
Inverse Problems      

PAPER

Traffic data reconstruction based on Markov
random field modeling
To cite this article: Shun Kataoka et al 2014 Inverse Problems 30 025003

 

View the article online for updates and enhancements.

You may also like
Inatorial forecasting method considering
macro and micro characteristics of chaotic
traffic flow
Yue Hou,  , Di Zhang et al.

-

Future Traffic Prediction from Short Period
Traffic Data
I Srinivasula Reddy and Vikas Mendi

-

A Fast Deep Learning Method for Network
Intrusion Detection Without Manual
Feature Extraction
Wang Yue, Jiang Yiming and Lan Julong

-

This content was downloaded from IP address 3.143.244.83 on 25/04/2024 at 13:57

https://doi.org/10.1088/0266-5611/30/2/025003
https://iopscience.iop.org/article/10.1088/1674-1056/acd3df
https://iopscience.iop.org/article/10.1088/1674-1056/acd3df
https://iopscience.iop.org/article/10.1088/1674-1056/acd3df
https://iopscience.iop.org/article/10.1088/1757-899X/1006/1/012029
https://iopscience.iop.org/article/10.1088/1757-899X/1006/1/012029
https://iopscience.iop.org/article/10.1088/1742-6596/1738/1/012127
https://iopscience.iop.org/article/10.1088/1742-6596/1738/1/012127
https://iopscience.iop.org/article/10.1088/1742-6596/1738/1/012127


Inverse Problems

Inverse Problems 30 (2014) 025003 (14pp) doi:10.1088/0266-5611/30/2/025003

Traffic data reconstruction based on
Markov random field modeling

Shun Kataoka1, Muneki Yasuda2, Cyril Furtlehner3

and Kazuyuki Tanaka1

1 Graduate School of Information Science, Tohoku University, 6-3-09
Aramaki-aza-aoba, Aobaku, Sendai 980-8579, Japan
2 Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan,
Yonezawa, Yamagata 992-8510, Japan
3 INRIA Saclay, LRI, Bât. 660, Université Paris Sud, 91405, Orsay, Cedex, France
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Abstract
We consider the traffic data reconstruction problem. Suppose we have the
traffic data of an entire city that are incomplete because some road data are
unobserved. The problem is to reconstruct the unobserved parts of the data.
In this paper, we propose a new method to reconstruct incomplete traffic data
collected from various sensors. Our approach is based on Markov random field
modeling of road traffic. The reconstruction is achieved by using a mean-field
method and a machine learning method. We numerically verify the performance
of our method using realistic simulated traffic data for the real road network of
Sendai, Japan.

Keywords: Markov random fields, traffic data reconstruction, machine learning,
Gaussian graphical model, probabilistic information processing

(Some figures may appear in colour only in the online journal)

1. Introduction

An intelligent transportation system (ITS) is a large-scale information system whose objective
is to provide guidance information to drivers and optimize transportation traffic by analyzing
vehicle traffic over an entire city. In order to provide accurate information, an ITS needs to
collect accurate and comprehensive road traffic data. Due to the development of information
and sensing technologies, various types of road traffic data, density, flow, speed and so on, can
be collected from different sensing devices such as optical beacons and probe vehicles. These
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sensors each have different features. For example, a beacon, which is a fixed type of traffic
sensor, can steadily collect the traffic data of the road where it is located in a short time period;
however, the detection area is narrow. A probe vehicle, which is a GPS-equipped vehicle, can
collect the traffic data of a comprehensive area, but cannot collect the data steadily and needs
a long time period to acquire comprehensive traffic data. Therefore, the fusion of various data
collected from different sensors for the purpose of traffic prediction has recently attracted
much attention [1].

Traffic prediction is a major research topic in the machine learning field. In fact, the
analysis of freeway traffic has been researched since the 1970s [2]. Travel time prediction
[3], density prediction [4] and route planning [5] are other active topics. In the machine
learning approach, the existence of two databases, real time (RDB) and historical (HDB),
is assumed. An RDB consists of road traffic data collected from sensors at the present time
and represents a situation for which traffic prediction is required. An HDB contains road
traffic data collected from sensors and traffic surveys in the past and is used to facilitate the
prediction. That is, we use an HDB for learning and make a traffic prediction based on an
RDB.

There still remains an important problem related to traffic prediction based on an RDB.
The quality of the prediction depends on the quality of the RDB. However, the complete traffic
data of an entire road network cannot be acquired since sensors are not installed on all roads.
In fact, only 22% of the total length of trunk roads in Nagoya, Japan is covered by beacons
[6]. Furthermore, at the present time, there are not enough probe vehicles to allow sufficient
data to be acquired. If the number of probe vehicles in Japan were a hundred thousand, on
average, it would take an hour to acquire one or two traffic data of an entire road network
[7]. Therefore, in practice, it is difficult to collect sufficiently comprehensive road traffic
data in a short time period to make a traffic prediction. Therefore, a method to reconstruct
the unobserved parts in an RDB is required to solve a realistic traffic prediction problem.
Recently, some researchers have tackled this problem. Kumagai et al proposed a method to
reconstruct the traffic data of unobserved parts in an RDB based on feature space projection
[8], which Kumagai and co-workers then applied to the dynamical traffic prediction problem
[9]. In the field of statistical mechanics, Furtlehner et al modeled road traffic as an Ising model,
where the state is determined by whether a road is congested or not, and addressed the traffic
reconstruction and prediction problem that arises when the observed data are incomplete using
belief propagation [10].

In this paper, we propose a new algorithm to reconstruct the traffic density data of the
unobserved parts in an RDB. We use a Bayesian approach to express a posterior probability
density function of unobserved roads. Our method is based on Markov random field (MRF)
modeling of road traffic and the reconstruction of the traffic data of the unobserved parts in an
RDB is achieved by solving simple simultaneous equations derived by a mean-field method
after learning our MRF model on an HDB.

The remainder of this paper is organized as follows. In section 2, we introduce a graph
representation of a road network and MRF modeling of road traffic. In section 3, we propose a
traffic density reconstruction algorithm based on the MRF modeling of road traffic described
in section 2. In section 4, we give a framework for determining the hyperparameters in
the posterior probability density function derived in section 3 using the machine learning
method. In section 5, we describe our numerical verification of the performance of our MRF
model, which was achieved by conducting leave-one-out cross-validation and using large-scale
simulation data for the road network of Sendai, Japan (the number of roads is 9582). Finally
in section 6, we present our concluding remarks.
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(a) (b)

Figure 1. A simple case to explain our graph representation of a road network. (a) A toy
road network with six roads. (b) A graph representation of the toy road network consists
of six vertices and nine edges.

2. MRF modeling of road traffics

In this section, we explain how road traffic is expressed by MRF modeling. First, we define the
undirected graph representation (V, E ) of a real road network. Let us consider a road network
consisting of N roads or road segments. A vertex i ∈ V := {1, . . . , N} corresponds to the ith
road in the road network. A set of all edges E includes edge i j if a vehicle on road i can move
to road j without passing along the other roads.

We assign a random continuous variable xi ∈ (−∞,∞) associated with the traffic density
of road i ∈ V . For each vertex and edge, we assign a potential function ψi(xi) and ψi j(xi, x j),
respectively. Then, the joint probability density function of x := {xi | i ∈ V } is written as a
product of a potential function

P(x) := 1

Z

∏
i∈V

ψi(xi)
∏
i j∈E

ψi j(xi, x j). (1)

The quantity Z is a partition function defined as

Z :=
∫

dx
∏
i∈V

ψi(xi)
∏
i j∈E

ψi j(xi, x j), (2)

where
∫

dx is taken over all the configurations of random variables x. If we want to use a
discrete random variable, the integration over continuous variables in equation (2) becomes a
summation over discrete variables.

To explain our model, a simple case is shown in figure 1. There are six roads, represented
as encircled numbers, and two intersections in figure 1(a). In this toy road network, vehicles
on road 1 can directly move to roads 2, 3, or 4, but cannot move to roads 5 and 6 without
passing along road 4. Then, this road network is translated to its graph representation, shown
in figure 1(b). In this case, the joint probability density function is expressed as

Pex(x) := 1

Zex

6∏
i=1

ψi(xi)
∏

i j∈Eex

ψi j(xi.x j), (3)

Zex :=
∫

dx
6∏

i=1

ψi(xi)
∏

i j∈Eex

ψi j(xi.x j), (4)

where Eex := {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}, {5, 6}}. It should be
noted that we ignore road direction relationships throughout this paper for simplicity, as shown
in figure 1; however, extending our model to one that includes road direction relationships is
straightforward.
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3. Traffic data reconstruction algorithm based on MRF

As mentioned in the introduction, a problem that affects traffic prediction is that complete
traffic data of all roads cannot be collected due to a lack of sensors. In this section, we propose
a method to reconstruct the traffic densities of unobserved roads from observed traffic densities
based on MRF modeling and the Bayesian point of view. Suppose that {yi | i ∈ Vo ⊂ V } is
a set of traffic densities of observed roads collected by sensors at a certain time and that
the information about the traffic densities is incomplete. Our goal is to reconstruct the traffic
densities of unobserved roads i ∈ Vu := V\Vo.

In the Bayesian point of view, a reconstruction of unobserved roads is inferred by using
the posterior probability density function P(x | y) expressed as

P(x | y) := P(y | xo)P(x)∫
dxP(y | xo)P(x)

, (5)

where y := {yi | i ∈ Vo} is a set of the observed results collected by sensors and P(y | xo) is a
conditional density function expressing how y is obtained from the set of true traffic densities
xo := {xi | i ∈ Vo}. It should be noted that, since yi is a specific value, a denominator in
equation (5) gives a constant value.

To define a concrete joint probability density function of x, we assume that the potential
functions in equation (1) are expressed as

ψi(xi) := exp(βixi) (6)

and

ψi j(xi, x j) := exp

{
−η

2
(xi − x j)

2 − εη

2

(
x2

i

|∂i| + x2
j

|∂ j|

)}
, (7)

respectively, where ∂i := { j ∈ V | i j ∈ E} and |S| is the number of elements in set S.
β = {βi | i ∈ V } and η are hyperparameters that determine the features of our MRF model.
βi ∈ (−∞,∞) is an external field that controls the largeness of the traffic density of road
i ∈ V , while η ∈ (0,∞) is an interaction strength that controls the closeness of the traffic
density values of neighboring roads. That is, if βi is set at a large value, the density of road
i tends to take a large value. Similarly, the densities of neighboring roads take close values
if η is set at a large value. Here, we assume that the closeness of the traffic density values
of neighboring roads is governed by a single parameter η for applying a large-scale problem
and reducing computation cost. In appendix A, we discuss the more realistic setting that the
densities of neighboring roads are governed by an edge-dependent parameter, ηi j. It should
be noted that the second term of the exponent in equation (7) meets the mathematical demand
to guarantee the normalization of the resulting prior density function. Therefore, we set ε at a
small positive value to reduce the effect of this term.

Then, the joint probability density function, which is regarded as the prior density function
in the Bayesian point of view, of x is written as

P(x;β, η) = 1

Z
exp

⎡
⎣∑

i∈V

βixi − εη

2

∑
i∈V

x2
i − η

2

∑
i j∈E

(xi − x j)
2

⎤
⎦

=
√

detC

(2π)N
exp

[
−1

2
(x − C−1β)TC(x − C−1β)

]
. (8)

The N × N matrix C is defined by

Ci j :=
⎧⎨
⎩

(ε + |∂i|)η, i = j
−η, i j ∈ E
0, otherwise

(9)
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and called the precision matrix, which is the inverse of the covariance matrix. This form of
probability density function is known as a Gaussian MRF and has been widely used in various
applications [11].

We define a conditional density function P(y | xo) as

P(y | xo) :=
∏
i∈Vo

δ(yi − xi), (10)

where δ(p−q) is the Dirac delta function. Here, it is assumed that the densities of the observed
roads are not corrupted by measurement noises. That is, the densities of the observed roads
are equivalent to the true densities of corresponding roads.

From equation (5), the posterior probability density function P(x | y) is written as
P(x | y) ∝ P(y | xo)P(x;β, η). Thus, the marginal posterior probability density function over
the traffic densities of observed roads is expressed as

P(xu | y;β, η) ∝
∫

dxoP(y | xo)P(x;β, η)

∝ exp

⎡
⎣∑

i∈Vu

βixi − εη

2

∑
i∈Vu

x2
i − η

2

∑
i j∈E1

(xi − x j)
2 − η

2

∑
i j∈E2

(xi − y j)
2

⎤
⎦

∝ exp

[
−1

2
(xu − A−1b)TA(xu − A−1b)

]
, (11)

where xu := {xi | i ∈ Vu}, E1 := {i j ∈ E | i, j ∈ Vu} and E2 := {i j ∈ E | i ∈ Vu, j ∈ Vo}. The
|Vu| × |Vu| matrix A and vector b := {bi | i ∈ Vu} are defined as

Ai j :=
⎧⎨
⎩

(ε + |∂i|)η, i = j
−η, i j ∈ E1

0, otherwise,
(12)

bi := βi + η
∑
j∈∂i2

y j, (13)

where ∂i2 := { j ∈ ∂i | i j ∈ E2}. The reconstruction of unobserved traffic densities in the RDB
can be achieved to find values x∗

u, such that

x∗
i :=

{
x′

i, x′
i � 0

0, x′
i < 0,

(14)

x′
u := arg max

xu

P(xu | y;β, η) (15)

for i ∈ Vu. Because the marginal posterior probability density function in equation (11) is a
multivariate Gaussian distribution, values x′

u are given by the mean vector of

x′
u = A−1b, (16)

and x′
u can be calculated exactly by applying the naive mean-field approximation [12]. The

problem of estimating road traffic densities is reduced to solving the following simultaneous
equations by an iteration method:

x′
i = 1

Aii

⎛
⎝βi + η

∑
j∈∂i

z j

⎞
⎠ (17)

for i ∈ Vu, where

zi =
{

x′
i, i ∈ Vu

yi, i ∈ Vo.
(18)
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The derivation of equation (17) is given in appendix B. Since matrix A is a sparse matrix,
solving equation (17) is more efficient than calculating equation (16) directly.

The proposed algorithm for reconstructing the traffic densities of unobserved roads in an
RDB is summarized as following.

Step 1. Determine the sets Vo and Vu from a graph representation of a road network. Input
the values of observed traffic densities y.

Step 2. Calculate matrix A according to equation (12).
Step 3. Solve simultaneous equations (17) by an iteration method and then use

equations (14) and (15) to obtain reconstructed traffic densities x∗
u.

4. Determining hyperparameters from HDB

We derived a reconstruction algorithm for traffic densities of unobserved roads based on a
naive mean-field method described in the previous section. However, we have not yet specified
the values of the hyperparameters. The purpose of this section is to show how these parameters
are determined from the HDB using a machine learning method. In this section, it is assumed
that a large number of complete traffic data are available. An explanation that justifies this
assumption is that real complete data are not needed to determine hyperparameters and artificial
data will suffice if they express the situations of road traffic well. When we have permitted
the assumption that daytime road traffic situations are similar on different days, we can create
these pseudo complete traffic data at a certain time by merging the data collected on multiple
days because, in contrast to the RDB, the HDB consists of many traffic data for long time
periods and a comprehensive area. This assumption seems reasonable, in particular, at rush
hour in an urban area where traffic predictions are necessary. The extension to the area where
this assumption is violated is mentioned in section 6 as well as the difficulty associated
with it.

Let us suppose that a set of K complete road data of traffic densities, D = {dk | k =
1, . . . .K}, dk := {dk

i ∈ (−∞,∞) | i ∈ V }, created from the HDB. The empirical distribution
of the complete road data is given by

Q(x) := 1

K

K∑
k=1

∏
i∈V

δ
(
xi − dk

i

)
. (19)

A standard approach to determining the hyperparameters is finding that which maximizes the
likelihood function defined as

L(β, η) :=
∫

dxQ(x) log P(x;β, η). (20)

However, this approach often gives rise to the over-fitting problem, which occurs when the
number of hyperparameters is larger than the number of data. Typically, this problem occurred
when the magnitude of estimated hyperparameters gets too large to fit the small set of data.
Therefore, the regularized likelihood function written as

Lλ(β, η; λβ, λη) := L(β, η) − λβ

2

∑
i∈V

β2
i − λη

2
η2 (21)

is sometimes maximized to avoid the over-fitting problem. This regularization method
is called ridge regression [13] and regarded as a MAP estimation to maximize
P(β, η | D) ∝ P(D | β, η)

∏
i∈V N (βi; λ−1

β )N+(η; λ−1
η ) from the Bayesian point of view,

where P(D | β, η) := ∏K
k=1 P(dk;β, η). N (v; u) is a Gaussian distribution of a random

variable v with zero mean and variance u, and N+(v; u) is a rectified Gaussian distribution,

6
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Figure 2. Road network of Sendai, Japan that we used in numerical experiments. There
are 9582 vertices and 20 482 edges in the graph representation of this road network.

which is a modification of N (v; u) that resets its negative element to zero and renormalized.
The parameters λβ and λη are called the regularization parameter; it controls the magnitude
of the estimates of the hyperparameters and is often determined by hand in advance. That is,
the larger values at which λβ and λη are set, the smaller are the values of the estimates of the
hyperparameters. It should be noted that because our MRF model belongs to the exponential
family without latent variables, the regularized likelihood function Lλ(β, η; λβ, λη) is a convex
function [12]. Therefore, there are unique values of β and η that maximize Lλ(β, η; λβ, λη).

From equations (8) and (20), we can write equation (21) as

Lλ(β, η; λβ, λη) =
∑
i∈V

βi〈xi〉D − η

2

∑
i∈V

(ε + |∂i|)〈x2
i

〉
D + η

∑
i j∈E

〈xix j〉D − 1

2
βTC−1β

+1

2
log detC − λβ

2

∑
i∈V

β2
i − λη

2
η2 + const., (22)

where the notation 〈· · ·〉D denotes the expectation with respect to Q(x), i.e., the sample average
of the complete traffic density data set. Using the gradient ascent method, the values of β and η

that maximize Lλ(β, η; λβ, λη) can be obtained. The gradients of Lλ(β, η; λβ, λη) with respect
to β and η are calculated as
∂Lλ(β, η; λβ, λη)

∂βi
= 〈xi〉D − 1

η

∑
j∈V

D−1
i j β j − λββi, (23)

∂Lλ(β, η; λβ, λη)

∂η
= −1

2

∑
i∈V

(ε + |∂i|)〈x2
i

〉
D +

∑
i j∈E

〈xix j〉D + 1

2η2
βTD−1β + N

2η
− ληη, (24)

where the N × N matrix D is given by C = ηD. It should be noted that, although the inverse
of matrix D is needed in equations (23) and (24), it is enough to calculate the inverse matrix
once in pre-processing, because, from equation (9), it depends on only the structure of a given
road network.

5. Numerical experiments

In this section, we describe the numerical verification of the performance of our MRF model.
We used the real road network of Sendai, Japan, described in figure 2, and 360 vehicle
traffic data, which constitute a snapshot of its simulated vehicle traffic, to represent a realistic
situation. In the graph representation of the Sendai road network, there are 9582 vehicles and
20 482 edges.
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Figure 3. [MAE] versus ln λβ and ln λη when p = 0.5, p = 0.7 and p = 0.9. Each point
is obtained by averaging over 360 test data and 100 trials for each test data. (a) [MAE]
versus ln λβ and ln λη when p = 0.5. (b) [MAE] versus ln λβ and ln λη when p = 0.7.
(c) [MAE] versus ln λβ and ln λη when p = 0.9. (d) [MAE] versus ln λβ when ln λη = 0
for p = 0.5, p = 0.7 and p = 0.9.

To evaluate the performance of our model, we conducted leave-one-out cross-validation
[14] in which only one data item was used to check the performance and the remaining ones
were used to determine the hyperparameters by the method described in section 4. The total
performance of the model is then given by the performance averaged over all the chosen test
data. That is, for each choice of test data, we regarded the remaining data as the complete data
created from the HDB, and the test data were used to create the data in the RDB. In the test
phase, we randomly selected unobserved roads with equal probability p from all roads and
then reconstructed the traffic densities of the unobserved roads using our algorithm. In each
test data, we evaluated the performance of our model by the average of mean absolute errors
(MAE) between the true and reconstructed traffic density over 100 trials defined by

[MAE]m := 1

100

100∑
l=1

⎛
⎝ 1

|V (l)
u |

∑
i∈V (l)

u

∣∣x∗
i − x(m)

i

∣∣
⎞
⎠ , (25)

where V (l)
u is the set of unobserved roads at the lth trial and x(m)

i is the true traffic density of
road i in the mth data. Hence, the results of leave-one-out cross-validation are given by

[MAE] := 1

360

360∑
m=1

[MAE]m (26)

for each λβ and λη.
Figure 3(a)–(c) show the plots of [MAE] versus ln λβ and ln λη when p = 0.5, p = 0.7

and p = 0.9, and figure 3(d) show the plot of [MAE] versus ln λβ when ln λη = 0 for p = 0.5,

8
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Figure 4. Plot of [MAE] versus p. Plus marks represent the results obtained by the
proposed method when (λβ, λη) = (0, 1), while cross marks represent the results of a
simple reconstruction method.

p = 0.7 and p = 0.9. Here, we set ε = 10−4 in equation (7). In the region where ln λη = 0 and
ln λβ is sufficiently small, our reconstruction algorithm yields a good performance for all values
of p, and in this region, the [MAE]s are close to the value obtained when (λβ, λη) = (0, 1).
When (λβ, λη) = (0, 1), [MAE] was 0.009 808, 0.009 817 and 0.009 829 for p = 0.5, p = 0.7
and p = 0.9, respectively.

We show the plot of [MAE] versus p in figure 4. The plus marks represent the result
obtained by our proposed method when (λβ, λη) = (0, 1). On the other hand, the cross
marks represent the result obtained by a simple sequential interpolation method. In the simple
method, the density of unobserved road i is reconstructed using the average of densities of
observed roads neighboring i. When all the roads neighboring i are unobserved, nothing is
done for road i at that step. All the reconstructed roads at that step are regarded as the observed
roads at the next step and the same procedure is repeated until all unobserved roads become
observed ones. Our proposed method yields better reconstruction results than does the simple
interpolation method.

We show an example of our numerical experiments when p = 0.7 and (λβ, λη) = (0, 1)

in figures 5 and 6. Figure 5(a) shows the original traffic densities and figure 5(e) shows the
reconstructed traffic densities using our model. In figures 5(a) and (e), the road colors are
changed from black to blue, green, yellow and red in order of increasing traffic density by
0.03 intervals, where a black road is one where the density takes a value between 0 and 0.03.
Figure 5(c) shows the positions of unobserved roads; we colored the roads red when they
were selected as unobserved roads with probability p = 0.7. That is, about 70% of roads are
unobserved. The black roads in figure 5(c) denote the positions of traffic sensors that collect
the traffic densities of the observed parts in the RDB. The MAE between figure 5(a) and (e)
is 0.009 312. Figures 5(b), (d) and (f) are enlarged images of the downtown area of Sendai,
Japan shown in figures 5(a), (c) and (e), respectively. Figure 6(a) shows the magnitudes of true
and estimated traffic densities of unobserved roads in figures 5(a) and (e) with an auxiliary
line drawn where estimated densities and true densities are equivalent. If the estimated traffic
density is equivalent to the true one, the corresponding point is on this line. Figure 6(b) is an
enlarged plot of figure 6(a) in the region where traffic density is low. The solid line in figure 6
is the auxiliary line. The correlation coefficient between true and estimated traffic densities of
unobserved roads is 0.9168. This result suggests that there exists a strong linear correlation
dependence between true and estimated traffic densities.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. An example of our numerical experiments using simulated data for the road
network of Sendai, Japan. (a) True traffic density data where each road is colored
according to its traffic density. (b) Enlarged image of a part of (a). (c) Positions of
unobserved roads where unobserved roads are colored red. About 70% of roads in
this road network are unobserved. (d) Enlarged image of part of (c). (e) Result of
reconstruction using our model. The MAE between (a) and these results is 0.009 312.
(f) Enlarged image of part of (e).

6. Concluding remarks

In this paper, we proposed a traffic density reconstruction method based on MRF modeling.
The reconstruction of unobserved parts of an road network in an RDB is reduced to a
simple simultaneous equation of a mean-field method. The hyperparameters in our model
are determined utilizing past traffic data in an HDB. We evaluated the performance of our
model by conducting leave-one-out cross validation, as described in section 5. In the numerical
experiments, we used large-scale simulated data of traffic in Sendai, Japan. We think it difficult
to apply the previous reconstruction method to such a large-scale road network. It should be
noted that, in this study, we reconstructed only the traffic density data; however, the extension
of our MRF model to other data types, such as speed or flow, and furthermore, to combinations
of these data types, is straightforward.
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Figure 6. Plots of the magnitudes of true and estimated traffic densities of unobserved
roads in figure 5(a) and (e). The solid line is an auxiliary line drawn where estimated
densities and true densities are equivalent. (a) Plot of the magnitudes of true and
estimated traffic densities of all unobserved roads. The correlation coefficient of these
points is 0.9168. (b) Enlarged plot of (a).

In our scheme, we made two assumptions about the HDB and traffic densities for analytical
convenience. The first assumption was that a number of complete traffic data can be created
from an HDB because it can contain many traffic data for a long time period and comprehensive
area and the daily conditions of road traffic seem similar, especially in an urban area. This
assumption might be unrealistic in an area where the amount of traffic is small, as in a rural
area. Our learning framework can be modified by using an expectation maximization algorithm
[15] for determining hyperparameters from an incomplete data set in an HDB of such an area.
However, the inverse of K different matrices Ak (k = 1, . . . , K) has to be calculated in this
framework. The definition of the matrix Ak is similar to equation (12), but the dimensions
corresponding to the number of unobserved roads in the kth data may be different. Although
the calculation amount of inverting a matrix is polynomial time, calculating the inverse of such
large matrices is still a computationally hard task. Therefore, a straightforward implementation
of this framework will take a long time to be conducted and an approximate method to calculate
A−1

k needs to be found. It should be noted that the reconstruction scheme described in section 3
does not change after this modification. The second assumption was that the traffic density can
take any real value and its potential functions have quadratic form, as equations (6) and (7). This
assumption allows the Gaussian MRF modeling of traffic densities, which is a single-mode
density function. In our definition of MRF modeling of traffic in section 2, we did not need to
restrict the form of the potential functions and their arguments. One extension that would result
in a more complex MRF is using a non-negative Boltzmann machine, which is a multi-modal
density function for the joint density function of x [16]; however, an approximation method
[17] is required because its analytical treatment is difficult.

The other direction in which our MRF model can be developed is to innovate the traffic
properties. In traffic flow theory [18], there are many properties pertaining to vehicle traffic,
such as the flow conservation law, fundamental diagram and so on. Because we considered only
the reconstruction problem of present traffic densities in this study, we utilized only snapshot
data of vehicle traffic as shown in figure 5(a) and did not take account of any traffic properties
statically or dynamically in our model. However, the extension of our MRF model to take
account of the dynamical properties of traffic flow is a very important issue in the analysis of
vehicle traffic. If such a model is designed, we can apply it to the prediction problem of future
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traffic, to which the present model cannot be applied. We aim to develop our MRF model in
these directions.
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Appendix A. The extension to edge-depending parameters model

In this appendix, we discuss an extension of our model to the edge-dependent parameter ηi j.
In typical vehicle traffic pattern, more vehicles tend to go straight than turn left or right.
Therefore, this setting is more realistic than the model represented by equation (8). However,
determining the hyperparameters in this model is computationally hard because the number
of the determining hyperparameters is O(E ). Therefore, we confine ourselves to showing the
framework of this extension.

In this extension, the potential function in equation (7) is modified as

ψi j(xi, x j) := exp

{
−ηi j

2
(xi − x j)

2 − εηi j

2

(
x2

i

|∂i| + x2
j

|∂ j|

)}
. (A.1)

Then, the precision matrices of the prior density function in equation (8) and of the marginal
posterior density function are modified as

Ci j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + ε

|∂i|
)∑

j∈∂i

ηi j, i = j

−ηi j, i j ∈ E

0, otherwise

(A.2)

and

Ai j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + ε

|∂i|
)∑

j∈∂i

ηi j, i = j

−ηi j, i j ∈ E1

0, otherwise,

(A.3)

respectively. Therefore, the traffic density reconstruction algorithm in equation (17) is modified
to solve the following simultaneous equations by an iteration method:

x′
i = 1

Aii

⎛
⎝βi +

∑
j∈∂i

ηi jz j

⎞
⎠ , (A.4)

for i ∈ Vu. The definition of zi is the same as equation (18) in this modification. It should be
noted that the calculation amount in each iteration of this algorithm is the same as the previous
one.
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However, the difficulty pertaining to this extension arises in the learning phase. In the
present model, the gradients of the regularized likelihood function in equation (23) and (24)
are modified as

∂Lλ(β, η; λβ, λη)

∂βi
= 〈xi〉D −

∑
j∈V

C−1
i j β j − λββi (A.5)

and
∂Lλ(β, η; λβ, λη)

∂ηi j
= − 1

2

(
1 + ε

|∂i|
){〈x2

i 〉D − (C−1β)2
i − C−1

ii

}
− 1

2

(
1 + ε

|∂ j|
){〈x2

j〉D − (C−1β)2
j − C−1

j j

}
+ 〈xix j〉D − (C−1β)i(C

−1β) j − C−1
i j − ληηi j, (A.6)

respectively, where η := {ηi j | i j ∈ E} and the notation (a)i is the ith element of vector a.
Obviously, the inverse of precision matrix C, which depends on the set of hyperparameters
η, is needed to calculate these gradients. Therefore, the large inverse matrix C−1 should be
computed repeatedly when the regularized likelihood function is maximized by a gradient
ascent method. This task is computationally hard. Therefore, a fast approximation method to
compute the large inverse matrix is required in order to apply this extension model to the road
reconstruction problem.

Appendix B. The derivation of naive mean-field equations

We derive the equations (17) by using a naive mean-field method in this appendix. In the naive
mean-field method, instead of computing the exact probability density function P(xu | y;β, η)

in equation (11), we compute the probability density function PMF(xu) that minimizes the
Kullback–Leibler (KL) divergence

KL(PMF||P) :=
∫

dxuPMF(xu) log
PMF(xu)

P(xu | y;β, η)
(B.1)

between PMF(xu) and P(xu | y;β, η) under the constraint PMF(xu) = ∏
i∈Vu

PMF
i (xui). Because

P(xu | y;β, η) is a multivariate Gaussian distribution, PMF(xu) can be chosen as a product of
single variate Gaussian distributions expressed as

PMF(xu) =
∏
i∈Vu

1√
2πσ 2

i

exp

[
− 1

2σ 2
i

(xi − μi)

]
, (B.2)

where μ := {μi | i ∈ Vu} and σ := {σi | i ∈ Vu} are parameters that determine the concrete
form of probability density function PMF(xu). Our goal is to determine the parameters μ and
σ that minimize KL(PMF||P). By substituting equations (B.2) and (11) into equation (B.1),
KL(PMF||P) is expressed as

KL(PMF||P) = −1

2

∑
i∈Vu

log σ 2
i −

∑
i∈Vu

biμi + 1

2

∑
i∈Vu

Aii
(
σ 2

i + μ2
i

)
+
∑
i j∈E1

Ai jμiμ j + const. (B.3)

From the minimum condition of equation (B.3) with respect to μi and σ 2
i , equations that

determine the value of μ and σ are given by

μi = 1

Aii

⎛
⎝bi −

∑
j∈∂i1

Ai jμ j

⎞
⎠ (B.4)
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and

σ 2
i = 1

Aii
, (B.5)

respectively, where ∂i1 := { j ∈ ∂i | i j ∈ E1}. Substituting equations (12) and (13) into
equations (B.4), we reach equations (17).
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