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LETTER TO THE EDITOR

Entropy of a dressed black hole and properties of the
Hartle–Hawking state

O B Zaslavskii
Department of Physics, Kharkov University, Svobody Sq 4, Kharkov 310077, Ukraine

Received 5 October 1995

Abstract. The entropySϕ of quantum radiation in equilibrium with a black hole is obtained
in a one-loop approximation without recourse to the general first law. The approach developed
does not need information about quantum corrections to the Hawking temperature and metric.
It follows from properties of the Hartle–Hawking state thatSϕ is finite, which confirms the
universality of the Bekenstein–Hawking entropy.

PACS number: 0470D

The entropyS of a black hole in thermal equilibrium with its Hawking radiation consists
of two contributions—the Bekenstein–Hawking entropySBH [1, 2] of a hole itself and that
Sϕ of quantum radiation. Universality ofSBH = A/4 in general relativity (A is the area of
the event horizon, I use units withG = h̄ = c = 1) implies thatSϕ is finite. Otherwise
the divergent part ofSϕ in the sumS = SBH + Sϕ would renormalize the entropy of a
black hole [3]. Therefore, for understanding the concept of black-hole entropy it is very
important to trace in detail whySϕ proves to be finite and to compare different approaches
to calculatingSϕ .

Quite recently an interesting paper appeared [4] in which the key role of the connection
between thermodynamics and geometry was elucidated in the context under discussion. In
particular, this connection is to be taken into account in obtaining entropy by differentiating
a free energy that enables one to understand whySϕ is finite in spite of divergences in the
statistical-mechanical entropySSM.

However, the approach of [4] leaves some issues unresolved. It relies on relations
δF = −SSMδT0 + 3(T0, r+)δr+ and δF = −SδT (the simplified version of equations (1)
and (2) of [4]). HereF is a free energy,T is the local Tolman temperature on a boundary
which defines a canonical ensemble [5],r+ is the radius of a horizon (the system is assumed
to be spherically symmetrical),T0 is the temperature at infinity,3 is some function ofT0

and r+. Both these relations are used in [4] separately for gravitation and the quantum
field, but such use conflicts with the essential non-additivity of free energies (in contrast
to additivity of entropies [6–8]). Careful treatment of a canonical ensemble [5] also shows
that one cannot, in general, neglect the difference betweenT and T0 as was done in [4].
It seems plausible that these subtleties do not change the main ideas of [4] qualitatively;
nevertheless, neglecting a number of essentials of gravitational thermodynamics of finite-size
systems leaves the matter not quite clear.
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On the other hand, the entropySϕ of the massless field has been found in a general
form in [9] by direct integration of the general first law. The corresponding result is quite
sufficient for practical purposes but is not enough for the problem we are dealing with—to
elucidate the origin of finiteness ofSϕ . The point is that the first law assumes the validity
of Einstein equations [10] for the combined system ‘a hole plus matter’. However,Sϕ

in the one-loop approximation is expressed in terms of quantities calculated with respect
to the Schwarzschild background and is insensitive to successive corrections either to the
metric or to the Hawking temperatureTH. For this reason basing the finiteness ofSϕ and
deriving the explicit expression for it seem to contain ‘superfluous’ information connected
with properties of the geometry corrected due to backreaction.

The aim of the present paper is to give a very simple and clear derivation ofSϕ without
using the first law. Finiteness ofSϕ and universality ofSBH follow directly from properties
of the Hartle–Hawking state [11].

There are also two more reasons why derivingSϕ without the first law seems to be very
important. First, recently the permissible range of the parameterξ between the quantum
field and curvature has been found from positivity of entropy [12] that gives a new insight
into the link between thermodynamics and field theory. However, the entropy in [12] is
derived from the first law that operates with the notion of quasilocal energy [13] which is
not defined yet for arbitraryξ when the field is coupled to a metric neither minimally nor
conformally. In this sense our derivation ofSϕ without the first law puts this direction of
investigations on a firm basis.

Second, a rigorous treatment ofSϕ in the framework of the first law should be faced
with the deficit angle as a free parameter [14] which adds new complexity and obscures the
whole picture whereas this problem does not arise in our approach.

Consider a quantum fieldϕ at finite temperatureT0 = β−1
0 . Its Euclidean action takes

the standard form [15]

Iϕ = −β0

∫
d3x

√
gT 0

0 − Sϕ . (1)

HereT ν
µ is the renormalized stress–energy tensor calculated with respect to the metricgµν

with the determinantg. We consider the class of Euclidean metrics which have the form

ds2 = f (r+/r) dτ 2 + f −1(r+/r) dr2 + r2(sin2 θ dϕ2 + dθ2) . (2)

This metric is assumed to describe a black hole, sof (1) = 0 but otherwisef is an arbitrary
function of the ratior+/r. For the particular case of the Schwarzschild metricf (x) = 1−x.

From the variation of (1) we have

δ|ϕ = −δβ0

∫
d3x

√
gT 0

0 + β0

2

∫
d3x

√
gTµrδg

µr + 4πT 0
0 (r+)r2

+δr+ . (3)

The first term in (3) describes the response ofIϕ to the change of temperatureT0 in
the fixed geometry, the second term follows from the definition of the stress–energy tensor,
the third one is connected with the change of the integration region whenr+ is allowed to
vary (note that there is no sense in writing down a similar term inδSϕ since it can always
be removed by a simple redefinition ofSϕ).

It is worth noting that in contrast to (1) of [4],T0 andr+ are not independent parameters
sinceT0 = TH. On the other hand, we are dealing with the variation of the field action only
(not with that of the total system), so the problem of a deficit angle [14] does not arise.

We assume that as usualT ν
µ is calculated in the one-loop approximation in the

background (2) for whichβ0 = −4πr+/f ′(1), f ′(1) < 0.



Letter to the Editor L25

The key idea consists in the consideration of such variations of the metric in which the
background retains its form (2) and only the parameterr+ changes.

Then the second term in (2) turns into

(4π)2δr+
2|f ′(1)|

∫ R

r+

dr r

f
f ′(T r

r − T 0
0 ), f ′ = df (x)

dx

∣∣∣∣
x=r+/r

, (4)

whereR is the radius of a cavity into which a hole is enclosed.
From the conservation lawT µ

r;µ = 0 in the background (2) it follows that

r

2

(T r
r − T 0

0 )f ′

f
= 1

r+
[(r3T r

r ),r − r2T i
i ] (5)

wherei denotes spatial indices.
Then from (2)–(5) we have

(4π)−2f ′(1)
d|ϕ
dr+

=
∫ R

r+
dr r2T i

i − R3T r
r (R) + r3

+[T r
r (r+) − T 0

0 (r+)] . (6)

The regularity ofT ν
µ at the event horizon in the Hartle–Hawking state demands that

according to (5)T r
r (r+) = T 0

0 (r+), so the last term in (6) in square brackets cancels.
The above formulae are applicable to any field with a tensorT ν

µ . If a field is massless,
there exists only one relevant parameter of lengthr+, and from dimensional grounds

T ν
µ = r−4

+ f ν
µ(r+/r) . (7)

Substitute (7) into (6). Then

(4π)−2 d|ϕ
dw

|f ′(1)| = f r
r (w)

w4
− 1

w

∫ 1

w

du

u4
f µ

µ (u) (8)

wherew = r+/r.
Integrate this equality with the natural boundary conditionIϕ(r+ = R) = 0. It is

convenient to use the relation (for anyg(u))∫ 1

w

du′

u′

∫ 1

u

du g(u) =
∫ 1

w

du g(u) ln
u

w
. (9)

As a result we obtain in terms ofT ν
µ :

|ϕ = 16π2r+|f ′(1)|−1
∫ R

r+
dr r2

(
−T r

r + T µ
µ ln

R

r

)
(10)

Sϕ = 16π2r+|f ′(1)|−1
∫ R

r+
dr r2

(
T r

r − T 0
0 − T µ

µ ln
R

r

)
. (11)

In equations (10) and (11) the energy–momentum tensor corresponds to the Hartle–
Hawking state describing equilibrium between a black hole and radiation,T ν

µ = T ν
µHH

. Now
use the remarkable quality [16]

T ν
µHH

= T ν
νB

+ T ν
µth

. (12)

HereT ν
µB

corresponds to the Boulware vacuum,T ν
µth

describes the black-body radiation
with Hawking temperature:T ν

µth
= αT 4 diag(−1, 1

3, 1
3, 1

3) (α is constant). As the trace
T ν

µth
= 0 we obtain from (11) that

Sϕ = Sth + SB . (13)

Here Sth coincides withSSM
1 of [4] and represents the entropy of thermal radiation

with the density4
3αT 3 which diverges near the horizon. The quantitySB is the infinite
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renormalization constant which makes the sum (13) finite. It corresponds to1S1 of [4]
and is obtained by replacingT ν

µHH
by T ν

µB
in (11). In the approach under discussion it is

clear thatSB is connected with vacuum polarization described byT ν
µB

. We see that not
only the energy but the entropy of the quantum field also arise in a finite form as a result
of thermal excitations of field modes over the Boulware state at Hawking temperature. In
so doing, the infinite parts of thermal and Boulware contributions toSϕ cancel exactly. If
the temperature of excitationsT0 6= TH compensation in (11), (12) near the horizon does
not occur and the entropy diverges. For the thermal atmosphere of a black hole this gives
one direct justification of the renormalization procedure for the entropy proposed in [17]
(cf also [4]).

If the field is massive, the relation (7) fails and one cannot obtain the expression forSϕ

as simply as in (11). However, it is important that (6) still holds, so the entropy and action
are again linear functionals ofT ν

µHH
. It explains the finiteness ofSϕ and universality ofSBH

from properties of the Hartle–Hawking state in the general case.
It is worth stressing that the general first law refers to the total system ‘gravitation

plus field’ and assumes the validity of the Einstein equations for it; whereas our approach
operates only with the field action and does not need information about quantum corrections
to the geometry. In this sense one can say that in the one-loop approximation we found
the entropy of off-shell black holes. Moreover, for the arbitrary functionf (r+/r) in (2),
when not only corrections to it butf itself does not obey the Einstein equations, the result
obtained gives one the entropy of the particular class of such holes described by the metric
(2), i.e. it is more general than the Schwarzschild case. (It is only required thatT ν

µ be
conserved in the metric (2).)

This gives one the one-loop correction to the entropy of 1+ 1 black holes in the fixed
background in the closed form. Investigation of its properties will be reported elsewhere.

After this work had been completed we became aware of a number of other papers
on related topics. In [18, 19] the authors discuss new features introduced by the presence
of the event horizon into the general scheme of renormalization of quantum theory in
curved spacetime. In contrast to [18, 19] we took for granted the existence of well defined
renormalized action and entropy from the very beginning and concentrated our attention on
obtaining explicit formulae for them. The results for the entropy in [20] seem to give only
the termSth in (13) while our approach enables one to obtain the total quantity (11). In [21]
quantum corrections to temperature and entropy of a black hole were derived from conformal
properties of a field. The results are in disagreement with (11). One can show [22] that the
discrepancy can be removed if the finiteness of a system and boundary conditions (which
were neglected in [21]) are taken into account properly.
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