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Abstract. We report on a numerical study of the spherically symmetric collapse of a self-
gravitating massless scalar field. Earlier results of Choptuik (1992, 1994) are confirmed. The
field either disperses to infinity or collapses to a black hole, depending on the strength of the
initial data. For evolutions where the strength is close to but below the strength required to form
a black hole, we argue that there will be a region close to the axis where the scalar curvature and
field energy density can reach arbitrarily large levels, and which is visible to distant observers.

PACS numbers: 0420, 0420D, 0440N

1. Introduction

This paper reports a numerical study of the Einstein equations

Rµν − 1
2Rgµν = 8πGTµν, (1.1)

where the energy–momentum tensor is that of a real massless scalar field

Tµν = 9,µ9,ν − 1
2gµνg

αβ9,α9,β . (1.2)

Equations (1.1), (1.2) imply

Rµν = 8πG9,µ9,ν, (1.3)

and energy conservationT µν ;ν = 0 (or the twice contracted Bianchi identities) imply

9 ≡ 9,µ;µ = 0 . (1.4)

Attention is restricted to a spherically symmetric geometry and field9.
This problem has been studied analytically in a series of papers by Christodoulou,

of which Christodoulou (1991, 1993) are particularly relevant here. For initial data in a
neighbourhood of trivial data, one might expect the field to disperse to future null infinity
leaving behind a flat spacetime. However, stronger initial data might be expected to produce
a black hole.

This idea was taken up by Choptuik (1992, 1994) who proposed the following
programme. Set up a well posed initial-value problem for the system governed by
equations (1.3), (1.4). Choose consistent initial data dependent on a parameterp such
that smallp represents near-trivial data, while largep leads to black-hole formation. By
continuity there will be acritical valuep∗ of the parameter such that black holes only occur
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for p > p∗. What do near-critical solutions (those given byp ≈ p∗) look like? Choptuik
chose an arbitrary time variablet and area radiusr as his principal coordinates, setting

ds2 = −α2(t, r) dt2 + a2(t, r) dr2 + r2 d�2, (1.5)

where d�2 = dθ2 + sin2 θ dφ2 is the metric of the unit sphere. The area coordinater has a
physical meaning as does

T =
∫ t

0
α(w, 0) dw, (1.6)

the proper time on axis. He presented numerical evidence that in thep → p∗ limit the
strong-field evolution isuniversal, i.e. the same for all choices of initial data, and generates
structure on arbitrarily small spacetime scales. Further, he argued that forp > p∗ the
resultant black hole has a massmBH ∝ (p − p∗)γ , whereγ ≈ 0.37 is a universal exponent.

Some attempts, Gundlachet al (1994), Ḧubner (1994) and Garfinkle (1994), have been
made to reproduce Choptuik’s results, but there is a difficulty. Because structure appears
on ever finer scales, accuracy will only be maintained if the spacetime grid used to simulate
the field equations numerically is refined to corresponding levels. Simple algorithms use
fixed grid spacings and for this problem∼1020 grid points would be needed; this is far more
than the largest computer could handle. Choptuik made use of an adaptive mesh refinement
algorithm proposed by Berger and Oliger (1984). This creates the necessary fine grids only
where and when they are needed, and destroys them when they are no longer useful. Such
algorithms are exceedingly complicated to write and implement, but without them a study
of this topic would seem to be intractable.

We have written two versions of the Berger and Oliger algorithm in order to study
the Choptuik problem. We wanted to study, in particular, the strong-field regions. A
disadvantage of Choptuik’s coordinate system (and indeed of any chart which uses an area
coordinater) is that it breaks down at an apparent horizon. We therefore decided to use
one or more null coordinates and to set up a characteristic initial-value problem. Our
initial algorithm used(u, w, θ, φ) coordinates. Hereu is retarded time, andw is an affine
parameter along the generators of the future, outgoing light conesu = constant. Following
Christodoulou (1991) we took the line element to be

ds2 = −a(u, w) du2 − 2 du dw + r(u, w) d�2 . (1.7)

This is an excellent choice when the evolution is far from critical, but the algorithm becomes
numerically unstable for near-critical evolutions. (The functiona(u, w) is effectively a phase
velocity for the field, which both oscillates in sign and grows in magnitude, thereby violating
the CFL condition for any explicit algorithm.) Following Christodoulou (1993) we switched
to double-null coordinates(u, v, θ, φ), wherev is advanced time.

Considerable care is needed to obtain a numerically stable algorithm, and the appropriate
choice of variables and equations is reported in section 2. The salient features of our code
are discussed in section 3, and its results are outlined in section 4. Section 5 details
our conclusions. We confirm Choptuik’s results, and in addition argue that for subcritical
evolutions the strong-field regions are visible to distant observers. For the impatient reader
we have tried to make the figure captions as self-contained as possible.
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2. Coordinates, variables and equations

Spacetime is spherically symmetricM = N × S2 whereN is a two-dimensional pseudo-
Riemannian manifold of signature(−+), andS2 has the topology of the unit sphere. Let
(θ, ϕ) be the standard polar coordinates on the unit sphere. Let0 denote the central
worldline in N . Choose an arbitrary parametert along0 increasing into the future. Denote
the future/past null cones of points on0 by C+(t)/C−(t), respectively. In a regular spacetime
an arbitrary point ofN lies on precisely one cone of each family, sayC+(u), C−(v). Then
(u, v) is a coordinate chart inN and(u, v, θ, ϕ) is a coordinate chart inM. Note that this
fixes the axis0 to beu = v. The remaining freedom in(u, v) is the freedom of the choice
of t on 0, or equivalently the freedom of the choice ofv on some initial future null cone,
sayC+(0).

The line element may be taken as, cf Christodoulou (1993),

ds2 = −a2(u, v) du dv + r2(u, v) d�2 . (2.1)

Now that we have fixed the coordinate chart, we may adopt the usual convention of the
partial differential equation literature where, e.g.∂f (u, v)/∂u is abbreviated tofu. Further
we label equations, as indicated below. The scalar field equation (1.4) becomes

E0 ≡ r9uv + ru9v + rv9u = 0 . (2.2)

The Einstein field equations (1.3) expand to

E1 ≡ rruv + rurv + 1
4a2 = 0,

E2 ≡ a−1auv − a−2auav + r−1ruv + 4πG9u9v = 0,

E3 ≡ ruu − 2a−1auru + 4πGr92
u = 0,

E4 ≡ rvv − 2a−1avrv + 4πGr92
v = 0 .

(2.3)

It is tempting to try to construct a numerical scheme to solve a subset of these equations.
(They are not independent.) Such a scheme would have the merits of simplicity and
conciseness, but we have been unable to derive a stable explicit scheme for the equation
for E2. We have therefore reformulated the equations as a first-order system.

It is convenient to introduce new variables

c = au

a
, d = av

a
, f = ru, g = rv,

s =
√

4πG9, p = su, q = sv,

(2.4)

as well as the auxiliary quantities

λ = fg + 1
4a2, µ = f q + gp . (2.5)

The system of equations (2.1)–(2.3) now expands to

F1 ≡ au − ac = 0, F2 ≡ av − ad = 0,

F3 ≡ ru − f = 0, F4 ≡ rv − g = 0,

F5 ≡ su − p = 0, F6 ≡ sv − q = 0,

F7 ≡ rpv + µ = 0, F8 ≡ rqu + µ = 0,

F9 ≡ r2cv − λ + r2pq = 0, F10 ≡ r2du − λ + r2pq = 0,

F11 ≡ rfv + λ = 0, F12 ≡ rgu + λ = 0,

F13 ≡ fu − 2cf + rp2 = 0, F14 ≡ gv − 2dg + rq2 = 0 .

(2.6)
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Of course, not all of these equations are independent, and indeed some of the dependent
variables may well be irrelevant. Scalar quantities of physical interest include the Hawking
mass

m(u, v) = r

2

(
1 + 4fg

a2

)
, (2.7)

the Ricci scalar curvature

R(u, v) = −8pq

a2
, (2.8)

and the energy densityρ of the scalar field. This may be defined as follows. Suppose we
introduce timet and radialr∗ coordinates viau = t − r∗, v = t + r∗. Then

ρ(u, v) = Tt
t = 1

8πGa2

(
p2 + q2

)
, (2.9)

where the energy–momentum tensor was defined by equation (1.2). The vanishing of the
quantityg signifies the apparent horizon. Another quantity of physical interest is the proper
time T (u, r) as measured by an observer who moves along a worldline of constantr. We
may invert the relationr = r(u, v) to obtainv = v(u, r) from which dv = (∂v/∂u)r du and
the line element (2.1) implies

T (u, r) =
∫ u

0
a(w, v(w, r))

√(
∂v

∂u

)
r

dw . (2.10)

This simplifies considerably on the axis,v = u, to (1.6)

T (u, 0) =
∫ u

0
a(w, w) dw . (2.11)

The quantityc does not appear in any of the formulae in the paragraph above, and so
may be ignored. Thus we may immediately discard the equationsF1 andF9. Notice next
that there is only one equation governing the evolution of each of the quantitiesd andq,
namely,F10 andF8, respectively. We choose to evolve the remaining quantitiesa, r, s, p,
f andg by the equations governing theirv-derivatives, namely,F2, F4, F6, F7, F11 and
F14, respectively. The remaining equations are not used directly in the evolution, although
they help to determine the boundary conditions.

These equations have to be supplemented by the specification of initial and boundary
data. On the initial coneC+(0) we have to specifyd(0, v) andq(0, v) and these data are
unconstrained. In practice we assume a flat geometry initially, i.e.d(0, v) = 0, which is
equivalent to using up the freedom in thev-coordinate. On the axis we have to specify
values fora, r, s, p, f andg. Obviouslyr = 0 there and this demandsf = −g there. The
equationF11 requiresλ = 0 on axis and so the first equation (2.5) forcesg = 1

2a = −f

on axis. EquationF8 and the second equation (2.5) now ensure thatp = q on axis. The
boundary values fora ands are obtained by requiring

∂a

∂r
= ∂s

∂r
= 0 on axis, (2.12)

as will be explained in the next section.
Our evolution scheme can be outlined as follows. OnC+(0) we choosed = 0 and

q(0, v) arbitrarily. We now integrate outwards from the axisF2 to obtaina, F4 andF14
to obtainr andg, F6 to obtains, F11 to findf andF7 to obtainp. Now that we have
a complete solution onC+(0) we useF8 andF10 to predict values ofq andd on a cone
C+(h) to the future of the initial one, and a similar radial integration completes the solution.
This procedure can be repeated until a singularity occurs. The details are explained in the
next section.
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3. The numerical code

Our basic code is extremely simple. We construct a grid inuv-space with a spacing ofh
in both theu- andv-directions. We write the equations schematically as

yu = F(y, z), zv = G(y, z), (3.1)

wherey denotes variables evolved in theu-direction, andz denotes those evolved in the
v-direction. The basic computation cell is depicted below in figure 1.

Figure 1. The basic computational
cell. Knowing the solution at w,
(u, v−h), and e,(u−h, v), allows us
to estimate the solution at n,(u, v).

We assume that the solution is known at the points e,(u − h, v), and w,(u, v − h), and we
want to predict it at n,(u, v). We first predict they-values at n via the explicit step

ŷn = ye + hF(ye, ze) . (3.2)

Next we predict thez-values via the step

ẑn = zw + 1
2h

(
G(yw, zw) + G(ŷn, ẑn)

)
. (3.3)

Although this appears to be an implicit method the equations can be ordered so as to be
linear in the unknown quantity, and the step can be made explicit. For the second stage we
correct the prediction via

yn = 1
2

(
ŷn + ye + hF(ŷn, ẑn)

)
, (3.4)

and

zn = 1
2

(
ẑn + zw + hG(ŷn, ẑn)

)
. (3.5)

Although it would have been easier to use the simpler algorithms (3.2) and (3.4) in the
v-direction, the more complicated (3.3) and (3.5) ensure stability. The completely explicit
procedure would involve a Courant number of unity, which is only marginally stable.

All of the boundary conditions were straightforward to implement except those fora

ands, equation (2.12). The quantity∂a/∂r at (u, u) can be approximated using values ofa

at (u, u), (u−h, u+h) and(u−2h, u+2h), and its vanishing allows us to predicta(u, u).
The quantitys is treated similarly. This means that to construct quantities at retarded time
u we need to have stored values at timesu − h andu − 2h.

A crucial feature of our code is the adaptive mesh refinement. This is described in detail
by Berger and Oliger (1984), but it is appropriate to review it here, since we were able to
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Figure 2. The linked list structure for the simplified Berger and Oliger (1984) algorithm. Each
grid has equalu- andv-spacing four times finer than its parent and four times coarser than its
child.

construct a perfectly satisfactory simplified version. Our simplification uses a doubly linked
list of grids, figure 2, rather than the complicated tree of the original version. The original
grid is the one we start with. (Typical ranges are 06 u 6 v 6 2.0 with a grid spacing of
h = 10−3.) Each child grid has a grid spacing equal to a quarter of that of its parent. There
are two operations which take place on this list, regridding and evolution.

After each gridG has been evolved a fixed number of steps in theu-direction since the
last revision, it is revised.

(i) We first estimate the local truncation error. Since we store values at three levels of
u we can carry out a single evolution step with twice the grid spacing fromu − 2h to u,
which can be compared with the more accurate evolution fromu − h to u. All points at
which the error is unsatisfactory are marked. They may be expected to occur in clusters
and buffer zones of satisfactory points are added to the boundaries of each cluster. In our
simplified version only one cluster is allowed.

(ii) We repeat step (i) for each child of the gridG.
(iii) Starting at the finest grid and working back toG we build new child grids to cover

the clusters, interpolating values from their parents. If there are three or more generations
we have to ensure that thev-range of each grandchild grid is included in the corresponding
child range.

(iv) If all the child grids of G are free of error they may be destroyed and the used
memory is returned to the computer’s operating system.

The regridding operation creates new subgrids where and when they are needed, and
removes them when they are obsolescent. We move down the doubly linked list making
error estimates, and back up the list toG when rebuilding them.

The evolution operation also involves the linked list.
(v) Each gridG is evolved one step in theu-direction.
(vi) Proceeding down the list fromG each child grid is evolved to theu-level of its

parent. If boundary data are needed these are obtained by interpolation from the parent
grid.

(vii) Once all child grids have reached theu-level of the parent, injection occurs. Starting
at the finest grid accurate values are injected from each child into the parent grid.

Thus evolution starts with the coarsest grid and ends with the finest, while the injection
proceeds in the opposite direction. After each injection step a grid contains the most accurate
data available.

Injection proved to be a source of noise. Once a grid has had accurate values injected
over a v-range [v1, v2] we found occasionally some discontinuities atv = v2. Ignoring
them led to the introduction of high-frequency noise which corrupted our results. A simple,
crude fix would have been to introduce some explicit artificial viscosity to damp out the
noise. However, we found it to be more convenient, and also more accurate, to redo the
v-integration forv > v2 after each injection.
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The adaptive mesh refinement algorithm is most simply implemented using recursion
and our codes were written in the programming language C. We have implemented both the
simplified version described above and the full Berger and Oliger algorithm. The results
are indistinguishable.

4. Results

Earlier sections have been terse, but the explanation of our results will, inevitably, take more
space. First we explain ourmodus operandi. Next we define the concept of universality
and explain the difference between subcritical and supercritical solutions. We first examine
solutions on the axisr = 0, because this is relatively simple to visualize. We then extend
our discussion to the entireuv-plane. Finally, we discuss the question of what a distant
observer might see, which involves examining the horizon structure (or lack of it).

We have constructed two computer codes to solve the characteristic initial-value problem
described in section 2. They differ slightly in the treatment of the boundary and initial
conditions, but more importantly they use different versions of the Berger–Oliger algorithm
as described in section 3, and have different criteria for determining the local truncation
error. Within the codes there is a key which mediates the matter–geometry coupling. When
this key is switched off the code evolves a test scalar field on Minkowski spacetime, for
which the exact solution is known. Both codes reproduce this. With the key switched on we
then evolved separately the spacetime using the same initial data. Here the codes produce
slightly different answers, as expected because the error criteria are different. However, the
relative errors are of the order of one part in 108. For comparison the coarsest grid size is
h = 10−3, and for smooth solutions we expect a local truncation error of O(h3) and a global
error of O(h2). After convincing ourselves that the codes were solving identical problems
we then tried separately a variety of choices of initial data.

A number of features areuniversal, i.e. they appear not to depend on a specific choice of
initial data. As a first example of universality we consider the formation of black holes. We
suppose the initial data to depend on a parameterp. For smallp we have near-trivial data
and we obtain solutions similar to those of test fields evolving on a flat background. For
large values ofp our evolutions break down because the solutions became singular. One of
the variables evolved isg = ∂r/∂v and the vanishing ofg indicates an apparent horizon.
For many solutions which become singular say at(us, vs), we find a line of points(uh, vh)

at which g = 0 with uh < us . We interpret this as the formation of an apparent horizon
surrounding the singular region. We say that a black hole has formed. By performing a
sequence of evolutions with different choices forp we are able to locate, almost to machine
precision (one part in 1016), a critical parameterp∗, which separates black-hole formation
from field dispersal. Solutions withp > p∗ are supercritical, those withp < p∗ are
subcritical. For nearly critical solutions it is a non-trivial task deciding their nature. Any
solution which remained regular and finally reduced to flat spacetime was deemed to be
subcritical. However, in some supercritical cases the formation of the apparent horizon
and singularity did not appear at coarse-grid levels; the coarse spacing failed to resolve the
true nature of the solution, which was only discernible from fine-grid calculations which
occur later in the evolution (step (vi) of section 3). Very close to the critical case there are
parameters for which we cannot decide what happens. The computers run out of memory
before we can ascertain the formation of an apparent horizon or dispersal of the field to
infinity. This means that we can only determine the value ofp∗ to about one part in 1015.
For the supercritical solutions we can compute the Hawking mass given by equation (2.7).
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Figure 3. The logarithm (base 10) of the black-hole mass for supercritical evolutions as a
function of the logarithm ofp −p∗, wherep∗ is the critical parameter. The best-fit straight line
has slopeγ = 0.374.

We choose a fixed valuev0 of v and determine the point(u0, v0) where the apparent horizon
intersectsv = v0. The black-hole mass is defined (see below) to bemBH = m(u0, v0), and
for each one-parameter family of evolutions, it is a function ofp. Figure 3 shows logmBH

as a function of log(p −p∗). (NB: throughout this paper all logarithms have base 10 rather
than e.) There is strong numerical evidence that

mBH = K(p − p∗)γ , (4.1)

whereγ ≈ 0.374. If we choose a different parameter for the same initial data, or repeat the
process with a completely different choice of initial data, we again obtain the relation (4.1).
The parameterγ appears to be the same for all evolution families; it is universal. The
coefficientK is different for different choices of initial data. Essentially the same result
with the sameγ was reported by Choptuik (1992, 1994). However, our code extends the
range of validity to a much wider parameter range than that of Choptuik. BecausemBH → 0
asp → p∗ our typical choices forv0 correspond to O(105) ‘Schwarzschild radii’, and so
for near criticality our definition ofmBH makes sense.

Let us consider next the behaviour of the fields on axis,u = v. The functionT

defined by equation (2.11) measures proper time on axis. LetT ∗ be the time at which the
singularity forms in the exactly critical case. Choptuik (1992, 1994) reported a discrete
symmetry, which may be interpreted here as suggesting that the fields on axis should be
periodic in the time variableτ = − log(T ∗ − T ), with a period1τ ≈ 1.49. (We obtain
a slightly larger value1τ ≈ 1.496. Given the uncertainties in determiningT ∗ there is no
inconsistency here.) As seen inuv-coordinates the oscillations will appear with the period
decreasing by a factor 101.496 ≈ 31 on each oscillation. There is obviously a numerical
problem here in that one needs finer and finer grids to resolve the details. In practice our
computer resources do not allow us to construct grids with a spacing much less than 10−7 of
our original spacing, and so we might expect to see four but not five oscillations. Figure 4
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Figure 4. The scalar field on axis as a function ofτ = − log(T ∗ −T ). The full curve represents
a marginally supercritical evolution. The first peak and trough show the profile of the initial
data. The next three oscillations appear to be universal; they have a period1τ = 1.496. The
broken curve represents marginally subcritical data which differs only in the fifth peak. The
dotted curves correspond to evolutions which are further from being critical and show fewer
oscillations.

shows the scalar fields on axis as a function ofτ . The full curve represents a slightly
supercritical evolution which ends with a black hole. The first peak and trough represent
the profile of the initial data. The next three oscillations are periodic and appear to be
universal; the same pattern appears whatever the initial data. The broken curve represents a
slightly subcritical evolution in which the field eventually dissipates leaving flat spacetime;
it differs from the supercritical one only in the fifth oscillation. For these two evolutions
the parameterp is very close to the critical onep∗. If p is further fromp∗ the same pattern
occurs, but the number of oscillations before black-hole formation or dissipation is smaller.
Three additional subcritical and three supercritical evolutions are superposed in figure 4 as
dotted curves. They show fewer oscillations asp moves further fromp∗.

This suggests, but does not prove, that if we had the resources to resolve arbitrarily fine
grids for near-critical evolutions we might expect to see an arbitrary number of oscillations.

An expression for the Ricci curvature scalar was given by equation (2.8) and on axis it
can be written as

R(u, u) = −32πG
d29

dT 2
. (4.2)

It is obvious from this form that on each oscillation of the scalar fieldR will increase
by a factor 312, and were there to be an arbitrary number of oscillations thenR would
grow without bound. This is illustrated in figure 5 where we have plotted log(1 − R) as
a function of τ for the same evolution as the previous figure. There are twice as many
oscillations becauseR is quadratic in the field derivatives. (Note that for the subcritical
cases the evolution shown here ceases atT = T ∗, which is before the field disperses to
infinity.)
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Figure 5. The Ricci curvature scalar on axis, plotted as log(1 − R) as a function of
τ = −log(T ∗ − T ) for the same evolutions as in figure 4. There are twice as many oscillations
sinceR is quadratic in the derivatives of the scalar field. On each oscillation the magnitude of
R grows by a factor of approximately 30.

Figure 6. The scalar field as a function ofτ = − log(T ∗ − T ) and r∗ = (v − u)/2 for a
marginally supercritical evolution. Time is increasing from left to right andr∗ is increasing
from the axis (left foreground) to infinity (right background). The horizon and singularity form
in the foreground spike. (They are resolved in figures 9 and 10.)

A measure of the energy density of the field is the quantityρ defined by equation (2.9).
On axis this is−R/(32πG) and so we deduce that the field energy density becomes large,
and possibly unbounded.

Next we consider the fields off-axis. Because many readers are not used to null
coordinates we use space and time coordinates. We takeτ = − log(T ∗ − T ) defined
on axis as our time coordinate, and in analogy with the Schwarzschild case we introduce
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Figure 7. The Ricci curvature scalar, plotted as log|1−R| as a function ofτ = − log(T ∗ − T )

and r∗ = (v − u)/2 for a marginally supercritical evolution. Time is increasing from right to
left. The axis is at the right background and spatial infinity is at the left foreground. Before
the first pulse spacetime is flat (right foreground) and the singularity is forming in the centre
background.

Figure 8. The energy densityρ of the scalar field, plotted as log(1 + ρ) as a function of
τ = − log(T ∗ − T ) and r∗ = (v − u)/2 for a marginally supercritical evolution. Time is
increasing from right to left. The axis is at the right background and spatial infinity is at the
left foreground. Before the first pulse spacetime is flat (right foreground) and the singularity is
forming in the centre background.

a radial coordinater∗ = (v − u)/2. Since for near-critical evolutionsr∗ ranges from 0 to
106mBH, figures 6–8 use arcsinh(200r∗) as the radial coordinate. In the first figure time is
evolving from the background to the foreground, with the axis as the left border of the mesh
and (spatial) infinity as the right border. Figure 6 shows the behaviour of the scalar field in
a slightly supercritical evolution. The mesh is a composite picture based on data from all
of our grids. In the strong-field region the displayed spacing approximately corresponds to
points on the second child grid. The details of the formation of the apparent horizon and
singularity are hidden in the foreground spike. We shall explore this region in more detail
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Figure 9. The light cone structure for a marginally supercritical solution displayed in ingoing
Eddington–Finkelstein coordinates. Each curve represents an outgoing coneu = constant and
theu-spacing is constant. The left diagram is taken from the coarsest grid. There is little to see
at this resolution. The middle diagram is an enlargement by a factor of 1000 in each dimension,
again taken from the coarsest grid. Finally after an additional expansion by a factor 2000 we see
the formation of the horizon and singularity. The broken curves come from the fourth grid and
the dotted curves from the sixth grid. Theu-spacings are reduced by four and 16, respectively.

Figure 10. This is an enlargement of the right
diagram from figure 9. The broken curves come
from the fourth grid and the dotted curves from
the sixth grid. Theu-spacings are reduced by four
and 16 respectively. Note the speed at which the
apparent horizon forms.

shortly. (See e.g. figures 9 and 10.) For the next two figures we have, for reasons of clarity,
reversed the directions of the time and space axes. Figure 7 shows log|1−R| as a function
of τ andr∗. The initial data corresponded to flat spacetime and so there is an initially flat
region which lasts until the first bounce occurs. Figure 8 showsρ as a function ofτ and
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r∗ which has similar behaviour.
Our calculations confirm those of Choptuik: the energy density of the scalar field and

the Ricci curvature scalar can become arbitrarily large close to the axis if the hypothesis
of discrete self-similarity for near-critical evolutions is accepted. A crucial question is then
how long a distant observer has to wait to see the large-curvature regions in the subcritical
case. She will, of course, have to wait an infinite proper time in the supercritical case once
an event horizon forms.

There is a commonly advanced but misleading argument as to why the regions are
visible in a finite time. Consider a sequence of black holes of decreasing massm. Regions
outside the horizon will be visible after a finite proper observer time, and asm → 0 the
curvature of these regions can become arbitrarily large. This certainly works for static
Schwarzschild black holes where there is a single length scalem, the curvature is∼ m/r3

and just outside the horizonr ∼ m. However, it is not clear that this argument prevails in
a dynamic situation where there are other length scales.

An argument which suggests the opposite is as follows. Consider two evolutions with
parameter valuesp∗ ± ε whereε � 1. At early times the two evolutions must stay close
because the initial data sets are so similar. At late times they must have bifurcated, producing
a black hole and flat spacetime, respectively. The timet (ε) at which the solutions separate
is obviously a function ofε. Continuity arguments suggest thatt (ε) → ∞ as ε → 0.
Thus subcritical photons would stay close to their supercritical analogues which form the
event horizon, and the observer would have to wait a very long time to see the strong-field
regions.

Our computations suggest the opposite. Bifurcation takes place as the event horizon
forms in the supercritical case. The left-hand diagram in figure 9 shows a neighbourhood of
the singularity for a slightly supercritical evolution, in ingoing quasi-Eddington–Finkelstein
coordinates. The curves represent surfaces of constantu and the spacing between them is
constant. Very little can be seen on this, the coarsest grid. The middle diagram shows part
of the diagram enlarged in each dimension by a factor of 1000 again using data from the
the coarsest grid. Again there is little to see. The right-hand diagram is an enlargement
by a further factor of 2000 and uses data from the third (full curves) fourth (broken curves
with theu-spacing reduced by a factor of four) and sixth (dotted curves with theu-spacing
reduced by a further factor of 16) subgrid levels. Lines near the right boundary represent
outgoing light cones where photons are still able to escape to infinity. As the evolution
proceeds these cones fold over and return to the singularity atr = 0. An enlargement of
part of this diagram is shown as figure 10.

Figure 11 covers the same regions as figure 9, but for a slightly subcritical evolution.
The difference between the two values of the parameterp is one part in 1015. The behaviour
at late time is quite different. Note, e.g. from the middle diagram how quickly theu-spacing
increases once the strong-field region has dispersed. To emphasize this we have superposed
the two evolutions in figure 12. At early times the two evolutions differ by about one
part in 1015 and this near identity is preserved until a time corresponding to the bottom
of figure 12 is reached. There is then a clear bifurcation in behaviour as the supercritical
evolution (full curves) forms a horizon. One might have expected the dotted curves of the
subcritical evolution to steepen up, mimicking an an apparent horizon, and delaying the
progress of an outgoing photon. However, the slopes become shallower! Thus one might
conclude that photons emitted from strong-field regions in the subcritical case will reach
distant observers moving along paths of constantr at a finite (observer) proper time. This is
confirmed by computations ofT (u, r) defined by equation (2.10) for a number of subcritical
evolutions, which are summarized in figure 13. A value ofr = 0.1 was chosen and for
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Figure 11. The light cone structure for a marginally subcritical solution displayed in ingoing
Eddington–Finkelstein coordinates. Each curve represents an outgoing coneu = constant and
the u-spacing is constant. The left-hand diagram is taken from the coarsest grid. There is little
to see at this resolution. The middle diagram is an enlargement by a factor of 1000 in each
dimension, again taken from the coarsest grid. Note how quickly the cones space out once the
strong fields have dispersed. The right-hand diagram is a further expansion by a factor of 2000.
The parameterp differs from that used in figures 9, 10 by 10−15.

Figure 12. This figure superposes the null cone
structure of the marginally supercritical solution
of figures 9, 10 (full curves) with that of the
marginally subcritical one of figure 11 (dotted
curves). The initial data differ by one part in
1015 and for early times (bottom of the picture)
the results are identical. However, at later times,
near-horizon formation, there is a clear bifurcation
between the two cases.

each evolution the time taken to reachu = 2.8, 3.0, 3.2 and 3.4 was computed. (These
u-values include the strong-field region of figures 9–12.) Whenp is much larger thanp∗,
0.1 is not a ‘large’ value forr but whenp is very close top∗, r = O(105mBH) where
mBH is the mass of a slightly supercritical black hole. Figure 13 indicates clearly that as
p → p∗, T (u, r) → constant for each relevant value ofu. Thus a distant observer need



Collapse of a massless scalar field 511

Figure 13. For subcritical evolutions with parameterp the proper time taken to reach various
values ofu (encompassing the strong-field region), for an observer atr = 0.1, is plotted as a
function of p∗ − p. Whenp is close top∗, this value ofr is O(105mBH) wheremBH is the
black-hole mass for slightly supercritical evolutions. Note that asp → p∗ the proper times tend
to a finite limit.

wait only a finite proper time in order to see the strong-field regions for slightly subcritical
evolutions.

5. Conclusions

We have implemented a version of the Berger–Oliger algorithm and have used it to study
the same scalar field collapse problem as Choptuik (1992, 1994). However, our coordinate
chart is a double-null one which allows evolutions to proceed through the event horizon
and up to the singularity in the supercritical case. We have observed the same mass
scaling phenomenon, equation (4.1), figure 3, and the echoing property whereby near-
critical evolutions display structure on ever finer scales, figures 4–8. Our measured values
of universal parameters agree to within expected limits with those of Choptuik, and so we
confirm his results.

If the echoing phenomenon really is periodic inτ = −log(T ∗ −T ) then it follows from
equation (4.2) that on and near the axis the scalar curvatureR and scalar field energy density
ρ will diverge like O((T ∗ − T )−2) as T → T ∗. In the supercritical case this region will
be surrounded by an event horizon and therefore invisible to distant observers. However,
the subcritical case is quite different, figures 9–12, and a distant observer at constant area
coordinater will be able to see photons emitted from the strong-field region after a finite
proper time, figure 13.

One could argue that our physical scheme, equations (1.1), (1.2), is only a toy model
and that for more realistic situations the strong-field regions would not be visible. Checking
this would be more complicated.

Further details of these evolutions and those for more complicated field configurations
will be published elsewhere.
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