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Abstract. We extend what is known about the structure of (2+ 1)-dimensional gravitational 
field theories. The non-existence of any Newtonian limit to these theories is investigated 
in the presence of Brans-Dicke scalar fields and non-linear curvature terms in the gravita- 
tional action. A number of new exact static and non-static solutions of (2+1)  general 
relativity with scalar field, perfect fluid and magnetic field sources are presented and studied 
in detail. Some of these possess a correspondence with (3 + 1) solutions of general relativity 
through a Kaluza-Klein type reduction and exhibit the ‘wedge’ structure of (3 + 1)- 
dimensional solutions describing line sources like vacuum strings. An algebraic 
classification of (2+ 1) gravitational fields is derived using the Bach-Weyl tensor. The 
description of the general cosmological solution is given in terms of arbitrary spatial 
functions independently specified on a spacelike surface of constant time together with a 
series approximation to spacetime in the vicinity of a general cosmological singularity. 
Various results and conjectures regarding spacetime singularities are given. Two exact 
cosmological solutions containing self-interacting scalar fields that produce inflationary 
behaviour are also found. 

1. Introduction 

There have been a number of investigations into the structure of general relativistic 
gravitation theory in (2+ 1) spacetime dimensions (Staruszkiewicz 1963, Gott and 
Alpert 1984, Deser et a1 1984, Deser and Jackiw 1984, Giddings et al 1984, Jackiw 
1985, Clement 1976, 1984, 1985, Deser and Mazur 1985, Deser 1985). This interest 
has been stimulated by the curious character of this field theory. It contains no 
propagating degrees of freedom (gravitons) and does not reduce to two-dimensional 
Newtonian gravity in the weak-field limit. Spacetime is flat outside matter and hence 
there can exist no static interaction between sources. The effects of the sources show 
up in global aspects of the geometry and we find topology assuming the role played 
by curvature in the (3+ 1) theory. 

One of the appeals of (2-t 1) gravity is that it is simple enough to be soluble but 
yet contains non-trivial features. Some of these features are apparent in the behaviour 
of cosmic strings and domain walls in (3+ 1) dimensions (Vilenkin 1981, Gott 1985, 
Hiscock 1985) and are potentially observable (Kaiser and Stebbins 1984, Gott 1985). 
In addition, we recall that in the study of quantum field theory it has often been found 
helpful to look at model systems of low dimension. For example, electromagnetism 
when formulated in (1 + 1) dimensions also has no propagating degree of freedom 
(Schwinger 1962). 
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In this paper we shall confine our attention to classical gravitational effects and 
report a series of new static and non-static solutions of the theory. We begin, in 0 2, 
with an examination of the non-existence of any Newtonian limit in (2+ 1)-dimensional 
general relativity and other theories of gravity. Section 3 investigates the structure of 
several new static solutions. From some of these solutions we can obtain (3+ 
1)-dimensional solutions of general relativity by a reversal of the usual Kaluza-Klein 
procedure. In § 4 we present the Petrov classification of (2+ 1)-dimensional spacetimes 
and determine the number of independent pieces of Cauchy data necessary to specify 
stable initial data in cosmological solutions. This leads to study of the cosmological 
solutions to the theory in 0 5. In particular, we study the general behaviour that can 
arise in the neighbourhood of a singularity and also present some exactly soluble 
models containing non-linear scalar field interactions. These have properties similar 
to inflationary models in (3 + 1) dimensions. 

Our general relativistic conventions are that the metric signature is (+ - -). The 
gravitational coupling is defined as K. Greek indices run 0 C CY, /3 < 2 whilst Latin 
indices run 1 s a, b S 2. 

2. The weak-field limit 

Newtonian gravity in two-dimensional space is defined by 

xi = -a,@w v 2 @ ~  = KP. 

Thus, the acceleration of test particles is the gradient of the Newtonian potential 

Outside sources the solution is 
@"(A-, t ) ,  which is determined by the mass density p. 

@ N = A h r  A constant. (2.2) 
In two-dimensional space a circular disc of radius a with mass M ( a )  has the same 
external gravitational field as an equal point mass if aN has the form 

B N = A r 2 + A I n  r A, A constants. (2.3) 
Here, A plays the role of the cosmological constant. The circular disc can be replaced 
by some point mass M *  when the potential has the Bessel function form 

QN = ANo(Ar) + BJo(Ar) (2.4) 

M * =  M(a)Jo(Aa) (2.5) 

but the disc and point masses are unequal: 

where A, B and A are real constants and A a real or complex constant. As A + 0 (2.4) 
approaches (2.2) and M*+ M ( a ) .  

The (2 + 1)-dimensional Einstein equations are 

(2.6) 

(2.7) 

G p u  G R  p v  - L  2gpv R =  K T p '  

hence 

R p v  = K( Tpu - gpuT). 
However, in three-dimensional spacetime the Riemann tensor is completely determined 
by the Ricci tensor (Fock 1959) and, via (2.6), is related to the stress tensor by 

RpPP = E ~ , , ~ E @ ~ G ;  = K E ~ , , ~ E ~ ~ ~ T ; .  (2.8) 
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Hence, all vacuum spacetimes are flat and spacetime is flat outside material sources 
(see those papers cited in Q 1). The Newtonian limit of (2+1)-dimensional general 
relativity is not (2.1), but V2QN = 0. 

It is interesting to investigate whether there exists another relativistic gravity theory 
which does have the Newtonian theory (2.1) and (2.2) as its weak-field limit. First, 
consider a (2+ 1)-dimensional version of Brans-Dicke theory (Brans and Dicke 1961, 
Will 1981) where the scalar field @ will introduce some dynamics. The action is 

where w is the constant Brans-Dicke parameter and Ym the Lagrangian of any matter 
fields. The variation of (2.9) with respect to @ and the metric gives the field equations 

(2.10) 

(2.11) 

where T a , ( M )  is the stress tensor of the matter fields and Tap(@) that of the scalar 
field, which is given by 

(2.12) 

The weak-field limit of the field equations yields 

V 2 @ ~  = Kp/2( KW + I)@ (2.13) 

where goo = 1 + 2@., determines the gravitational potential through the geodesic 
equation and Too = p is the only term surviving from TWv( M )  in this non-relativistic limit. 

The limit (2.13) is recognisable as Newtonian gravity, (2.1), but with a varying 
gravitational ‘constant’ GE @-’ (equation (2.10)). A truly Newtonian limit with CP 
constant requires w + 00, which is the general relativity limit of Brans-Dicke theory, 
and we revert to the non-Newtonian weak-field limit in which the right-hand side of 
(2.13) vanishes. 

Now, we retain finite w and search for static solutions of (2.10) and (2.11) in 
vacuum with circular symmetry, possibly with some soiirce at the origin. Such solutions 
are constrained by the behaviour at the centre. If we take the trace of (2.11) and 
eliminate TZ(A4) using (2.10) then the resulting equation must, in a distributional 
sense, exhibit cancellation of all singularities. This requirement is satisfied only by 
globally flat spacetime. This condition probably also excludes solutions with extended 
sources. 

To conclude our discussion of the Newtonian limit we make some remarks about 
higher-derivative theories of gravity in (2+ 1) dimensions where there will exist some 
dynamics in the vacuum theory. When considering theories with Lagrangians that are 
quadratic in the curvature invariants we need only consider terms in R 2  and R,,RF” 
because in (2+ 1) dimensions the combination of R2,  R,,R’LY and Rp,,olpRp~np which 
leads to a total divergence (Hawking 1978, Stelle 1978, Barrow and Ottewill 1983) 
vanishes identically due to (2.8). Hence we take the gravitational action to be 

( LY R,,R + /3 R 2  + R - =Ym)Jm dNx (2.14) 
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in N-dimensional spacetime. The full field equations are 

aOR,,+(~~+2P)g,,0R-(~+2P)R,,,+2aR,,p,RUP 

-$ag,,RapRaP +2/3RR,, -@g,,R2+ R,, - fg,,R = KT,,. (2.15) 

The linearised trace of (2.15) is 

-V2R[4aN+2p(N- I)]+ (1 - f N ) R  = K T  (2.16) 

So, in momentum ( p )  space we have in the Newtonian, slow-motion limit, 

J" T( p )  exp(ip x) dN-'p 
R = ~ K  

[ a N +  4p( N - l)]p2+ 2 - N 
(2.17) 

and taking the linearised (g) component of (2.15) we have, from (2.17), that 

For N Z 3  we have a good Newtonian limit with Ro0(p)/p2-(PN-p-* but when 
N = 3 the first term vanishes and there is no Newtonian limit. 

3. Static solutions 

3.1. The relation to (3 + 1)-dimensional gravity 

Many people have noticed that the (3 + 1)-dimensional metric for a vacuum string 
(Gott 1985) corresponds, in sections perpendicular to the string, to the conical solutions 
of a point mass in (2+ 1) dimensions. To see precisely how such a connection can be 
made it is useful to consider the Kaluza-Klein procedure. In the simplest case, one 
spatial direction is, by fiat, compactified onto a circle. The circle is then assumed to 
be small and we only consider solutions that depend on the zeroth Fourier mode in 
that coordinate. All that this amounts to is a search for solutions that are independent 
of one spatial direction. In this case we start with pure gravity in (3 + 1) dimensions 
and ignore the A, gauge terms (which are the usual point of Kaluza-Klein theory) to 
write an ansatz for the metric independent of the fourth coordinate 

The equations of motion for these fields can be obtained from the reduced (2+ 
1)-dimensional action 

S = l I  2K (-R++)JBd3x.  87) (3.2) 

Note that without the prefactor q- ' I2  we could obtain part of the Brans-Dicke action 
(2.9) (Brans 1962, Dicke 1964). 

A more familiar kinetic term can be obtained by writing 

q = qo e x p ( 2 Q G )  (3.3) 
so that 

s = J (-z+i R 1  ( P , , ( P + ) ~  d3x. 
(3.4) 
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This represents gravity in (2+ 1) dimensions, but minimally coupled to a scalar 
field. Solutions of this theory will, in view of the ansatz (3.1), become solutions of 
pure gravity in (3 + 1) dimensions that are independent of z. Furthermore, the matter 
source for that interpretation can be determined by using (3.1) in the definition of the 
stress tensor 

For example, the conical solution has @ constant and the point mass Tg = ms2(r) 

Finally, we note that by reduction of the (3 + 1)-dimensional domain wall solution 
becomes a string source, Tg = T: = ms2( r) .  

of Vilenkin (1981) we obtain a (2+ 1)-dimensional line source with the metric 

ds2 = exp(-kIxI)(dt2-dx2-exp(kt) dy2) k constant. (3.6) 

3.2. Massless scalar jield with minimal coupling 

On the basis of the discussion in the last section on the connection with (3+ 
1)-dimensional solutions we are motivated to vary the action (3.4). The field equations 
that follow are 

The equation of motion for the scalar field, which amounts to energy-momentum 
conservation, is 

O@=O. (3.8) 

ds2= N2(r)  dt2-exp(2P(r))S, dx' dxJ. 

We search for static solutions in conformal coordinates: 

(3.9) 

The spatial trace of (3.7) yields 

-exp( -2p) N-'V2N = KT: = 0. (3.10) 

We cannot proceed as with the conical solution and take N constant because the 
trace-free spatial equations cannot then be satisfied with non-trivial Cp. Thus, we are 
forced to take 

N = l n r .  (3.11) 

Note that we might be concerned about points with coordinate value r = 0 ,  in 
particular about possible singularities there. As we shall see, such points are an infinite 
proper distance away from any other point with finite coordinate value. Geodesics 
are therefore complete and there are no singularities in the ordinary sense at r = 0. 
Henceforth, we shall ignore such points in solving the Einstein equations. 

If scale factors for t and r are absorbed into the equation of motion, (3.8), it becomes 

r * V @  
r l n r  

V2@ +2 = 0. 

For a source-free field this gives 

(3.12) 

@'( r)  = p /  r In r p constant. (3.13) 
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The remaining metric function p is determined from the (g) Einstein equation 

-v2p = +K@”’.  (3.14) 

Hence, 

p (  r)  = + ~ p ~  In/ln rl - m In p r  m constant. (3.15) 

The parameter, m, is required to be 1 if the remaining traceless Einstein equations are 
to be satisfied. 

The complete solution is 

ds2 = (In r)2 d t2-  Iln r/Kp2p-2r-2(drZ+ r2 de2) 

@( r)  = @,,+p lnlln rl. 

(3.16) 

(3.17) 

As was noted earlier, the space is non-compact, with r=O always unreachable by 
geodesics in finite proper time. 

Having obtained the solution in these coordinates, it is simpler to discuss the metric 
in the coordinates x = p a  In r, y = paO with a = -2(2+ ~ p ’ ) - l ;  t is also rescaled. We 
obtain 

(3.18) 

The symmetry x -+ -x is manifest, as is a singularity at x = 0. The curvature scalar 

R = Kp2/XI(KP2-2) (3.19) 

and hence x = 0 is a curvature singularity if ~p~ < 2.  
The energy density of the scalar field diverges at x = 0, as can be seen from the 

energy integral for the mass between coordinate distance x1 and x2 (Deser et a1 1984), 

is given by 

fi t i g d 2 x = p a p 2 r  
K 

(3.20) 

The proper distance around the cylinder at constant x vanishes at x = 0. 
The choice of coordinates ( t ,x ,y)  of (3.18) is appropriate for establishing the 

connection with the corresponding (3 + 1)-dimensional metric as we discussed in 0 3.1. 
We obtain 

(3.21) ds2 = x2-P’ dt2 - XP’(P’-2)/2(dX2+ dy2) - xP’ dz2 

where 

p”=p(2K)1/2. (3.22) 

By a rescaling and change of variable to 
4 x ~ ’ (  ~ ’ - 2 ) / 4 + 1  

x’ = 
p ’ (  p ’ -  2) + 4 

we may write the (3 + 1)-dimensional metric as 

ds2 = xt2P, d t2  - dXt2 - xt2P, dy2 - xI2P, dz2 

(3.23) 

(3.24) 
with p 1 + p 2 + p 3 = p : + p : + p : =  1. 

severe singularities of such metrics are well known. 
This is a Kasner-like solution, but in a spacelike rather than timelike variable. The 
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3.3. Stif perfect fluid 

In this subsection we consider static solutions for (2 + 1)-dimensional gravity coupled 
to a perfect fluid having pressure p and density p with energy-momentum tensor 

T,u=(P+P)u,uu-Pg,”. (3.25) 
We shall confine our attention to the ‘stiff’ equation of state p = p (Zeldovich 1961, 

Barrow 1978) and use coordinates such that the fluid 4-velocity is U, =a;. It is 
interesting to note that in (2+ 1) dimensions the stiff fluid has an energy-momentum 
tensor identical to that of a static magnetic field. The electromagnetic field stress 
tensor is 

T,” = F,,F: -agpuFAaFAa (3.26) 

and if we set the electric field components, Foi,.zero and write Fi’ = ~i’(2p)”’ for the 
magnetic field components, then (3.26) reduces to (3.25) with p = p. The equivalence 
between the p = p perfect fluid and the massless scalar field does not hold in the static 
case. The Einstein equations may be solved to give the following metric when p = p :  

(3.27) 

where U and y are constants. The restriction of the range of y, which creates a ‘wedge’ 
as in the vacuum solution (compare Deser et a1 1984) can be elucidated by examining 
the behaviour of the solution at small r. There, it reduces to a cone and y is identified 
with 1 - m ~ / 2 n -  where rn is the strength of a point source at the origin. The existence 
of this singularity at the origin is not apparent in the form of the solution (3.27). 
Consider the case with y = 1 where there is no singularity at the origin ( m  = 0). The 
mass-energy within a coordinate distance ro is given by 

ds2=exp(Kc+r2)(dt2-dr2)-r2 de’ o s  e s 2ny s 2n- 

p = p = U exp( -KUr2) 

2 n  
C:d2x=-[l -exp(-ar;/2)]. 

K K 
(3.28) 

Since for U > 0 the matter is localised, we can compute the total mass to be 2n-/ K ,  

precisely that needed in the cylinder solutions of the last section. 
Suppose that we calculate the angle deficit incurred as a vector is parallel-transported 

around a circuit enclosing the origin. When y = 1 there is no deficit for a circuit 
sufficiently close to the origin, but for a circuit of large radius ( r  >> (~a)- ’ / ’ )  the vector 
rotates by 2 ~ .  If y f  1 there is an additional contribution to all radius circuits from 
the opening angle of the cone. 

3.4. Exponential potential term 

If we generalise the Kaluza-Klein discussion of § 3.1 by including a cosmological 
constant, A, in (3 + 1) dimensions we are motivated to consider the (2+ 1)-dimensional 
action 

2 K  2 + A  exp[-@(2~)l’”])u’M d3x. (3.29) 

We can find a static solution of this theory along the lines of 0 3.2. The metric is 
taken to be of the form (3.9) but with goo = N 2  written eZa and the energy-momentum 
tensor possesses an extra contribution 
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We must solve the following equations for a( r), a ( r )  and P (r):  

CY”+ ar2+ r-Iff1=2KA eXp[2P -@(2K)’/’] 

@”+@’(Y’+ ?‘-‘@I= A(2K)’12 eXp[2P -@(2K)’12] 

(3.31) 

(3.32) 

al’+a12- r-’a’-2alp)= - K @ l ’ *  (3.33) 

Provided A > 0, which corresponds to anti-de Sitter space, a particular solution can 
be found in which a’= @ ’ ( 2 ~ ) ‘ ’ ~ :  

d s 2 =  ( p  In r)-4 dt’-3(pr)-*(~A)-’(ln r)-4(dr2+ r2 de’) 

@ = -(.\/Z/K) In Ip In rl 

(3.34) 

(3.35) 

and where p is an arbitrary constant. Note that the limit of this solution as A + 0 is 
not (3.16) and (3.17). 

In this case the point r = 0 is no longer at infinity as in § 3.2. In fact, on inspection 
of the metric (3.34) it is found that points with r = 1 are infinitely distant. It is thus 
more appropriate to use coordinates that invert the space; we choose x = ( p  In r)-’, 

(3.36) 

y = p6, f =  t(KA/3)’”, 

d s 2 =  (3/KA)(X4 df2 - dx2 - x4 dy’) 

0 = ( J z / K )  In 1x1. (3.37) 

The symmetry x + -x is again manifest. The solution may alternatively be written 
as conformal to flat spacetime, but the identification of one singularity at x = O  is 
clearest in the above coordinates. This is a scalar-curvature singularity since 

R = Y K A X - ~ .  (3.38) 

In this space the mass within coordinate range x1 to x2 is 

2 -47w M ( x l ,  x2) = 4% G: d x -- (x; -xl) .  
K K 

(3.39) 

Using the reverse Kaluza-Klein procedure we can generate a (3 + 1)-dimensional 
solution with cosmological constant (4)A. This is best done using coordinates y ,  I and 
2 = x-’, the resulting (3 + 1)-dimensional metric is conformally flat with conformal 
factor 3 / ~  (4)A32. 

4. Classification of solutions 

4.1. The Petrov classiJcation of (2 + 1) spacetimes 

Here we shall pursue a classification of (2 + 1)-dimensional spacetimes in terms of the 
algebraic properties of the curvature tensor. In (3 + 1) dimensions this leads to the 
well known Petrov classification (Gamer  et a1 1980). However, the Weyl tensor, which 
is the basis of the Petrov classification in ( 3 + l )  dimensions, vanishes in lower 
dimensions. An alternative geometrical object which may be used is the Bach-Weyl 
tensor (Eisenhart 1926, Deser et a l  1984) 

. aho 

(4.1) 
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C", is a traceless 3 x 3  symmetric matrix which we can classify according to the 
distribution of eigenvalues and eigenvectors. There exist three distinct equivalence 
classes. 

(a) Class A. Three distinct eigenvalues and three linearly independent eigenvectors; 
C", has the form 

C", =diag(A,, A 2 ,  A3)  (4.2) 

A 1  + A 2 +  A3 =O. (4.3) 

with 

(b) Class B. Two distinct eigenvalues and three linearly independent eigenvectors; 
C", has the form 

C", =diag(Al, A l ,  A 2 )  

with 
(4.4) 

2Al+ A 2 = 0 .  (4.5) 
(c) Class C. One distinct eigenvalue and three linearly independent eigenvectors; 

C", has the form 

C", = diag(0, 0,O). (4.6) 
Since there are no degenerate eigenvectors, there are no preferred directions in (2+ 1) 
spacetimes. 

We can use this classification scheme on some of the known (2+ 1) solutions. The 
solution (3.18) is of class C ,  as is the Einstein-Maxwell solution of Deser (1984). The 
Bach-Weyl tensor vanishes identically for the stationary solutions of Element (1985) 
and Deser et a1 (1984) showing that the spaces are conformally flat (Deser et a1 give 
the explicit coordinate transformation of the stationary (2+ 1) spacetime to (2+ 1) 
Minkowski spacetime). We can construct (2+1)  metrics which are of, say, class A. 
If we consider a metric of the form 

ds2 = dt2 - exp(2B(x"))So dx '  d d  (4.7) 
then the only non-vanishing components of the Bach-Weyl tensor are CO, = a and 
CO,= b, say. Then C", possesses eigenvalues ( A l ,  A 2 ,  A3)  = (0, ( a 2 -  b2)l", 
- ( a 2  - b2)1'2).  So for a # b such a spacetime will be of class A; if a = b it will be of 
class C. 

4.2. Initial value problem 

In the next section we shall be considering particular cosmological solutions. In order 
to ascertain their degree of generality a useful guide is to count the number of 
independent arbitrary functions necessary to specify the solution on a spacelike 
hypersurface. Suppose we have a spacetime with D spatial dimensions. Then, in the 
synchronous coordinate system, we must specify bD( D + 1) components of the sym- 
metric D-dimensional metric gab and fD(D+ 1) components of gab on a spacelike 
surface of constant time. From this total of D( D + 1) functions we can subtract ( D  + 1) 
by using the Bianchi identities and a further ( D +  1) by using coordinate transforma- 
tions. Hence, in vacuum the number of arbitrary D-dimensional functions is 

V ( D )  = ( D +  l ) (D-2) .  (4.8) 
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If a perfect fluid is present with an equation of state p ( p )  and a normalised ( D +  1) 
velocity, U,, then we require a further 1 + D functions to specify the solution. The 
number of functions of D variables, F (  D), required to specify the perfect fluid solution 
is thus 

F(D) = 02- 1. (4.9) 
If a massless scalar field source was admitted with minimal coupling then the number 
of D-dimensional functions, S( D), is just 

S ( D ) = D ( D - 1 ) .  (4.10) 

We see that V(2) is zero in accord with the fact that all vacuum solutions are flat 
and that gravitons do not exist when D = 2 .  

5. Cosmological models 

5.1. Singularities 

The conditions under which geodesic incompleteness arises in (3 + 1)-dimensional 
spacetimes have been established using techniques of differential topology (Hawking 
and Ellis 1973, Tipler et al 1978). A typical example is the Hawking-Penrose theorem 
(Hawking and Penrose 1969). This postulates physically reasonable restrictions on 
the causal structure of spacetime and demands that gravity be an attractive force. From 
these assumptions it is possible to prove that gravitational focusing will inevitably 
create a focal point along the congruence of causal geodesics in the spacetime. Since 
the development of such a focal point would contradict the very assumptions about 
the causal structure assumed to derive it, one must conclude that geodesics never reach 
these focal points. There must exist at least one incomplete geodesic and the endpoints 
of all such incomplete geodesics form the singularity boundary of spacetime. It has 
been shown under quite general conditions (Clarke 1975, Clarke and Isenberg 1982) 
that geodesic incompleteness is accompanied by divergences in the values of curvature 
invariants, tidal forces or other physically observable quantities. However, examples 
are known where the curvature invariants remain finite at singularities but it has yet 
to be proved that these are of measure zero in some appropriate sense. 

Singularity theorems can be established, mutatis mutandis, for (2 + 1)-dimensional 
cosmological models. The essential difference will be in rhe energy conditions that 
must be imposed on the material content of spacetime in order to guarantee geodesic 
convergence under gravity. Either of two energy conditions are employed in essentially 
all singularity theorems (Hawking and Ellis 1973). The weak energy condition demands 
only that T,,uwuy > 0 for all causal vectors U, and, regardless of the spatial dimension, 
this corresponds to the requirement that comoving observers see a non-negative material 
density (that is, p > 0 for the stress tensor (3.25)). The more restrictive strong energy 
condition ensures that the net effect of gravity is to converge neighbouring bundles of 
geodesics; that is, R,,upu’’>O for all causal vectors U,. Hence, by (2.7), it requires 

(5.1) ( TFY - T g , u ) u ~ u y  > 0. 

In a (D + 1)-dimensional general relativistic spacetime with perfect fluid stress 
tensor, (3.25), the energy condition (5.1) is 

( D  - 2)p + Dp > 0. (5.2) 
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In (3 + 1) spacetime this corresponds to p + 3p > 0, but in (2 + 1) spacetime it requires 
p > O .  In (2+1)  dimensions the weak and strong energy conditions therefore place 
independent positivity conditions on the density and pressure. 

Consider first the (2 + 1) homogeneous and isotropic cosmological models (Collas 
1977, Giddings et a1 1984). The metric is determined by a time-dependent scale factor 
a ( t )  

ds2 = dt2 - a’( t)8& dx” dXb. (5.3) 
The scale factor is determined by a Friedman-like equation 

a 2  M k 
M 0, k constants a 2  - a 2  (5.4) 

when the material content is a perfect fluid with equation of state 

P = ( y - l ) p  (5.5) 

where y is constant. 
For 1 < y S 2, the solutions of (5.4) are ‘closed’, ‘open’ or ‘Rat’ cosmological models 

according to whether the constant k is positive, negative or zero, respectively. They 
all possess initial curvature singularities since the fluid obeys both the energy conditions. 
Note that if y = 1 the situation is anomalous: the solutions of (5.4) all expand as 
a( t )  a t regardless of the sign of k. This is a reflection of the vanishing of the effect 
of gravity when p = 0; see (5.1). Hence, the resulting solutions must be flat spacetime 
or a conformal transformation of it. An identical phenomenon occurs in the (3 + 1) 
theory when p + 3p is zero. By analogy with the situation in (3 + 1) dimensions (Barrow 
and Tipler 1985) we can investigate the conditions under which closed (that is, those 
possessing compact Cauchy surfaces) (2 + 1) universes recollapse to a final curvature 
singularity. We conjecture that all closed, globally hyperbolic cosmological solutions 
of the (2+ 1)-dimensional Einstein equations with S 2  spatial topology will recollapse 
to a future curvature singularity if p > 0 and p > 0. Presumably, closed universes not 
possessing 2-sphere topology, for example a 2-torus, cannot recollapse to a future 
singularity. It would be interesting to try and prove this conjecture rigorously. The 
corresponding conjecture in (3 + 1) dimensions is more complicated and is also 
unproved (Barrow and Tipler 1985). In general, the absence of gravitational radiation 
in (2+ 1) gravity makes the classification of singularities considerably easier than in 
(3 + 1) dimensions. We conjecture that in (2 + 1) dimensions almost every spacetime 
singularity is a curvature singularity as in the simplest cosmological models above, or 
quasi-regular as in the static conical examples of § 3. In order to support the first half 
of this conjecture we shall now consider the behaviour of ( 2 +  1) cosmologies that are 
more general than the homogeneous and isotropic metric (5.3). 

Since any 2-space is locally conformally flat we can choose spatial coordinates so 
that, in a synchronous coordinate system on any surface of constant time, the (2+ 1) 
metric can be written 

ds2 = dt2-exp(2B(xa))6,, dx“ dxb. (5.6) 
Other discussions (Giddings et a1 1984) have assumed that this representation holds 
for all time. However, at different times a different coordinate choice will in general 
be necessary to express the metric in the form (5.6). It is necessary that the spatial 
stresses in the energy-momentum tensor be isotropic in order that the form (5.6) is 
preserved under time evolution with the same x i .  An example with an anisotropic 
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stress tensor is the solution (3.6).  Conversely, the assumption that the metric always 
has the form (5.6) ensures that perfect fluid velocities will be comoving. To see the 
effect of the assumption (5.6) explicitly, reconsider the question of the number of 
arbitrary functions of the spatial variables needed to specify the general solution of 
the ( 2 f l )  Einstein equations on a spacelike surface of constant time. According to 
equation (4 .9)  this number is three in the presence of a perfect fluid stress tensor. If 
the metric is chosen as (5.6) then we must specify B, B, p ,  u1 and u2 independently: 
that is, five functions of two space variables. However, we can eliminate three of these 
using the three constraint field equations and another by employing the one remaining 
coordinate transformation (the other two coordinate freedoms have already been 
employed to specify the form of (5 .6 ) ) .  This leaves the solution specified by just one 
arbitrary function of two variables, two lower than the general case. 

We shall now examine the behaviour of a general ( 2 +  1 )  cosmological model in 
the vicinity of a curvature singularity of the type described by the homogeneous model 
( 5 . 3 ) .  The metric is 

dS2=dtZ-gab dx" dXb. (5.7) 
We shall, for algebraic simplicity, take the fluid source to be a perfect fluid with 
equation of state p = p but we shall not assume the fluid to be comoving. We assume 
that locally the metric can be expanded as a power series in time as t + 0 ,  with the 
leading order time dependence fixed as gab OC t by the homogeneous and isotropic 
solution to (5.4) when y = 2 (Lifshitz and Khalatnikov 1963); so we assume 

gab = Qabt $. babt2 + o( t 3 )  

Roo= 1 / 2 t 2 -  b / 2 t  = 2 p K U i  (5.9) 

( 5 . 8 )  
where the symmetric tensor functions anb and bab are functions only of the spatial 
coordinates xi. Using ( 5 . 8 ) ,  the Einstein constraint equations yield to second order 

(5.10) 
where b 6 :  and all index gymnastics are carried out with the first term of (5.8). Using 
the velocity normalisation U , U ,  = 1 ,  equations ( 5 . 8 )  and (5.9) allow us to determine p 
and U ,  to leading order 

b Ro, = ;( ba;b - b,a)  = 2pKUOUa 

1 b  
p = - - -  

U ,  = t2(bt;b - b,"). 
4Kt2 4Kt 

To order t-' the space-space Einstein equations are 
agbaabb + 2agbbab +4RE + 4babagb = 0 

( 5 . 1 1 )  

(5 .12 )  

( 5 . 1 3 )  
where Rab is the two-dimensional Ricci tensor defined by gab. Therefore, we have 

bz = -3RZ -;bap, (5.14) 
and 

RZ = -2b. ( 5 . 1 5 )  

bE;g = -2Rg 3 a ; g  +LagR" 12 a a,g. (5.16) 
NOW, for any 2-surface defined by gab there is only one non-zero component of the 
Riemann tensor, R l Z l 2 ,  so we can write 

R : ; a =  RZ,b (5.17) 

Hence 
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and therefore (5.15) and (5.16) give 

bz;, = ib, ,  

and (5.12) becomes 

U, = it’b,,. 

(5.18) 

(5.19) 

From (5.19) we see that the velocity field is curl-free to leading order as t +  0 and the 
velocity field also becomes comoving in this limit as the singularity is approached. 
The solution (5.11) and (5.19) leaves the three independent spatial functions aab 
arbitrary. The three spatial functions bab are completely determined in terms of the 
aab via the relations (5.15). Thus a solution with the leading order metric behaviour 
(5.8) possesses the necessary three-function arbitrariness of the general cosmological 
solution of the (2+1)  Einstein equations. This means that ( 5 . 8 )  could, if the series 
decomposition (5.8) really is admissible as t +  0 (see Barrow and Tipler 1978), represent 
an approximation to part of the general solution of the (2+ 1) Einstein equations in 
the neighbourhood of a cosmological singularity. If so, it demonstrates that part of 
the general solution describes a quasi-isotropic curvature singularity that is a small 
perturbation of the exact homogeneous and isotropic example (5.3). As the spacetime 
expands away from the singularity at t = 0 we see from (5.11) and (5.19) that deviations 
from isotropy and homogeneity will grow. The growth of the inhomogeneous density 
term in (5.11) simply reflects the presence of the Jeans gravitational instability in 
self-gravitating fluids and the velocity growth (5.19) reflects the conservation of linear 
momentum for the fluid motion. Note also that if we had supposed that the spatial 
metric preserved a conformally Euclidean form, (5.6), during its time evolution then 
in our approximation we would have been able to write aab = a(x ’ )aab  where a ( x ’ )  is 
a scalar function. Hence, in this case the solution would be completely specified by 
the single spatial function a ( x ’ )  on a surface of constant time and would not be part 
of the general solution. 

We have taken an equation of state p = p in the above calculation but the conclusions 
are found to be essentially the same for any other perfect fluid equation of state with 
0 < p G p. The p = 0 case is obviously different. The vanishing of the gravitational 
stresses in this case means, as discussed above, that the metric is conformally flat and 
hence the only non-zero spatial functions in an expansion of the form ( 5 . 8 )  are the 
aob, in that case they can be removed by a redefinition of coordinates. 

5.2. Exact inflationary solutions 

In this subsection we give two exact solutions for the evolution of self-interacting 
scalar fields with physically interesting potentials, V(@), in the zero-curvature 
homogeneous and isotropic cosmological metric (5.3). 

The two field equations to be solved for CP( t)  and a( t )  are the Friedman-like equation 

(5.20) U * /  U’ = f K 6 ’  + K v(@) 
and the equation of motion of the CP field 

& + 2 ( u / a ) 6 +  v’(cP)=o. (5.21) 

First we look for expanding universe solutions of the model introduced in 0 3.4 by 

V(@) = A exp[-CP(2~)”*] A constant. (5.22) 

Kaluza-Klein reduction from (3 + 1) dimensions with 
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We would expect the @ field to roll slowly down this fairly flat exponential potential, 
so causing a period of very rapid inflationary expansion (Guth 1981, Sato 1981, Hawking 
and Moss 1982, Linde 1982, Albrecht and Steinhardt 1982). This inflationary phase 
would be followed by slower expansion when the effective cosmological constant 
induced by the @ field has decreased. In order to have this interpretation we must 
choose A to have a sign appropriate to de Sitter spacetime, which is opposite to that 
of Q 3.4. The equations (5.20)-(5.22) may then be solved exactly by a lengthy series 
of transformations to give 

a(  t )  = t2( 1 + A /  t3)'/' A constant (5.23) 

(5.24) 

Plots of a l a  and @ ( t )  are shown in figure 1 where we have chosen initial conditions 
6 = 0 at t = (A/2)'l3. In this case a / a  is initially equal to (2/A)''3 but as t + M it 
approaches 2t-'. This is clearly suggestive of inflation, although it is power law rather 
than exponentially rapid expansion that occurs. The exponential expansion would 
result from a constant potential stress in (5.22). This indicates that the potential (5.22) 
is not quite flat enough to give true inflation and furthermore the @ field cannot 
dissipate its kinetic energy into other forms by particle production as in the conventional 
(3 + 1) scenario. Nevertheless, the gross features are similar and an exact solution of 
this type might be useful in a quantum mechanical analysis. Unfortunately the (3+ 
1)-dimensional analogue of the system (5.20)-(5.22) does not admit of an exact analytic 
solution. 

Figure 1. (a )  The expansion rate of the isotropic cosmological model (5.23) which contains 
a scalar field with potential energy (5.22). There is quasi-inflationary behaviour. ( b )  The 
time dependence of the scalar field @ ( t )  in the solution (5.24). 

A second solution of (5.20)-(5.22), which admits symmetry breaking, can be found 
if we take the potential to be a sum of quadratic and quartic parts. The complete 
solution is 

v(@) = p ($K@' - Q 2 )  (5.25) 

@( t )  = A e ~ p [ * ( 2 p ) ) ' / ~ t ]  (5.26) 

ln(a(t)/ao) = - ~ K A ~  e ~ p [ * ( 8 p ) ' / ~ t ]  (5.27) 
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where A, p and a,  are constants. The expanding cosmological model corresponds to 
the negative sign in the exponents of (5.26) and (5.27). The scale factor approaches 
a = 0 asymptotically as t -f --CO and approaches the asymptote a = a, monotonically 
from below as t+m. The double exponential evolution of the scale factor a ( t )  in 
(5.27) is a dramatic type of ‘super-inflation’ but as a consequence there is a scalar 
curvature singularity at t = --CO. Plots of a / a  and a( t )  are shown in figure 2. 

The ( 3 +  1)-dimensional version of this solution was found by Madsen (1986). 

Figure 2. ( a )  The expansion rate of the isotropic cosmological model (5.27) (where the 
negative sign is taken). ( b )  The time dependence of the scalar field Q ( t )  in the solution 
( 5 . 2 6 ) .  The behaviour of this solution is very peculiar. The CP field begins high up the 
potential (5.25) with a large downward velocity but at late times it does not reside in the 
symmetry breaking minimum. 

6. Conclusions 

In this paper we have extended the earlier studies of the structure of (2 + 1)-dimensional 
classical spacetimes made by those authors cited in § 1. We have analysed the non- 
existence of a Newtonian weak-field limit in (2+ 1) general relativity and have found 
this property to persist in related theories containing Brans-Dicke scalar fields and 
non-linear gravitational Lagrangians. Motivated by the Kaluza-Klein reduction pro- 
cedure from (3 + 1) dimensions we have studied in detail a number of static spacetimes 
containing scalar field and magnetic field sources (we point out that the latter corre- 
sponds to a perfect fluid with pressure equal to density in (2+ 1) dimensions). These 
solutions also illustrate aspects of the ‘wedge’ structure found in (2+  1) spacetimes as 
well as in (3 + 1)-dimensional line sources used as descriptions of the spacetime exterior 
to static vacuum strings. In 9 4 we gave a classification of (2+  1)-dimensional gravita- 
tional fields analogous to the Petrov classification in (3 + 1) dimensions but in this case 
based upon the algebraic structure of the Bach-Weyl tensor since the Weyl tensor used 
in Petrov’s classification vanishes in ( 2 +  1) dimensions. In the last section we studied 
the cosmological (2+  1) spacetimes in detail, determining the number of independent 
arbitrary functions of the two spatial variables that must be specified on a spacelike 
surface of constant time in order to determine part of the general solution of the 
Einstein’ equations in the presence of various material sources. This enables some 



566 J D Barrow, A B Burd and D Lancaster 

investigations to be made of singularities in (2 + 1) spacetimes and we show that there 
exists a quasi-isotropic solution containing non-comoving perfect fluid prescribed by 
the requisite number of undetermined parameters and which becomes comoving and 
isotropic as the singularity is approached. Finally, we give two exact solutions exhibit- 
ing the evolution of cosmological models containing self-interacting scalar fields. These 
are exact models of inflation and in the absence of (3  + 1)-dimensional examples may 
be interesting for quantum mechanical studies of this phenomenon. 
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