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CORRIGENDUM

The version of this paper that was published inInverse Problems1995 1211–33 was an earlier
draft of the paper and did not include the many refinements that had been made. The correct
version of this paper is published in full below.
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Received 14 March 1995, in final form 7 August 1995

Abstract. In this paper we present a method for solving problems such asAf = g by
constructing an approximate inverse which maps the datag to a regularized solution of this
equation of the first kind. No discretization forf is needed. The solution operator can be
precomputed independently of the data. This works for linear problems and for nonlinear
problems with a special structure. The regularization is achieved by computing mollified versions
of the (minimum-norm) solution. It is shown that this class of regularization operators contains,
as special cases, the classical methods such as Tikhonov–Phillips, iteration methods and also
discretization methods. In the case where the operator has some invariance properties the storage
needs are dramatically reduced.

1. Introduction

We study operator equationsAf = g for operators between Hilbert spacesX andY . Both
the cases of linear operatorsA and of nonlinearA with a special structure are treated.
The approximate inverse means a solution operator which maps the datag to a stable
approximation of the solution of the ill-posed problemAf = g. This inversion operator is
precomputed without using the datag.

The method is based on two ideas. First, the computation of moments of the solution
is stable, i.e. instead off we compute the approximation〈f, eγ 〉 with a suitable mollifier
eγ , thus reducing the high-frequency components in the solution which are mostly affected
by the data noise. This can be reformulated as using a weaker topology in the spaceX,
see [3, 5]. Examples foreγ are given in section 2;eγ can be a basis function for projection
methods, it can be chosen such that〈f, eγ 〉 approximates a derivative off ; in wavelet
language it can be a scaling function or a wavelet. Second, in the case of linear operators
the computation of〈eγ , f 〉 is then achieved by approximatingeγ in the range of the adjoint
operatorA∗ by the reconstruction kernelvγ : A∗vγ ' eγ . Then

〈f, eγ 〉 ' 〈f, A∗vγ 〉 = 〈Af, vγ 〉 = 〈g, vγ 〉 .

This is the mollifier method presented in [7]. For nonlinear operators we combine these ideas
with the results of Snieder [13] who generalized the Backus–Gilbert method to nonlinear
problems. A detailed analysis of the method shows that the computational effort is much
smaller than in [13].
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In general, the regularization of ill-posed problems is achieved by regularization methods
like Tikhonov–Phillips, truncated singular-value decomposition or iterative methods like
Landweber or conjugate gradients. For references see, for example, [2, 4, 5, 10, 12]. These
methods can easily be represented by the singular-value decomposition of the compact
operatorA and a corresponding filter. On the other hand there are regularization methods
like Backus–Gilbert or mollifier methods, see [1, 7, 12]. In section 2 we derive the
approximate inverse and we show that in the case of linear operators we compute a
mollified version of the minimum-norm solution. We show in section 3 that the above-
mentioned regularization methods are special cases of these mollifier methods. Also the
relation to the Backus–Gilbert method is made precise. The next section presents the central
difference quotient for approximating the first derivative as an approximate inverse where
local averages of the solution are computed. Further on it shows an example where we
determine the derivative of the solution of an integral equation of the first kind by properly
choosingeγ .

If the operator has some invariance properties the storage needs are reduced by applying
group representations which intertwine with the operator. This is the content of section 5
and the base for an efficient implementation. Section 6 contains the nonlinear case where for
the sake of simplicity we start with a quadratic problem. The approach is then generalized to
a larger class of problems. The last section contains numerical experiments for a nonlinear
problem.

2. Approximate inverse for linear problems

In the following we assumeA to be a linear, continuous operator between the Hilbert spaces
X andY . Particularly, we think ofX as a space of functions andY as a finite-dimensional
space of measurements. Hence, if necessary, we useX = L2(�) for a suitable set� ⊂ Rd .
Examples for mollifiers are

eγ (x, y) = d

vol(Sd−1)γ d
χγ (x − y)

whereχγ is the characteristic function of the ball around 0 with radiusγ and vol(Sd−1) is
the measure of the surface of the unit ball inRd . Here local averages of the solution are
computed. With the band-limiting filter

eγ (x, y) =
(γ

π

)d

sinc(γ (x − y))

the high-frequency components in the solution are eliminated. The kernel of the heat
equation is fast decaying,

eγ (x, y) = (2π)−d/2γ −d exp(−|x − y|2/(2γ 2)) .

In all cases the parameterγ acts as a regularization parameter. The mollifiereγ is not
necessarily a function with mean value 1. When the essential information we need is
discontinuities inf we can use aseγ a function such that〈f, eγ (x, ·)〉 approximates a
derivative off (x). This means thateγ can also be a wavelet, see e.g. [8].

For a motivation we consider the problem

Af (x) =
∫ x

0
f (t) dt = g(x) 0 6 x 6 1
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where the inverse operatorA−1 is the differentiation of the first order. For a sufficiently
smooth functionψ and for homogeneous or periodic boundary conditions we compute,
see [5],

〈ψ, f 〉 = 〈ψ, A−1g〉 = 〈(A−1)∗ψ, g〉 = 〈3, g〉
where

3 = (A−1)∗ψ = −ψ′ .

The solution depends continuously on the datag as is seen by the simple calculation

|〈ψ, f 〉| = |〈ψ, A−1g〉| 6 ‖3‖‖g‖ .

The smoothness needed for the functionψ depends on the smoothing of the operatorA.
In the example considered here, the functiong is once more differentiable thanf and the
function ψ has to be at least once differentiable.

After this motivation we start with the procedure described in the introduction. First
we assume the equationA∗vγ = eγ to be solvable. Then we put

〈f, eγ 〉 = 〈f, A∗vγ 〉 = 〈Af, vγ 〉 = 〈g, vγ 〉 =: Sγ g . (1)

This is the technique to derive inversion formulae in x-ray computer tomography resulting
in the so-called filtered backprojection methods, see e.g. [9]. If the equationA∗vγ = eγ

is not solvable we approximatevγ by minimizing the defect‖A∗vγ − eγ ‖ for sufficiently
smoothg leading to the equation

AA∗vγ = Aeγ . (2)

Then we get

〈f, eγ 〉 ' 〈f, A∗vγ 〉 = 〈Af, vγ 〉 = 〈g, vγ 〉 =: Sγ g .

It is important to mention that no artificial discretization off is needed as introduced by
projection methods, see e.g. [5, 9, 10].

Definition 1. Let eγ be a suitable function, and letvγ be the solution of (2). Then
Sγ g := 〈g, vγ 〉 is called the approximate inverseof the operatorA and vγ is the
reconstruction kernel.

In the situation whereX = L2(�), Y = RN this means

Sγ g(x) =
N∑

n=1

gnvγ,n(x) .

The minimum-norm solution of the equationAf = g is the solution with smallest norm. It
is contained in the range of the adjoint operatorA∗ and therefore computed as

fM = A∗u where AA∗u = g .

Hence

fM = A∗(AA∗)−1g . (3)

The next theorem gives a simple relation between the approximate inverse and the minimum-
norm solution.

Theorem 2.The approximate inverse maps the right-hand side ofAf = g to the mollified
version of the minimum-norm solutionfM defined in (3), i.e.

Sγ g = 〈fM, eγ 〉 . (4)
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Proof. The functionvγ can be written following (2) as

vγ = (AA∗)−1Aeγ

resulting in

Sγ g = 〈g, vγ 〉 = 〈g, (AA∗)−1Aeγ 〉 = 〈A∗(AA∗)−1g, eγ 〉 = 〈fM, eγ 〉 .

If A : L2(�) → RN is given as(Af )n = 〈f, kn〉 = ∫
�

kn(y)f (y) dy for n = 1, . . . N ,
then the adjoint operatorA∗ : RN → L2(�) is given as

A∗g(x) =
N∑

n=1

gnkn(x) .

The matrix representingAA∗ is the Gram matrix of the system{kn : 1 6 n 6 N} and
computed as

(AA∗)mn = 〈kn, km〉 =
∫

�

km(y)kn(y) dy

or

AA∗ =
∫

�

k(y)k>(y) dy

wherekk> denotes the dyadic product (kk>)ij = kikj for k = (k1, . . . , kN)> ∈ RN .
The discrete equation inherits the instability of the integral operator, which means

that the matrix is ill-conditioned. Thevγ are then computed by using Tikhonov–Phillips
regularization with a rather small regularization parameter. The fine regularization is
achieved by the parameterγ in eγ , compare this with [11].

3. Comparison with other methods

In this section we show that most methods used for stabilizing the solution are special cases
of the approximate inverse. To this end we first present some of these methods. We then
compare our result with the Backus–Gilbert method.

The most prominent regularization method for ill-posed problems is Tikhonov–Phillips
regularization where the defect is penalized witha priori information on the solution. For
the sake of simplicity we use theL2-norm of the solution and get

Jγ (f ) = ‖Af − g‖2 + γ ‖f ‖2 .

The minimum of this functional is computed as solution of

(A∗A + γ I)fγ = A∗g . (5)

Now let A be a compact operator between the Hilbert spacesX and Y . Then it has a
singular-value decomposition

{vn, un; σn}n
wherevn, un are normalized and

Avn = σnun and A∗un = σnvn .

For non-degenerate operatorsA, i.e. where the dimension of the range is not finite, the
singular valuesσn decay to 0. The degree of the decay is a measure for the ill-posedness
of the operator. With the singular-value decomposition the solution of (5) can be written as

Tγ g =
∑

n

Fγ (σn)σ
−1
n 〈g, un〉vn (6)
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where the filterFγ is given as

Fγ (σ ) = σ 2

σ 2 + γ
.

Of course, the truncated singular-value decomposition can also be written in the form (6)
where

Fγ (σ ) =
{

1 σ > γ

0 σ < γ .

For the Landweber iteration,

f m+1 = f m − βA∗(Af m − g)

the filter is, when identifying the regularization parameterγ with 1/m where m is the
iteration index,

Fm(σ) = 1 − (1 − βσ 2)m .

The last example we want to mention is the method of conjugate gradients where the filter
is given as

Fm(σ) = Pm−1(σ
2; g)σ 2

and the polynomialsPm−1 describe the iterations; they depend on the datag, hence this is
a nonlinear regularization method for a linear problem, and therefore this extremely well
behaving method does not fit into the frame of the approximate inverse we study here. For
more details see e.g. [5].

The next result shows that the regularization methods as discussed above with the
exception of the conjugate gradient method are special cases of the mollifier methods. To
describe the result we make use of function spacesX, the mollifier is then a function of
two variables and we considerSγ g(x) = 〈f, eγ (x, ·)〉 which means that the scalar product
is taken with respect to the second variable ofeγ .

Theorem 3.Let the regularization methodTγ in (6) be given with a filterFγ . Then this
method can be written as an approximate inverse with mollifier

eγ (x, y) =
∑

n

Fγ (σn)vn(x)vn(y) . (7)

Proof. The definition ofvγ as solution ofAA∗vγ = Aeγ in (2) leads with

vγ (x) =
∑

n

σ−1
n 〈eγ (x, ·), un〉vn

to

vγ (x) =
∑

n

Fγ (σn)σ
−1
n unvn(x) .

Then

Sγ g(x) = 〈g, vγ (x)〉 = Tγ g(x) .

Because of the versatility in the selection of theeγ , which are functions of two variables,
eγ (x, y), and which can differ for differentx, it is not always possible to write the
approximate inverse as a special regularization method. We can state the following result.
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Theorem 4.Let eγ be decomposed into

eγ (x, y) =
∑
mn

eγ,mnvn(x)vm(y) .

Then the approximate inverse can be represented as a regularization method based on a
filter Fγ if and only if the filter satisfies

eγ,mn = Fγ (σn)δmn .

Proof. If we expandeγ in terms of thevn as

eγ (x, y) =
∑
mn

eγ,mnvn(x)vm(y)

then

vγ (x, ·) =
∑

n

σ−1
n un

∑
m

eγ,mnvm(x) .

Hence

〈vγ (x, ·), g〉 =
∑

n

σ−1
n 〈un, g〉

∑
m

eγ,mnvm(x)

=
∑

n

σ−1
n Fγ (σn)〈un, g〉vn(x) ⇐⇒

∑
m

eγ,mnvm = Fγ (σn)vn .

With the orthonormality of thevn it follows that

eγ,mn = Fγ (σn)δmn .

This leads to the above statement and shows that this is, at least from a theoretical point of
view, the much more general approach. The regularization property can be interpreted in
the following sense. For many integral operators the singular functions belonging to small
singular values; i.e. which produce the instability, are highly oscillating, see for example
[5, 6, 14]. The local averaging in this method thus stabilizes the problem.

In the following we compare the method of approximate inverse with the Backus–
Gilbert method for the situationA : L2(�) → RN . In the classical Backus–Gilbert method
an approximation to the solution at pointx is computed as

Sg(x) = 〈g, v(x)〉 =
N∑

n=1

gnwn(x)

wherewn(x) is determined by minimizing∫
�

|x − y|2
∣∣∣ N∑
n=1

wn(x)kn(y)

∣∣∣2
dy =

∫
�

|x − y|2|A∗w(x)(y)|2 dy

with the normalization
N∑

n=1

wn(x)

∫
�

kn(y) dy =
∫

�

A∗(w(x))(y) = 〈A∗w(x), 1〉 = 1 .

The first condition is interpreted as finding thew(x) such thatA∗w(x) approximates the delta
distribution at the pointx, the second condition gives a normalization because otherwise the
solution to the minimization would bew = 0. Thewn(x) are computed with Lagrangian
multipliers; together with the multiplierµ they are the solution of(

C(x) h

h> 0

) (
w(x)

µ

)
=

(
0
1

)



Approximate inverse for linear and some nonlinear problems 181

where the matrix elements ofC are

Cij (x) =
∫

�

|x − y|2ki(y)kj (y) dy

and

hi =
∫

�

ki(y) dy .

The matrix for determining thewn(x) depends here on the reconstruction pointx, so it has
to be decomposed for eachx. Besides that, the amount of smoothing, the spread of the
point spread function, depends on the kernel|x − y|2. If this should be changed then the
kernel changes and the calculations have to start from the beginning. So the main difference
to the approximate inverse is the attempt to approximate the delta distribution instead of a
mollifier and the extreme numerical effort.

4. Invariances reduce the storage needs

Due to the fact that in the applications only a finite number of data is available we have
Y = RN or Y = CN . Then

Sγ g(z) =
N∑

n=1

gn vγ,n(z)

which means that we have to compute the reconstruction kernelvγ (x) ∈ RN for all
reconstruction pointsx. These values are precomputed independently of the data. So
computing time is not a big issue, but the storage needs can be prohibitively large.

In the following we use invariance properties of the operatorA to reduce dramatically
the storage needs for the method. To present the ideas we start with the following example.

Example 5.Let A be a convolution operator

Af (x) =
∫

Rd

k(x − y)f (y) dy

andX = Y = L2(Rd). Let T z be the translation defined as

T zf (x) = f (x − z) .

Then

T zA = AT z

and

T zAA∗ = AA∗T z .

Proof. We easily see that

AT zf (x) =
∫

k(x − y)f (y − z) dy

=
∫

k(x − z − u)f (u) du

= Af (x − z)

= T zAf (x) .
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The operatorAA∗ is computed as

AA∗g(x) =
∫

Rd

k(2)(x, y)g(y) dy

where

k(2)(x, y) =
∫

Rd

k(x − u)k(y − u) du .

Then

AA∗T zg(x) =
∫

k(2)(x, y)g(y − z) dy

=
∫

k(2)(x, u + z)g(u) du

=
∫

k(2)(x − z, u)g(u) du

= T zAA∗g(x) .

In the following letEγ be a function of one variable, we can think ofEγ (y) = eγ (0, y).
Instead of a translation we consider arbitrary group representations.

Theorem 6.Let A : X → Y and letT x
1 be a group representation onX and T x

2 , T x
3 be

group representations onY such that

AT x
1 = T x

2 A (8)

and

T x
2 AA∗ = AA∗T x

3 . (9)

Let wγ be the minimum-norm solution of

AA∗wγ = AEγ . (10)

Then the solution of

AA∗vγ (x) = AT x
1 Eγ

is

vγ (x) = T x
3 wγ . (11)

Proof. From the invariance properties follows:

AT x
1 Eγ = T x

2 AEγ

= AA∗T x
3 wγ

which completes the proof.

This means that only the solutionwγ has to be computed and stored, the kernels for
other reconstruction pointsx are found by the action ofT x

1 on Eγ and byT x
3 on wγ .

For the above example of the convolution equation this can be applied in the following
way. LetT = T1 = T2 = T3 be the translation. The approximate inverse is then

Sγ g(x) = 〈T xwγ , g〉
=

∫
Rd

wγ (y − x)g(y) dy

which again is of convolution type. Hence instead of a function of two variablesvγ (x, y)

only the functionwγ of one variable is needed.
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In the case of a finite number of data where(Af )n = Af (xn), n = 1, . . . , N for
suitable pointsxn the reconstruction kernelwγ is a vector inRN with (wγ )n = wγ (xn).
Thenwγ (xn −x) can be evaluated by linear interpolation between(wγ )m and(wγ )m+1 with
xm 6 xn − x < xm+1.

For Y = RN andM reconstruction points the storage needs originally wasM × N real
numbers, now it is onlyN real numbers!

5. Numerical examples

We study two examples in this section. First we considerX = Y = L2(0, 1) and again the
equation of the first kind

Af (x) =
∫ x

0
f (t) dt = g(x) 0 6 x 6 1

with the solutionf = g′. The adjoint operator is

A∗g(y) =
∫ 1

y

g(t) dt

and therefore the solution of

A∗vγ (x, ·) = eγ (x, ·)
is

vγ (x, y) = − ∂

∂y
eγ (x, y) .

With eγ (x, y) = χ[−γ,γ ](x − y)/(2γ ) we get, using distributional derivatives,

vγ (x, y) = 1

2γ
(δx+γ − δx−γ )

and hence the approximate inverse is the central difference quotient

Sγ g(x) = 1

2γ
(g(x + γ ) − g(x − γ ))

which means that the central difference quotient with stepsizeγ results in a local averaging
of the searched-for solution with the characteristic function of the interval [−γ, γ ].

The band-limiting filtereγ (x, y) = γ /π sinc(γ (x − y)) results in the band-limiting
differentiation formula with reconstruction kernel

vγ (x, y) = γ (x − y) cosγ (x − y) − sinγ (x − y)

π(x − y)2
.

Both the mollifierseγ and the reconstruction kernelsvγ are of convolution type which
minimizes both the storage and the computational effort, as discussed in the last section.
For the numerical experiment we considerA : L2(�) → RN and the integral equation

(Af )n =
∫ 1

0
k(xn, y)f (y) dy = g(xn) 1 6 n 6 N (12)

for equally distributed pointsxn = (n − 1/2)/N where the kernel is given as

k(x, y) =
{

x(1 − y) x 6 y

y(1 − x) y 6 x .
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Figure 1. Solution of (12) with exact data.

Figure 2. Solution of (12) with noisy data, 5% noise.

Figure 3. Derivative of the solution of (12) with
exact data.

Reconstructions witheγ (x, y) = γ sinc(γ (x − y))/π are shown in [7]. Here we want to
apply the approximate inverse witheγ (x, y) = (2π)1/2γ −1 exp((x−y)2/(2γ 2)) to determine
both the solution and the derivative of the solution. For computing the derivative we
start from

f ′
γ (x) = 〈f ′, eγ (x, ·)〉 = −〈f, e′

γ (x, ·)〉 + f eγ (x, ·)|ba
which means that we determinevγ such that‖A∗vγ (x)+e′

γ (x, ·)‖ is minimized. Whenf (a)

and f (b) are known we can use this formula directly, otherwise we have to approximate
these two values. The critical task of computing derivatives of the searched-for function is
achieved here by differentiating the analytically given functioneγ instead of differentiating
the numerically determined functionf . The price to pay is thatAe′

γ has to be evaluated
with high accuracy.

The right-hand side in the numerical example was chosen such that the exact solution is
piecewise linear as shown in the following figures. Data errors occur also by the evaluation
of Aeγ . Figure 2 shows the result with 5% data error.
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Figure 4. Derivative of the solution of (12) with
noisy data, 3% noise.

Figures 3 and 4 show the computation of the derivative of the above function. Note
that this function is not differentiable in the classical sense. The discontinuities and the
behaviour of the derivative are clearly visible.

6. Nonlinear problems

We start the presentation of the approach for the nonlinear problem

A : L2(�) → RN

by considering, for the sake of simplicity, only a quadratic problem. Let the operatorA be
given as

Af = A1f + A2f

whereA1 is linear,

(A1f )n =
∫

�

k1
n(y)f (y) dy

andA2 is a quadratic operator defined as

(A2f )n =
∫

�

∫
�

k2
n(y1, y2)f (y1)f (y2) dy1 dy2 .

With k1 we denote the vector of theN components ofk1
n and similarly withk2 the vector

of the N components ofk2
n. For the approximate inverse we follow Snieder [13] and make

the following ansatz:

fγ (x) = 〈g, vγ (x)〉 + 〈g, Vγ (x)g〉
whereVγ (x) is anN × N matrix. We replaceg by Af and get

fγ (x) ' 〈A1f, vγ (x)〉 + 〈A2f, vγ (x)〉 + 〈A1f, Vγ (x)A1f 〉 (13)

where we omitted the higher order terms.
In the following we always usex ∈ � as the reconstruction point which is arbitrarily

fixed; and withy1, y2 and so on we denote the integration variables in the integral operators.
Of course, we can attempt to approximate with the right-hand side an expression like

〈f, eγ (x, ·)〉. But then the approximate inverse is not independent of the data, and this does
not lead to an approximate inverse as aimed for. We therefore follow [13] and consider
the terms separately. We approximate the mollified solution with the linear term as well as
possible which means

〈A1f, vγ (x)〉 ' 〈f, eγ (x, ·)〉
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hence

A1A
∗
1vγ = A1eγ .

The computation ofvγ thus follows exactly the same lines as in the linear case. When this
term presents the solution it only remains to make the rest as small as possible. Denoting
the remainder by

R(x)(y1, y2) = vγ (x)>k2(y1, y2) + k1(y1)
>Vγ (x)k1(y2) (14)

wherea>b is the scalar product in the image spaceRN , we can write the rest in (13) as∫
�

∫
�

R(x)(y1, y2)f (y1)f (y2) dy1 dy2 .

In order to make this term as small as possible we minimize with respect toVγ (x) for each
reconstruction pointx the norm

‖R(x)(·, ·)‖2
L2(�×�) → min .

We get

‖R(x)‖2 =
∫

�×�

(
v>

γ (x)k2(y1, y2) + k1(y1)
>Vγ (x)k1(y2)

)2
dy1 dy2

=
∫

�×�

(
(vγ (x)>k2(y1, y2))

2 + 2vγ (x)>k2(y1, y2)k
1(y1)

>Vγ (x)k1(y2)

+ (k1(y1)
>Vγ (x)k1(y2))

2
)

dy1 dy2 .

Differentiating this expression with respect to the fixed matrix element(Vγ )ij (x) and
equating the derivative to zero we find∫

�

k1
i (y1)k

1(y1)
> dy1 Vγ (x)

∫
�

k1
j (y2)k

1(y2)
> dy2

= −
∫

�×�

v>
γ (x)k2(y1, y2)k

1
i (y1)k

1
j (y2) dy1 dy2 i, j = 1, . . . , N .

In matrix notation this is simply

(A1A
∗
1)Vγ (x)(A1A

∗
1) = −

N∑
n=1

vγ,n(x)Bn (15)

where the matricesBn on the right-hand side are

Bn =
∫

�×�

k1(y1)k
2
n(y1, y2)k

1(y2)
> dy1 dy2 .

This means that withCn = (A1A
∗
1)

−1Bn(A1A
∗
1)

−1 the function k1(y1)
>Cnk

1(y2) is the
orthogonal projection of the functionk2

n(y1, y2) on the linear space span{k1
i (y1)k

1
j (y2): i, j =

1, . . . , N}. Hence, if thek1
n are linearly independent, the matrixVγ is simply

Vγ (x) = −
N∑

n=1

vγ,n(x)Cn

and we get

fγ (x) = 〈g, vγ (x)〉 −
N∑

n=1

vγ,n(x)〈g, Cng〉 .
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For the approximationfγ this means that

fγ (x) = 〈vγ (x), g〉 + 〈g, Vγ g〉

= 〈vγ , A1f 〉 +
N∑

n=1

vγ,n(x)
(
(A2f )n − g>Cng

)
.

If the kernelsk2
n are already in the span of the product of thek1

m which means that
k2
n(y1, y2) = k1(y1)

>Cnk
1(y2) and (A2f )n = (A1f )>CnA1f , then the contribution of the

square term comes only from

〈A1f, Vγ (x)A2f 〉 + 〈A2f, Vγ (x)A1f 〉 + 〈A2f, Vγ (x)A2f 〉
(see also the discussion in [13]).

The generalization of this approach to operators of arbitrary order in the following sense:

Af =
∞∑

`=1

A`f (16)

where

(A`f )n =
∫

�`

k`
n(y1, . . . , y`)f (y1) . . . f (y`) dy1 . . . dy` (17)

is now straightforward, but notationally difficult. Examples for operators of this type are
given in [13]. Withb`(g1, . . . , g`) we denote a multilinear form: i.e.b`(g1, . . . , g`) is linear
in each argument. This form is generated by the tensorv`. For ` = 1 we have

b1(g) = 〈vγ , g〉 v1 = vγ

for ` = 2

b2(g1, g2) = 〈g1, Vγ g2〉 v2 = Vγ .

If we always use the same argument we simply writeb`(g). To be precise we have to
indicate the dependence ofb` on the reconstruction pointx, henceb`(x; g). The ansatz for
the approximate inverse is now

f L
γ (x) =

L∑
`=1

b`(x; g) (18)

where we determine the tensors generating the multilinear formb` as described above for
L = 2. We replaceg by Af and collect the terms with same number of factorsf :

fγ (x) = b1(x; A1f ) + b1(x; A2f ) + b2(x; A1f, A1f ) + b1(x; A3f ) + b2(x; A2f, A1f )

+b2(x; A1f, A2f ) + b3(x; A1f, A1f, A1f ) + · · ·
whereb1 andb2 are determined in the way just described and we continue recursively. The
remainder corresponding to (14) is denoted byR` and we minimize

‖R`(x; y1, . . . , y`)‖L2(�`) .

We denote the components of the tensorv` by v`
α with the multi-indexα ∈ N`. Then

R`(x; y1, . . . , y`) =
N∑

α1=1

· · ·
N∑

α`=1

v`
αk1

α1
(y1) · · · k1

α`
(y`) + r`(x; y1, . . . , y`)
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wherer` depends on terms determined before. The norm of the rest is

‖R`(x)‖2
L2(�`) =

∫
�`

{( N∑
α1=1

· · ·
N∑

α`=1

v`
αk1

α1
(y1) · · · k1

α`
(y`)

)2

+ 2
N∑

α1=1

· · ·
N∑

α`=1

v`
αk1

α1
(y1) · · · k1

α`
(y`)

× r`(x; y1, . . . , y`)

}
dy1 . . . dy` + ‖r`‖2 .

Differentiating with respect to a fixedv`
α leads to the following system of equations for

the v`
β :

N∑
β1=1

· · ·
N∑

β`=1

v`
β

∫
�

k1
α1

(y1)k
1
β1

(y1) dy1 · · ·
∫

�

k1
α`

(y`)k
1
β`

(y`) dy`

= −
∫

�`

k1
α1

(y1) · · · k1
α`

(y`)r`(x; y1, . . . , y`) dy1 · · · dy` .

Note that
∫
�

k1
αm

(ym)k1
βm

(ym) dym = (A1A
∗
1)αmβm

. We can collect the results in the following
theorem.

Theorem 7.The matrix for determining the tensorv` does not depend onx, it consists of
factors ofA1A

∗
1. The tensor has the form

v`(x) =
N∑

n=1

v1
n(x)B`

n (19)

whereB`
n is a tensor of order̀ and it is independent ofx.

Proof. The first assertion is obvious from the above derived system of equations, the second
statement follows by induction. For̀= 2 we have

r2(x; y1, y2) = vγ (x)>k2(y1, y2) .

In the step from̀ to ` + 1 the sum starts withv>
1 (x)k`+1(y1, . . . , y`+1) plus terms which

are contained already inr`.

7. Numerical example

We present numerical results for a problem discussed in [13] where the remainderr2 was
displayed but where numerical reconstructions are not given.

The differential equation for the vibrating string is

u′′(x) + ρ(x)ω2

T
u(x) = 0 u(0) = u(L) = 0 .

We assume the functionρ to be

ρ(x) = ρ0(1 + f (x)) .

For f ≡ 0 the eigenfunctions are

u0
n(x) =

(
2

L

)1/2

sin
nπx

L
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and the eigenvalues

ω0
n =

(
T

ρ0

)1/2
nπ

L
.

The datagn in our problem are the relative frequency shifts given as

gn = ω2
n − (ω0

n)
2

(ω0
n)

2
n = 1, . . . , N

which means that we studyA : L2(�) → RN . For the integral operator we get the kernels

k1
n(y) = − 2

L
sin2

(
nπy

L

)
and

k2
n(y1, y2) = 4

L2
sin2 nπy1

L
sin2 nπy2

L

+
∑
m6=n

4

L2

n2

n2 − m2
sin

nπy1

L
sin

mπy1

L
sin

nπy2

L
sin

mπy2

L
.

The matrixA1A
∗
1 = 1

2I + ee>, wheree = (1, . . . , 1)>. For the reconstruction we used the
piecewise linear mollifier

eγ (x − y) = 1

γ


1 − y − x

γ
x 6 y 6 x + γ

1 + y − x

γ
x − γ 6 y 6 x

0 otherwise .

HereA1eγ (x, ·) can be computed exactly.
The reconstructions are presented here forN = 15 without noise (figure 5) and with

3% noise in figure 6. Exact data means that the first 15 eigenvalues are computed with high
precision using hierarchical finite elements. The function to be reconstructed is piecewise
linear, the broken curves (– – –) are the results from the linear part of the problem and
the straight lines are the reconstructions including also the quadratic part. These examples
show that the additional effort in computing the quadratic approximation improves the result
considerably.

Figure 5. Solution of inverse eigenvalue problem
with exact data, linear and quadratic approximations
of the exact solution.
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Figure 6. Solution of inverse eigenvalue problem
with noisy data (3%), linear and quadratic approxi-
mations of the exact solution.
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