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Abstract. We use the Fuchsian algorithm to construct singular solutions of Einstein’s equations
which belong to the class of Gowdy spacetimes. The solutions have the maximum number
of arbitrary functions. Special cases correspond to polarized or other known solutions. The
method provides precise asymptotics at the singularity, which is Kasner-like. All of these

solutions are asymptotically velocity-dominated. The results account for the fact that solutions
with velocity parameter uniformly greater than one are not observed numerically. They also
provide a justification of formal expansions proposed by Giiakand Moncrief.

PACS numbers: 0420D, 0420C, 0420H, 0420E, 0420J

1. Introduction

The singularity theorems of Hawking and Penrose (see [7]) show that solutions of Einstein’s
equations are ‘non-continuable’ under rather general conditions, but do not provide very
specific information about the structure of singularities. This motivated several attempts to
try and provide an analytical description of singularities of solutions of Einstein’s equations.
Our approach in this paper is to try and determine how to perturb known exact solutions
and to decide whether or not the type of singularity they possess is representative of the
behaviour of more general solutions.

There is a technique which provides precisely this type of information for rather general
classes of partial differential equations: the Fuchsian algorithm. It consists in constructing
singular solutions with a large number of arbitrary functions by considering the equation
satisfied by a rescaled unknown, which represents in fact the ‘regular part’ of the solution.
This new unknown satisfies Ruchsian PDE i.e. a system of the form

ou

[_

ot
where A is a square matrix ang vanishes like some power efas: — 0. A general
introduction to this algorithm with several applications can be found in [8, 9], and a brief
presentation is given in section 2 below. We just note here that non-singular solutions can
also be constructed by the Fuchsian algorithm. In fact, the Cauchy problem itself reduces
to a very special case of the method.

We prove in this paper that the Fuchsian algorithm applies to Einstein’s vacuum
equations for Gowdy spacetimes, and establishes the existence of a family of solutions

+Au = f(t,x1,..., Xp, U, Uy),
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depending on the maximal number of arbitrary functions, namely four, in the ‘low-velocity’
case, whose definition is recalled below. When one of these functions is constant, the
solution actually extends to the ‘high-velocity’ case as well. We will refer to the former
solutions as ‘generic’ and to the latter as ‘non-generic’. Earlier exact solutions are obtained
by specializing the arbitrary functions in the solutions of this paper.

In both cases, the solutions are ‘asymptotically velocity-dominated’ (AVD) in the sense
of Eardleyet al [4], and precise asymptotics at the singularity are given. The reduction
to Fuchsian form actually provides a mechanism whereby inhomogeneous solutions can
become AVD in the neighbourhood of such a singularity. The results explain the paradoxical
features of numerical computations described next.

1.1. Earlier results

T2 x R Gowdy spacetimes [5] have spacelike slices, homeomorphic to the 3-torus, on which
aU(1) x U(1) isometry group acts. It is convenient to take as time coordinate ther area
of the orbits of this two-dimensional group; the spacetime corresponds to the regifn

The metric then takes the form

ds? = €2 V2(—dr? + dx?) + 1€ “(dy + X dz)? + e” dz?],
wherei, X andZ are functions of andx only, and are periodic of periodz2with respect
to x. We also let

D = tat.

1.1.1. Form of the equations.With the above conventions, the equations take the form:
D?X — 1?°X,, =2(DX DZ — t*X. Z,) (1)

D2Z — 127, = —e Z((DX)? — 12X?) @
A =2Z,DZ +€e %X, DX)

D)= (DZ)*+1*Z2 + e #((DX)* + 1?X?),

where subscripts denote derivatives.

The last two equations arise, respectively, from the momentum and Hamiltonian
constraints. It suffices to solve the first two equations, and we therefore focus on them
from now on. Of course, one should also ensure that the integral dfom 0 to 2r
vanishes.

If X = Z = 0, we recover a metric equivalent to tmé, % —%) Kasner solution.
Other Kasner solutions are recovered #or= 0 andZ = k In¢; the corresponding Kasner
exponents ar¢k® —1)/(k>+3), 2(1—k)/(k?+3) and 21+ k)/(k?>+3). The equations for
X and Z are often interpreted as expressing th#t Z) generates a ‘harmonic-like’ map
from 1+ 1 Minkowski space with values in hyperbolic space with the metric

dz? + e %4 dx2.
The usual Cartesian coordinates on the Poiaaodel of hyperbolic space aé and
Y = €, so that the metric coincides with the familiar expressidk? + dY?)/Y?.

It is occasionally useful to use polar coordinates ¢) on the hyperbolic space, so that
the metric on the target space is

dw? + sint w d¢?.



Analytic description of singularities in Gowdy spacetimes 1341

The equations fow and¢ then take the form
D?*w — 1?3, w = S sinh 2w[(Dw)? — *w?] (3)

D?¢ — 1%9,,¢ = —2 cothw[DwD¢ — 12w, ¢, ]. (4)

For fixedz, the solution representslaop in hyperbolic space.
For extensive references on Gowdy spacetimes, see [1-3, 6].

1.1.2. Exact solutions. Both sets of equations can be solved exactly if we seek solutions
independent of. In terms of thg X, Z) variables, for example, these solutions have leading
behaviour of the form

Z ~kint + O(1), X =0(),

wherek is a positive constant, and represent solutions in which the loop degenerates to a
point which follows a geodesic and tends to a point at infinity in hyperbolic space.

Motivated by this, it was suggested that a general solution corresponds to a loop, each
point of which asymptotically follows a geodesic and tends to some point at infinity in
hyperbolic space. This regime is called the ‘geodesic loop approximation’.

This is borne out in the case of the ‘circular loop’ which correspondg (to) = nx,
n=12,..., and hasw independent ok.

However, the only case in which this behaviour could be established for solutions
containing an arbitrary function of was the ‘polarized’ case, defined by the condition
X = 0 (see [3] and references therein). The equation Zois then a linear Euler—
Poisson—-Darboux equation, the general solution of which can be represented explicitly
in terms of Bessel functions; this fact does not necessarily make the investigation of
singularities straightforward, see [3]. This provides a family of solutions involving two
arbitrary functions. These solutions have

Z ~kint +O(1),

wherek now depends on and can be arbitrary.

Numerical computations suggest more complicated behaviour in the full nonlinear
system for X and Z [1]. Indeed, if one monitors the ‘velocity'v(x,t) =
[(DZ)? + exp(—2Z)(DX)?]*2, which should tend tdk(x)|, one finds that it is not possible
to find solutions which satisfy > 1 on any interval ag — 0. Even if one starts out
with v > 1 and solves towards = 0, the parametepr dwindles to values less than 1,
except for some sharp spikes located near places wkiere- 0, and which eventually
disappear at any fixed resolution. They may persist longer at higher resolutions. Solutions
such thatv < 1 are called ‘low velocity’, and others are called ‘high velocity’. A formal
asymptotic computation, proposed in [6], also suggests that the low-velocity case allows
asymptotics that would not be available in the high-velocity case. This expansion is obtained
by introducing a parameter in front of the spatial derivative terms in the equations, and
expanding the solution in powers gf

Note that solutions wittk positive and negative are qualitatively quite different, even
though they will have the same value for

Since the numerical computations we wish to account for were performed {X{He&)
variables, we will focus on them. However, we will briefly mention what happens in the
(w, ¢) variables, since the circular loop is then more simply described.

The problem can be summarized as follows: if the geodesic loop approximation is valid,
v approachesk|. We therefore need a mechanism which forgds< 1; but if v must be
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smaller than 1, how do we account for the polarized solutions? Also, should we restrict
ourselves ta > 0, given that the numerics do not give information on the sigh?f

1.1.3. Results. Our results account for the various types of behaviour observed in numerical
and special solutions by exhibiting a solution with the maximum number of ‘degrees of
freedom’, and which, under specialization, reproduces the main features listed above. We
describe these results first for> 0.

Whenk is positive, we first define new unknownsx, r) andv(x, t) by the relations

Z(x,t) =k(x)Int + @o(x) + tu(x, 1), (5)

X (x,1) = Xo(x) + t*F (Y (x) + v(x, 1)), (6)

wheree is a small positive constant to be chosen later. The objective is to construct solutions
of the form (5), (6), where: and v tend to zero as tends to zero. If O< k < 1, the
periodicity condition¢ 1, dx = 0 is equivalent to

2
/ K(x + 2Xope ) dx = O, %
0

which we assume from now on. K > 1, we will require in addition that(,, = 0, for
reasons described later. In both cases, we findithatk?Int + O(1) ast — O.

We then prove that, upon substitution of (5), (6) into (1),(2), we obtain a Fuchsian
equation for(u, v), in which the right-hand side may contain positive and negative powers
of ¢, as well as logarithmic terms. If there are only positive powers pbssibly multiplied
by powers of Irr, we prove an existence theorem which ensures that there are actual
solutions of this form in which: andv tend to zero. In fact, one can derive iteratively a
full expansion of the solution near the singularityrat 0. We prove that there are only
positive powers of in two cases:

(i) if k lies strictly between 0 and 1; this provides a ‘generic’ solution involving four
arbitrary functions ofc, namelyk, X, ¢ andy;

(i) if k¥ > 0 and X, is independent of; this provides a solution involving only three
functions ofx and one constant. This case includes bothatfiedependent solutions
and the polarized solutions, and explains why these cases do not lead to a restriction on
k.

The fact that high velocity is allowed wheKj is constant is to be compared with the
numerical results which show spikes wh&p = 0.
If k is negative, one can proceed in a similar manner, except that one should start with

Z =kx)Int 4+ @(x) + tu(x,t) (8)

X = Xo(x) +t°v(x, 1), )

wherek, ¢ and X, are arbitrary functions. In fact, one can generate solutions with negative
k from solutions with positivet. Indeed, if(X, Z) is any solution of the Gowdy equations,
so is(X, Z), where

X 7—in—"
X2+ Y2’ - X2 4+ Y2 >
with Y = €7 as before. This corresponds to an inversion in the Poinbatf-plane.

Our existence results can actually be applied in two different ways to the problem. One
is to assume the arbitrary functions to be analytic amep2riodic, and to produce solutions

X =
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which are periodic inc. One can also use the results to produce solutions which are only
defined near some value of This is useful for cases when the solution is not conveniently
represented in théX, Z) coordinates, in which one of the points at infinity in hyperbolic
space plays a distinguished role. In such cases, one can patch local solutions obtained from
several local charts in hyperbolic space.

1.2. Organization of the paper

Section 2 presents a brief introduction to Fuchsian techniques. Section 3 is devoted to the
reduction of the basic equations to Fuchsian form, and shows how the distinction between
low and high velocity arises naturally from the Fuchsian algorithm (theorems 1 and 2).
Section 4 proves the existence result (theorem 3) which produces the above solutions. It
also shows the impact of the rigorous results on formal asymptotics.

2. Introduction to Fuchsian techniques

We briefly review the main features of Fuchsian methods that are relevant to our results.
The main advantages of these techniques are:

(i) Fuchsian reduction provides an asymptotic representation of singular solutions of fairly
general partial differential equations.

(ii) The arbitrary functions in this representation generalize the Cauchy data, in the sense
that knowledge of them is equivalent to knowledge of the full solution. The Cauchy
problem is itself a special case of the Fuchsian algorithm.

(iii) The reduction of a PDE to Fuchsian form explains why solutions should become
AVD, i.e. how the spatial derivative terms can become less important than the temporal
derivatives near singularities, even though the solution is genuinely inhomogeneous.

The starting point is a reinterpretation of the solution of the Cauchy problem for, say,
a second-order equation

Flu] =0.

The geometric nature of the unknown is not important for the following discussion. Solving
the Cauchy problem amounts to showing that the solution is determined by the first two
terms of its Taylor expansion:

u:u(o)+tu(1)+~-~.

One can think of«© andu® as prescribed on the initial surfage= 0}. This statement
does not require any information about the geometric meaning of the unknpwiich
may be a scalar or a tensor, for instance.

However, this representation may fail if the solution presents singularities. The Fuchsian
approach seeks an alternative representation near singularities, in a form such as

u=1"wu®+u®+...).
There are several issues that need to be dealt with if one seeks such a solution:

() How do we construct such a series formally to all orders? This question is far from
trivial because any amount of inhomogeneity, for example, can force the appearance
of logarithmic terms at arbitrarily high orders. Furthermore, the arbitrary terms in the
series can occur at very high orders even if the equation is only of second order.
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(i) How do we know there is one solution corresponding to this expansion, rather than
infinitely many solutions differing by exponentially small corrections?

(iii) How restrictive is it to start with power behaviour: in particular, is logarithmic
behaviour allowed?

Once these issues have been addressed, the formal series can be used much in the same
way as an exact solution would.

It turns out that all of these issues can be addressed simultaneously by reducing the
given equation to a Fuchsian PDE in the following way.

First, identify the leading terms. This requires being able to find an expressidn
in the coordinates? such that, upon substitution afinto the equation, the most singular
terms cancel each other.

Second, define a renormalized regular palty setting, typically,

u=a+1t"v.

If a is a formal solution up to orde, it is reasonable to set = k + ¢. If the structure of
logarithmic terms is made explicit, one can also specify the dependencerologarithmic
variables, as in [8, 12]. Examples display considerable flexibility in the form of the
renormalized part, and the list of possible cases where these ideas apply seems to be
growing.

Third, obtain the equation far. It is important to ensure, by introducing derivatives of
v as additional variables if necessary, that one is left wiffuahsian systermthat is, one
of the form

av .
IE + Av=1"f(t,x,v, V),

where A is a matrix, which could depend on spatial variables, but should be independent
of ¢ (otherwise we could incorporate the time dependence jito d,v stands for first-
order spatial derivatives; a second-order equation is converted to such a form by adding
derivatives of the unknowns as additional unknowns. In gengralan be assumed to be
analytic in all of its argumentexcepts, because: may contain logarithms or other more
complicated expressions.

Fuchsian PDEs are a generalization of linear ordinary differential equations with a
regular or Fuchsian singularity at= 0, such as the Bessel or hypergeometric equations.

Once this reduction has been accomplished, general results on Fuchsian equations give
us the desired results, intuitively because the equation can be thought of as a perturbation
of the case wherf = 0. The initial-value problem for such equations can be solved in the
non-analytic as well as the analytic case [10].

The Fuchsian form has several advantages, in addition to being the one which allows
one to construct and validate the expansions in the first place:

() It makes AVD behaviour natural, because the spatial derivative terms appear only in
f, which is preceded by a positive power 1of We therefore expect spatial derivative
terms to be switched off at leading order, but to contribute at higher order. By contrast,
the termzd,v behaves like a term of order zero, because it transforms any pévmo
a multiple of itself (namelyjt/).

(i) It is invariant under restricted changes of coordinates which preserve the=sét if
we change(r, x*) into (¢, x™), it suffices to require that' /s be bounded away from
zero and independent of* neart = 0. One can even allow non-smooth changes of
coordinates such as$ = ¢". Further generalizations are possible.



Analytic description of singularities in Gowdy spacetimes 1345

(iii) It is invariant under ‘peel-off: for instance, if we write = v© + rw, and assume
for simplicity thate = 1, we find thatw solves a Fuchsian system withreplaced by
A + 1. A more general property of this kind can be found in [12]. This explains why
the Fuchsian form is adapted to the construction of formal solutions as well as to their
justification.

(iv) It can be used to generate the formal expansion systematically: assume the solution is
known to some ordek. Substitute intof, and callg the result; now solve the resulting
equatiored, v+ Av = r°g for v. Itis easy to see that the result will contain corrections of
order higher thark. This method is useful if the exact form of the solution is unknown,
or if it is very complicated.

Let us now turn to examples.

2.1. The Cauchy problem

The Cauchy problem can always be thought of as an initial-value problem for a first-order
system

z—b: = f(t, x,u, ou),
wherex = (x*) stands for several space variables, and, to be defifiiis, analytic in all
its arguments. For instance, in the case of Einstein’s equations in harmonic coordinates,
represents the list of all the components of the metric as well as their first time derivatives.

Let us now take as the principal partthe initial conditionx©®, and write
u=u® +rv.
If we insert this intof, we find that all of thev-dependent terms must contain a positive
power oft. In other words,
f=r9 4180 x,0,80),
where f© = £(0, x,u®, 3,4@). The equation fow is therefore
tE;—lt) +v=f9+1g,

which is a Fuchsian equation fgp — f©), with A = 1. The existence of solutions of
Fuchsian systems ensures in this case that one can solve the initial-value problem. To recover
a solution of Einstein’s equations, one needs to handle the propagation of the constraints
separately, as usual.

2.2. A nonlinear ODE

Consider the equation
Uy = MZ,
where subscripts denote derivatives, ang u(¢) is a scalar.

Let us try to find a leading part of the form~ at® with a # 0. The left-hand side is
then~ as(s — 1)#*~? and the right-hand side is a?t%. If s(s — 1) = 0, it means that we
are dealing with a Cauchy problem:~ a + uyt +--- if s =0, andu ~ at + upt> + - - - if
s = 1. We therefore assumés — 1) = 0. It is then necessary for the two sides to balance
each other as — 0, which means that we need

s—2=2s and s(s—1) =a.
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This means that = —2 anda = 6. The principal part is &2, and the first step is complete.
For the second step, let us define the renormalized unknotan

u=126+vr).
Finally, let us write the equation far. We find
(D —5)(D + 2)v = tv?,

where D = td/dr. This is a Fuchsian equation of second order, which can be converted
into a first-order Fuchsian system by introduciqg Dv) as a two-component unknown.
This would lead to an equation where the eigenvalueg afe 2 and-5.

The knowledge of the eigenvalue5 combined with general properties of Fuchsian
systems ensures that there is a complete formal solution fanere the coefficient of® in
the expansion of is arbitrary. One can convince oneself of this fact by direct substitution,
but this is often cumbersome, because of the need to compute a formal solution to sixth
order in this case. In general, the expansiow afso contains powers ofin¢, but they are
not necessary for this simple example.

The same method applies to any equation of the form

= u® + c1(Du + co(t) + e (Ou™" + - -
and yields a convergent series solution
u(t) =12 Z ujt! (1 Ino)k,
j.k

which is entirely determined once the coefficiegy is prescribed. The translates — 1)
of this solution form a two-parameter family of solutions, parametrizeduly, o), which
is stable under perturbations (i.e. ‘generic’). It is possible to show that the other eigenvalue
of A, namely 2, is related to the variation of the parametealthough we do not dwell on
this point.

Logarithmic terms aranot due to logarithms in the equation itself. For instance, the
equationu,, = u® + 2 has no solution which is free of logarithms.

2.3. The Euler—Poisson—-Darboux equation

As an example of a linear Fuchsian PDE, let us consider the Euler—Poisson—Darboux (EPD)
equation
A—1

Uy — U = Uxy + Uyy,

in two space variables. This equation has a variety of uses, from the solution of the wave
equation in Minkowski space to computer vision. In particular, the Einstein equations in
the ‘polarized’ Gowdy spacetime (i.e. wheéh= 0) reduce to the above equation with only
one space variable, and with= 0.

To reduce it to Fuchsian form, one may introduce new unknowns; u, vg = tu,,
vy = tu, andv, = tu, (numerical subscripts do not denote derivatives). One then finds the
system

td;v—1v9=0
10;,vg — AVg = 10, V1 + l‘ayvz
to;v1 = 10y (v + vo)

t9;v2 = 19, (v + vp).
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The general solution can in this case be computed explicitly using the Fourier transform (or
Fourier series in a finite domain) in terms of Bessel functions. The solution has the form
U+ Vint, whereU andV are series it and do not involve logarithms.

Fuchsian reduction applies directly to nonlinear perturbations of the EPD equation.
However, the nonlinearity causes the appearance of products of logarithms. The Fuchsian
algorithm, by ensuring that the solutions are actually functions afd ¢ In¢, guarantees
that the singularity of the logarithm is always compensated by powers of

Remark.There are cases when it is useful to make a change of time variable. Consider an
example such as

(10,)%u — tuy, = 0.
If we let (v, vo, v1) = (u, tu,, tu,), we obtain the system

to;v = vg
10;vg = 0, V1

t0;v1 = v1 + t0, Vo,

in which the termd, v; does not have a factor of We can nevertheless obviate this problem
by lettingr = s2. The original equation then becomes

(s95)%u — 4s%u,, = 0,

expanding and dividing through by, we recover the Euler—Poisson—Darboux equation, up
to the harmless factor of 4.

2.4. Leading logarithms

The first case to be treated by Fuchsian PDE methods actually required a logarithmic leading
term. We merely state the result, as it is developed extensively elsewhere [10, 11]. Consider
the equation

ndbaabu = eu’

in Minkowski space. This equation admits a Fuchsian reduction with a singularity on
any spacelike hypersurfage= v (x), which is obtained by applying the above ideas to
the equation satisfied by'e This generates a family of stable singularities which do not
propagate on characteristic surfaces, since the singularity locus is spacelike. There is a
complete expansion of the solution at the singularity, and it is free of logarithms if and only
if the singularity surface has vanishing scalar curvature §.& = 0).

To summarize, the Fuchsian approach to singularity formation consists of three steps:
(i) identification of the leading part; (ii) identification of a convenient renormalized unknown;
and (iii) solution of the Fuchsian system for the new unknown. This technique is now applied
to the Gowdy problem.

3. Reduction to Fuchsian form

3.1. General results

In this section we first reduce the Gowdy equations to a second-order systenaifatv,
which is then converted to a first-order Fuchsian system. The subscripts 0, 1 and 2 in this
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section donot denote derivatives. The equations now become:
(D + &)%u = t*[hex INt + @uy + 15Uy ] — €XP(—29 — 26°w) [t~ (D + 2k) (v + ¥))?
— 122 [ Xo + 1% (0o 4+ Y + k(v + ) N0 (10)

D(D + 2k)v = 1% X oy + 2t°(D + &)u(D + 2k) (v + )
+ 2L + ) ax + My (Ux + Y) INT + 2k INE + 42N D) (0 + )]
— 207 H [ Xop + 1% (0x + Y + ke (0 + ) IND][ke INE + @ +°u,]. (11)

This second-order system will now be reduced to a first-order system. To this end, let
us introduce the new variables

u = (ug, U1, U, Vo, V1, v2) = (U, Du, tuy, v, Dv, tv,).

We then find
Duo = Ul
DM]_ = - 28”1 - 82”0 + t278(kxx Int + (pxx) + taxuz

— exp(—2¢ — 2t°ug) {t*~F (vy + 2kvo + 2kyr)? — 2 XE

— 28 Xou (2 + 1 + ke (o + Y INE) — 127 (vp + 19, + kyvot In1)?}
Dup = 10, (uo + u1)
Dvg =1,

Dvy = —2kvy + 1% Xo + 10, (2 + 19) + 4k (2 + 1)1 Int
+ (v 4+ V) [2kyx 12Nt + Akt IN1)2] 4 265 (v + 2kvo + 2kyr) (u1 + £ug)
— 2X 02 % (ke IN1 + @y + 1°0cu10)
— 2t (0 (vo + V) + ke (vo+ ¥) Int) (k2 It + 1, + t7uz)

Dvy =10, (vo + vy1).
This system therefore has the form
(D+Au =g, x,u, uy), (12)

where the right-hand sideinvolves various powers af possibly multiplied by logarithms.

We will chooses so that all of these terms nevertheless tend to zeroga®s to zero. The
low-velocity case is precisely the one in which it is possible to achieve this without making
any assumptions about the arbitrary functions in the system, nameédy, ¢ and .

In fact, the high- and low-velocity cases are now distinguished by the absence or
presence of the terms involving=% (and+>~%~¢). As is clear from the above equations,
these terms disappear preciselyXi§ is a constant (i.eXq, = 0).

For any positive numbes#, we define the matrix

N X (Alno)
o4 =expAlno) = ; T
One checks by inspection that the matdixhas eigenvalues, 0, and 2, and that there is a
constantC such thatc4| < C for anyo € (0, 1) if ¢ > 0. This can be seen, for instance,
by reducingA and explicitly computing the matrix exponential.



Analytic description of singularities in Gowdy spacetimes 1349

Note that this system is of Cauchy—Kowalewska typerfor O, and that the solutions
will in fact be analytic in all variables for > 0. The issue is to construct solutions with
controlled behaviour as— 0.

We are interested in solutions of (12) which satisfy= 0 for t = 0. Let us check that
these solutions have the property thgtand vy solve the original Gowdy system. Since
the second and fifth equations of the system satisfied laye obtained directly from the
second-order system, it suffices to check that Dug, v1 = Dvg, uz = tug, andvy = tvgy.

The first two statements are identical with the first and fourth equations, respectively. As
for the last two, we note that the first and third equations imply

D(up — td,ug) = 19y (ug + uy — Dug — ug) = 0.

Sinceu, — td,ug tends to zero as— 0, it must be identically zero for all time, as desired.
The same argument applies o
The computations for the cage< 0 are entirely analogous, and are therefore omitted.
We now study the low- and high-velocity cases separately.

3.2. Low-velocity case

The following theorem gives the existence of a solution depending on four arbitrary functions
in the case when lies between zero and one:

Theorem 1let k(x), Xo(x), ¢(x) andy (x) be real analytic, and assume<Ok(x) < 1 for
0 < x < 27. Then there exists a unique solution of the form (5), (6), wheend v tend
to zero ag — 0.

Proof. By inspection, the vectot. satisfies a system of the form (12), wheyecan be
written ast* f, provided that we taker and e to be small enough. Letting = s™, we

obtain a new system of the same form, but withreplaced byma. By taking o large
enough, we may therefore assume that we have a system to which theorem 3 below applies.
The result follows.

3.3. High-velocity case

The following theorem gives the existence of a solution depending on three arbitrary
functions in the case whehis only assumed to be positive, and may take values greater
than one. Ifk is less than one, we recover the solutions obtained above, butxyitk- O:

Theorem 2Let k(x), ¢ (x) andy(x) be real analytic, and assum&, = 0 andk(x) > 0
for 0 < x < 27. Then there exists a unique solution of the form (5), (6), wheend v
tend to zero as — 0.

Proof. Since Xq, is now zero, we find thats satisfies, ife > 0, a Fuchsian system of
the form (12), whergz can be written ag® f, provided that we take ande to be small
enough. Letting as before = s™, we obtain a new system of the same form, but with
a replaced byma. By takingm large enough, we may therefore assume that we have a
system to which theorem 3 applies. The result follows.

4. Existence of solutions of Fuchsian systems

Consider, quite generally, a Fuchsian system, for a ‘vector’ unknognz), of the form
(D+ Au = Flul:=tf(, x,u, uy). (13)
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In this equation,A is an analytic matrix neat = 0, such thatjoc4|| < C for 0 < o < 1.

The number of space dimensionsnign = 1 for the application to the Gowdy problem).

It suffices that the nonlinearity preserve analyticity in space and continuity in time, and
depend in a locally Lipschitz manner arandu,, i.e. that its partial derivatives with respect

to these arguments be bounded when these arguments are. To be definite, one may assume
that f is a sum of products of analytic functions of u andu, by powers oft, *® and

Int. In fact, all one needs is to ensure the estimate in step 2 below. In this section, the
number of space variables is arbitrary. We are only interested in positive values of

Theorem 3.The system (13) has exactly one solution which is defined near 0 and
t = 0, and which is analytic i, continuous ir¢, and tends to zero as| 0.

Remark 1.The solutions are constructed as the uniform limit of a sequence of continuous
functions which are analytic in. They are classical solutions as well, by construction.
However, by the Cauchy—Kowalewska theorem, they are also analyticaway from
t=0.

Remark 2. The solution provided by the theorem will be defined forin a complex
neighbourhood of a subsét of R”. This can be applied to the Gowdy problem in two
different ways: one can tak@ to be an interval of length greater tham,2and note that

the solution will be 2z -periodic if the right-hand side is, since it is given as a limit of a
sequence all of whose terms are periodic. It is this solution which shows that the ‘geodesic
loop approximation’ corresponds to a generic family of exact solutions in the low-velocity
case, and a non-generic family otherwise. However, one could alsc2akebe a small
interval of length less than2 and generate solutions which are defined only locally. This
second application can itself be useful in two contexts: (i) for generalizations of Gowdy
spacetimes where the space variable is unbounded, or compactified in a different fashion;
(ii) for the description of ‘circular loop’ type solutions, which correspond to a solution which
depends linearly on the angular coordinate in terms of polar coordinates on the Boincar
half-plane.

Proof. Let us begin by defining an operatéf which corresponds to the inversion of
(D + A). The proof will consist in showing that the operator— G[v] := F[H[v]] is

a contraction for a suitable norm. Its fixed point generates a solutien H[v] to our
problem.

Before we jump into the details, let us first motivate the strategy by examining some
of the possible difficulties. For more details on the history of existence theorems in the
complex domain, see ch2 in [8].

The basic difficulty in achieving a successful iteration is that it is not clear at all how
to build a measure of the size af (that is, a function space norm) which remains finite
after even one step of the iteration. The problem is that in order to cofifndl we need
to estimate the spatial derivative ofin terms of a norm which only involves. This
cannot be remedied by adding information on the derivatives iof the definition of the
norm: we would then need to estimate bditjv] and its derivative, in order to have a
well defined iteration. In fact, this is an essential problem because the result would be false
if the right-hand side involved second as well as first derivatives. oMajorant methods
are not appropriate because the nonlineafitgoes not have an expansion in powers of
t—only in powers ofx for fixedt. It is not possible to estimate the derivative of an analytic
function by its values on the same domain: think of the functiéh— z on the unit disk,
which is bounded ori—1, 1) even though its derivative is not. However, by going into the
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complex domain, it is possible to estimate the derivatives of an analytic function in terms of
its values on the boundary ofsdightly larger domairj. This is given by Cauchy’s theorem,
which expresses the value of an analytic functoat any point as a weighted average of
its values on any curve circling that point once:

1 d
b= L o0&

2ri J, ¢—z

Differentiating with respect tg and taking absolute values, we see that we have a means
of estimating the derivatives af from its values on a larger domain. However, we must
move into the complex domain to achieve this. The transition to several variables offers
no difficulty, because an analytic function of several variables is separately analytic in each
of its arguments, and it therefore suffices to apply the above to each variable separately
to obtain some estimate of derivatives—which is all we need. For instance, the relevant
Cauchy integral formula in two variables is simply

(21, 22) = 1 ?g% ¢ (L1, &) dg1 dgp
e (27i)? (gl_zl)@z—zZ)’

where the integration extends over a product of circles:

61 —z1l =11 and [C2 — 22| = ra.

The proof below differs from the existence result used in [8, 12] by the fact that the
nonlinearity is no longer analytic with respect to time. It is therefore necessary to check
carefully that the estimates gfi can still be carried out.

We now present the proof of the result.

Throughout the proof, the meaning of the let@rwill change from line to line: it
denotes various constants, the specific values of which are not needed.

We let

1
H[v] :/ oA 1y(o1) do.
0

It is easily checked that this provides the solution of
(D+ Au =,
with u(0) = 0, provided thaty = O(¢) nears = 0.
We are ultimately interested in real valuesxofn some open se®, so that we work
in a small complex neighbourhood of the real SetThe proof in fact does not depend on

the nature or size of this set. We also define two norms which will be useful.s-Hoem
of a function ofx is

llully = sup{|u(x)| : x € C" and dx, Q) < s}.
The a-norm of a function ofx and: is defined by

luly = Sup{SO—S”u(,)HM/l_ LI a(so—s>}.
t a(sg—s)

Note that this norm allows functions to become unbounded whem (sqg—s). This can be
thought of basically as the boundary of the domain of dependence of the solution. For the
reasons indicated earlier, the iteration would not be well defined if we had worked simply
with the supremum of the-norm over some time interval.

1 Inthe non-analytic case, this problem is avoided thanks to the additional assumption of hyperbolicity, by showing
that there are expressions which can be estimasetthough the right-hand side did not involve derivatives at
all, see [10], or ch 2 of [8] for a broader introduction.
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The objective is to prove that the iteratiag = O, u,,1 = G[u,] is well defined and
converges to a fixed point @, which gives us the desired solution. This will be achieved
by exhibiting a set of functions which contains zero and on wildicis a contraction in the
a-norm. Since a contraction has a unique fixed point, we also obtain uniqueness.

We chooseR > 0 andsp such that| F[0](#)|ls, < Rz. This can always be achieved
since we are allowed to takr very large.

Step 1. Estimatingd. Using the definition of|u|,, we find, with the notationp =

ot/a(sg — ),
—1/2
ot
| L0l < f o ( ) do
a(sg—s)

_ Clula /”““0—“ a(so—s)dp

so—sJo 1—p

< Coalulg.

Step 2. Estimating’. Using Cauchy'’s integral representation, and the fact thabntains
a factor oft, we claim that there is a consta@if such that

IF[p] — Flqllls() <

if s/ > s and]| pl, and|gll; are both less tha®; this constraint will be ensured in step 3
thanks to the argument of the previous step.

Indeed, F[p] is the product ofr by a linear expression in the gradient pf with
coefficients which are Lipschitz functions gf it is in fact, in the Gowdy case, an analytic
function of these variables;, and positive powers of multiplied by logarithms. If the
dependence of onu, had been nonlinear, one would have considered the Fuchsian system
satisfied by(u, u,). The bound on the-norm ensures that all the partial derivativesrof
with respect top and V, p are bounded by some constant Therefore, we have

|F[p]l — Flqll < Ct(lp — gl + [Vip — Viq)).
We want to estimate the supremum of this expressionr agaries so as to satisfy
dist(x, Q) < s. The first term is clearly less than or equal|tp — ¢||;, anda fortiori no
bigger than||p — ¢|y. The second is estimated by Cauchy’s inequality on each component.
Thus, for the first component, we write

1 ) ’ ~~-»t - 5 5 ...,l d
P 1) =g, 1) = 5 / (P2, 1) = q@ X2, 1) D
i z—x1|=s"—s Z— X1

Differentiating with respect ta;, we find
(p(za X2y o eny t) - (I(Z, X2y o eny t))dz

[01(p — @) = ‘
vp—d 27“ |z—x1|=5"—s (z _xl)2
<i |p(z, x2,...,1) —q(z, x2,...,1)| |dz]
2m |z—x1|=5'—s (s’ _s)2
o 1 I ! 2 (s’ —s)
S o PTG Ty

which provides the desired estimate for the second term as well.
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Step 3.G is contractive. Let us assume in this section that, and|v|, are both less than
R/2Coa. We prove that

|G[u] - G[U]|u < Coalu — v,

One should think ofi andv as two successive termg andu,.; in the iterative procedure.
To obtain this inequality, we first write

Glu] - G[v] = ) _ Flw;] — Flw;_a],
j=1
where
J/n 1
wj :/ o u(or) do +/ o4 (o1) do.
0 J

/n

By the arguments of step 1, we haye; ||, < %R fort < a(so—s).
We therefore have, using step 2 with= w; andg = w;_1,

n

IG[u] = Go]lls(1) < ) —

=15

lwj —wj-alls;-

Let us choose a sequence of numbeyss s(j/n), where

1 ot
s(o) = §<s+so— 7)

We now find

jin
/1 oA Hu(ot) —v(ot)]do
(

lwj —wj-1lly, = ‘
Jj=1/n

Sj

j/n
< / Clt = vl (o) do/o
(j=D/n

<

i/n Ct lu — v|, do
/(jl)/n so—s(0) V/IT=ot/a(so — s(0))
Letting n tend to infinity, we find the estimate
2lu — v, do
(s(o) —s)(s0 — s(0)) /T —=0t/a(so — s(0))
We now make the change of variables= ot/a(so — s). Note that

(s0 — 5)?
4

1
1GLu] — Gl (1) < /0 c

ot 1-p

1—p? 1- = :
d=0%. ao—s©)) 14p

(s(0) = 5)(s0 — s(0)) =

We therefore find

Catlu — v, /’/wof) dp
So— ¢S 0

IG[u] — Gl]lls(1) < 1= p)32

< Catlu — v, <1 t >1/2.

So— S a(sg—s)

Using the definition of thez-norm, we see that we have obtained the desired estimate.
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Step 4. End of proof. Let up = 0 and define inductively:, by u,.; = Glu,]. We

show that this sequence converges in #hrorm if a is small. Since|u1|s, < Rf, we

have|ui|l, < R/4Coa if a is small. We may assuméa < % It follows by induction that
lttps1—tnla < 27"u1la, anduni1le < R/2Coa, which implies in particulaf{ Hu, ||, < 3R.

Therefore all the iterates are well defined and lie in the domain in w@idh contractive.
As a result, the iteration converges, as desired.

Impact on formal expansions.The expansion of [6] amounts to seekify and Z as
functions of(z, ex), expanding ine, and then letting: = 1. Its convergence can therefore

be derived from the analyticity of the solutions in Note that the reference solution in

that paper is slightly more restrictive than those considered here: they are geodesic loops
travelling ‘to the right’ in the Poincér half-plane.

The Fuchsian algorithm provides a different way of generating formal solutions: by
following the existence proof itself. Thus, starting with= 0, we can computé[0], then
solve (D + A)u; = F[0], which is a linear ODE irt, computeF[u,], etc. The higher-order
corrections are automatically generated even if their order is not known in advance.

Remarks on the nature of the singularityOne could check that AVD Gowdy spacetimes
with 0 < k < 1 ork > 1 do have a curvature singularity at= 0 by directly computing the
Kretschmann scalaB := R,~A,~k,R"f“ (for large classes of such spacetimes, see [2], where
symbolic manipulation is used; see also a brief remark in this direction at the end of [6]).
We give a simpler argument which reduces the issue to the corresponding problem for
Kasner spacetimes, where the answer is classical.

Indeed, consider the orthonormal coframe

(€4 Y4dr, /4 Y4 dx, 1Y2e7%/2(dy + X dz), tY2%e?/? dz),

and the dual framge, = e’;ak}. One finds, by direct computation, that the Ricci rotation
coefficients of this frame all have the form:

Phe = Cet SE /A1 4 0(2)),

where the leading-order coefficien®$,. aret-independent quantities which involve orily
its derivatives, or the functionX¥,, ¢ andy do not affect the value of these coefficients. A
similar property holds for the coefficients,, defined by g,, e,] = b .pe.. It follows that
the product terms in the expression of the frame components of the curvature tensor are at
most Q3 *+1/2) - As for the Pfaffian derivative terms, it turns out that they are not worse,
because they are coordinate derivatives multiplied by appropriate frame components. There
are still nox derivatives at leading order. It follows that the most singular ternB ias
t — 0 is in fact the same as the one correspondingge= ¢ = ¢ = 0, andk = constant,
which is the Kasner case.

In extrinsic terms, we may express the result as followsk is the mean curvature
of the slicesr = constant, thenB/h* tends to a non-zero constant for© k < 1 or
k > 1, which has the same expression as in the Kasner case. In partigldbows up like
1=3%*+1) 50 that we have a curvature singularity. O

Remark 3. It is easy to check that this singularity is reached in finite proper time by
observers witht = constant, so that this space is indeed (past) geodesically incomplete.

Remark 4. There is no change in the leading power®fask goes through 1: only the
coefficient of the leading term iB vanishes.
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