel is also easily achieved with a single gate
electrode. When the gate voltage is set between the source
voltage (usually at ground, 0 V) and the drain voltage, the
effective gate potential is positive with respect to one elec-
trode and negative for the other. Thus, a hole and an electron
accumulation layer form. The lateral extent of the two accu-
mulation layers and hence their meeting point depends on the
gate and drain voltages. The resulting narrow emission zone
can be moved through the entire channel, as shown in
figures 10(a) and (b), by simply changing the applied bias.
This is a typical property of all ambipolar transistors based on
emissive semiconductors such as conjugated polymers [145]
or quantum dots [241], and also works for a single carbon
nanotube [227, 242].

For ambipolar networks of different semiconducting
nanotubes, the electroluminescence spectrum of such a light-
emitting transistor exhibits emission peaks at the same
wavelengths and with the same line width as the corre-
sponding photoluminescence spectrum. However, the inten-
sity distribution is shifted toward nanotubes with smaller
bandgaps [89] as shown in figure 10(d). Further, at very high
charge carrier densities that can be achieved by electrolyte-
gating [89] the electroluminescence spectrum shows addi-
tional peaks [90] that can be attributed to emission from
charged excitons, i.e. trions [243, 244].

Light-emitting SWNT devices based on impact excitation
are usually unipolar and require high lateral electric fields to
provide the necessary kinetic energy to create excitons
[224, 226, 245, 246]. In order to keep voltages low the dis-
tance between the electrodes must be short (<1 μm), gate
electrodes are not necessary if carrier injection is sufficient
[247, 248]. Since the created excitons are not fully therma-
lized before photon emission the electroluminescence spectra
of these devices are significantly broadened (peak width
100–200 meV) [249]. Due to the high excitation energies
even E22 emission appears to be possible [250].

Although the emission efficiencies for both types of
SWNT light-emitting devices are very low and reach 0.01%
at maximum, the large current densities enable reasonable
optical output and the emitted light is strongly polarized
[90, 240]. The possibility to couple these planar and tuneable

Figure 10. (a) Schematic illustration of the spatial distribution of holes and electrons in an ambipolar field-effect transistor for different gate
voltages. (b) Near-infrared emission images of an ambipolar SWNT network transistor for different gate voltages showing movement of the
emission zone through the channel (channel length 20 μm). (c) Ambipolar transfer characteristics of an SWNT network transistor with five
semiconducting nanotubes species. (d) Electroluminescence and photoluminescence spectra of this transistor indicate increased emission
from narrow bandgap SWNTs.
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near-infrared emitters to waveguides [238] on a chip could
lead to interesting applications of SWNTs beyond simple
electronic circuits.

8. Conclusions

Over the last few years the field of solution-processed carbon
nanotube electronics has made tremendous progress. One of
the major problems that prevented the application of carbon
nanotubes as semiconductors in printable and flexible elec-
tronics—the separation of metallic and semiconducting
nanotubes—has finally been solved. Dispersions of purely
semiconducting nanotubes can be produced economically on
a large scale. This finally allows the numerous excellent
properties of carbon nanotube networks to be utilized in large
area, printed, flexible and stretchable electronic devices.
Although there are still a number of challenges that need to be
addressed, for example stable n-doping, bias stress stability,
uniformity, etc, the opportunities of carbon nanotube-based
devices are plentiful and many impressive examples already
exist. In addition to the engineering task of creating func-
tioning prototypes, future fundamental research could focus
on the peculiarities of charge transport in networks of carbon
nanotubes with different bandgaps and different densities
beyond simple percolation theory. Long term performance
stability under ambient conditions and the influence of bias
and mechanical stress will be of interest, as well as light
emission from SWNT networks. Overall, the field of carbon
nanotube electronics has finally entered a phase where, thanks
to the availability of pure and well-defined materials, much
more reliable structure–property relationships can be inves-
tigated and exploited, and real-world applications become
feasible.
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