
Classical and Quantum Gravity      

Analytic description of singularities in Gowdy
spacetimes
To cite this article: Satyanad Kichenassamy and Alan D Rendall 1998 Class. Quantum Grav. 15 1339

 

View the article online for updates and enhancements.

You may also like
Computing Gowdy spacetimes via spectral
evolution in future and past directions
Paulo Amorim, Christine Bernardi and
Philippe G LeFloch

-

Asymptotic behaviour in polarized and
half-polarized U(1) symmetric vacuum
spacetimes
James Isenberg and Vincent Moncrief

-

Fuchsian methods and spacetime
singularities
Alan D Rendall

-

This content was downloaded from IP address 18.116.36.192 on 01/05/2024 at 12:41

https://doi.org/10.1088/0264-9381/15/5/016
https://iopscience.iop.org/article/10.1088/0264-9381/26/2/025007
https://iopscience.iop.org/article/10.1088/0264-9381/26/2/025007
https://iopscience.iop.org/article/10.1088/0264-9381/19/21/305
https://iopscience.iop.org/article/10.1088/0264-9381/19/21/305
https://iopscience.iop.org/article/10.1088/0264-9381/19/21/305
https://iopscience.iop.org/article/10.1088/0264-9381/19/21/305
https://iopscience.iop.org/article/10.1088/0264-9381/19/21/305
https://iopscience.iop.org/article/10.1088/0264-9381/21/3/018
https://iopscience.iop.org/article/10.1088/0264-9381/21/3/018


Class. Quantum Grav.15 (1998) 1339–1355. Printed in the UK PII: S0264-9381(98)88007-6

Analytic description of singularities in Gowdy spacetimes

Satyanad Kichenassamy†§ and Alan D Rendall‡‖
† Max-Planck-Institut f̈ur Mathematik in den Naturwissenschaften, Inselstrasse 22–26, 04103
Leipzig, Germany
‡ Max-Planck-Institut f̈ur Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany

Received 30 September 1997, in final form 21 January 1998

Abstract. We use the Fuchsian algorithm to construct singular solutions of Einstein’s equations
which belong to the class of Gowdy spacetimes. The solutions have the maximum number
of arbitrary functions. Special cases correspond to polarized or other known solutions. The
method provides precise asymptotics at the singularity, which is Kasner-like. All of these
solutions are asymptotically velocity-dominated. The results account for the fact that solutions
with velocity parameter uniformly greater than one are not observed numerically. They also
provide a justification of formal expansions proposed by Grubišić and Moncrief.

PACS numbers: 0420D, 0420C, 0420H, 0420E, 0420J

1. Introduction

The singularity theorems of Hawking and Penrose (see [7]) show that solutions of Einstein’s
equations are ‘non-continuable’ under rather general conditions, but do not provide very
specific information about the structure of singularities. This motivated several attempts to
try and provide an analytical description of singularities of solutions of Einstein’s equations.
Our approach in this paper is to try and determine how to perturb known exact solutions
and to decide whether or not the type of singularity they possess is representative of the
behaviour of more general solutions.

There is a technique which provides precisely this type of information for rather general
classes of partial differential equations: the Fuchsian algorithm. It consists in constructing
singular solutions with a large number of arbitrary functions by considering the equation
satisfied by a rescaled unknown, which represents in fact the ‘regular part’ of the solution.
This new unknown satisfies aFuchsian PDE, i.e. a system of the form

t
∂u

∂t
+ Au = f (t, x1, . . . , xn,u,ux),

whereA is a square matrix andf vanishes like some power oft as t → 0. A general
introduction to this algorithm with several applications can be found in [8, 9], and a brief
presentation is given in section 2 below. We just note here that non-singular solutions can
also be constructed by the Fuchsian algorithm. In fact, the Cauchy problem itself reduces
to a very special case of the method.

We prove in this paper that the Fuchsian algorithm applies to Einstein’s vacuum
equations for Gowdy spacetimes, and establishes the existence of a family of solutions
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depending on the maximal number of arbitrary functions, namely four, in the ‘low-velocity’
case, whose definition is recalled below. When one of these functions is constant, the
solution actually extends to the ‘high-velocity’ case as well. We will refer to the former
solutions as ‘generic’ and to the latter as ‘non-generic’. Earlier exact solutions are obtained
by specializing the arbitrary functions in the solutions of this paper.

In both cases, the solutions are ‘asymptotically velocity-dominated’ (AVD) in the sense
of Eardley et al [4], and precise asymptotics at the singularity are given. The reduction
to Fuchsian form actually provides a mechanism whereby inhomogeneous solutions can
become AVD in the neighbourhood of such a singularity. The results explain the paradoxical
features of numerical computations described next.

1.1. Earlier results

T3×R Gowdy spacetimes [5] have spacelike slices, homeomorphic to the 3-torus, on which
a U(1) × U(1) isometry group acts. It is convenient to take as time coordinate the areat

of the orbits of this two-dimensional group; the spacetime corresponds to the regiont > 0.
The metric then takes the form

ds2 = eλ/2t−1/2(−dt2+ dx2)+ t[e−Z(dy +X dz)2+ eZ dz2
]
,

whereλ, X andZ are functions oft andx only, and are periodic of period 2π with respect
to x. We also let

D = t∂t .

1.1.1. Form of the equations.With the above conventions, the equations take the form:

D2X − t2Xxx = 2(DXDZ − t2XxZx) (1)

D2Z − t2Zxx = −e−2Z((DX)2− t2X2
x) (2)

λx = 2(ZxDZ + e−2ZXxDX)

Dλ = (DZ)2+ t2Z2
x + e−2Z

(
(DX)2+ t2X2

x

)
,

where subscripts denote derivatives.
The last two equations arise, respectively, from the momentum and Hamiltonian

constraints. It suffices to solve the first two equations, and we therefore focus on them
from now on. Of course, one should also ensure that the integral ofλx from 0 to 2π
vanishes.

If X = Z = 0, we recover a metric equivalent to the( 2
3,

2
3,− 1

3) Kasner solution.
Other Kasner solutions are recovered forX = 0 andZ = k ln t ; the corresponding Kasner
exponents are(k2−1)/(k2+3), 2(1− k)/(k2+3) and 2(1+ k)/(k2+3). The equations for
X andZ are often interpreted as expressing that(X,Z) generates a ‘harmonic-like’ map
from 1+ 1 Minkowski space with values in hyperbolic space with the metric

dZ2+ e−2Z dX2.

The usual Cartesian coordinates on the Poincaré model of hyperbolic space areX and
Y = eZ, so that the metric coincides with the familiar expression(dX2+ dY 2)/Y 2.

It is occasionally useful to use polar coordinates(w, φ) on the hyperbolic space, so that
the metric on the target space is

dw2+ sinh2w dφ2.
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The equations forw andφ then take the form

D2w − t2∂xxw = 1
2 sinh 2w[(Dw)2− t2w2

x ] (3)

D2φ − t2∂xxφ = −2 cothw[DwDφ − t2wxφx ]. (4)

For fixed t , the solution represents aloop in hyperbolic space.
For extensive references on Gowdy spacetimes, see [1–3, 6].

1.1.2. Exact solutions. Both sets of equations can be solved exactly if we seek solutions
independent ofx. In terms of the(X,Z) variables, for example, these solutions have leading
behaviour of the form

Z ∼ k ln t +O(1), X = O(1),

wherek is a positive constant, and represent solutions in which the loop degenerates to a
point which follows a geodesic and tends to a point at infinity in hyperbolic space.

Motivated by this, it was suggested that a general solution corresponds to a loop, each
point of which asymptotically follows a geodesic and tends to some point at infinity in
hyperbolic space. This regime is called the ‘geodesic loop approximation’.

This is borne out in the case of the ‘circular loop’ which corresponds toφ(x) = nx,
n = 1, 2, . . ., and hasw independent ofx.

However, the only case in which this behaviour could be established for solutions
containing an arbitrary function ofx was the ‘polarized’ case, defined by the condition
X ≡ 0 (see [3] and references therein). The equation forZ is then a linear Euler–
Poisson–Darboux equation, the general solution of which can be represented explicitly
in terms of Bessel functions; this fact does not necessarily make the investigation of
singularities straightforward, see [3]. This provides a family of solutions involving two
arbitrary functions. These solutions have

Z ∼ k ln t +O(1),

wherek now depends onx and can be arbitrary.
Numerical computations suggest more complicated behaviour in the full nonlinear

system for X and Z [1]. Indeed, if one monitors the ‘velocity’v(x, t) =
[(DZ)2+ exp(−2Z)(DX)2]1/2, which should tend to|k(x)|, one finds that it is not possible
to find solutions which satisfyv > 1 on any interval ast → 0. Even if one starts out
with v > 1 and solves towardst = 0, the parameterv dwindles to values less than 1,
except for some sharp spikes located near places whereXx = 0, and which eventually
disappear at any fixed resolution. They may persist longer at higher resolutions. Solutions
such thatv < 1 are called ‘low velocity’, and others are called ‘high velocity’. A formal
asymptotic computation, proposed in [6], also suggests that the low-velocity case allows
asymptotics that would not be available in the high-velocity case. This expansion is obtained
by introducing a parameterη in front of the spatial derivative terms in the equations, and
expanding the solution in powers ofη.

Note that solutions withk positive and negative are qualitatively quite different, even
though they will have the same value forv.

Since the numerical computations we wish to account for were performed in the(X,Z)

variables, we will focus on them. However, we will briefly mention what happens in the
(w, φ) variables, since the circular loop is then more simply described.

The problem can be summarized as follows: if the geodesic loop approximation is valid,
v approaches|k|. We therefore need a mechanism which forces|k| < 1; but if v must be
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smaller than 1, how do we account for the polarized solutions? Also, should we restrict
ourselves tok > 0, given that the numerics do not give information on the sign ofk?

1.1.3. Results. Our results account for the various types of behaviour observed in numerical
and special solutions by exhibiting a solution with the maximum number of ‘degrees of
freedom’, and which, under specialization, reproduces the main features listed above. We
describe these results first fork > 0.

Whenk is positive, we first define new unknownsu(x, t) andv(x, t) by the relations

Z(x, t) = k(x) ln t + ϕ(x)+ tεu(x, t), (5)

X(x, t) = X0(x)+ t2k(x)(ψ(x)+ v(x, t)), (6)

whereε is a small positive constant to be chosen later. The objective is to construct solutions
of the form (5), (6), whereu and v tend to zero ast tends to zero. If 0< k < 1, the
periodicity condition

∮
λx dx = 0 is equivalent to∫ 2π

0
k(ϕx + 2X0xψe−2ϕ) dx = 0, (7)

which we assume from now on. Ifk > 1, we will require in addition thatX0x ≡ 0, for
reasons described later. In both cases, we find thatλ = k2 ln t +O(1) as t → 0.

We then prove that, upon substitution of (5), (6) into (1), (2), we obtain a Fuchsian
equation for(u, v), in which the right-hand side may contain positive and negative powers
of t , as well as logarithmic terms. If there are only positive powers oft , possibly multiplied
by powers of lnt , we prove an existence theorem which ensures that there are actual
solutions of this form in whichu andv tend to zero. In fact, one can derive iteratively a
full expansion of the solution near the singularity att = 0. We prove that there are only
positive powers oft in two cases:

(i) if k lies strictly between 0 and 1; this provides a ‘generic’ solution involving four
arbitrary functions ofx, namelyk, X0, ϕ andψ ;

(ii) if k > 0 andX0 is independent ofx; this provides a solution involving only three
functions ofx and one constant. This case includes both thex-independent solutions
and the polarized solutions, and explains why these cases do not lead to a restriction on
k.

The fact that high velocity is allowed whenX0 is constant is to be compared with the
numerical results which show spikes whenXx = 0.

If k is negative, one can proceed in a similar manner, except that one should start with

Z = k(x) ln t + ϕ(x)+ t εu(x, t) (8)

X = X0(x)+ t εv(x, t), (9)

wherek, ϕ andX0 are arbitrary functions. In fact, one can generate solutions with negative
k from solutions with positivek. Indeed, if(X,Z) is any solution of the Gowdy equations,
so is(X̃, Z̃), where

X̃ = X

X2+ Y 2
, Z̃ = ln

Y

X2+ Y 2
,

with Y = eZ as before. This corresponds to an inversion in the Poincaré half-plane.
Our existence results can actually be applied in two different ways to the problem. One

is to assume the arbitrary functions to be analytic and 2π -periodic, and to produce solutions
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which are periodic inx. One can also use the results to produce solutions which are only
defined near some value ofx. This is useful for cases when the solution is not conveniently
represented in the(X,Z) coordinates, in which one of the points at infinity in hyperbolic
space plays a distinguished role. In such cases, one can patch local solutions obtained from
several local charts in hyperbolic space.

1.2. Organization of the paper

Section 2 presents a brief introduction to Fuchsian techniques. Section 3 is devoted to the
reduction of the basic equations to Fuchsian form, and shows how the distinction between
low and high velocity arises naturally from the Fuchsian algorithm (theorems 1 and 2).
Section 4 proves the existence result (theorem 3) which produces the above solutions. It
also shows the impact of the rigorous results on formal asymptotics.

2. Introduction to Fuchsian techniques

We briefly review the main features of Fuchsian methods that are relevant to our results.
The main advantages of these techniques are:

(i) Fuchsian reduction provides an asymptotic representation of singular solutions of fairly
general partial differential equations.

(ii) The arbitrary functions in this representation generalize the Cauchy data, in the sense
that knowledge of them is equivalent to knowledge of the full solution. The Cauchy
problem is itself a special case of the Fuchsian algorithm.

(iii) The reduction of a PDE to Fuchsian form explains why solutions should become
AVD, i.e. how the spatial derivative terms can become less important than the temporal
derivatives near singularities, even though the solution is genuinely inhomogeneous.

The starting point is a reinterpretation of the solution of the Cauchy problem for, say,
a second-order equation

F [u] = 0.

The geometric nature of the unknown is not important for the following discussion. Solving
the Cauchy problem amounts to showing that the solution is determined by the first two
terms of its Taylor expansion:

u = u(0) + tu(1) + · · · .
One can think ofu(0) andu(1) as prescribed on the initial surface{t = 0}. This statement
does not require any information about the geometric meaning of the unknownu, which
may be a scalar or a tensor, for instance.

However, this representation may fail if the solution presents singularities. The Fuchsian
approach seeks an alternative representation near singularities, in a form such as

u = tν(u(0) + tu(1) + · · ·).
There are several issues that need to be dealt with if one seeks such a solution:

(i) How do we construct such a series formally to all orders? This question is far from
trivial because any amount of inhomogeneity, for example, can force the appearance
of logarithmic terms at arbitrarily high orders. Furthermore, the arbitrary terms in the
series can occur at very high orders even if the equation is only of second order.
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(ii) How do we know there is one solution corresponding to this expansion, rather than
infinitely many solutions differing by exponentially small corrections?

(iii) How restrictive is it to start with power behaviour: in particular, is logarithmic
behaviour allowed?

Once these issues have been addressed, the formal series can be used much in the same
way as an exact solution would.

It turns out that all of these issues can be addressed simultaneously by reducing the
given equation to a Fuchsian PDE in the following way.

First, identify the leading terms. This requires being able to find an expressiona(xq)

in the coordinatesxq such that, upon substitution ofa into the equation, the most singular
terms cancel each other.

Second, define a renormalized regular partv by setting, typically,

u = a + tmv.
If a is a formal solution up to orderk, it is reasonable to setm = k + ε. If the structure of
logarithmic terms is made explicit, one can also specify the dependence ofv on logarithmic
variables, as in [8, 12]. Examples display considerable flexibility in the form of the
renormalized partv, and the list of possible cases where these ideas apply seems to be
growing.

Third, obtain the equation forv. It is important to ensure, by introducing derivatives of
v as additional variables if necessary, that one is left with aFuchsian system, that is, one
of the form

t
∂v

∂t
+ Av = t εf (t, x, v, ∂αv),

whereA is a matrix, which could depend on spatial variables, but should be independent
of t (otherwise we could incorporate the time dependence intof ). ∂αv stands for first-
order spatial derivatives; a second-order equation is converted to such a form by adding
derivatives of the unknowns as additional unknowns. In general,f can be assumed to be
analytic in all of its argumentsexceptt , becausea may contain logarithms or other more
complicated expressions.

Fuchsian PDEs are a generalization of linear ordinary differential equations with a
regular or Fuchsian singularity att = 0, such as the Bessel or hypergeometric equations.

Once this reduction has been accomplished, general results on Fuchsian equations give
us the desired results, intuitively because the equation can be thought of as a perturbation
of the case whenf = 0. The initial-value problem for such equations can be solved in the
non-analytic as well as the analytic case [10].

The Fuchsian form has several advantages, in addition to being the one which allows
one to construct and validate the expansions in the first place:

(i) It makes AVD behaviour natural, because the spatial derivative terms appear only in
f , which is preceded by a positive power oft . We therefore expect spatial derivative
terms to be switched off at leading order, but to contribute at higher order. By contrast,
the termt∂tv behaves like a term of order zero, because it transforms any powert j into
a multiple of itself (namelyj tj ).

(ii) It is invariant under restricted changes of coordinates which preserve the sett = 0: if
we change(t, xα) into (t ′, x ′α), it suffices to require thatt ′/t be bounded away from
zero and independent ofxα near t = 0. One can even allow non-smooth changes of
coordinates such ast ′ = t r . Further generalizations are possible.
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(iii) It is invariant under ‘peel-off’: for instance, if we writev = v(0) + tw, and assume
for simplicity thatε = 1, we find thatw solves a Fuchsian system withA replaced by
A+ 1. A more general property of this kind can be found in [12]. This explains why
the Fuchsian form is adapted to the construction of formal solutions as well as to their
justification.

(iv) It can be used to generate the formal expansion systematically: assume the solution is
known to some orderk. Substitute intof , and callg the result; now solve the resulting
equationt∂tv+Av = t εg for v. It is easy to see that the result will contain corrections of
order higher thank. This method is useful if the exact form of the solution is unknown,
or if it is very complicated.

Let us now turn to examples.

2.1. The Cauchy problem

The Cauchy problem can always be thought of as an initial-value problem for a first-order
system

∂u

∂t
= f (t, x, u, ∂xu),

wherex = (xα) stands for several space variables, and, to be definite,f is analytic in all
its arguments. For instance, in the case of Einstein’s equations in harmonic coordinates,u

represents the list of all the components of the metric as well as their first time derivatives.
Let us now take as the principal parta the initial conditionu(0), and write

u = u(0) + tv.
If we insert this intof , we find that all of thev-dependent terms must contain a positive
power of t . In other words,

f = f (0) + tg(t, x, v, ∂xv),
wheref (0) = f (0, x, u(0), ∂xu(0)). The equation forv is therefore

t
∂v

∂t
+ v = f (0) + tg,

which is a Fuchsian equation for(v − f (0)), with A = 1. The existence of solutions of
Fuchsian systems ensures in this case that one can solve the initial-value problem. To recover
a solution of Einstein’s equations, one needs to handle the propagation of the constraints
separately, as usual.

2.2. A nonlinear ODE

Consider the equation

utt = u2,

where subscripts denote derivatives, andu = u(t) is a scalar.
Let us try to find a leading part of the formu ∼ ats with a 6= 0. The left-hand side is

then∼ as(s − 1)ts−2 and the right-hand side is∼ a2t2s . If s(s − 1) = 0, it means that we
are dealing with a Cauchy problem:u ≈ a + u1t + · · · if s = 0, andu ≈ at + u2t

2+ · · · if
s = 1. We therefore assumes(s − 1) 6= 0. It is then necessary for the two sides to balance
each other ast → 0, which means that we need

s − 2= 2s and s(s − 1) = a.
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This means thats = −2 anda = 6. The principal part is 6/t2, and the first step is complete.
For the second step, let us define the renormalized unknownv by

u = t−2(6+ vt).
Finally, let us write the equation forv. We find

(D − 5)(D + 2)v = tv2,

whereD = t d/dt . This is a Fuchsian equation of second order, which can be converted
into a first-order Fuchsian system by introducing(v,Dv) as a two-component unknown.
This would lead to an equation where the eigenvalues ofA are 2 and−5.

The knowledge of the eigenvalue−5 combined with general properties of Fuchsian
systems ensures that there is a complete formal solution forv where the coefficient oft5 in
the expansion ofv is arbitrary. One can convince oneself of this fact by direct substitution,
but this is often cumbersome, because of the need to compute a formal solution to sixth
order in this case. In general, the expansion ofv also contains powers oft ln t , but they are
not necessary for this simple example.

The same method applies to any equation of the form

utt = u2+ c1(t)u+ c0(t)+ c−1(t)u
−1+ · · ·

and yields a convergent series solution

u(t) = t−2
∑
j,k

uj,kt
j (t ln t)k,

which is entirely determined once the coefficientu6,0 is prescribed. The translatesu(t − t0)
of this solution form a two-parameter family of solutions, parametrized by(u6,0, t0), which
is stable under perturbations (i.e. ‘generic’). It is possible to show that the other eigenvalue
of A, namely 2, is related to the variation of the parametert0, although we do not dwell on
this point.

Logarithmic terms arenot due to logarithms in the equation itself. For instance, the
equationutt = u2+ t2 has no solution which is free of logarithms.

2.3. The Euler–Poisson–Darboux equation

As an example of a linear Fuchsian PDE, let us consider the Euler–Poisson–Darboux (EPD)
equation

utt − λ− 1

t
ut = uxx + uyy,

in two space variables. This equation has a variety of uses, from the solution of the wave
equation in Minkowski space to computer vision. In particular, the Einstein equations in
the ‘polarized’ Gowdy spacetime (i.e. whenX = 0) reduce to the above equation with only
one space variable, and withλ = 0.

To reduce it to Fuchsian form, one may introduce new unknowns:v = u, v0 = tut ,
v1 = tux andv2 = tuy (numerical subscripts do not denote derivatives). One then finds the
system

t∂tv − v0 = 0

t∂tv0− λv0 = t∂xv1+ t∂yv2

t∂tv1 = t∂x(v + v0)

t∂tv2 = t∂y(v + v0).
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The general solution can in this case be computed explicitly using the Fourier transform (or
Fourier series in a finite domain) in terms of Bessel functions. The solution has the form
U + V ln t , whereU andV are series int and do not involve logarithms.

Fuchsian reduction applies directly to nonlinear perturbations of the EPD equation.
However, the nonlinearity causes the appearance of products of logarithms. The Fuchsian
algorithm, by ensuring that the solutions are actually functions oft and t ln t , guarantees
that the singularity of the logarithm is always compensated by powers oft .

Remark.There are cases when it is useful to make a change of time variable. Consider an
example such as

(t∂t )
2u− tuxx = 0.

If we let (v, v0, v1) = (u, tut , tux), we obtain the system

t∂tv = v0

t∂tv0 = ∂xv1

t∂tv1 = v1+ t∂xv0,

in which the term∂xv1 does not have a factor oft . We can nevertheless obviate this problem
by letting t = s2. The original equation then becomes

(s∂s)
2u− 4s2uxx = 0,

expanding and dividing through bys2, we recover the Euler–Poisson–Darboux equation, up
to the harmless factor of 4.

2.4. Leading logarithms

The first case to be treated by Fuchsian PDE methods actually required a logarithmic leading
term. We merely state the result, as it is developed extensively elsewhere [10, 11]. Consider
the equation

ηab∂abu = eu,

in Minkowski space. This equation admits a Fuchsian reduction with a singularity on
any spacelike hypersurfacet = ψ(x), which is obtained by applying the above ideas to
the equation satisfied by eu. This generates a family of stable singularities which do not
propagate on characteristic surfaces, since the singularity locus is spacelike. There is a
complete expansion of the solution at the singularity, and it is free of logarithms if and only
if the singularity surface has vanishing scalar curvature (i.e.(3)R = 0).

To summarize, the Fuchsian approach to singularity formation consists of three steps:
(i) identification of the leading part; (ii) identification of a convenient renormalized unknown;
and (iii) solution of the Fuchsian system for the new unknown. This technique is now applied
to the Gowdy problem.

3. Reduction to Fuchsian form

3.1. General results

In this section we first reduce the Gowdy equations to a second-order system foru andv,
which is then converted to a first-order Fuchsian system. The subscripts 0, 1 and 2 in this
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section donot denote derivatives. The equations now become:

(D + ε)2u = t2−ε[kxx ln t + ϕxx + t εuxx ] − exp(−2ϕ − 2t εu)
{
t2k−ε((D + 2k)(v + ψ))2

− t2−2k−ε[X0x + t2k(vx + ψx + kx(v + ψ) ln t)]2
}

(10)

D(D + 2k)v = t2−2kX0xx + 2t ε(D + ε)u(D + 2k)(v + ψ)
+ t2[(v + ψ)xx + 4kx(vx + ψx) ln t + (2kxx ln t + 4k2

x(ln t)
2)(v + ψ)]

− 2t2−2k[X0x + t2k(vx + ψx + kx(v + ψ) ln t)][kx ln t + ϕx + t εux ]. (11)

This second-order system will now be reduced to a first-order system. To this end, let
us introduce the new variables

u = (u0, u1, u2, v0, v1, v2) = (u,Du, tux, v,Dv, tvx).
We then find

Du0 = u1

Du1 = − 2εu1− ε2u0+ t2−ε(kxx ln t + ϕxx)+ t∂xu2

− exp(−2ϕ − 2t εu0)
{
t2k−ε(v1+ 2kv0+ 2kψ)2− t2−2k−εX2

0x

− 2t1−εX0x(v2+ tψx + kx(v0+ ψ)t ln t)− t2k−ε(v2+ tψx + kxv0t ln t)2
}

Du2 = t∂x(u0+ u1)

Dv0 = v1

Dv1 = −2kv1+ t2−2kX0xx + t∂x(v2+ tψx)+ 4kx(v2+ tψx)t ln t

+ (v + ψ)[2kxxt2 ln t + 4(kxt ln t)2] + 2t ε(v1+ 2kv0+ 2kψ)(u1+ εu0)

− 2X0xt
2−2k(kx ln t + ϕx + t ε∂xu0)

− 2t (∂x(v0+ ψ)+ kx(v0+ ψ) ln t)(kxt ln t + tϕx + t εu2)

Dv2 = t∂x(v0+ v1).

This system therefore has the form

(D + A)u = g(t, x,u,ux), (12)

where the right-hand sideg involves various powers oft , possibly multiplied by logarithms.
We will chooseε so that all of these terms nevertheless tend to zero ast goes to zero. The
low-velocity case is precisely the one in which it is possible to achieve this without making
any assumptions about the arbitrary functions in the system, namelyk, X0, ϕ andψ .

In fact, the high- and low-velocity cases are now distinguished by the absence or
presence of the terms involvingt2−2k (and t2−2k−ε). As is clear from the above equations,
these terms disappear precisely ifX0 is a constant (i.e.X0x = 0).

For any positive numberσ , we define the matrix

σA = exp(A ln σ) :=
∞∑
r=0

(A ln σ)r

r!
.

One checks by inspection that the matrixA has eigenvaluesε, 0, and 2k, and that there is a
constantC such that|σA| 6 C for any σ ∈ (0, 1) if ε > 0. This can be seen, for instance,
by reducingA and explicitly computing the matrix exponential.
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Note that this system is of Cauchy–Kowalewska type fort > 0, and that the solutions
will in fact be analytic in all variables fort > 0. The issue is to construct solutions with
controlled behaviour ast → 0.

We are interested in solutions of (12) which satisfyu = 0 for t = 0. Let us check that
these solutions have the property thatu0 and v0 solve the original Gowdy system. Since
the second and fifth equations of the system satisfied byu are obtained directly from the
second-order system, it suffices to check thatu1 = Du0, v1 = Dv0, u2 = tu0x andv2 = tv0x .
The first two statements are identical with the first and fourth equations, respectively. As
for the last two, we note that the first and third equations imply

D(u2− t∂xu0) = t∂x(u0+ u1−Du0− u0) = 0.

Sinceu2− t∂xu0 tends to zero ast → 0, it must be identically zero for all time, as desired.
The same argument applies tov.

The computations for the casek < 0 are entirely analogous, and are therefore omitted.
We now study the low- and high-velocity cases separately.

3.2. Low-velocity case

The following theorem gives the existence of a solution depending on four arbitrary functions
in the case whenk lies between zero and one:

Theorem 1.Let k(x), X0(x), φ(x) andψ(x) be real analytic, and assume 0< k(x) < 1 for
0 6 x 6 2π . Then there exists a unique solution of the form (5), (6), whereu andv tend
to zero ast → 0.

Proof. By inspection, the vectoru satisfies a system of the form (12), whereg can be
written astαf , provided that we takeα and ε to be small enough. Lettingt = sm, we
obtain a new system of the same form, but withα replaced bymα. By taking α large
enough, we may therefore assume that we have a system to which theorem 3 below applies.
The result follows.

3.3. High-velocity case

The following theorem gives the existence of a solution depending on three arbitrary
functions in the case whenk is only assumed to be positive, and may take values greater
than one. Ifk is less than one, we recover the solutions obtained above, but withX0x = 0:

Theorem 2.Let k(x), φ(x) andψ(x) be real analytic, and assumeX0x = 0 andk(x) > 0
for 0 6 x 6 2π . Then there exists a unique solution of the form (5), (6), whereu and v
tend to zero ast → 0.

Proof. SinceX0x is now zero, we find thatu satisfies, ifε > 0, a Fuchsian system of
the form (12), whereg can be written astαf , provided that we takeα and ε to be small
enough. Letting as beforet = sm, we obtain a new system of the same form, but with
α replaced bymα. By takingm large enough, we may therefore assume that we have a
system to which theorem 3 applies. The result follows.

4. Existence of solutions of Fuchsian systems

Consider, quite generally, a Fuchsian system, for a ‘vector’ unknownu(x, t), of the form

(D + A)u = F [u] := tf (t, x, u, ux). (13)
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In this equation,A is an analytic matrix nearx = 0, such that‖σA‖ 6 C for 0 < σ < 1.
The number of space dimensions isn (n = 1 for the application to the Gowdy problem).
It suffices that the nonlinearityf preserve analyticity in space and continuity in time, and
depend in a locally Lipschitz manner onu andux , i.e. that its partial derivatives with respect
to these arguments be bounded when these arguments are. To be definite, one may assume
that f is a sum of products of analytic functions ofx, u andux by powers oft , tk(x) and
ln t . In fact, all one needs is to ensure the estimate in step 2 below. In this section, the
number of space variables is arbitrary. We are only interested in positive values oft .

Theorem 3.The system (13) has exactly one solution which is defined nearx = 0 and
t = 0, and which is analytic inx, continuous int , and tends to zero ast ↓ 0.

Remark 1.The solutions are constructed as the uniform limit of a sequence of continuous
functions which are analytic inx. They are classical solutions as well, by construction.
However, by the Cauchy–Kowalewska theorem, they are also analytic int away from
t = 0.

Remark 2. The solution provided by the theorem will be defined forx in a complex
neighbourhood of a subset� of Rn. This can be applied to the Gowdy problem in two
different ways: one can take� to be an interval of length greater than 2π , and note that
the solution will be 2π -periodic if the right-hand side is, since it is given as a limit of a
sequence all of whose terms are periodic. It is this solution which shows that the ‘geodesic
loop approximation’ corresponds to a generic family of exact solutions in the low-velocity
case, and a non-generic family otherwise. However, one could also take� to be a small
interval of length less than 2π , and generate solutions which are defined only locally. This
second application can itself be useful in two contexts: (i) for generalizations of Gowdy
spacetimes where the space variable is unbounded, or compactified in a different fashion;
(ii) for the description of ‘circular loop’ type solutions, which correspond to a solution which
depends linearly on the angular coordinate in terms of polar coordinates on the Poincaré
half-plane.

Proof. Let us begin by defining an operatorH which corresponds to the inversion of
(D + A). The proof will consist in showing that the operatorv 7→ G[v] := F [H [v]] is
a contraction for a suitable norm. Its fixed point generates a solutionu = H [v] to our
problem.

Before we jump into the details, let us first motivate the strategy by examining some
of the possible difficulties. For more details on the history of existence theorems in the
complex domain, see ch 2 in [8].

The basic difficulty in achieving a successful iteration is that it is not clear at all how
to build a measure of the size ofu (that is, a function space norm) which remains finite
after even one step of the iteration. The problem is that in order to controlG[v], we need
to estimate the spatial derivative ofv in terms of a norm which only involvesv. This
cannot be remedied by adding information on the derivatives ofv in the definition of the
norm: we would then need to estimate bothH [v] and its derivative, in order to have a
well defined iteration. In fact, this is an essential problem because the result would be false
if the right-hand side involved second as well as first derivatives ofu. Majorant methods
are not appropriate because the nonlinearityf does not have an expansion in powers of
t—only in powers ofx for fixed t . It is not possible to estimate the derivative of an analytic
function by its values on the same domain: think of the function

√
1− z on the unit disk,

which is bounded on(−1, 1) even though its derivative is not. However, by going into the
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complex domain, it is possible to estimate the derivatives of an analytic function in terms of
its values on the boundary of aslightly larger domain†. This is given by Cauchy’s theorem,
which expresses the value of an analytic functionφ at any point as a weighted average of
its values on any curveγ circling that point once:

φ(z) = 1

2π i

∮
γ

φ(ζ ) dζ

ζ − z .

Differentiating with respect toz and taking absolute values, we see that we have a means
of estimating the derivatives ofφ from its values on a larger domain. However, we must
move into the complex domain to achieve this. The transition to several variables offers
no difficulty, because an analytic function of several variables is separately analytic in each
of its arguments, and it therefore suffices to apply the above to each variable separately
to obtain some estimate of derivatives—which is all we need. For instance, the relevant
Cauchy integral formula in two variables is simply

φ(z1, z2) = 1

(2π i)2

∮ ∮
φ(ζ1, ζ2) dζ1 dζ2

(ζ1− z1)(ζ2− z2)
,

where the integration extends over a product of circles:

|ζ1− z1| = r1 and |ζ2− z2| = r2.
The proof below differs from the existence result used in [8, 12] by the fact that the
nonlinearity is no longer analytic with respect to time. It is therefore necessary to check
carefully that the estimates onf can still be carried out.

We now present the proof of the result.
Throughout the proof, the meaning of the letterC will change from line to line: it

denotes various constants, the specific values of which are not needed.
We let

H [v] =
∫ 1

0
σA(x)−1v(σ t) dσ.

It is easily checked that this provides the solution of

(D + A)u = v,
with u(0) = 0, provided thatv = O(t) neart = 0.

We are ultimately interested in real values ofx in some open set�, so that we work
in a small complex neighbourhood of the real set�. The proof in fact does not depend on
the nature or size of this set. We also define two norms which will be useful. Thes-norm
of a function ofx is

‖u‖s = sup{|u(x)| : x ∈ Cn and d(x,�) < s}.
The a-norm of a function ofx and t is defined by

|u|a = sup

{
s0− s
t
‖u(t)‖s

√
1− t

a(s0− s) : t < a(s0− s)
}
.

Note that this norm allows functions to become unbounded whent = a(s0−s). This can be
thought of basically as the boundary of the domain of dependence of the solution. For the
reasons indicated earlier, the iteration would not be well defined if we had worked simply
with the supremum of thes-norm over some time interval.

† In the non-analytic case, this problem is avoided thanks to the additional assumption of hyperbolicity, by showing
that there are expressions which can be estimatedas though the right-hand side did not involve derivatives ofv at
all , see [10], or ch 2 of [8] for a broader introduction.
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The objective is to prove that the iterationu0 = 0, un+1 = G[un] is well defined and
converges to a fixed point ofG, which gives us the desired solution. This will be achieved
by exhibiting a set of functions which contains zero and on whichG is a contraction in the
a-norm. Since a contraction has a unique fixed point, we also obtain uniqueness.

We chooseR > 0 and s0 such that‖F [0](t)‖s0 6 Rt . This can always be achieved
since we are allowed to takeR very large.

Step 1. EstimatingH . Using the definition of|u|a, we find, with the notationρ =
σ t/a(s0− s),

‖H [u](t)‖s 6 |u|a
s0− s

∫ 1

0
|σA|σ t

σ

(
1− σ t

a(s0− s)
)−1/2

dσ

= C|u|a
s0− s

∫ t/a(s0−s)

0

a(s0− s) dρ√
1− ρ

6 C0a|u|a.

Step 2. EstimatingF . Using Cauchy’s integral representation, and the fact thatf contains
a factor oft , we claim that there is a constantC1 such that

‖F [p] − F [q]‖s(t) 6 C1t

s ′ − s ‖p − q‖s ′
if s ′ > s and‖p‖s and‖q‖s are both less thanR; this constraint will be ensured in step 3
thanks to the argument of the previous step.

Indeed,F [p] is the product oft by a linear expression in the gradient ofp, with
coefficients which are Lipschitz functions ofp; it is in fact, in the Gowdy case, an analytic
function of these variables,x, and positive powers oft multiplied by logarithms. If the
dependence ofF onux had been nonlinear, one would have considered the Fuchsian system
satisfied by(u, ux). The bound on thes-norm ensures that all the partial derivatives ofF

with respect top and∇xp are bounded by some constantC. Therefore, we have

|F [p] − F [q]| 6 Ct(|p − q| + |∇xp −∇xq|).
We want to estimate the supremum of this expression asx varies so as to satisfy
dist(x,�) < s. The first term is clearly less than or equal to‖p − q‖s , anda fortiori no
bigger than‖p−q‖s ′ . The second is estimated by Cauchy’s inequality on each component.
Thus, for the first component, we write

p(x, t)− q(x, t) = 1

2π i

∫
|z−x1|=s ′−s

(p(z, x2, . . . , t)− q(z, x2, . . . , t))dz

z− x1
.

Differentiating with respect tox1, we find

|∂1(p − q)| =
∣∣∣∣ 1

2π i

∫
|z−x1|=s ′−s

(p(z, x2, . . . , t)− q(z, x2, . . . , t))dz

(z− x1)2

∣∣∣∣
6 1

2π

∫
|z−x1|=s ′−s

|p(z, x2, . . . , t)− q(z, x2, . . . , t)| |dz|
(s ′ − s)2

6 1

2π
‖p − q‖s ′ 2π(s

′ − s)
(s ′ − s)2 ,

which provides the desired estimate for the second term as well.
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Step 3.G is contractive. Let us assume in this section that|u|a and|v|a are both less than
R/2C0a. We prove that

|G[u] −G[v]|a 6 C2a|u− v|a.
One should think ofu andv as two successive termsun andun+1 in the iterative procedure.
To obtain this inequality, we first write

G[u] −G[v] =
n∑
j=1

F [wj ] − F [wj−1],

where

wj =
∫ j/n

0
σA−1u(σ t) dσ +

∫ 1

j/n

σA−1v(σ t) dσ.

By the arguments of step 1, we have‖wj‖s < 1
2R for t < a(s0− s).

We therefore have, using step 2 withp = wj andq = wj−1,

‖G[u] −G[v]‖s(t) 6
n∑
j=1

Ct

sj − s ‖wj − wj−1‖sj .

Let us choose a sequence of numbers,sj = s(j/n), where

s(σ ) = 1

2

(
s + s0− σ t

a

)
.

We now find

‖wj − wj−1‖sj =
∥∥∥∥ ∫ j/n

(j−1)/n
σA−1[u(σ t)− v(σ t)] dσ

∥∥∥∥
sj

6
∫ j/n

(j−1)/n
C‖u− v‖s(σ )(σ t) dσ/σ

6
∫ j/n

(j−1)/n

Ct

s0− s(σ )
|u− v|a dσ√

1− σ t/a(s0− s(σ ))
.

Letting n tend to infinity, we find the estimate

‖G[u] −G[v]‖s(t) 6
∫ 1

0
C

t2|u− v|a
(s(σ )− s)(s0− s(σ ))

dσ√
1− σ t/a(s0− s(σ ))

.

We now make the change of variablesρ = σ t/a(s0− s). Note that

(s(σ )− s)(s0− s(σ )) = (s0− s)2
4

(1− ρ2), 1− σ t

a(s0− s(σ )) =
1− ρ
1+ ρ .

We therefore find

‖G[u] −G[v]‖s(t) 6 Cat |u− v|a
s0− s

∫ t/a(s0−s)

0

dρ

(1− ρ)3/2

6 Cat |u− v|a
s0− s

(
1− t

a(s0− s)
)−1/2

.

Using the definition of thea-norm, we see that we have obtained the desired estimate.
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Step 4. End of proof. Let u0 = 0 and define inductivelyun by un+1 = G[un]. We
show that this sequence converges in thea-norm if a is small. Since‖u1‖s0 6 Rt , we
have|u1|a < R/4C0a if a is small. We may assumeC2a <

1
2. It follows by induction that

|un+1−un|a 6 2−n|u1|a, and|un+1|a < R/2C0a, which implies in particular‖Hun‖s < 1
2R.

Therefore all the iterates are well defined and lie in the domain in whichG is contractive.
As a result, the iteration converges, as desired.

Impact on formal expansions.The expansion of [6] amounts to seekingX and Z as
functions of(t, εx), expanding inε, and then lettingε = 1. Its convergence can therefore
be derived from the analyticity of the solutions inx. Note that the reference solution in
that paper is slightly more restrictive than those considered here: they are geodesic loops
travelling ‘to the right’ in the Poincaré half-plane.

The Fuchsian algorithm provides a different way of generating formal solutions: by
following the existence proof itself. Thus, starting withu = 0, we can computeF [0], then
solve(D+A)u1 = F [0], which is a linear ODE int , computeF [u1], etc. The higher-order
corrections are automatically generated even if their order is not known in advance.

Remarks on the nature of the singularity.One could check that AVD Gowdy spacetimes
with 0< k < 1 or k > 1 do have a curvature singularity att = 0 by directly computing the
Kretschmann scalarB := RijklR

ijkl (for large classes of such spacetimes, see [2], where
symbolic manipulation is used; see also a brief remark in this direction at the end of [6]).
We give a simpler argument which reduces the issue to the corresponding problem for
Kasner spacetimes, where the answer is classical.

Indeed, consider the orthonormal coframe

(eλ/4t−1/4 dt, eλ/4t−1/4 dx, t1/2e−Z/2(dy +X dz), t1/2eZ/2 dz),

and the dual frame{ea = eka∂k}. One finds, by direct computation, that the Ricci rotation
coefficients of this frame all have the form:

γ abc = Cabct−3(k2+1)/4(1+ o(1)),

where the leading-order coefficientsCabc aret-independent quantities which involve onlyk:
its derivatives, or the functionsX0, ϕ andψ do not affect the value of these coefficients. A
similar property holds for the coefficientsbcab defined by [ea, eb] = bcabec. It follows that
the product terms in the expression of the frame components of the curvature tensor are at
most O(t−3(k2+1)/2). As for the Pfaffian derivative terms, it turns out that they are not worse,
because they are coordinate derivatives multiplied by appropriate frame components. There
are still nox derivatives at leading order. It follows that the most singular term inB as
t → 0 is in fact the same as the one corresponding toX0 = ϕ = ψ = 0, andk = constant,
which is the Kasner case.

In extrinsic terms, we may express the result as follows: ifh is the mean curvature
of the slicest = constant, thenB/h4 tends to a non-zero constant for 0< k < 1 or
k > 1, which has the same expression as in the Kasner case. In particular,B blows up like
t−3(k2+1), so that we have a curvature singularity. �

Remark 3. It is easy to check that this singularity is reached in finite proper time by
observers withx = constant, so that this space is indeed (past) geodesically incomplete.

Remark 4. There is no change in the leading power ofB as k goes through 1: only the
coefficient of the leading term inB vanishes.
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