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Abstract. We investigate the physical interpretation of the loop states of non-perturbative 
quantum general relativity in the regime of graviton physics, namely the regime of first order 
excitations amund the Poincd-invariant vacuum. We construct lhe general form of the loop 
state functionals invariant under the linearized conshain&. We presenl expliciily the loop state 
functionals that represent the Poinca&invariant vacuum and the graviton states. We find that 
physical information emerges entirely from intersections of loops. We obtain these results by 
utilizing the recently introduced ‘map M’, which relates the loop-space states of non-perturbative 
quantum general relativity to the state space of the linearized theory. The general picture of the 
linearization of the loop-space quantum general relativity is discussed. 

PACS numbers: 0420.0460 

1. Introduction 

The loop representation of quantum general relativity [ 11 is a candidate for a quantum theory 
of gravity. An important open problem in this approach is the difficulty of recovering simple 
‘low energy’ gravitational physics from the full theory. This is the problem we discuss in 
this paper. 

The physical quantum states of the loop representation (from now on loop rep) of 
quantum general relativity (from now on QGR) are represented by linear combinations of 
knots. We would like to recover the Riemannian geometry of spacetime from these knot 
states, in some sort of ‘high quantum numbers’ limit: somehow in the same way in which 
one recovers the electron trajectories from the In, I ,  m )  states of the hydrogen atom in the 
‘high quantum numbers’ limit. Riemannian geometry should emerge (in approximate form) 
from the purely topological world of the knots. 

We do not fully solve this problem in the present paper, but we make a substantial 
step toward its solution. The idea that we follow is to focus on the ‘low energy’ regime 
given by flat spacetime and small oscillations around flat spacetime. In this regime, the 
gravitational field can be described by means of linearized GR. The corresponding quantum 
theory, namely quantum linearized GR (from now on QLGR), describes free gravitons on a 
Poincarb-invariant vacuum state. The physics of QLGR is familiar, easy to be interpreted, 
and its classical limit is well understood (weak gravitational waves on Minkowski space). 
Our aim is to find a sector of the loop rep of QGR that describes the same physics as QLGR; 
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namely, to identify the Poincar64nvariant vacuum and the n-graviton states within QGR. 
Of course, this identification makes sense only within a certain approximation, because the 
physics described by QLGR and QGR are genuinely different at high energy. 

Working within this approximation we construct here loop states of QGR that represent 
the low energy physics. In particular, we explicitly construct the loop functional YO that 
describes the Poincar&invariant vacuum, that is, the 'quantum flat spacetime', and the 
related n-graviton loop functionals \Ykl . . ,&.  

We use three main tools in our construction. The first is a version of QLGR developed in 
[Z]. This version of QLGR is fully equivalent to standard ones (QLGR is a free quantum field 
theory, and therefore can be realized in a variety of equivalent ways), but has the advantage 
that it is a loop rep; namely, quantum states are represented by loop functionals. This makes 
the comparison with the loop rep of QGR easier. The second tool is the weave, introduced 
in [3]. The weave is a particular loop state in QGR that approximates a flat Euclidean metric 
at large distances. The third and the main tool that we use is the map M ,  introduced in [4]. 
This is a linear map from (a sector of) the state space of QGR to (a sector of) the state space 
of QLGR. It is defined by using the weave and it has the essential property of intertwining 
between operators of the two theories that have the same physical interpretation within the 
approximation in which we work. In this paper the map M will be explicitly utilized in 
order to find the states WO and Ykl,,.k. In the next subsection, we provide an outline of the 
strategy that we follow. 

Our main result is the explicit construction of a loop state YO that represents the 
Poincar6-invariant vacuum or the 'quantum flat spacetime', and the corresponding n-graviton 
states \Yk, , . ,kn,  within QGR. This result indicates that QGR in the loop rep contains a sector 
that describes the known low energy physics, and may provide a basis for the physical 
interpretation of all loop states. Perhaps surprisingly, we find that the physical information 
is coded entirely in the intersections between loops and the weave; these are 'magnified' 
by the map M and become the low-energy information relevant in graviton physics. This 
may be seen as a result supporting the claims on the importance of the intersections in the 

The result we present is not yet a fully satisfactory solution of the problem of recovering 
low energy physics from the knot states, for the following reason. Ideally, we would like to 
construct exact physical states of QGR that represent the low energy physics approximately. 
These states should solve the QGR constraints exactly, and therefore be knot states. The 
states WO and Y k , , , , k m  that we construct, on the other side, are only approximate solutions of 
the QGR constraints. They are, in a sense, approximate knot states. Indeed, we will see that 
they are not fully invariant under all diffeomorphisms, but only under the 'low frequency' 
diffeomorphisms (that will be defined below). Thus, the present work should be completed 
by finding exact knot states that 'differ from YO and Y k L , , , k s  at high energies'. We will 
discuss these remaining open issues in the conclusion. 

1.1. Outline of our strategy 

The present paper is a continuation of the line of research developed in [ 11 where the loop 
rep of QGR was defined, [Z] where the loop rep of QLGR was defined, [3] where the weave 
state was constructed, and [4] where the map M was introduced. In particular, this paper 
may be seen as a follow up of [4]. We made an effort to make the paper self-contained 
by summarizing previous works in section 2; however, its comprehension would be much 
enhanced by the knowledge of those references, in particullar [4]. 

Our general philosophy is to fix a 'small' positive number E that determines the accuracy 
to which we want to reproduce the expectation values of the linear theory (QLGR) from 
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expectation values of the exact theory (QGR). As shown in [4], we have then to restrict our 
considerations only to a sector of states and operators, this sector being dependedent on E .  

Intuitively, these are the states close enough to the vacuum and the operators that do not 
probe the state at too short scale. The precise technical characterization of this sector of 
states and operators is given in [4] and recalled below in section 2.4. It is important to 
keep those restrictions in mind in order to follow the calculations in the paper. We can then 
consider E as an expansion parameter: to first order in E the predictions of the two theories 
should agree. Thus, we may disregard terms of higher order in E in all calculations, since 
we are only interested in the results of first order in E .  

M is a map from the state space of QGR to the state space of QLGR. It intertwines 
between operators of the two theories that represent the same physical variable to first order 
in E. The notion of representing the same physical variable is well defined since classical 
GR and LGR are defined on the same (unconstrained) phase space. However, the map M 
tums out to be highly non-trivial, because of a number of reasons (that will be recalled in 
section 2.4). The main one of these reasons is the fact that the state space of QLGR and the 
state space of QGR are different spaces (unlike, for instance, the Schrodinger quantization 
of the harmonic oscillator and the Schrodinger quantization of the anharmonic oscillator, 
which are both defined on the same state space of wavefunctions $ ( x ) ) .  It also turns out 
that the map M is defined (and makes sense) only up to terms of higher order in E.  These 
terms represent the short-scale indeterminacy which is left open in the identification of the 
low energy free theory with the exact interacting theory. 

At first sight, one could think that the map M can be used to directly map the vacuum 
and the n-graviton states from QLGR to QGR. However, this is not possible, because the 
quantum states contain more information than just the one given by the first order in E .  

(The linearization in x of many dynamical systems produces a harmonic oscillator, but the 
harmonic oscillator vacuum state @&) = exp[-x2]  is not linear in x . )  Thus, the strategy 
we adopt is to use the map M not for transferring states from QLGR to QGR, but rather to 
transfer the most relevant operators of QLGR into the state space of QGR. We denote the 
set of operators that we obtain, which are defined on the state space of QGR but define the 
same physics as QLGR, as ‘low frequency operators’, for a reason that will be clarified later. 
We also denote as the ‘low frequency theory’ this theory defined by the low frequency 
operators, namely QLGR on the state space of QGR. 

The relevant operators are the constraints and the Hamiltonian. The transfer of the 
linearized constraints is relatively straightforward and will be performed in sections 3.1 and 
3.2. The low frequency vector constraint that we obtain turns out to be the generator of 
’low frequency diffeomorphisms’. The meaning of this result will be discussed below. A 
geometrical interpretation of the low frequency scalar constraint is more difficult. As far 
as the Hamiltonian is concerned, we again run into the problem that the map M makes 
sense only to first order, while the Hamiltonian is quadratic in E .  We circumvent this 
problem by using the creation and annihilation operators (which are first order). instead of 
the Hamiltonian. 

Even transferring the creation and annihilation operators is far from straightforward. 
The reson is that these depend on the linearized metric field, but there is no metric field 
operator kob(x )  in QGR. There is only its ‘smeared‘ version Q(o), which corresponds to 

1/2 Q(w)  = Sd3x [(detg)gobw.wb] . The creation and annihilation operators of the two 
polarizations depend on the linearized metric field hab(x), via terms which in momentum 
space have the form m.(k)mb(k)hab(k). We therefore have the technical difficulty of 
expressing these quantities in terms of Q(o). We achieve this by introducing, in section 3.3, 
a triplet of covectors wb(x) i = 1,2,3 , that represent, in a sense, ‘polarization vectors in 
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position space', and are roughly defined by Fourier transforming (couples of) polarization 
vectors as m,(k). By using these, we can write the creation and annihilation operators 
in terms of Q(w), therefore transferring them to the QGR state space. This is done in 
section 3.4. 

Section 4 is then dedicated to solving the low frequency theory. In its original (loop 
rep) form the main ingredients for solving QLGR are the Form factors [2]. In section 4.1 we 
find the loop functionals that play the very same role in the low-frequency theory, and we 
denote them as G * [ y , a ] .  These are first found by using again the map M as a hint, and 
then checking directly their behaviour under the constraints and the dynamical operators. 
The calculations are quite involved, but the final result is simple: the states that solve 
the low frequency constraints are given by arbitrary functions of G*[y,  A#a]. Finally, in 
section 4.2 we find the Poincark-invariant state and the graviton states. 

J Iwasaki and C Rovelli 

2. Review of the exact and linearized theories, weave and map M 

We briefly review the non-perturbative (QGR) and linearized (QLGR) theories in the loop 
representation and the definitions and properties of the weave and map M, in order to fix 
our notations and conventions. For more detail the reader may consult references [1-4,6]. 

2.1. QCR, the non-pertubative theory 

The classical T variables are defined by 

1 T[a] = $ Tr P exp G dl &'(t)Ab(a(t)) IIf 
T'[al(s) = 5TrPexp dtdrb(t)Ab(u(t)) %(01(s)) 1 

where A,(x) = A6(x)ri and E u ( x )  = 4,?'(x)ri are the Ashtekar connection and its 
conjugate momentum field (q is a Pauli matrix divided by 2i). Indices a ,  b, ... are space 
indices and i, j .  . . .are internal SO(3) indices. Note the 1 that we use in our conventions. 
A variable that we need is 

where gab is the inverse of the 3-mehic and oo(x) is a test I-form. In the quantum theory the 
corresponding operations are defined on a space of functionals *(a) = (01p) of multiple 
loops. (A multiple loop is an unordered set of loops. We identify a single loop a with the 
multiple loop that contain only the single loop a; and we indicate single as well as multiple 
loops by greek letters.) These operators aTe 

(Bl%Yl= (BUal 

(2. I .  1) 

The symbol U indicates union of multiple loops; thus 01 U B is the multiple loop formed by 
the single loops in (or the loop) 01 and the single loops in (or the loop) p.  The symbol # 
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indicates the joining of two loops at an intersection; thus if P is the point where the loops 
a and p intersect, a#j3 is the loop obtained by starting from P. going around CY, then along 
B. and then closing. Note that the last equation holds not only for non-intersecting loops 
but also for intersecting loops as long as intersections are isolated ones. We do not consider 
in this paper loops which have a segment overlapping with another segment. 

The state functionals satisfy some conditions, one of which is the spinor relation 

(f fUBI =f((ff#Pl+(a#B-'I) (2.1.2) 

if a and p have a common point 

2.2. QLGR, the linearized theory 

The classical variables are defined by 

h"*(.r) = 2Sfeb"(x) 

with the form factot 

F,"[x, 011 = ds &'(s) f,(x - ( ~ ( 3 ) )  $ 
where e"'@) is the deviation of the triad @ ( x )  from the flat Pi and f r ( x )  is a smearing 
function. We choose 

f , ( x )  = (2nr~)-3i*e-xrW, 

The corresponding quantum operators are defined on a space of functionals Ilrr(G) = (GI@,) 
of triplets of multiple loops. Those are 

(jl;;(CY) = (j ui 011 ( / q l ; " b ( x )  = -21;F:[x, p*'](jI. 

The notation j,Ui a-indicates the union of-the loop a to the i component of the triplet of 
multiple loops p:  (PI = ( P I ,  Bz, p31 and (B UI C Y [  = (p i  U 01,p2. p31 for example. 

An operator which we will frequently use is the linearized magnetic field operator 
('differential' operator), 

where y;..s is a loop of radius 6 centered at x and normal to the a direction. In terms of 
these operators, we can write several operators we need. The linearized vector and scalar 
constraint operators are 

c : ( X )  = -EubcGEbc(X) $(x) = - S , b G ~ * ( X ) .  

It turns out that symmetric, traceless, transverse components of F p [ x ,  ai]  (seen as a two- 
tensor in the indices a and i)  solve these constraints. In Fourier transform, these component 
are denoted as 

F,+[k, 21 = ITz,(k)fii(k)F,"[k, CYiI 

F J k .  21 = m,(k)mi(k)F;[k, ail 
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and hence physical states @(G) are defined by analytic functions of F:[k, GI; namely, they 
have the form @(G) = @ ( F F [ k ,  GI). Here m.(k) and its complex conjugate rir,(k) are 
polarization vectors defined up to a phase by 

m,(k)fi"(k) = 1 

rir,(k] = -m.(-k) 

J Iwasaki and C Rovelli 

m.(k)m"(k) = m,(k)k' = 0 
<"b'k.mb(k)rir&) = - $ I .  

The annihilation and creation operators are 

(2.2.1) 

where h*(k)  and E*@) are the transverse components of the Fourier transforms of Pb(x) 
and sb(x) respectively. For example h*(k) are 

h+(k)  = m,(k)mb(k)P'(k) 

h-(k)  = m.(k)mb(k)Pb(k) 

By computing the action of hi@) and GZ*(k)  on the physical state space described 
above, we obtain 

(h*(k)@)(G) = -u,ZF:[k,G]@(G) 

The vacuum state, which is annihilated by the annihilation operators, turns out to be 

@&) = exp ( - i , ' ~ d 3 k ~ k ~ e ' z k z ~ z l F ~ [ k , G ~ ~ 2 ) .  

The excitation states are obtained by applying the creation operators on the vacuum state. 
For example, one-graviton states with positive and negative helicities are 

tLk*(Fa =(u;lkl)l~zF.[k, Gl@O(a 
@ k - ( G )  =(2~~1kl)1/zF;[-k, G]$O(g). 

Note that @ob(;) and GZ*(k) here are different from ones given in [2]. In [2] the presence of 
the smearing function was taken into account by simply replacing F* by F:; this procedure 
is not always correct. 



Gravitons from loops 1659 

2.3. The weave 

The weave A is a set of randomly oriented circles of radius a whose centres are randomly 
and uniformly distributed in the 3-space with an average number density n = l/a3; a is of 
order of the Planck length I,. Some of these circles may be linked to one another. There 
is an infinite number of different weaves A, and each one determines a different loop state 
(AI, namely, a different point in the state space of loops; these states are denoted as 'weave 
stam'. If o, varies at a scale L large compared to I,, the eigenvalue of the metric operator 
on a weave state is a flat metric, that is, 

In this sense all weave states approximate equally well the same flat metric for large enough 
L .  To define the 'map M,' we choose one particular weave state. In the process of 
linearizing the theory, we introduce errors; therefore we must fix a precision within which 
we want the approximation to hold. The errors in the eigenvalues of the quantities relevant 
in the linearized theory, including the eigenvalue of the metric above, should be smaller 
than this required precision. 

2.4. The m p  M 
In the 'metric representation', quantum states of the gravitational field are formally 
represented by functionals \I?[g] of the three-dimensional metric. In QLGR, one may represent 
quantum states by functionals $[hl of the linearized metric field hob = gab - &b (this 
representation is equivalent to the common Fock basis representation). The relation between 
these two representations is straightforward: a state $ of QLGR physically corresponds to 
a state \I? of QGR, where Y[g] = $[g - SI. This relation establishes a linear map, which 
we may denote as map M ,  between the state space of QGR and the state space of QLGR. 
The expectation value of a linearized variable, as for instance hob, in the state $, and the 
expectation value of an exact theory variable, as gab. in the corresponding state UI, are 
related by the correct classical relation (h  = g - q )  that relates the two variables in the 
classical theory. 

In the loop formalism used here, on the other side, the relation between QGR and QLGR 
is more complicated, owing to a number of reasons. The first reason is that the loop rep is 
not obtained by means of functions on a configuration space. Imagine we want to establish 
the linear relation between the state space of an anharmonic oscillator, expressed in the 
energy basis IN), and the state space of a harmonic oscillator (seen as an approximation to 
the anharmonic oscillator dynamics), again expressed in the energy basis In). The relation 
between the two state spaces ( I N )  = C, Ciln)) is non-trivial: we must be able to solve 
the dynamics in order to find its explicit form. Similarly, in the loop rep we need to control 
the eigenvalue problem of the T operators in order to find the explicit relation between the 
state spaces of QLCR and QGR. 

The second reason is that the loop formalism is invariant under the internal gauge 
transformations of the Asbtekar variables, but the internal gauge group of QLGR, which i s  
U ( O 3 ,  is different from the internal gauge group of QGR, which is SO(3). The variables of 
QLGR that are invariant under U(l)3 are not invariant under SO(3). More precisely, they 
are invariant under SO(3) only to first order in the expansion for small fields. Therefore 
the very quantities on which QLGR is constructed lose their meaning as variables in the loop 
rep of QGR beyond first order in a small fields expansion. If we set a small positive number 
E as the precision to which we want our approximation to hold, and we restrict the range 
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of the dynamical variables by Ihab(x)l c E and [tj(a) - 11 c E ,  then the classical variables 
of QLCR and QCR are related by 

J Iwasaki and C Rovelli 

T[a] = 1 

(2.4.1) 

up to an error of order E'. This error cannot be avoided within the present formalism, 
because the two theories are invariant under different gauge groups. Since the relation 
between the state spaces of the two theories is determined by the relation between the 
respective variables, it follows that we can determine the relation between the two theories 
only to first order in E .  This fact, however, does not prevent us from looking at QLGR as 
an approximation of QGR, since QLGR can be a good approximation of QGR only to linear 
order in a small field expansion. 

In the quantum theory the magnitude of the quantum fluctuations Ar;(a) and AhRb(x) 
around the flat metric is determined by the Heisenberg indeterminacy relations. If we want to 
say that the metric is flat within a precision E,  then we need At:(a) c E and Ahob(x) c E .  

This requirement forces us to restrict the parameters that determine the variables in the 
theory, as follows: la1 c I p / &  and r > lP /&.  Here la1 is the length of a loop a and r is 
the scale of a smearing function involved in QLGR. The restriction of the lengths of loops 
does not mean any restriction of physical information coded in state functionals, since the 
relevant information is already contained in the limit in which the loops shrink to zero. 
The restriction of la1 is, however, necessaty to impose one of the linearization conditions, 
Itj(a) - 11 c E .  in the loop formalism and to define the map M unambiguously such that 
the low-energy sector of the state space of QGR is transformed to the low-energy sector of 
the state space of QLGR, and not to violate the Heisenberg indeterminacy relations. The 
restriction of r does mean a restriction to the low-energy sector of physical informations 
determined by the precision E imposed. The low-energy sector of operators and state 
functionals may include only such loops and scales except the weave A. The low-energy 
sector of the state space of QGR, denoted by No, is defined by 

II(F[a] - 1)*11 c E' and I1 /"d'x f,(x)?'"ra +xl(s)*ll c E .  

The low-energy sector of the state space of QLGR, denoted by ho, is defined by1 

[I(F:(a) - I)+[[ c E and l l ~ ( x ) @ l l  c E. 

(A discussion of the norms we use is given in [4].) Physically, these represent the sectors 
of the two theories that give the same predictions, to order E .  The map M sends states in 
Ho to states in ho; it is given by 141 

t Equation (4.4.1) in 141 contains a (quite unfortunate) typing miswke. The comcted version is the one given 
here. 
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where a:,, := mi t A( t )  -a(@). In this paper, all loops are parameterized so that $ds = 1. 
The map is defined only up to terms of order E ~ .  Note that the map depends on the weave 
A and a different choice of weave, on which another map is based, makes a difference only 
within an error of order E’. The essential property of the map M (from which it has been 
determined) is that it relates corresponding operators in QGR and QLGR, up to an error of 
order E*;  that is, 

M p [ a ] =  1M 

(2.4.3) 

to be compared with equations (2.4.1). Here 01 and r satisfy the conditions described above 
and w. is a oneform slowly varying over a scale l p / ~ Z  so that equation (2.3.1) is used 
without bothering calculations of terms of order E of quantum fluctuations. In general, 
given an operator 6 in QLGR. we may find the corresponding operator 6 in QGR using 

M b  = 6M. (2.4.4) 

We will use this relation to translate between the two theories. 

3. Operators 

We now begin using the map M ,  or, more precisely, equation (2.4.4), to transfer the 
linearized operators from QLGR to QGR. First, we find the expressions for the linearized 
constraints in QGR, namely we transfer the linearized vector and scalar constraints 0; and 
gL, to the QGR state space. We indicate the resulting two operators as Po and 3, and we refer 
to them as ‘low frequency vector and scalar constraints’. The reason for this denomination 
will be clear below. They are defined by 

M C a = P f M  and M 3 = S L M .  (3.1) 

These low frequency constraints are defined on the state space of QGR, but they describe 
(together with the Hamiltonian) the low energy physics. 

Next, we consider the dynamics. Here, however, we find a difficulty, owing to the 
Hamiltonian structure of the quantum theory: while the linearized equations of motion 
are, by definition, linear in the dynamical variables, and therefore in E ,  the ‘linearized‘ 
Hamiltonian Ho, on the other hand, is of course quadratic in the dynamical variables; 
and therefore it is of order E’. The linearized Hamiltonian operator go in QGR cannot be 
obtained from the Hamiltonian operator of QLGR A, by using = AM, because the 
Hamiltonian is of second order in E ,  while M is determined only to first order in E .  

The very same problem arises if we try to map directly the eigenstates of the linearized 
Hamiltonian, namely the vacuum and the graviton states, from one state space to the other. 
To see this by means of an analogy, consider the linearization of an anharmonic oscillator: 
to first order in the position x ,  and under suitable conditions, the classical as well as 
the quantum dynamics are approximated by means of the harmonic oscillator dynamics. 
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However, we clearly cannot take the harmonic oscillator ground state, @ ( x )  = C exp[-ux*], 
expand in x ,  keep only terms of first order in x ,  and assume that these give a good 
approximation to the ground state of the exact theory. 

In order to circumvent this problem, we need some way of bringing the information 
about the linearized dynamics from QLGR to QGR, using only operators of order E. The 
idea that we shall follow is to use the creation and annihilation operators. These, unlike 
the Hamiltonian, are of first order in E .  Therefore we may use the map M to transport 
them from QLGR to QGR, without losing relevant information. In section 3.4, we find 
the expressions for the creation and annihilation operators in the QGR state space. These 
operators will allow us, in section 4, to find the states annihilated by the low-frequency 
constraints, the Poincarg-invariant vacuum and the graviton states. 

3.1. The low-frequency vector constraint 

ALa preliminary step, we derive the oLerator Fb(x) that corresponds to the operator 
GBnb(x) of QLGR. From MFb(x) = GBob(x)M,  it is easy to verify that 

J Iwasaki and C Rovelli 

(3.1.1) 

This is a kind of 'differential' operator. 
The low-frequency vector constraint operator 

in QLGR and is determined by equation (3.1), is then 
in QGR, which corresponds to the one 

Its action is 

where y s . ~ ( , )  := Y + B( t )  - YD). 
From equations (3.1.1) and (3.1.2), we obtain 

(3.1.3) 

(3.1.4) 

where is the exact (non-linearized) vector constraint [I]. Thus, the 'low frequency 
constraint' that we have constructed differs from the exact vector constraint of QGR only by 
virtue of the smearing at the scale r produced by the smearing function f,. At first sight, 
this result is surprising, because it implies that the exact quantum vector constraint equation 

E&)* = 0 (3.1.5) 

and the equation 

P&)* = 0 (3.1.6) 

are equivalent, as can be easily verified by smearing these two equations with arbitrary vector 
fields. However, we must recall that the low-frequency theory operators and equations that 
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we are obtaining make sense only to order E ;  the map M itself, indeed, makes sense 
only to this order. Thus the low-frequency quantum vector constraint equation is not 
equation (3.1.Q but rather 

(3.1.7) 

(we refer to [41 for a discussion of the norm we use). Indeed, we will discard terms 
small in E’ in computing the solutions of this equationjn section 4.1. Thanks to this E 

approximation, the effect oftJe smearing function f r  in V,(x)  is then essentially to cut off 
the Fourier components of C.(x) that have frequency much higher than l /r .  (We recall 
that we have preferred Euclidean coordinates determined by a background flat metric.) More 
precisely, if we Fourier transform equation (3.1.7) we obtain 

(3.1.8) 

where 1, is the Planck length and k is the momentum variable. This equation shows that 
to first order in E the low frequency constraint corresponds to the exact vector constraints 
with the high frequencies (with respect to the assumed background metric) cutoff. 

It follows that a knot functional, namely a solution of the exact equation (3.13. also 
solves the low frequency constraint, equation (3.1.6); but the converse is not true. Thus, the 
low-frequency theory that we are defining on the QGR state space allows also states that are 
not knot functionals, but differ from a knot functional ‘at high frequency’. This means that 
a loop functional @(a) which solves the low frequency vector constraint does not change 
for a ‘very smooth’ diffeomorphism on LY, that is a diffeomorphism generated by a vector 
field without high frequencies (with respect to the background metric), but may change for 
a ‘very rough’ diffeomorphism on a. 

Since the scale r is much larger than the weave scale, we may visualize these low 
frequency diffeomorphisms as the ones that move the weave around without ‘destroying’ 
it: loops that are close to each other at the weave scale remain close to each other under 
low frequency diffeom0rphisms.t 

We also note that a functional depending on a loop shorter than r is not in general (the 
functionals G*, which will be introduced in section 4.1, are special cases) low-frequency 
diffeomorphism invariant in the same sense that a sharply peaked function in the space (e.g. 
a delta function) has a variety of‘ momentum components in its Fourier spectrum. To be 
invariant, the loop must be uniformly distributed over the space so that its low-frequency 
components can be clarified and ignored by the state functional. Such structure is allowed 
only in the weave in .this construction. 

We leave the study of the precise geometrical meaning of this result for future 
investigations; for the moment, we simply note that the result is consistent with the fact 
that QLGR becomes a bad description of the gravitational field at high frequencies. 

3.2. The lowrfrequency scalar constraint 

The low-frequency scalar constraint operator s  ̂ in QCR, which corresponds to the one in 
QLGR and is determined by equation (3.1), is 

(3.2.1) 

t Consider the metaphor of the weave as an elastic fabric: diffeomorphisms at scales large wmpared with the 
fabric scale do not destroy the S ~ N C ~ U E  of the fabric; while diffeomorphism al the scale of the fabric can break 
the shlldure of the fabric apart 
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Its action is 

J Iwasaki and C Rovelli 

Note that the low-frequency scalar constraint cannot be recovered by simply smearing 
the exact scalar constraint by the smearing function f r ,  in contrast to the case of the 
vector constraint. At present, the relation to the exact scalar constraint is not clear. Some 
light is partially obtained by considering the following fact: The classical constraint S(x) 
corresponding to equation (3.2.1) is equivalent (up to terms of order c2) to 

= /d3y fr(x - y)C(y) (3.2.3) 

where C(x) is the exact (classical) scalar constraint. Thus, S(x) would be seen as a low- 
frequency scalar constraint in the spirit described in the previous subsection. To show the 
equivalence as quantum operators, more careful considerations are still needed. 

In this paper, we shall consider states annihilated by the low-frequency vector and scalar 
constraints. These are relevant in graviton physics, even though they are unphysical at the 
Planck scale. In a sense, they are 'physical states at large distances'. We expect that they 
could be suitably modified at short distance in order to become exact solutions of the exact 
constraints. 

3.3. The 'polarization' vectors in position space 

Before discussing the creation and annihilation operators, we introduce in this subsection a 
triplet of covectors (i = I ,  2,3) i n  position space that will play an important role in 
the following. They are, in a sense, 'polarization vectors in position space', as m,(kj  are 
polarization vectors in momentum space. First, we consider the integral 

&&) = - d3k Ikl"m,(k)ma(k)e".x (3.3.1) 
(2703 l /  

where n is determined in such a way that the integral exists. We recall that m,(k)  can be 
determined up to a phase factor ei*@), where A(k) is a real scalar odd function of k .  Thus 
the integral is not unique. For a particular choice of Cartesian coordinates and m.(k), which 
is 

with 

i = (sin0 cos+, sin0 sin+. COSO) 
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it turns out that the integral exists if n is such that -3 < n < -3. We choose n = -2 to 
show the existence of the integral. Straightforward calculations show that the components 
of I&) are 

where A(0) and B(0)  are given by 

H 
A(@ = - (3 + 6cos20 - cos48 - 8 1 ~ 0 ~ 0 1 )  

B ( e )  = case [sin'e + 1n(cos2 e)] : 
8 

they have the properties 

3 --f 0 and 
sin' e 
A@) + - and B(0)  -+ 0 as 

=+o as O + O  or B + n  
sin' e 

3H H 

2 8 
e + -. 

(3.3.2) 

(3.3.3) 

Here x is denoted by x = (Ixlsinecos4, IxlsinBsin4, IxlcosB), and should not be 
confused with f i ,  which was fixed above. These components are finite and well defined at 
all points x except the origin. Note that io&) is real, symmetric, traceless, divergenceless, 
consistently with its integral expression (3.3.1), and its determinant is always positive. The 
positiveness of the determinant guarantees that the sign of the eigenvalues of lob(x) do not 
change by changing the position x, which is crucial in defining the x-independent vi below. 

Next, we define three real orthogonal eigenvectors w;(x)( i  = 1,2 ,3)  of lob(x) with 
E;=, v,iw'(x)l = 0, where vi is the sign of the eigenvalue corresponding to the ith 
eigenvector, in other words, ivilw'(x)I is the corresponding eigenvalue, such that 

(3.3.4) 

Here loi(x)l := [ ~ ~ ( x ) w ~ ~ ( x ) ] ~ ~ '  is the norm of wL(x) and is set for later convenience. 
Note that vi are independent of x as mentioned above and v ~ v z y  = + l .  Note also that 
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m i ( x )  are not unique in the same sense that m,(k) is not unique as mentioned above. The 
three vectors, for the specific choice of lab  above, are given by 

J Iwasaki a d  C Rouelli 

o: (x )  = - ci(e) (xi(e)cos@ - f i ( ~ ) s i n @ , X i ( ~ ) s i n @ +  yi(e)cos@, zi(e)) (3.3.5) 

where Ci(0) is a function of8  such that iuiCi(0) divided by 4 ~ ~ 1 x 1  is the ith eigenvalue of 
l o b  (therefore E:=, uici(e) = o), and xi (e) ,  y,(e) and zi(e) are functions o f e  satisfying 

4n21x1 

xixj+Y;k;+z,zj=sij 

1 

1 4 - n  

(cos @, sin @, 0) with V I  = - I  

(- sin@, cos@, -1) with vz = -1 

1 m&) = - 
4Jz Ix I 

m&) = -- 
W x l  J2 

2 

1 4 + n  
(- sin@, cos@, +I)  3 0,J.X)  = -- 

8n21x1 f i  with y = + l  

and, at x = (O,O, 51x1) 

1 
W x l  

4nlxI 

&x)  = -(O, 1,O) with vz = -1 

o , ( x )  = -(O,O, 1) with y = + I .  
3 1 

Using U:, we now define our main technical tool. We want functions that vary slowly 
and approximate mi on a scale R = lP/&’. To this purpose we define 

(3.3.6) ma * ( Y )  = /d’x ~ R ( ~ ) & W Y  - x ) ) .  

Below we always use m? in place of U;. 
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3.4. The creation and annihilation operators and the equations for the Poincart?-invariant 
vacuum 

We denote by &(k) and a(k) the QGR operators that represent the_annihilation and 
creation operators for the two polarizations. These are defined by MA,@) = &(k)M 
and Mzi(k) = 2l(k)M, where the QLGR annihilation and creation operators, &(k) and 
&k), aTe given in equations (z.z.~). 

To find .&(k) and ?*(k), we have to find the QGR operators that correspond both to 
E* and to hi. The operator corresponding to E' is given by the tmsverse components of 
the Fourier transform of the operator Sb(x), defined in equation (3.1.1), that is, 

E + ( k )  = fie (k)fib(k)(Zn)-'" 

D^-(k) = m,(k )mb(k) (Z~) - ' /~  

d ' ~ e - " ' ~ " ~  D (1) 

d3xe-i"xAnb D ( x ) .  
(3.4.1) 

Thus, the problem is to find the operator corresponding to hi. We denote it as H^*; 
namely: M @ ( x )  = fi'(x)M. The difficulty is caused by the fact that we do not have 
an operator corresponding directly to the metric in QGR. In QGR, we have the operator c 
(section Z.l), which is obtained by smearing the metric in position space with the square 
of a oneform. On the other side, hi are obtained by smearing the metric, in momentum 
space, with the polarization vectors. To go around this difficulty, we usethe 'position space 
polarization vectors' introduced in the previous subsection. We define H * ( x )  as the Fourier 
transform of IkYH*(k) (note the insertion of lkl"), and we write: 

MH^'(-y) = (21r)-'/' d'ke"'YMikl"g*(-k) s 
s s 

= (Zn)-'/' / d3kek'ylklnh*(-k)M 

= (ZX)-~ d'ke'k'Yikl"m,(~tk)mb(ik) d'x e-""hRb(-x)M 

= 1 d'x ((Zx)-' / d'k IkYm,(k)mb(k)e"'('(Y+l)) hnb(x)M. 1 
Now we make use of the technology developed in the previous section: using 
equations (3.3.1) and (3.3.4), we have 

To utilize equation (2.4.3), replace o i (h(y  + x ) )  by w,"i(y + x ) .  This process does not 
change large scale structures coded in OJ:. Then, by using the last of equations (2.4.3). we 
find 
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where w*'(y + . . .) means w*'(y + x )  as a function of x ,  and hence &~*'(y + . , .)) 
is a functional of o*(y + . . ,). Noticing that the second term vanishes because of 

J Iwasaki and C Rovelli 

uilw*'(x)I = 0, we have 

3 
Z*(-y) = Uie^(W*~(Y + , . .)). (3.4.2) 

i=l 

This is the operator that we were searching for. Its explicit action on a state close 
to the weave is given as follows. Applying H*(-y) on (A#al and using the last of 
equations (2.1.1), we have 

(A#orl@*(-y) = -2$P[ -y ,  A#kz](A#al (3.4.3) 

where 

P [ - y ,  A#a] = --cui Sd 'x  duA*(~)&~(x ,  A(u))$(y + x )  
4 i = I  

+ ds~" (s )S3(x ,or (s ) )w , i ' (y+x )  . j 
Now we have all the ingredients for writing the creation operators: 

(3.4.4) 

(3.4.5) 

and the annihilation operators: 

.T&) = - 4 2 p  (ikiIflE+(-k) + l k ~ - ~ / ~ o ^ + ( - k ) )  
(3.4.6) 

A^_ ( k )  = (2li)-'/'Ik 6- ( k )  . 

The differential equations for the Poincar&invariant vacuum state IYo) can be obtained by 
applying the annihilation operators times 1ky-i on the vacuum state. They are 

(%)-3/2/ d 3 ke ik.y lk~-2(A#alo^t(-k)lYov,) = 21iF+[-y, A#a](A#OrlW,) 

(A#alo^-(k)lWo) = O .  

We shall solve these equations in section 4.2. 

(3.4.7) 

4. States 

In the previous section, we have found the operators that represent tt linearized straints 
and the creation and annihilation operators on the state space of the non-perturbative 
quantum theory (QCR). Here we solve the constraint equations and we find the Poincark 
invariant vacuum and the graviton states. 

- 
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4.1. Low-frequency constraint-invariant states 

In QLCR, the form factor loop functions F:[k,G],  are the solutions of the constraint 
equations. We now construct a corresponding function G*[k,  p] in the QGR state space. 
Since F,?[k, G I  is of the same order as h*(k) ,  that is, linear in E ,  G*[k, 01 must be so. 
Therefore we can utilize the map M to find G*[k,  p]. Using the map M, F:[k, GI can be 
expressed in terms of C% PI. by F: = MG*. From this, we obtain 

In order to find the explicit form of G*[k ,  p], we apply Ik["h*(k)M = Mlklngi(k) to an 
arbitrary state {GI: 

(c?llk/"h*(k)M = (Allk[ng*(k) 

- 2 P  i12cu f i s  fith'(t)fr(A(t) - a'(s))(A#((U~,,)'Ilkl"H^*(k) 
L.C 

or, using equation (3.4.3), 

By applying both sides to a ket state which always gives 1 for any loop bra in QGR, we find 

Comparing this with equation (4.1.1), we find that Ik?G*[k, A#@] is the Fourier transform 
of p r y ,  A h ] ,  that is, 

Ik["G*[k, A#a] = (2n)-3'2J d3ye- 'k 'yp[y,  A#@]. (4.1.2) 

Therefore, we define the Fourier transform of IkYG*[k, A h ]  as 

G*[y,  A h ]  := p [ y ,  A h ]  for A#a, (4 .1.3~)  

However, Gi[y, A U a ]  can not be defined in this construction, because p[t[y, A U (U] are 
of order e2, and they do not approximate any aspect of F: through the map M. Therefore, 
we assume that 

Gi[y, A U (U] := ( p [ y ,  A k I +  p [ y ,  A h - ' ] )  (4.1.3b) 
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so that G* satisfy the spinor relation, equation (2.1.2). As we show below, the functions 
G*[k, A#al, and hence G*[y, A*] are annihilated by the low-frequency constraints 
(3.1.2) and (3.2.1). In this sense these are 'low-frequency physical states.' These states 
determine the kinematical linear gravity states in QCR. If we interpret G* as a non-Abelian 
version of form factors, then equation (3.4.3) (replacing by G*) is analogous to 
( ; l i * ( k )  = - 2 $ ~ 3 k , G j ( t i [  in QLGR 121. 

Note that in the transformation (4.1,l). only information on the intersection@) in 
G*[k, A#a] is transferred to F:[k,?i]. Therefore, since the physical States in QLGR 
consist of polynomials of F,?[k, 21 [Z], all physical information about gravitons should 
be coded entirely in the intersections in G*[k. A#a]. Let us prove this statement. From 
equations (3.4.4) and (4.1.3a), we have 

J Iu~muki and C Rovelli 

G*[y, A*] = -- 1 3  v; /d3x I j&A' (~ )6~(x ,  A(u))wF(x - y) 

4 i=l 

+ ds&'(s)63(x,a(s))w~(x - y) ! 

drl&"(s)w.i'(a(s) - y)I (4.1.4) 

The non-intersection part of the weave has vanished because of equation (2.3.l), up to an 
error of order E ~ ,  and &~=~iuilwti(x)l = 0; the first term in the last line is the expansion of 
the intersection part IAIwb (AI - y )  +dr:w?(or~ - y)I (I stands for an intersection point); 
and the second term is the non-intersection part of loop a. which is not transferred through 
the map M and hence does not contribute to F:[k, GI. We define the Fourier transform of 
Ikl"F:[k, ?i] and express it in terms of w?(x)  using equations (3.3.1) and (3.3.4): 

F:[y,G] = ( ~ J I ) - ~ ~  d3keix'Ylkl"F,?[k.~] 

(4.1.5) 

On the other hand, from equation (4.1.1), realizing G*[y ,  A] = 0 and using the spinor 
relation, we have 

By substituting the first term of the right hand side of equation (4.1.4) into the last equation, 
we have 
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x +(.i a ) ( s ) f r (W)   ai(^)). (4.1.6) 

Now, consider the line integral of A. Noticing that wy(x)  is a slowly varying function, 
we have 

A*(t)@(A(t) - y) 
K ' =  dtA'(t) , f lAc(t)w:'(A(t) - y)I' 

Since F,?[y, z] is already of order E ,  by assuming 07 is constant in space, we derive 

dtlAb(z)$(A(t) - y)I 

or 

where we have used the properties of the weave. By substituting K i  into equation (4.1.6) 
we obtain 

Comparing the last line with equation (4.1.S), we conclude that F:[y,S;I are determined 
entirely by the intersection part in G*[y, A&]. 

Next, we show that G*[y, A#@] are low-frequency constraint invariant. For simplicity 
of notation, we set 0 := A#a and define yS,+qr) := y + P(f) - y(s). By applying the 
differential operator given by equation (3.1.1) to G*[y, A h ] ,  we have 

( S b ( x ) G * )  [Y. 01 
d'zf,(~) (T b̂ [v,,s (I t ~l(s)G*) [Y, B1 
d32fr(2)-$ 1 fd tgb( t )S3(y3s)  + z ,  p ( t ) )  

x X ~ G * [ Y ,  B#(V,",~ +z)"l 
0 
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To derive the last line we realized that the difference between G*[y, p#y] and G*[y, p U y ]  
is simply the intersection part of ,!J and y ,  in the same way as we derived equation (4.1.4). 
Then 

(P(X)G*)  IY. B1 

Since the contribution from a is of order e2, we make an approximation ,9 = A h  c A, 
and obtain 

(3b(x)Gi) [ y ,  A#al 

a 
ax/ 

x @,+'(A@) - y)@-f,(A(t) - x) 
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Since this is a symmetric and traceless matrix, applying the constraint operators, we 
immediately find 

(cc(x)G*) [ y ,  A#al = -Ec& ( 9 " b x ) G " )  [y ,  A#al = 0 
(3x)G*) [y. AkxJ = -Sob ( F b ( x ) G * )  [y. A h ]  = 0. 

Therefore, G"[y. A h ]  are low-frequency constraint invariant states. The solution of the 
linearized constraints is given in the QCR state space by arbitrary hnctions of G * [ y ,  A#a]. 

For later convenience we compute here E*G* and ETG*. By Fourier transformation 
of equation (4.1.7), we have 

($'(k)G*) [ y .  A#a] = (21~)-~/' d3x e-'"' ( S b ( x ) G * )  [ y ,  A#al s 
= (2n ) -3 /21k ln+1ma(~k)mb(~k )e - ' k '~  e-r'ki/Z 

Therefore, we find 

(E* ( k )  &) [ y , A#a] = ~ ( 2 n ) - ~ / ~  Ik 
(E+(k)G*) [ y ,  A#al = 0. 

e-ik'Ye-r'P~* 

(4.1.8) 

4.2. The Poincart-invuriant vacuum state 

To determine the Poincare-invariant vacuum state, we have to solve equations (3.4.7). We 
claim that the solution is 

G [ x ,  A#a]G+[y, A#=] . (4.2.1) 1 d3xd'ye'k'(X-Y) + 

This can be verified by a straightforward calculation, using equations (4.1.8). 
Note that since G + [ y ,  A U a] does not have any physical meaning as explained in 

Sec 4.1, go is defined only for loops A#a (including A)  and undefined for A U a in this 
construction. Equation (4.2.1) is our first main result. *O is the state in the state space of 
the exact non-perturbative theory, that represents the physical vacuum, formed by virtual 
gravitons on Minkowski space. 

The quantities o,"(x) introduced in section 3.3 are defined up to the arbitrary phase of 
m,(k). As such they are. in a sense, unphysical. An important check for the consistency 
of this result is the independence of q~(A#or)  from the arbitrariness of w,+'(x). The proof 
of this independence follows. 

m,(k)  is determined up to a phase factor eiick), where h(k)  is a real scalar function of 
k such that A ( - k )  = -h(k) .  The last condition guarantees that &(k) = -ma(-k) .  First 
we show the dependence of G + [ y ,  A#a] on A ( k )  and then show that the Poincar6-invariant 
vacuum qo(A#a) does not depend on A@). Let us denote for a particular choice mio)(k) 

~ i t ) ( k )  := ( ~ r r ) - ~ / ~ ~ k i ' m ~ ~ ) ( k ) m $ ( k )  
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For another choice m.(k) := mLo)(k)eia(k), we denote 

lab(k) := ILi)(k)e21%(k) = (2n)-3/Z d3X e- ik -e21%(k)p )  J ob 

The Fourier transform of the last line is 

lob(y) = (b)-3/z / d3ke"'YI.b(k) 

= (2n)-3 1 d3xliE)(x) d3k eik'(Y-x)eZii(k) 

or shifting variable y by z and changing the integration variable x appropriately we find 

lob(y 4- 2 )  = (w3 /d3xl,(i1(x + 2) /d3ke'."-i1eziA('x). 

Multiplying operator k b ( z )  on both sides, we have 

/d3Zh(Y + Z)kb(Z) 

= (ZZ)-~ 1 d3x (1 d3&(x + z ) P b ( z )  d3ke""(J-x) eZii(? 1s 
After replacing 6~: involved in both sides by 02, transforming to operators in the exact 
theory and applying the resulting equation on a loop state ( A h l ,  we deduce the equality 
of eigenvalues that appear on both sides, namely 

This is the dependence of G + [ y ,  A#a] on A(k). 

a straightforward calculation of integrals with delta functions, and finally we find 
Next, let us compute the exponent of the Poinw6-invariant vacuum functional. This is 

This implies that the Poincar6-invariant vacuum functional does not depend on the arbitrary 
phase factor of m,(k). 

4.3. Graviton states 

Applying the annihilation and creation operators on the Poincark-invariant vacuum state, 
we have 

-(Zli)-'/' [(lkl'"$'(-k) + lk[-3'26+(-k)) Yo] ( A h )  = 0 

(Zl~)-'/21kl-3/* (6-(k)Yyo) ( A h )  = 0 

(U~)-1/21kl-3/2 (s+(k)Yo) ( A h )  = Yk+(A#a) 
(4.3.1) 

-(2l;)-'l2 [(lk1'/2f?-(-k) + [kl-3/z6-(-k)) Yo] ( A h )  = Yk-(A#a). 
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From these equations, the one-graviton states with positive and negative helicities are 

2 -1/2 1/2 '&+(A#a) = 425,) Ikl (g+(+k)*o) ( A k )  

Y!+(A#o1) = -(21;)-"21k['/2 (Z-(-k)'&) ( A h )  

or, using equations (3.4.3) and (4.1.2), 

(4.3.2) 

These graviton states are also undefined for loops A U a. 

5. The picture of the linearization of quantum gravity in the loop representation. 

We discuss here the overall picture of the linearization of the loop-space quantum general 
relativity. We choose a background weave state which approximates a flat-space metric. The 
notion of flatness of the background in the presence of quantum fluctuations is meaningful 
only if it is measured on a scale L > lP/e2 [4]. By using this metric, we define the 
orthogonal vectors U? (i = 1,2,3) described in Sec 3.3 and a smearing function f, 
with a scale r z I p / & ,  which is required by the Heisenberg indeterminacy relations (see 
[4]). The need of this smearing function in the formalism reflects the existence of the 
quantum fluctuations of order E around the background metric. The emergence of the 
smearing function from the weave state can be qualitatively understood in the following 
way. Consider an open surface on the 3-space. Given the weave state, we can determine the 
area of this surface in terms of the area operator [3], which is available at the unconstrained 
level to measure the geometry of loop states. If we consider only scales much larger than 
the Planck length, then a change in the perimeter of the surface produces a change in the 
area of the surface. However, if we want a sensitivity comparable to the Planck scale, 
then a Planck-scale change of the perimeter will not affect the area of the surface, which is 
the quantity that we can measure. Hence, there is an uncertainty in the information about 
the position of the perimeter that is of order of the Planck scale. This same uncertainty 
is present in the information of the position of any loop on the weave (the perimeter is a 
loop). It is this uncertainty that depends on the fixed background weave, and determines 
the smearing function and its scale r .  

Given the smearing function f?, we define the differential operator E O b ,  equation (3.1.1). 
the low-frequency vector and scalar constraint operators, equations (3.1.2) and (3.2.1). and 
the linear _map M ,  equation (2.4.2). Given the vectors fu?, we define the linear metric 
operators H*, equation (3.4.2), the annihilation and creation operators, equations (3.4.5) and 
(3.4.6), and the low-frequency constraint-invariant state functionals G*, equations (4.1.3). 
G* are non-zero around A over 'deviation' loops a. By utilizing the annihilation and 
creation operators, the Poincare-invariant vacuum and the graviton states, equations (4.2.1) 
and (4.3.2), are determined. 

All these operators and loop states are mapped to the corresponding ones in the linearized 
theory by the map M .  Since the latter operators and states describe free graviton physics, 
and since the map preserves the eigenvalues, it follows that all these operators and loop 
states describe graviton physics on a flat background geometry. 

A curious aspect of this construction is that only intersection points in G*[x ,  A#u] 
are essential for approximating the physical states F:[x, 21 in the linearized theory. This 
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fact suggests that information about graviton physics is coded into the intersections of 
loops, and to understand the actions of operators on the intersections of loops is crucial 
for understanding the physics. However, this is not related to the fact that G* are low- 
frequency constraint invariant. Rather, this is a consequence of symmetry of the operator 
r;"b(x). The reason is the following. 

3 Iwasnki and C Rovelli 

Given an arbitrary symmetric matrix (Sym)ob(k), we can define 

We also define three orthogonal vectors $ ; ( x )  (i = 1,2,3) such that 

From these two definitions we have 

and this leads to 

This operator creates 'physics' at intersections only, regardless of 8'. The low-frequency 
constraint invariance of G* is due to the tracelessness and transversality encoded into the 
specific functions 03, which are derived from the traceless and transverse component 
m,(k )mb(k)  (and its complex conjugate). Because of that, F,? solve the linearized 
constraints. 

We close with a speculative remark. ma@) and the Fourier transformations are defined 
and meaningful only on the flat space and distance scales compared with the Planck length, 
and so are 03. If we had an extension of OF, which can he defined by rhe weave, 
withour background metrics, and which would approximate OF at large scales, then this 
extension could provide an insight for understanding the emergence of the single spin- 
2 particle representation from the triplet of spin-l particle representation due to the vector 
and scalar constraints (see [2]). By replacing U: by background-independent quantities that 
at large scales approximate their definition based on m,(k) on the flat space, but such that 
at the Planck scale, G' become exact-constraint-invarian~ we would find expressions for 
the Poincar6-invariant vacuum and the graviton states, which are exact-constraint-invariant. 
In other words, we would have the exact constraint-invariant states which allow physical 
interpretation in terms of gravitons. Work is in progress along these lines. 
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