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CORRIGENDUM

The version of this paper that was publishedrimerse Problem4995 1211-33 was an earlier
draft of the paper and did not include the many refinements that had been made. The correct
version of this paper is published in full below.

Approximate inverse for linear and some nonlinear
problems

A K Louis
Institute of Applied Mathematics, Univeraitdes Saarlandes, D-66041 Saadken, Germany
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Abstract. In this paper we present a method for solving problems suchifs= g by
constructing an approximate inverse which maps the data a regularized solution of this
equation of the first kind. No discretization fgt is needed. The solution operator can be
precomputed independently of the data. This works for linear problems and for nonlinear
problems with a special structure. The regularization is achieved by computing mollified versions
of the (minimum-norm) solution. It is shown that this class of regularization operators contains,

as special cases, the classical methods such as Tikhonov—Phillips, iteration methods and also
discretization methods. In the case where the operator has some invariance properties the storage
needs are dramatically reduced.

1. Introduction

We study operator equationsf = g for operators between Hilbert spacEsandY. Both
the cases of linear operators and of nonlinearA with a special structure are treated.
The approximate inverse means a solution operator which maps thegdata stable
approximation of the solution of the ill-posed problefif = ¢. This inversion operator is
precomputed without using the data

The method is based on two ideas. First, the computation of moments of the solution
is stable, i.e. instead of we compute the approximatiofy, e,) with a suitable mollifier
ey, thus reducing the high-frequency components in the solution which are mostly affected
by the data noise. This can be reformulated as using a weaker topology in theXpace
see [3, 5]. Examples far, are given in section 2, can be a basis function for projection
methods, it can be chosen such tki#fe,) approximates a derivative of; in wavelet
language it can be a scaling function or a wavelet. Second, in the case of linear operators
the computation ofe,, f) is then achieved by approximatirg in the range of the adjoint
operatorA* by the reconstruction kernel, : A*v, ~e,. Then

(fiey) = (f, A%vy) = (Af.v,) = (g, vy).
This is the mollifier method presented in [7]. For nonlinear operators we combine these ideas
with the results of Snieder [13] who generalized the Backus—Gilbert method to nonlinear

problems. A detailed analysis of the method shows that the computational effort is much
smaller than in [13].
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176 A K Louis

In general, the regularization of ill-posed problems is achieved by regularization methods
like Tikhonov—Phillips, truncated singular-value decomposition or iterative methods like
Landweber or conjugate gradients. For references see, for example, [2, 4, 5, 10, 12]. These
methods can easily be represented by the singular-value decomposition of the compact
operatorA and a corresponding filter. On the other hand there are regularization methods
like Backus—Gilbert or mollifier methods, see [1, 7, 12]. In section 2 we derive the
approximate inverse and we show that in the case of linear operators we compute a
mollified version of the minimum-norm solution. We show in section 3 that the above-
mentioned regularization methods are special cases of these mollifier methods. Also the
relation to the Backus—Gilbert method is made precise. The next section presents the central
difference quotient for approximating the first derivative as an approximate inverse where
local averages of the solution are computed. Further on it shows an example where we
determine the derivative of the solution of an integral equation of the first kind by properly
choosinge,, .

If the operator has some invariance properties the storage needs are reduced by applying
group representations which intertwine with the operator. This is the content of section 5
and the base for an efficient implementation. Section 6 contains the nonlinear case where for
the sake of simplicity we start with a quadratic problem. The approach is then generalized to
a larger class of problems. The last section contains numerical experiments for a nonlinear
problem.

2. Approximate inverse for linear problems

In the following we assumd to be a linear, continuous operator between the Hilbert spaces
X andY. Particularly, we think ofX as a space of functions antas a finite-dimensional
space of measurements. Hence, if necessary, w&usd.»(2) for a suitable sef2 ¢ R?.
Examples for mollifiers are

e, (x,y) = x -y

vol(sd-1yyd X7
wherey, is the characteristic function of the ball around 0 with radiuand vol$¢~1) is
the measure of the surface of the unit ballRA. Here local averages of the solution are
computed. With the band-limiting filter

d
e, (x. ) = (L) sinay(x = y)

the high-frequency components in the solution are eliminated. The kernel of the heat
equation is fast decaying,

e, (x,y) = 2m) 2y~ exp(—|x — y[/(2y?).

In all cases the parameter acts as a regularization parameter. The mollifigris not
necessarily a function with mean value 1. When the essential information we need is
discontinuities inf we can use ag, a function such thatf, e, (x,-)) approximates a
derivative of f(x). This means that, can also be a wavelet, see e.g. [8].

For a motivation we consider the problem

Af(X)=/xf(t)dt=g(X) 0<x<1
0
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where the inverse operater— is the differentiation of the first order. For a sufficiently
smooth function and for homogeneous or periodic boundary conditions we compute,
see [5],

(W, f) = (W, A7g) = (A7H*Y, g) = (A, g)
where
A=ADY=—-y.
The solution depends continuously on the datas is seen by the simple calculation

(W, A= 1w, A7 ) < lIAllgl -

The smoothness needed for the functiprdepends on the smoothing of the operator
In the example considered here, the functiois once more differentiable thafi and the
function Y has to be at least once differentiable.

After this motivation we start with the procedure described in the introduction. First
we assume the equatiofi'v, = e, to be solvable. Then we put

(frey) = (f, A"vy) = (Af,v)) = (g, vy) = Sy 8. (1)
This is the technique to derive inversion formulae in x-ray computer tomography resulting
in the so-called filtered backprojection methods, see e.g. [9]. If the equation = e,
is not solvable we approximatg, by minimizing the defect|A*v, — e, || for sufficiently
smoothg leading to the equation

AA*v, = Ae, . )
Then we get
(fiey) = (f, A"vy) = (Af.v,) = (g, vy) =1 Sy8.

It is important to mention that no artificial discretization gfis needed as introduced by
projection methods, see e.g. [5, 9, 10].

Definition 1.Let ¢, be a suitable function, and lai, be the solution of (2). Then
S,g = (g,v,) is called theapproximate inverseof the operatorA and v, is the
reconstruction kernel

In the situation wher& = L,(Q2), Y = R this means

N
Syg(x) =D guvyn(x).
n=1
The minimum-norm solution of the equatioty = g is the solution with smallest norm. It
is contained in the range of the adjoint operatdrand therefore computed as
fu =A% where AA*u=g.
Hence
fu=A*(AAD g, ®3)

The next theorem gives a simple relation between the approximate inverse and the minimum-
norm solution.

Theorem 2.The approximate inverse maps the right-hand sidd pf= g to the mollified
version of the minimum-norm solutiofiy, defined in (3), i.e.

Syg = (fu.ey). (4)
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Proof. The functionv, can be written following (2) as
v, = (AA")Ae,
resulting in
Syg = (g, vy) = (g, (AA") " Ae)) = (A" (AA") g e,) = (fu. ¢)) -

If A: L) — RN is given as(Af), = (f. ky) = [qka() f(y)dy forn =1,...N,
then the adjoint operatot* : RY — L,(Q) is given as

N
A*g(x) = Zgnkn(x) .
n=1

The matrix representingl A* is the Gram matrix of the systedt, : 1 < n < N} and
computed as

or
AAT = /Q KO (y) dy

wherekk" denotes the dyadic produdtk( );; = kik; for k = (k1,...,ky)" € RV,

The discrete equation inherits the instability of the integral operator, which means
that the matrix is ill-conditioned. The, are then computed by using Tikhonov—Phillips
regularization with a rather small regularization parameter. The fine regularization is
achieved by the parameterin e,, compare this with [11].

3. Comparison with other methods

In this section we show that most methods used for stabilizing the solution are special cases
of the approximate inverse. To this end we first present some of these methods. We then
compare our result with the Backus—Gilbert method.

The most prominent regularization method for ill-posed problems is Tikhonov—Phillips
regularization where the defect is penalized wvatpriori information on the solution. For
the sake of simplicity we use thi,-norm of the solution and get

T (f) = IAf = gl>+ vIIfI%.
The minimum of this functional is computed as solution of
(A*"A+yDf, = A"g. (5)

Now let A be a compact operator between the Hilbert spateand Y. Then it has a
singular-value decomposition

{vnv Up; Un}n
wherev,, u, are normalized and
Av, = o,u, and A*u, = o,v, .

For non-degenerate operatofs i.e. where the dimension of the range is not finite, the
singular values, decay to 0. The degree of the decay is a measure for the ill-posedness
of the operator. With the singular-value decomposition the solution of (5) can be written as

T,g =Y Fy(on)o, Mg, tn)v, (6)
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where the filterF, is given as
R =2
)= —F5——.
Y 0_2 + y
Of course, the truncated singular-value decomposition can also be written in the form (6)
where

1 ozy
F,(0) =
0 o<vy.
For the Landweber iteration,
[t == BAR(AS™ — @)

the filter is, when identifying the regularization parametewith 1/m wherem is the
iteration index,

Fu(o)=1—(1— Ba?®™.
The last example we want to mention is the method of conjugate gradients where the filter
is given as

Fp(0) = Py 1(0?; g)o?

and the polynomials?,,_; describe the iterations; they depend on the gataence this is

a nonlinear regularization method for a linear problem, and therefore this extremely well
behaving method does not fit into the frame of the approximate inverse we study here. For
more details see e.qg. [5].

The next result shows that the regularization methods as discussed above with the
exception of the conjugate gradient method are special cases of the mollifier methods. To
describe the result we make use of function spaceshe mollifier is then a function of
two variables and we considé g(x) = (f, e, (x, -)) which means that the scalar product
is taken with respect to the second variablepf

Theorem 3Let the regularization method, in (6) be given with a filterF,,. Then this
method can be written as an approximate inverse with mollifier

ey (x,3) =Y Fy(0)ua(x)va(y) . @
Proof. The definition ofv, as solution ofAA*v, = Ae, in (2) leads with

v () = Y0, M ey (x, ), v,
to

vy, (x) = Z Fy(00)0, 0, (x) .
Then

Syg(x) = (8, vy () =T, g(x).

Because of the versatility in the selection of #g which are functions of two variables,
e, (x,y), and which can differ for different, it is not always possible to write the
approximate inverse as a special regularization method. We can state the following result.
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Theorem 4Let e, be decomposed into
ey (X.3) =Y ey mnVn(X)Vn ().
Then the approximate inverse can be represented as a regularization method based on a
filter F, if and only if the filter satisfies
ey.mn = F,(04)8mn -
Proof. If we expande, in terms of thev, as

ey(xa y) = Zey,mnvn(x)vm(y)

mn

-1
Uy (x,) = ZU” Up Z ey.mnvm(x) .
n

m

then

Hence
{vy(x,-), 8) = ZG un,g>zey,mnvm(X)

= Za Fy (02) (ttn, )0n(x) =Y €ymntm = F (0,)y .

m

With the orthonormality of the, it follows that
€y mn = Fy (Un)(smn .

This leads to the above statement and shows that this is, at least from a theoretical point of
view, the much more general approach. The regularization property can be interpreted in
the following sense. For many integral operators the singular functions belonging to small
singular values; i.e. which produce the instability, are highly oscillating, see for example
[5, 6, 14]. The local averaging in this method thus stabilizes the problem.

In the following we compare the method of approximate inverse with the Backus—
Gilbert method for the situatiod : L»(Q2) — RY. In the classical Backus—Gilbert method
an approximation to the solution at pointis computed as

Sg(x) = (g, v(x)) = Zgnwnoc)

wherew, (x) is determined by minimizing

N 2
/Q|x—y|2\2wn(x>kn<y)\ dy:/s;|x—y|2|A*w(x)(y)|2dy
n=1

with the normalization
N
an(x)/gkn(y) dy =/§2A*(w(X))(y) = (A"w(kx), 1) =1.
n=1

The first condition is interpreted as finding tiséx) such thatA*w(x) approximates the delta
distribution at the poink, the second condition gives a normalization because otherwise the
solution to the minimization would be» = 0. Thew,(x) are computed with Lagrangian
multipliers; together with the multiplier. they are the solution of

(57 6) (" )=(5)
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where the matrix elements @f are
Cy) = [ 13 =3Pk ) dy
and
hi = / ki(y)dy.
Q

The matrix for determining th@, (x) depends here on the reconstruction painso it has

to be decomposed for each Besides that, the amount of smoothing, the spread of the
point spread function, depends on the kerel y|?. If this should be changed then the
kernel changes and the calculations have to start from the beginning. So the main difference
to the approximate inverse is the attempt to approximate the delta distribution instead of a
mollifier and the extreme numerical effort.

4. Invariances reduce the storage needs

Due to the fact that in the applications only a finite humber of data is available we have
Y =R" orY =CV. Then

N
S)/g(z) = Zgn Uy,n(z)
n=1

which means that we have to compute the reconstruction kernel) € RY for all
reconstruction pointsx. These values are precomputed independently of the data. So
computing time is not a big issue, but the storage needs can be prohibitively large.

In the following we use invariance properties of the operatdo reduce dramatically
the storage needs for the method. To present the ideas we start with the following example.

Example 5.Let A be a convolution operator
A = [ k=)
R4

andX =Y = Lo(R%). Let T be the translation defined as
T*f(x)=f(x —2).

Then
T*A = AT*

and
T°AA" = AA™T*.

Proof. We easily see that
AT f ) = [ k=0 - 2y

- /k(x =) f )

=Af(x—2)
= TAf(x).
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The operatorA A* is computed as

At = [ kP g0 dy
where

k?(x,y) = /d k(x —uwk(y —u)du .
Then ’

AA' T g(x) = / K@ (x, y)gly —2)dy

= /k(z)(x, u+z)g(u)du

= /k(z)(x —z,u)g(u) du
=T*AA%g(x).

In the following letE, be a function of one variable, we can think Bf (y) = e, (0, y).
Instead of a translation we consider arbitrary group representations.

Theorem 6let A : X — Y and let7;" be a group representation dh and 7, T3 be
group representations df such that

ATy =T; A (8)
and

Ty AA* = AA*TY . 9)
Let w, be the minimum-norm solution of

AA*w, = AE, . (10)

Then the solution of
AA™v,(x) = ATVE,

vy (%) = T3 w, . (11)
Proof. From the invariance properties follows:
AT}E, =T, AE,
= AA* T w,
which completes the proof.

This means that only the solutian, has to be computed and stored, the kernels for
other reconstruction points are found by the action df;" on E, and byT3 onw,.

For the above example of the convolution equation this can be applied in the following
way. LetT = T; = T = T3 be the translation. The approximate inverse is then

S,g(x) =(T"w,, g)
=/ w,y, (y — x)g(y) dy
]Rd

which again is of convolution type. Hence instead of a function of two variahlés, y)
only the functionw, of one variable is needed.
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In the case of a finite number of data whewf), = Af(x,), n = 1,..., N for
suitable pointsx, the reconstruction kerneb, is a vector inRY with (w,), = w, (x,).
Thenw, (x, —x) can be evaluated by linear interpolation betweéen),, and(w,,),+1 with
X K Xp — X < Xy

For Y = RY and M reconstruction points the storage needs originally Was N real
numbers, now it is onlyW real numbers!

5. Numerical examples

We study two examples in this section. First we considlee Y = L,(0, 1) and again the
equation of the first kind

Af(x)=foxf(t)dt=g(x) 0<x<1

with the solutionf = g’. The adjoint operator is

1
A*g(y) = / () di

and therefore the solution of

A, (x, ) = e, (x, )

ad
v]/(-xv y) = _58}/()67 y)

With e, (x, y) = x-y.,1(x — ¥)/(2y) we get, using distributional derivatives,
1
Uy(xv y) = 5(3x+y - 3)(,),)
and hence the approximate inverse is the central difference quotient

1
Syg(x) = 5(g(x +y)—gx—y))

which means that the central difference quotient with stepsiegesults in a local averaging
of the searched-for solution with the characteristic function of the interval |].

The band-limiting filtere, (x, y) = y /7 sindy (x — y)) results in the band-limiting
differentiation formula with reconstruction kernel

y(x —y)cosy(x —y) —siny(x —y)
m(x —y)? '
Both the mollifierse, and the reconstruction kernels are of convolution type which

minimizes both the storage and the computational effort, as discussed in the last section.
For the numerical experiment we consider. L,(Q2) — RY and the integral equation

vy (x,y) =

1
(Af), = /0 K N dy = gr)  1<n<N (12)
for equally distributed points, = (n — 1/2)/N where the kernel is given as

x(1-y) <Yy
X .

k _ s
CN=1a-0n  v<
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52 X g o8 : Figure 1. Solution of (12) with exact data.

0.2 O 5 0.8 E Figure 2. Solution of (12) with noisy data, 5% noise.

[

0.2 9.6 0.8 1

. 1
Figure 3. Derivative of the solution of (12) with
2 exact data.

AN N
v\/vvv

Reconstructions witle, (x, y) = y sindy (x — y))/m are shown in [7]. Here we want to
apply the approximate inverse wigh(x, y) = (2r)Y?y~Lexp((x —y)?/(2y?)) to determine
both the solution and the derivative of the solution. For computing the derivative we
start from

£ = (fey(x,)) = —(f. €, (x,)) + fe, (x, )]

which means that we determing such that|A*v, (x)+e’y (x, )|l is minimized. Whenf (a)
and f(b) are known we can use this formula directly, otherwise we have to approximate
these two values. The critical task of computing derivatives of the searched-for function is
achieved here by differentiating the analytically given funciégprinstead of differentiating
the numerically determined functiofi. The price to pay is thatle;, has to be evaluated
with high accuracy.

The right-hand side in the numerical example was chosen such that the exact solution is
piecewise linear as shown in the following figures. Data errors occur also by the evaluation
of Ae,. Figure 2 shows the result with 5% data error.
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1 |
e

-2 Figure 4. Derivative of the solution of (12) with
noisy data, 3% noise.

Figures 3 and 4 show the computation of the derivative of the above function. Note
that this function is not differentiable in the classical sense. The discontinuities and the
behaviour of the derivative are clearly visible.

6. Nonlinear problems

We start the presentation of the approach for the nonlinear problem
A LyQ) — RN

by considering, for the sake of simplicity, only a quadratic problem. Let the opedaber
given as

Af = ALf + Ao f
where A, is linear,

(Avf), = /Q KA £ () dy

and A, is a quadratic operator defined as

(Aaf)n = fﬂ fg K2(y1. y2) £ (y) f (v2) dy dy

With k! we denote the vector of th&¥ components ok! and similarly withk? the vector
of the N components ok?. For the approximate inverse we follow Snieder [13] and make
the following ansatz:

fy(x) = (g, v, (x)) + (g, V) (x)g)
whereV, (x) is anN x N matrix. We replaceg by Af and get

Ty () = (Avf, vy (0)) + (A f, vy (x)) + (ALf, Vy (D) ALS) (13)

where we omitted the higher order terms.

In the following we always use € Q as the reconstruction point which is arbitrarily
fixed; and withy1, y, and so on we denote the integration variables in the integral operators.

Of course, we can attempt to approximate with the right-hand side an expression like
(f, e, (x,-)). But then the approximate inverse is not independent of the data, and this does
not lead to an approximate inverse as aimed for. We therefore follow [13] and consider
the terms separately. We approximate the mollified solution with the linear term as well as
possible which means

(Arf, vy (x)) = (f, ey (x, )
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hence
A1ATv, = Age,, .

The computation ob, thus follows exactly the same lines as in the linear case. When this
term presents the solution it only remains to make the rest as small as possible. Denoting
the remainder by

R(x)(y1, y2) = vy () k2 (y1, y2) + K (1) Vy (0K (v2) (14)
wherea' b is the scalar product in the image spa&®, we can write the rest in (13) as

/Q /Q R(x)(y1, y2) f(y1) f(y2) dy1 dyz.

In order to make this term as small as possible we minimize with respégt(to for each
reconstruction point the norm

IR, IZ axey — MiN.

We get

1RO = [ (0] R0 30 + K0TV, 0k 0)) dys
QxQ

= / ((y ) TK2 (1, ¥2))? + 20, () K2 (y1, y2)k (3D Vy (0K (372)
QxQ

+ (K (yD)"V, (0K (32))?) dy1 dys .

Differentiating this expression with respect to the fixed matrix elem@;;(x) and
equating the derivative to zero we find

/ KoK T dys V(o) / Kk ()" dys
Q Q

= - f vy (K (1 32k GOk} (y2) dyady, i j=1.....N.
Qx Q2
In matrix notation this is simply
N
(A1ADV, (x)(A1A7) = — Z Uy (X) By (15)
n=1

where the matrice®, on the right-hand side are
B, = / KGR, y2)k ()" dyy dys
QxQ
This means that withC, = (A1A4})71B,(A1A%)~! the functionkl(y1)TC.k1(y,) is the

orthogonal projection of the functidef(y1, y2) on the linear space spﬁrﬁ(yl)kjl(yz): i,j=
1,..., N}. Hence, if thek} are linearly independent, the matrix is simply

N
Vy(x) = - Z vy,n(x)cn
n=1
and we get

N
Fr@) = (2.0, (1)) = Y v,a(x)(g. Cag) -
n=1
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For the approximatiory, this means that

fy @) = (v, (x), 8) + (g, Vy )
N

= (v, Arf) + D vy (@)((A2f)n — 87 Cag) -
n=1

If the kernelsk? are already in the span of the product of the which means that
k2(y1, y2) = kY(y1)"C.kY(y2) and (A2f), = (A1f)"C,ALf, then the contribution of the
square term comes only from

(ALf. Vy () Az f) + (A2f. Vy (X)ALf) + (A2 f, V, (x) A2 f)

(see also the discussion in [13]).
The generalization of this approach to operators of arbitrary order in the following sense:

Af =Y Af (16)
(=1

where

(Aefn = /Qi ko ¥ FO1) - fFe) dyr ... dyg (17)

is now straightforward, but notationally difficult. Examples for operators of this type are
given in [13]. Withb® (g1, ..., g¢) we denote a multilinear form: i.é(g1, ..., g¢) is linear
in each argument. This form is generated by the teméoFor ¢ = 1 we have

blg) =(vy,8)  vi=wv,
fore =2
b?(g1, 82) = (g1, Vy &2) v =V,.

If we always use the same argument we simply weitég). To be precise we have to
indicate the dependence bf on the reconstruction point, henceb’(x; g). The ansatz for
the approximate inverse is now

L
frex) =Y b'(x;g) (18)
(=1

where we determine the tensors generating the multilinear tdras described above for
L = 2. We replaceg by Af and collect the terms with same number of factgrs

[y (x) = br(x; ALf) +bY(x; Aaf) + b2(x; Arf, Arf) + bH(x; Asf) + b2(x; Aaf, ALf)
+b%(x; Avf, Aaf) + b3(x; Arf, Arf, Arf) + -

whereb® andb? are determined in the way just described and we continue recursively. The
remainder corresponding to (14) is denotediyyand we minimize

IReCx; y1, - oy Y llLa@t) -
We denote the components of the tensbby v: with the multi-indexe € N¢. Then

N N
Ro(xiyr ...y = Y ooy wbks (v1) -k (o) + rexs ya. .. ve)

Dt1=1 Cl,j=1



188 A K Louis

wherer, depends on terms determined before. The norm of the rest is

N N
1RO,y = / {(Z"'Zvﬁkil(M)H-k;{(yz))z
Qt a;=1 =1

N N
+2) Y vk () -kl ()
O£1=1 (X@:l

X ro(x; yl,...,yz)} dy ... dye + lIrell?.

Differentiating with respect to a fixed! leads to the following system of equations for
the v¢:
B

N N
DR vé/ ke, (YK, (y0) dyl"'/ ky, (yokg, (ve) dy,
B=1 =1 Q Q
= —/,kil(yl)mki[(yz)rz(x;yl,...,yz)dyl--- dy, .
QI
Note thath kim (ym)klm (Ym) dym = (A1A7)q,5,- We can collect the results in the following
theorem.

Theorem 7.The matrix for determining the tensef does not depend on, it consists of
factors ofA1A%. The tensor has the form

N
vi(x) = Z vi(x)B,f (29)
n=1

where B! is a tensor of ordet and it is independent of.

Proof. The first assertion is obvious from the above derived system of equations, the second
statement follows by induction. Fdr= 2 we have

ra(x; y1, y2) = vy, (1) K3 (y1, y2) -

In the step from¢ to ¢ + 1 the sum starts with] (x)k“"1(y1, ..., ye+1) plus terms which
are contained already in.

7. Numerical example

We present numerical results for a problem discussed in [13] where the remafnaes
displayed but where numerical reconstructions are not given.
The differential equation for the vibrating string is

p(x)w?

u’(x) + u(x)=0 u(0) =u(L) =0.

We assume the functiop to be

p(x) = po(l+ f(x)).
For f = 0 the eigenfunctions are

2\ 1/2
ug(x) = () Sin@
L L
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and the eigenvalues

0 T\Y?nn
w,=— —.
00 L

The datag, in our problem are the relative frequency shifts given as

2 0y2
o’ — (o
gnzin ézn) n=1...,N
(@)

which means that we study : L,(Q2) — R". For the integral operator we get the kernels

K (y) = —% siruZ(’””)

L
and
4 . nmyr ., Ny
k2(y1, y2) = — Sirf sir?
- (1, y2) 2 I 3
4 p? . ATyl . M{TY1 . ATY2 . MY
— sin sin sin sin .
+ Z L2n2 —m? L L L L
m#n
The matrixA1AF = %I +ee', wheree = (1,...,1)". For the reconstruction we used the
piecewise linear mollifier
1-27% <y <aty
1 14
Ey(x_y)Z; 1+y_x x_ygygx
14
0 otherwise.

Here Aie, (x, -) can be computed exactly.

The reconstructions are presented hereNot 15 without noise (figure 5) and with
3% noise in figure 6. Exact data means that the first 15 eigenvalues are computed with high
precision using hierarchical finite elements. The function to be reconstructed is piecewise
linear, the broken curves (—— —) are the results from the linear part of the problem and
the straight lines are the reconstructions including also the quadratic part. These examples
show that the additional effort in computing the quadratic approximation improves the result
considerably.

0.5

~~~~~~

0.1 >, R

- N Figure 5. Solution of inverse eigenvalue problem
7 X with exact data, linear and quadratic approximations
7.2 5.7 0.6 EC 1 of the exact solution.
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0.5
0.4
0.3 T ——

0.2 - ~,

Figure 6. Solution of inverse eigenvalue problem
with noisy data (3%), linear and quadratic approxi-
0.z 0. A 5.8 B mations of the exact solution.
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