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Entropy of a dressed black hole and properties of the
Hartle—Hawking state
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Department of Physics, Kharkov University, Svobody Sq 4, Kharkov 310077, Ukraine

Received 5 October 1995

Abstract. The entropysS, of quantum radiation in equilibrium with a black hole is obtained

in a one-loop approximation without recourse to the general first law. The approach developed
does not need information about quantum corrections to the Hawking temperature and metric.
It follows from properties of the Hartle—-Hawking state th§t is finite, which confirms the
universality of the Bekenstein—Hawking entropy.

PACS number: 0470D

The entropyS of a black hole in thermal equilibrium with its Hawking radiation consists
of two contributions—the Bekenstein—Hawking entrafR" [1, 2] of a hole itself and that

S, of quantum radiation. Universality &f®" = A/4 in general relativity 4 is the area of

the event horizon, | use units with = A = ¢ = 1) implies thats,, is finite. Otherwise

the divergent part of5, in the sumS = SBH + S, would renormalize the entropy of a
black hole [3]. Therefore, for understanding the concept of black-hole entropy it is very
important to trace in detail why, proves to be finite and to compare different approaches
to calculatings,,.

Quite recently an interesting paper appeared [4] in which the key role of the connection
between thermodynamics and geometry was elucidated in the context under discussion. In
particular, this connection is to be taken into account in obtaining entropy by differentiating
a free energy that enables one to understand Syhig finite in spite of divergences in the
statistical-mechanical entropy®M.

However, the approach of [4] leaves some issues unresolved. It relies on relations
SF = —SSM§Ty + A(To, r4)8ry andSF = —S8T (the simplified version of equations (1)
and (2) of [4]). HereF is a free energyT is the local Tolman temperature on a boundary
which defines a canonical ensemble [5],is the radius of a horizon (the system is assumed
to be spherically symmetricalYy is the temperature at infinityh is some function offg
andr,.. Both these relations are used in [4] separately for gravitation and the quantum
field, but such use conflicts with the essential non-additivity of free energies (in contrast
to additivity of entropies [6—8]). Careful treatment of a canonical ensemble [5] also shows
that one cannot, in general, neglect the difference betweamd Ty as was done in [4].

It seems plausible that these subtleties do not change the main ideas of [4] qualitatively;
nevertheless, neglecting a number of essentials of gravitational thermodynamics of finite-size
systems leaves the matter not quite clear.

0264-9381/96/020023+05$19.5@C) 1996 IOP Publishing Ltd L23



L24 Letter to the Editor

On the other hand, the entrof$y, of the massless field has been found in a general
form in [9] by direct integration of the general first law. The corresponding result is quite
sufficient for practical purposes but is not enough for the problem we are dealing with—to
elucidate the origin of finiteness ¢f,. The point is that the first law assumes the validity
of Einstein equations [10] for the combined system ‘a hole plus matter’. Howeyer,
in the one-loop approximation is expressed in terms of quantities calculated with respect
to the Schwarzschild background and is insensitive to successive corrections either to the
metric or to the Hawking temperatufg;. For this reason basing the finitenessSpfand
deriving the explicit expression for it seem to contain ‘superfluous’ information connected
with properties of the geometry corrected due to backreaction.

The aim of the present paper is to give a very simple and clear derivatisinwithout
using the first law. Finiteness ¢f, and universality ofs®" follow directly from properties
of the Hartle—Hawking state [11].

There are also two more reasons why deriviiggnithout the first law seems to be very
important. First, recently the permissible range of the parangeteetween the quantum
field and curvature has been found from positivity of entropy [12] that gives a new insight
into the link between thermodynamics and field theory. However, the entropy in [12] is
derived from the first law that operates with the notion of quasilocal energy [13] which is
not defined yet for arbitrarg when the field is coupled to a metric neither minimally nor
conformally. In this sense our derivation 8§ without the first law puts this direction of
investigations on a firm basis.

Second, a rigorous treatment §f in the framework of the first law should be faced
with the deficit angle as a free parameter [14] which adds new complexity and obscures the
whole picture whereas this problem does not arise in our approach.

Consider a quantum field at finite temperaturdp = ;. Its Euclidean action takes
the standard form [15]

I, = —ﬁo/dsx JET2 -8, . 1)

Here T} is the renormalized stress—energy tensor calculated with respect to the gnetric
with the determinang. We consider the class of Euclidean metrics which have the form

ds? = f(ry/r)de2 4+ 71y /r) dr? + r2(sir? 6 de? + d§?) . 2)

This metric is assumed to describe a black holef € = 0 but otherwisef is an arbitrary
function of the ratio-, /r. For the particular case of the Schwarzschild mefrie) = 1—x.
From the variation of (1) we have

8l, = —8Bo / dx /g5 + % f ®x /8T, 88" +4nTo(r)ridre . (3)

The first term in (3) describes the responselpfto the change of temperatufg in
the fixed geometry, the second term follows from the definition of the stress—energy tensor,
the third one is connected with the change of the integration region whénallowed to
vary (note that there is no sense in writing down a similar terrfiSin since it can always
be removed by a simple redefinition §f).

It is worth noting that in contrast to (1) of [4Yp andr,. are not independent parameters
sinceTy = Ty. On the other hand, we are dealing with the variation of the field action only
(not with that of the total system), so the problem of a deficit angle [14] does not arise.

We assume that as usud]; is calculated in the one-loop approximation in the
background (2) for whictgy = —4nr,/f'(1), f'(1) < O.
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The key idea consists in the consideration of such variations of the metric in which the
background retains its form (2) and only the parametechanges.
Then the second term in (2) turns into

(4r)%ry (Rdrr df(x)
— (T =T, = , 4
2wl ), 7 I="a ., “)
whereR is the radius of a cavity into which a hole is enclosed.
From the conservation Ia\wr’fﬂ = 0 in the background (2) it follows that
r(IF=T)Hf 1. 4 o
oo VY TI" ;- T~l
s LT, = rPT]) (5)
wherei denotes spatial indices.
Then from (2)—(5) we have
@n2rm / O r2T) — ROT)(R) + 2T () — T900]. (6)

The regularity of 7 at the event horizon in the Hartle—-Hawking state demands that
according to (5)1"’(r+) 72(r+), so the last term in (6) in square brackets cancels.

The above formulae are applicable to any field with a terf5orlf a field is massless,
there exists only one relevant parameter of lengthand from dimensional grounds

T, =ritfi(rs /7). @
Substitute (7) into (6). Then

d r 1 (td
(4N)’2£If’(1)l - f’ufﬁf) - fw A 8)

wherew =ry/r.
Integrate this equality with the natural boundary conditiggry = R) = 0. It is
convenient to use the relation (for agyu))

14, pl 1
/ d—u,/ du g(u) = / du g(u)lnﬁ. 9)
w u u w w

As a result we obtain in terms dTM“:

R
l, = 16ﬂ2r+|f/(1)|_1/ drrz(—Tr’ +T/In I:) (10)

I+

R R
S, = 16712r+|f’(1)|‘1/ drr2<T,.’ — Ty —T/In ) ) (11)
ry r
In equations (10) and (11) the energy—momentum tensor corresponds to the Hartle—
Hawking state describing equilibrium between a black hole and radidafjps; 7, . Now

use the remarkable quality [16]

T = Tog + Ty - (12)
HereT, corresponds to the Boulware vacuufif, describes the black-body radiation
With Hawking temperature:7), = oT*diag(—1, 3. 3. 3) (« is constant). As the trace
T, = 0 we obtain from (11) that
Sy = Sth + SB . (13)

Here Sy, coincides WithSlsM of [4] and represents the entropy of thermal radiation
with the densitygozT3 which diverges near the horizon. The quantdy is the infinite
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renormalization constant which makes the sum (13) finite. It correspondsS{oof [4]

and is obtained by replacing,,, by 7,; in (11). In the approach under discussion it is
clear thatSg is connected with vacuum polarization described m We see that not

only the energy but the entropy of the quantum field also arise in a finite form as a result
of thermal excitations of field modes over the Boulware state at Hawking temperature. In
so doing, the infinite parts of thermal and Boulware contribution$t@ancel exactly. If

the temperature of excitatiori # Ty compensation in (11), (12) near the horizon does
not occur and the entropy diverges. For the thermal atmosphere of a black hole this gives
one direct justification of the renormalization procedure for the entropy proposed in [17]
(cf also [4]).

If the field is massive, the relation (7) fails and one cannot obtain the expressisp for
as simply as in (11). However, it is important that (6) still holds, so the entropy and action
are again linear functionals @f; . It explains the finiteness o, and universality ofsBH
from properties of the Hartle—Hawking state in the general case.

It is worth stressing that the general first law refers to the total system ‘gravitation
plus field’ and assumes the validity of the Einstein equations for it; whereas our approach
operates only with the field action and does not need information about quantum corrections
to the geometry. In this sense one can say that in the one-loop approximation we found
the entropy of off-shell black holes. Moreover, for the arbitrary functfan, /) in (2),
when not only corrections to it byt itself does not obey the Einstein equations, the result
obtained gives one the entropy of the particular class of such holes described by the metric
(2), i.e. it is more general than the Schwarzschild case. (It is only required/thae
conserved in the metric (2).)

This gives one the one-loop correction to the entropy af 1L black holes in the fixed
background in the closed form. Investigation of its properties will be reported elsewhere.

After this work had been completed we became aware of a number of other papers
on related topics. In [18,19] the authors discuss new features introduced by the presence
of the event horizon into the general scheme of renormalization of quantum theory in
curved spacetime. In contrast to [18, 19] we took for granted the existence of well defined
renormalized action and entropy from the very beginning and concentrated our attention on
obtaining explicit formulae for them. The results for the entropy in [20] seem to give only
the termsSy, in (13) while our approach enables one to obtain the total quantity (11). In [21]
guantum corrections to temperature and entropy of a black hole were derived from conformal
properties of a field. The results are in disagreement with (11). One can show [22] that the
discrepancy can be removed if the finiteness of a system and boundary conditions (which
were neglected in [21]) are taken into account properly.
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