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Abstract An improved homogeneous balance principle and an F-expansion technique are used to construct exact

self-similar solutions to the cubic-quintic nonlinear Schrödinger equation. Such solutions exist under certain conditions,

and impose constraints on the functions describing dispersion, nonlinearity, and the external potential. Some simple

self-similar waves are presented.
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1 Introduction

The cubic-quintic nonlinear Schrödinger equation

(CQNLSE) with nonlinearity management presents prac-

tical interest since it appears in many branches of physics

such as nonlinear optics, nuclear physics, and Bose–

Einstein condensate (BEC). In nonlinear optics it de-

scribes the propagation of pulses in double-doped op-

tics fibers.[1] Efimov resonances, which are responsible for

three-body interactions, have been observed in an ultra-

cold gas of cesium atoms.[2] In BEC it models the con-

densate with two and three body interactions.[3−4] In op-

tical fibers periodic variation of the nonlinearity can be

achieved by varying the type of dopants along the fiber.

In BEC the variation of the atomic scattering length by

the Feshbach resonance technique leads to the oscillations

of the mean field cubic nonlinearity.[5] The CQNLSE when

the cubic term is equal to zero, is the critical quintic

NLSE. The quintic Townes soliton is an unstable solution

of the quintic NLSE.[6]

Self-similarity has been intensively explored in many

areas of physics such as hydrodynamics and quantum field

theory.[7] Also in nonlinear optics, there has been a sig-

nificant surge of research activities on self-similarity. As

examples, the self-similar behaviors in stimulated Raman

scattering,[8] the evolution of self-written wave-guides,[9]

the formation of Cantor set fractals in materials that

support spatial solitons,[10] the evolution of optical wave

collapse,[11] and the nonlinear propagation of parabolic

pulses in optical fibers with normal dispersion[12] were

investigated. Recent attention has been riveted on the

self-similar propagation of parabolic optical pulses in an

optical fiber amplifier,[13] a dispersion-decreasing optical

fiber,[14] and a laser resonator,[15] opening prospects for

studying the self-similar phenomena in dispersion and

nonlinearity management systems.

In nonlinear science, the construction of exact

solutions for nonlinear partial differential equations

(NLPDEs) is one of the most important and essential

tasks. With the help of exact solutions, the phenom-

ena modelled by these NLPDEs such as the stability of

optical soliton propagation can be well understood. In

recent years, many powerful methods to construct exact

analytical solutions have been proposed, such as the in-

verse scattering method, the Bäcklund transformation and

Darboux transformation, the Painlevé truncation expan-

sion, the homogeneous balance method, the sine-cosine

function method, the tanh-function method, and the Ja-

cobian elliptic function method.[16−24] Very recently, an

F -expansion technique has been developed to obtain the

new exact self-similar solutions.[25−26]

In this paper we present the exact self-similar solutions

to the nonlinear Schrödinger equation with an external po-

tential, which describes the propagation of pulses in the

optic fibers where all parameters are functions of the time

variable. This class also encloses the set of solitary wave

solutions which describes, for example, such physically im-

portant applications as the amplification and compression

of pulses in optical fiber amplifiers.[27] The importance of

the results reported here is twofold: first, the approach

leads to a broad class of exact solutions to the nonlin-
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ear differential equation in a systematic way. Some of

these solutions have been obtained serendipitously in the

past, but we emphasize the importance of the use of self-

similarity techniques, which are broadly application for

finding solutions to a range of nonlinear partial differen-

tial equations, having applications in a variety of other

physical situations. These equations are not integrable by

the inverse scattering method, and, therefore, they do not

have soliton solutions;[27] however, they do have solitary

wave solutions, which have often been called solitons. The

second and more specific significance of these results lies

in their potential application to the design of fiber optic

amplifiers, optical pulse compressors, and solitary wave

based communications links.

2 Exact Self-Similar Solutions of Variable Co-

efficient Cubic-Quintic Nonlinear Schrö-

dinger Equation with an External Potential

The variable coefficient cubic-quintic nonlinear Schrö-

dinger equation with an external potential can be written

as

iψt + β(t)ψzz + γ(t)|ψ|2ψ + α(t)|ψ|4ψ = iV (t)ψ , (1)

where ψ(z, t) is the complex envelope of the electrical field

in a comoving frame, V (t) is an external potential, β(t)

is the second dispersive effects, γ(t) is the nonlinearity

parameter and α(t) is the saturation of the nonlinear re-

fractive index (i.e. higher-order nonlinearity). They are

real functions of the normalized propagation distance z,

and t is the retarded time.

In order to make Eq. (1) an ordinary differential equa-

tion, we take the following transformation:

ψ(z, t) = u(z, t) exp(iv(z, t)) , (2)

where u(z, t) and v(z, t) are real functions. Substituting

ψ(z, t) into Eq. (1), we find the following coupled equa-

tions for the phase v(z, t) and u(z, t):

ut + 2βuzvz + βuvzz − uV = 0 , (3)

uzz + βuv2
z − γu3 − αu5 = 0 . (4)

For the sake of simplicity, we take u(z, t) =
√

w(z, t). It

follows from Eqs. (3) and (4).

wt + 2βwzvz + 2βwvzz − 2wV = 0 , (5)

4w2vt +βw2
z − 2βwwzz − 4γw3 − 4αw4 +4βw2v2

z = 0 .(6)

According to the balance principle and F -expansion

technique. The main idea of the algorithm is: for a gen-

eral nonlinear physical system

P (v) ≡ P (x0 = t, x1, x2, . . . , xn, v, vxixj , . . .) , (7)

where

v = v(v1, v2, . . . , vq)
T ,

P (v) = (P1(v), P2(v), . . . , Pq(v))
T ,

Pi(v) are polynomials of vi and their derivatives (T indi-

cates the transposition of a matrix). We assume its solu-

tion in an extended symmetric form

vi =

N
∑

j=−N

αij(x)F
j(θ(x)) , x ≡ (t, x1, x2, . . . , xn) ,

i = 1, 2, . . . , q , (8)

where αij(x), θ(x) are arbitrary functions to be deter-

mined, F is a solution of the JEFs function. N is deter-

mined by balancing the highest nonlinear terms and the

highest-order partial terms in the given nonlinear system.

Substituting the ansatz in Eq. (8) together with the

JEFs function into Eq. (7), collecting coefficients of poly-

nomials of F , then setting each coefficient to zero, yields a

set of partial differential equations concerning αij(x) and

θ(x). Solving the system of partial differential equations

to obtain αij(x) and θ(x) substituting the derived results

and the solutions of JEFs function into Eq. (8), one can

derive exact solutions to the given nonlinear system.

According to the above idea and by the balancing pro-

cedure, the ansatz in Eq. (8) becomes

w(z, t) = f0(t) + f1(t)F (θ) + f2(t)F (θ)−1 , (9)

θ = n(t)z + k(t) , (10)

v(z, t) = a(t)z2 + b(t)z + e(t) , (11)

where f0, f1, f2, n, k, a, b, and e are the parameters

to be determined. The parameter a(z) is related to the

wave front curvature; it is also a measure of the phase

chirp imposed on the solitary wave. The function F (θ) is

one of JEFs, which in general satisfy the following gen-

eral first- and second-order nonlinear ordinary differential

equations:
(dF

dθ

)2

= c0 + c2F
2 + c4F

4 , (12)

d2F

dθ2
= c2F + 2c4F

3 , (13)

where c0, c2, and c4 are real constants related to the el-

liptic modulus of the JEFs (see Table 1). Substituting

Eqs. (9), (10), and (11) into Eqs. 5) and (6), and requir-

ing that zqF l (q = 0, 1, 2; l = 0, 1, 2, 3, 4, 5, 6, 7, 8), and√
c0 + c2F 2 + c4F 4 of each term be separately equal to

zero, we obtain a system of algebraic or first-order ordi-

nary differential equations for fp, n, k, a, b, and e:

dfp

dt
+ (4βa− 2V )fp = 0 , (14)

fj

(dk

dt
+ 2βnb

)

= 0 , (15)

fj

(dn

dt
+ 4βna

)

= 0 , (16)

da

dt
+ 4βa2 = 0 , (17)
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db

dt
+ 4βab = 0 , (18)

βn2f0c0 + 4αf0f
2
2 + γf2

2 = 0 , (19)

βn2f0c4 + 4αf0f
2
1 + γf2

1 = 0 , (20)

4αf2
1 + 3βn2c4 = 0 , (21)

4αf2
2 + 3βn2c0 = 0 , (22)

4f1
de

dt
− βf1n

2c2 − 6βn2f2c4 + 4βf1b
2

− 12γf0f1 − 16αf2
1f2 − 24αf2

0f1 = 0 , (23)

4f2
de

dt
− βf2n

2c2 − 6βn2f1c0 + 4βf2b
2

− 12γf0f2 − 16αf2
1f2 − 24αf2

0 f2 = 0 , (24)

4f0
de

dt
− βf0n

2c2 − 6γf1f2 + 4βf0b
2

− 6γf2
0 − 8αf3

0 − 24αf0f1f2 = 0 , (25)

where p = 0, 1, 2 and j = 1, 2. By solving self-consistently,

one can obtain a set of conditions on the coefficients and

parameters, necessary for Eq. (1) to have exact periodic

wave solutions.

Table 1 Jacobi elliptic functions.

Solution c0 c2 c4 F M = 0 M = 1

1 1 −(1 + M2) M2 sn sin tanh

2 1 − M2 2M2 − 1 −M2 cn cos sech

3 M
2 − 1 2 − M

2 −1 dn 1 sech

4 M2 −(1 + M2) 1 ns cosec coth

5 −M2 2M2 − 1 1 − M2 nc sec cosh

6 −1 2 − M
2

M
2 − 1 nd 1 cosh

7 1 2 − M2 1 − M2 sc tan sinh

8 1 − M
2 2 − M

2 1 cs cot cosech

9 1 −(1 + M2) M2 cd cos 1

10 M2 −1 + M2 1 dc sec 1

We consider the most generic case, in which f1 and

f2 are assumed nonzero and β and V are arbitrary. The

following set of exact solutions is found:

f0 = 2
(c0
c4

)1/4

f1 , f1 = f10δ exp
(

2

∫ t

0

V dt
)

,

f2 =

√

c0
c4
f1 , (26)

a = a0δ , b = b0δ , (27)

n = n0δ , k = k0 − 2n0b0δ

∫ t

0

βdt , (28)

e = e0 −
α

4
(4b20 − c2n

2
0 − 18n2

0

√
c0c4)

∫ t

0

βdt , (29)

γ =
4c4(c0/c4)

1/4n2
0βδ

f10 exp (2
∫ t

0
V dt)

, α = − 3βn2
0c4

4f10 exp (4
∫ t

0
V dt)

, (30)

where δ = (1 + 4a0

∫ t

0
βdt)−1 is the chirp function. It is

related to the wave front curvature and presents a mea-

sure the phase chirp imposed on the wave. the subscript

0 denotes the value of the given function at z = 0.

Incorporating these solutions back into Eq. (2) we ob-

tain the general periodic travelling wave solutions to the

generalized CQNLSE:

ψ =
{

f10δ exp
(

2

∫ t

0

V dt
)

×
[

2
(c0
c4

)1/4

+ F (θ) +

√

c0
c4
F−1(θ)

]}1/2

× exp [i(az2 + bz + e)] , (31)

where θ = nz + k. Apart from the solutions given in

Eqs. (26)–(29).

3 Wave Self-Similar Propagation — Few

Simple Examples

In this part, as few characteristic examples of the so-

lution (31), when c0 = M2−1, c2 = 2−M2, and c4 = −1,

rewrite Eq. (31) in a simple form, namely

A ≡ |ψ|2 = f2
10δ exp

(

2

∫ t

0

V dt
)

×
[

− 2(1 −M2)1/4 + dn(θ) +

√
1 −M2

dn(θ)

]

, (32)

we present some of the periodic waves and propagating

self-similarly soliton solutions, taking the dispersion coef-

ficient β to be of the form β = β0 cos kbz and the external

potential V = V0 cos t/2(1 + V0 sin t). This choice leads to

alternating regions of positive and negative values of both

α and γ, which is required for an eventual stability of lo-

calized wave solutions. The wave shape remains stable for

subsequent times as the running program for a rather long

time (t = 106). If β and V are considered to be β = cos z

and V = 0 (V0 = 0), then, in Fig. 1 we depict periodic

wave solutions expressed by Eq. (32). If β and V are con-

sidered to be β = cos z and V0 = 0.5, then, in Fig. 2 we

show periodic wave solutions expressed by Eq. (32).
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Fig. 1 Periodic travelling wave solutions, as functions of the propagation time. (a) Shows the intensity A ≡ |ψ|2

of solutions expressed by Eq. (32). Coefficients and parameters: β(z) = cos z, V0 = 0, a0 = 0.01, f10 = 1, k0 = 0,
n0 = 0, β0 = 1, kb = 1, and b0 = 1. (a) M = 0.8; (b) M → 1.

Fig. 2 Travelling solitary wave solutions, as functions of the propagation time. Intensity A ≡ |ψ|2 of solution
expressed by Eq. (32). Coefficients and parameters: β(z) = cos z, V0 = 0, 5, M = 1, a0 = 0.01, f10 = 1, k0 = 0,
n0 = 0, β0 = 1, kb = 1, and b0 = 1. (a) M = 0.8; (b) M → 1.

From these characteristic examples listed here, one can find that the optical wave types, wave scalings, and their

propagating behaviors are artificially controlled via prescribing appropriate system coefficients and parameters, which

suggest many potential applications in areas such as optical fiber amplifiers, optical fiber compressors, nonlinear optical

switches, and optical communications.

4 Summary and Conclusion

In summary, an improved homogeneous balance principle and an F -expansion technique are applied to the variable

coefficient cubic-quintic nonlinear Schrödinger equation with an external potential. Abundant exact self-similar periodic

wave solutions are obtained. In some limited cases, different types of soliton solutions are found. A simple and valid

procedure is presented for control behavior of solitons, in which one may select the dispersion and the external potential,

to control propagation behavior of solitons. The present solution method provides a reliable technique that is more

transparent and less tedious than the Jacobi elliptic function ansatz, or other expansion and variational methods. The

technique is also applicable to other multidimensional nonlinear partial differential equation systems.
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