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By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described
by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate
the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic
characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated
with the instability criterion. The results show a strong relationship between yield stress and crystal sheet
chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation
nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation
nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way
to explain the dislocation nucleation phenomenon.

PACS: 62. 25.Mn, 61. 46.Np DOI: 10.1088/0256-307X/27/1/016201

The development of structure in the nanometer
scale is being intensively attempted with the advent of
the microscopic process technology. Experiments can
not be easily carried out to explore nano-scale struc-
ture mechanical properties, therefore the microscopic
process simulation technology (MPST) is gradually fo-
cused on and studied by Liu et al.,[1,2] Liu et al.[3,4]

and Miller et al.[5] Their results indicate that mechan-
ical deformation is the forming process of material in-
ternal defects, which is the typical dislocation. It is
also a complicated problem to ascertain what makes
the dislocation nucleation and dislocation expansion.
Many researchers have thrown their research interests
on these problems and many meaningful simulations
have been carried out for homogeneous nucleation and
inhomogeneous nucleation problems. Dislocation nu-
cleation at defect, such as grain boundary, has been
studied by Liu et al.[1,2] Experimental work have re-
vealed that dislocations are unstable, and dislocations
can nucleate internal or on boundary for sub-micro
crystal pillar under compression.

On homogeneous dislocation nucleation, Liu et
al.[6] extended material instability down to the atomic
scale. Li et al.[7] introduced the instability criterion
to predict the nano-indentation-induced dislocation
nucleation problem. In the framework of Acharya
dislocation field theory, Miller et al.[8] presented a
stress-gradient-based criterion which could predict the
dislocation nucleation site of nano-indentation prob-
lem. On inhomogeneous dislocation nucleation, Kita-
mura et al.[9] presented the sufficiency of using con-
tinuum instability criterion to study the inhomoge-
neous atomic system dislocation nucleation. The de-
formation description of noncentrosymmetric crystal
has been proposed by Zhang et al.,[10] however few re-

search works on dislocation nucleation problem, based
on homogeneous and continuum assumption, have
been studied.

In continuum level, the typical representative cell
deformation description of crystal is based on the
Cauchy–Born rule, A homogeneous deformed crystal
on the typical cell level may undergo inhomogeneous
deformation inside the cell. In order to introduce
the Cauchy–Born rule to describe its deformation, the
crystal sheet can be decomposed into two sub-lattices
marked by A and B, as shown in Fig. 1. Every sub-
lattice, which possesses centrosymmetry, has a trian-
gular lattice structure. The method is called the re-
vised Cauchy–Born rule. Here we give the definition
of crystal sheet orientation angle 𝜃, which is shown in
Fig. 1. Thus the strain energy function method can
be easily used to give an approximation, based on the
Cauchy–Born rule or the revised Cauchy–Born rule.
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Fig. 1. A schematic diagram of the atomic sheet hexago-
nal structure.

The obtained method of P-K2 stress and deforma-
tion description of atomic bond length are outlined.
Let 𝐸 denote Green strain tensor on the continuum
level, 𝑟0𝑖𝑗 be the un-stretched bond length and 𝑛0

𝑖𝑗

be the unit vector in the initial bond orientation for
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atoms 𝑖 and 𝑗 at the state of equilibrium, 𝑟𝑖𝑗 and 𝑛𝑖𝑗

be the stretched bond length and unit vector in the de-
formed configuration, respectively. Let 𝐹 denote the
uniform deformation gradient on the continuum level
at an arbitrary point 𝑖 in the sub-lattice A. Besides be-
ing subjected to the same deformation gradient 𝐹 , the
sub-lattice B may also undergo a rigid body transla-
tion with respect to the sub-lattice A, which is denoted
by 𝜉. The corresponding movements of sub-lattice A
and B are written as

𝑟𝑖𝑗 = 𝐹 · 𝑟0𝑖𝑗 , 𝑟𝑖𝑗 = 𝐹 · (𝑟0𝑖𝑗 + 𝜉). (1)

After the deformation, the stretched length of bond
𝑖− 𝑗 becomes

𝑟2𝑖𝑗 = 𝑟1 · 𝑟1 = (𝑟0 + 𝜉) · 𝐹 𝑇 · 𝐹 · (𝑟0 + 𝜉),

𝑟𝑖𝑗 =
√
𝑟1 · 𝑟1 =

√︀
(𝑟0 + 𝜉) · (2𝐸 + 𝐼) · (𝑟0 + 𝜉). (2)

For convenience, the partial derivatives of atomic bond
length over Green deformation tensor 𝐸 are given by

𝜕𝑟𝑖𝑗
𝜕𝐸

=
1

𝑟𝑖𝑗

(︀
𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖) ⊗ (𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖),

𝜕𝑟𝑖𝑗
𝜕𝜉𝑖

=
1

𝑟𝑖𝑗
(𝐼 + 2𝐸) · (𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖)

=
1

𝑟𝑖𝑗

(︀
(𝐼 + 2𝐸)𝑟0𝑖𝑗𝑛

0
𝑖𝑗 +

(︀
𝐼 + 2𝐸)𝜉𝑖

)︀
,

𝜕2𝑟𝑖𝑗
𝜕𝐸2

= − 1

𝑟3𝑖𝑗

(︀
𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖

)︀
⊗
(︀
𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖
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⊗
(︀
𝑟0𝑖𝑗𝑛

0
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)︀
⊗
(︀
𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + 𝜉𝑖

)︀
, (3)

where ⊗ denotes the dyad. For hexagonal crystal,
a representative cell, surrounding every atom in the
sub-lattice A, includes only three neighbor atoms in
the sub-lattice B. In addition, the strain energy den-
sity function 𝑊 of a typical cell becomes

𝑊 =
1

Ω0

1

2

3∑︁
𝑗=1

𝑉 (𝑟𝑖𝑗), (4)

where Ω0 is the 2D cell area in the initial configura-
tion. For a given deformation gradient 𝐹 (or equiv-
alent Green strain 𝐸), the vector 𝜉, related to the
rigid body translation between sub-lattices A and B,
is determined by minimizing 𝑊 with respect to 𝜉,

𝜕𝑊

𝜕𝜉
= 0. (5)

Substituting Eqs. (3) and (4) into Eq. (5) yields∑︁
1≤𝑗≤3

[︂
𝜕𝑊

𝜕𝑟𝑖𝑗

1

𝑟𝑖𝑗

(︀
(𝐼 + 2𝐸)𝑟0𝑖𝑗𝑛

0
𝑖𝑗 + (𝐼 + 2𝐸)𝜉𝑖

)︀]︂
= 0.

(6)
From Eq. (6) the internal freedom 𝜉 can be deter-
mined. The P-K2 stress can also be obtained through
the derivative of strain energy density function 𝑊 over

Green strain 𝐸. By Eqs. (3) and (5), the P-K2 stress
can be written as

𝑆 =
𝑑𝑊

𝑑𝐸
=

1

Ω0

{︃
3∑︁
𝑖

[︂
1

2

𝜕𝑉

𝜕𝑟

]︂
(𝑟 + 𝜉) ⊗ (𝑟 + 𝜉)

|𝑟|

}︃
.

(7)
Until now, it is indicated that a deformation gradi-
ent is loaded on a crystal sheet, consequently strain
energy density function can be obtained through the
bond potential energy changing.

To analyze the unstable state criterion, it is con-
sidered that an atomic system consists of 𝑁 atoms at
equilibrium state. For a given deformation gradient,
the Helmholtz free energy 𝐻 of the atomic system can
be written as functions of every atom position coordi-
nate vector and the Green strain,.[18]

𝐻 = 𝐻(𝑋,𝐸), (8)

where 𝑋 is the state of current configuration. In fact,
Eq. (8) is a general expression of the Helmholtz free
energy. For an infinitesimal change of 𝐻, it can be
written as

∆𝐻 = 𝐻(𝑋,𝐸) −𝐻(0, 0). (9)

Equation (9) can be always extended into Tayler
series, and the form over three orders does not
considered,[9]

∆𝐻 = 𝑉 (𝑋)

[︂
𝑆 : 𝐸 +

1

2
𝐸 : 𝐿 : 𝐸

]︂
. (10)

In Eq. (10) P-K2 stress 𝑆 is work-conjugated to Green
strain 𝐸. 𝐿 is a four-order elastic stiffness tensor.
𝑉 is a typical cell volume for 3D (or area for 2D)
change from initial configuration to current configura-
tion. The total energy consists of the Helmholtz free
energy 𝐻 and the work done by the external loading
𝑊0. Thus the total energy can be written as

𝐺 = 𝐻 −𝑊0. (11)

It should be pointed out that we only consider the sys-
tem under the static external loading. Taylor’s series
expansion of the total energy 𝐺 in terms of infinitesi-
mal change is

∆𝐺 = ∆𝐻 − ∆𝑊, (12)

the partial derivative of 𝐺 over 𝐸 can be expressed as

𝜕𝐺

𝜕𝐸
= 𝑔(𝑋), 𝑔(𝑋) =

𝜕𝐻

𝜕𝐸
− 𝑉 (𝑋)𝑆. (13)

For the arbitrary equilibrium state, 𝑔(𝑋) is equal to
zero. For non-equilibrium state, 𝑔(𝑋) can be written
in the form

𝑔(𝑋) = 𝑉 (𝑋)𝐵 : 𝐸, (14)

𝐵𝑖𝑗𝑘𝑙 = 𝐿𝑖𝑗𝑘𝑙 −
𝜕𝑆

𝜕𝐸
. (15)
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From Eqs. (14) and (13), the infinitesimal change of
the total energy can be written as

∆𝐺 = 𝑔(𝑋) : ∆𝐸 + 𝑉 (𝑋)∆𝐸 : 𝐵 : ∆𝐸

= (𝑉 (𝑋)𝐵 : 𝐸 + 𝑉 (𝑋)∆𝐸 : 𝐵) : ∆𝐸. (16)

For any given deformation field, infinitesimal defor-
mation always makes the total energy decrease. The
crystal sheet will lose its stability if there is a state
∆𝐺 = 0 for any given infinitesimal deformation. This
means that the crystal sheet can endure deformation
without total energy increasing, meanwhile disorder
atoms exist and dislocation nucleation occurs in the
crystal sheet. Thus we can make the state ∆𝐺 = 0 as
stability criterion, which can be rewritten as

Λ = det(𝐴) = 0, 𝐴 = (𝐵𝑇 + 𝐵)/2. (17)

Here we consider that in all deformation forms,[18] 𝐵
is a four order tensor, and 𝐴, which satisfies the Voigt
symmetry, is the symmetric form of 𝐵. From Eq. (17),
we can investigate the positive definition of 𝐴. Fur-
thermore, if there is an field Λ ≤ 0, we can consider
that dislocations begin to nucleate in the field.

Give deformation 

gradient F 

Compute the atom 

bond length  Rij

Compute the strain 

energy W

Compute Λ (the  

determination of A)

Compute the internal 

freedom ξ

Λ is positive

Λ is negtive

Increase next time increment

Given boundary condition and load cases

Every time increment Dt 

Every time 

increment 

in 

ABAQUS

VUMAT

Fig. 2. Computation simulation procedure.

The simulation procedure is illustrated in Fig. 2.
In every time increment, there is a loading increment
input in ABAQUS/Explicit. The corresponding strain
increment can be obtained by the constitutive rela-
tion coded in user subroutine VUMAT, which is il-
lustrated in Fig. 2. To obtain the internal freedom
in every time increment, Newton iteration method
is employed into solving procedure. The simulation
model is a quadratic crystal sheet with a unite edge

length. It is uniformly divided by 100 elements. L–J
potential,[11] which is shown in Eq. (18), is adapted in
the simulation.

𝑉 (𝑟) = 4𝜀

[︂(︁𝜎
𝑟

)︁12

−
(︁𝜎
𝑟

)︁6
]︂
, (18)

where 𝜎 and 𝜀 are chosen as unit one respectively.
Atomic bond length is 1.122𝜎 at the state of equilib-
rium between two atoms. Every typical representative
cell is composed of three atoms by Zhang.[10] A atomic
bond in the cell is along with the +𝑥 axial direction.
The initial atomic bond direction is rotated anticlock-
wise from 0∘ to 30∘, which is one fourth of a periodic-
ity for hexagonal crystal. The response of a 2D plane
crystal sheet under uniaxial tension is studied. Mean-
while, the strain-stress curves and the strain-stability
factor Λ curves are shown in one map. The stress am-
plitude of dislocation nucleation can be determined
by the strain-criterion curve from Fig. 3. In Fig. 3,
we can observe that the stress amplitude increases as
the loading strain increases, and Λ decreases as the
loading strain increases. Investigating the distribu-
tion contours of Λ, it is implied that the dislocation
nucleation point and domain, as shown in Fig. 4 and
Fig. 5, respectively.
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Fig. 3. Stress-strain curves and the strain- criterion Λ
curves.
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Fig. 4. Dislocation nucleation criterion contour with the
crystal sheet 0∘.

To observe the internal dislocation state, MD sim-
ulation is given for the hexagonal crystal under ten-
sion. In the simulation, Tersoff carbon potential[12]

is adopted. The simulation temperature is 1 K, model
size is 12.5×10.65×3.35 nm3 and the period boundary
condition is given along the +𝑍 and −𝑍 directions.
The tension is along the +𝑋 and −𝑋 directions. In
the simulation, the stable configuration is obtained
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by total energy minimization using conjugate gradient
method before loading. The total strain is 0.02 and
the strain rate is in the order of 5 × 108 s−1, which
is typically used for MD tension simulation. When
dislocation nucleation occurs, the atom configuration
is plotted in Fig. 6 and the disorder atoms are circled
in white line. Potential evolution of the atomic sys-
tem with the loading time is also plotted in Fig. 6. It
is inferred that there are disorder atoms in the model
with the appearance of potential curve jumping, which
means that we can judge the disorder atoms appear-
ance through the atomic system potential curve.
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Fig. 5. Dislocation nucleation criterion contour with the
crystal sheet 6∘.
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Fig. 6. MD simulation internal microstructure of hexag-
onal crystal und tension.

Recently, the anisotropy of graphitic sheet and
CNT under tension is focused by Chang et al.[13] and
Goze et al[14] Their results illustrate that Young’s
modulus for armchair tube is slightly larger than that
for zigzag tube for a given tube diameter. In the study,
four different crystal sheets are given, which are ro-
tated typically at four different angles from 0∘ to 60∘,
that is, 0∘, 6∘, 12∘ and 30∘. From Fig. 7, it is in-
ferred that the dislocation nucleation stress increases
as the atom sheet direction increase. The 0∘ crys-
tal sheet in this study is armchair form sheet and the
30∘ crystal sheet is zigzag form sheet. The dislocation

nucleation stress in the 0∘ crystal sheet is less than
that in the 30∘ crystal sheet, which is also concluded
by Chang et al.[13] Using the present method, we can
easily obtain the dislocation nucleation stress by com-
paring the strain-stress curves and the strain-criterion
curves. Dislocation nucleation stress of any direction
crystal sheet can be obtained easily. From Fig. 7, we
can clearly observe the periodicity of dislocation nucle-
ation stress. The dislocation nucleation stresses of the
0∘ and 30∘ crystal sheets are on the bottom point and
peak point of the curves, respectively. The small am-
plitude difference means that the zigzag crystal sheet
dislocation nucleation stress is slightly greater than
the one of armchair crystal sheet.

Fig. 7. Dislocation nucleation stress vs the angle change
from 0∘ to 60∘.

In summary, we have combined the continuum
atomic potential method and the instability criterion
to study the inhomogeneous dislocation nucleation of
crystal sheet structure. By investigating the Λ cri-
terion, we present the onset of dislocation nucleation
and the criterion distribution map. The results show
that the dislocation nucleation stress is related to the
crystal sheet orientation angle. It should be noted
that this study is based on the revised Cauchy–Born
rule, considering only one internal freedom.
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