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Abstract It is known that quantum computer is more powerful than classical computer. In this paper we present
quantum algorithms for some famous NP problems in graph theory and combination theory, these quantum algorithms
are at least quadratically faster than the classical ones.
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1 Introduction
The basic conceptions of the quantum computer were

first presented by Feynman.[1] Since Shor gave the famous
quantum algorithm for the factoring problem in 1994,[2]

the study of quantum algorithm becomes very hot. In
the classical computation theory, the study of the algo-
rithms for the NP-complete (NPC) problem is one im-
portant theme. At present, Shor’s factorization algorithm
is polynomial. But the nature of the factorization prob-
lem, whether NPC or not, is not yet clear. It is some-
times called NP intermediate (NPI). On the other hand,
Feynman’s anticipation that quantum computer is pow-
erful in simulating quantum system is confirmed. Re-
cently, it has been found that quantum computer can solve
quantum chaos and localization problems with exponen-
tial gain compared with classical algorithms.[3] The SAT
problem is the first discovered NP-complete problem, all
other NP problems can be converted to the SAT problem
in polynomial time in a Turing machine. If we find an
efficient quantum algorithm for the SAT problem, then
all NP problems can be solved by the quantum computer
efficiently. Masanori and Masuda[4] discussed a quantum
algorithm for the SAT problem. The algorithm can solve
the problem in polynomial steps. However the algorithm
depends on a stringent assumption that the state of a
qubit can be physically distinguishable. This assumption
is very difficult to be realized because when the qubit is in
a superposition, the distinguishability of the state is very
difficult. Nevertheless this assumption can be dropped by
using a quantum search algorithm[5] so that the ampli-
tudes of the desired state can be amplified, and this has
been done for the Hamiltonian circuit problem.[6] Though
it is not exponentially faster than classical algorithm, it is

still faster than classical computers. Such the algorithms
are still a significant improvement. The wide ranges of
such the problems make them important. In this paper we
will give quantum algorithms for some famous NP prob-
lems.

2 The SAT and Some NP Problems
Let us briefly review the SAT problem and other NP

problems. Let X ≡ {x1, x2, . . . , xn} be a set. xk and its
negation x̄k (k = 1, 2, . . . , n) are called literals. Let X ′

denote the set {x1, x̄1, . . . , xn, x̄n}. The power set of X ′

is 2X′
and a subset C of 2X′

is called a clause. A truth
assignment of X is a function t : X → {1, 0}, where 1
denotes “true” and 0 denotes “false”. A truth assignment
t of X makes a clause C satisfiable iff at least one literal
of C is true under t.

C is satisfiable iff t(C) = 1, and the truth value of
C is written as t(C) ≡

∨
x∈C t(x). Moreover the set C ′

of clauses Cj (j = 1, 2, . . . ,m) is called satisfiable iff the
meet of all truth values of Cj is 1, that is to say

t(C ′) ≡
m∧

j=1

Cj = 1 .

We can write the SAT problem as follows.
Given now a set X = {x1, . . . , xn} and a set C ′ =

{C1, . . . , Cm} of clauses, determine whether there exists a
truth assignment to make C ′ satisfiable.

The details of the quantum algorithm for the SAT
problem can be found in Ref. [4], the essence of the SAT
problem is to determine whether the following Boolean
logical expression can be satisfied by a truth assignment,

∧m
j=1(∨x∈Cj

x) . (1)
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When we design a quantum algorithm for some NP
problems, a natural idea is to determine the satisfiability
of an expression similar to Eq. (1). We will discuss the
quantum algorithms for the following NP problems in the
graph theory and combination theory:

1) The minimum vertex covering problem (VC);
2) The minimum edge covering problem (EC);
3) The hitting set problem (HS);
4) The independent set problem (IND);
5) The clique problem;
6) The set packing problem;
7) The set covering problem (SC);
8) The triplet exactly covering problem (3XC);
9) The 3-dimension matching problem (3DM);

Their quantum algorithms are similar, all can be con-
structed by exploiting the SAT algorithm and Grover’s
searching algorithm. So we will just discuss the algorithm
for the VC in details and others briefly.

3 Quantum Algorithms for Some NP
Problems

3.1 The Minimum Vertex Covering Problem

Let G = (V,E) be a simple graph, V is the vertex set
and E is the edge set. If there exists a vertex subset C
which satisfies C ⊆ V and that if for every edge e = (u, v)
of graph G we have {u, v}∩C 6= ø, where u, v are the two
vertex of edge e, then C is called a vertex covering set of
G. That means at least one vertex of each edge of the
graph G is in set C. The VC problem is stated as follows.
Given a graph G = (V,E) and a positive integer k ≤ |V |,
whether G has a vertex covering set C such that |C| ≤ k?

The quantum algorithm is as follows. Let n = |V |,m =
|E|, so there are n vertexes and m edges. Define n “ver-
tex” Boolean variables X = {x1, x2, . . . , xn}, correspond-
ing to the n vertexes of the graph G, so X can be viewed
as denoting the vertex set V of G. And then for each
edge of G, we define an “edge” clause Ci = {xi1 , xi2}, i =
1, 2, . . . ,m, where xi1 and xi2 denote the two vertexes of
the edge Ci. Let C ′ = {C1, C2, . . . , Cm}. We can con-
sider the vertex covering set C as a truth assignment on
X. We set that if xi ∈ C, then t(xi) = 1. The truth
value of clause Ci is t(xi1) ∨ t(xi2). So whether G has a
vertex covering set C is equivalent to whether there exists
a truth assignment on X which makes

t(C ′) = ∧m
i=1t(Ci) = ∧m

i=1(t(xi1) ∨ t(xi2)) = 1 ,

which is a special case of the SAT problem. Certainly, C
must satisfy |C| ≤ k.

According to the above analysis, we are able to design
the quantum algorithm. We need a quantum computer
with n+ h+ l + 1 qubits, where the first n qubits denote
n vertex Boolean variables, the second h qubits are used

for counting, the next l qubits are dust qubits which are
necessary by exploiting the SAT algorithms, the last one
qubit is used to output the result.

1) Initially we set all qubits on 0. Performing the
Hadamard transformation on the first n qubits, we get

|ψ〉 =
1√
2n

1∑
x1,x2,...,xn=0

⊗n
i=1|xi〉 ⊗h+l |0〉 ⊗ |0〉

=
1√
2n

2n−1∑
x=0

|x〉 ⊗h+l |0〉 ⊗ |0〉 . (2)

Thus all possible truth assignments appear in the first n
qubits in the superposition.

2) We request that |C| ≤ k, while at most n qubits can
be on |1〉, so we must remove the states with more than k
|1〉. We perform the following loop.

For j = 1 to n,

|ψ〉= 1√
2n

1∑
x1,x2,...,xn=0

|x1, x2, . . . , xn〉|s = s+xj〉⊗l
1|0〉|0〉.

For j = j + 1, s = 0 initially, and it is obviously
h ≤ log2(x). Then carry addition operator is used and it
can be implemented by quantum elementary gates. Let
sx denote the number of |1〉 in |x〉 = |x1, x2, . . . , xn〉, so
|ψ〉 becomes

|ψ〉 =
1√
2n

2n−1∑
x=0

|x〉|sx〉 ⊗l
1 |0〉 ⊗ |0〉 .

3) We hope to eliminate the components with Sx > k,
so we use Grover’s searching algorithm on the h count-
ing qubits to amplify the amplitude of the components we
needed. It will take O(2h/2) = O(

√
n) repetitions. After

this step, we get

|ψ〉 =
1√
Ck

n

2n−1∑
x=0

|x〉|sx ≤ k〉 ⊗l
1 |0〉 ⊗ |0〉 .

4) Using the SAT algorithm to compute the Ck
n inputs,

the function we compute is

f(x1, x2, . . . , xn) = ∧m
i=1t(Ci) = ∧m

i=1(t(xi1) ∨ t(xi2)) .

We can use elementary quantum gates to construct a
quantum circuit to implement the function. And we get

|ψ〉 =
1√
Ck

n

2n−1∑
x=0

|x〉|sx ≤ k〉 ⊗l
1 |yx〉 ⊗ |f(x)〉 . (3)

The |yx〉 is dust output.
5) Finally we should determine whether there exists

f(x) = 1 by using Grover’s searching algorithm. We need
to measure the result qubit. The time needed for this step
is O(

√
Ck

n) .
Thus we finished the algorithm. At the worst case, the

algorithm is not a polynomial one, but it is still quadrat-
ically faster than the classical one.
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3.2 Quantum Algorithms for Other NP Problems

We discuss the quantum algorithms for the other NP
problems. The EC problem, the IND problem and the HS
problem are simple and similar to the VC problem. Read-
ers can easily give quantum algorithm for them by the
ideas of the above algorithm, so we do not discuss them in
details. The CLIQUE problem, the SP problem and the
SC problem are a little bit more difficult, but the basic
ideas are the same. We will analyze the most complicated
problem, the 3XC problem and the 3DM problem.

The 3XC problem Given a set U={u1, u2, . . . , u3n}
with 3n elements, let 23U denote all the subsets of U
with exact three elements. C ⊆ 23U , the question is
whether there exists a subset C ′ ⊆ C such that C ′ ex-
actly covers U (|C ′| must be n at this case). That is, if
C ′ = {S1, S2, . . . , Sn}, then S1 ∪ S2 ∪ · · ·Sn = U , and for
any i 6= j, Si ∩ Sj = ø.

Algorithm Let m = |C|, C = {Si1 , Si2 , . . . , Sim
}.

Define m Boolean variables xi1 , xi2 , . . . , xim correspond-
ing to Si1 , Si2 , . . . , Sim respectively. Define the clause
Cij = {xi, xj |Si ∩ Sj 6= ø}. We let t(xi) = 1 iff
Si ∈ C ′. The question becomes to find a C ′ such that
∨Cij

(t(xi) ∧ t(xj)) = 0, and the number of “1” among xi

is exactly n. The next procedures are the same as the VC
algorithm.

The 3DM problem W,X, Y are three sets which
do not intersect each other, and |W | = |X| = |Y | = q,
M ⊆ W × X × Y . The question is whether there exists
M ′ ⊆ M such that M ′ is a perfect pair set, namely each

pair of elements of M ′ has no common components. We
can see that |M ′| must be q.

Algorithm Let n = |M |, define n Boolean vari-
ables x1, x2, . . . , xn corresponding to each element of M
respectively. Define the clause Cij = {xi, xj |xi, xj ∈ M

and xi, xj have common components}. Let S = {Cij |
for all i, j}. We set t(xi) = 1, iff xi ∈ M ′. Then
the question if there exists a perfect pair set is equiv-
alent to that if there exits a truth assignment which
makes M = {x1, x2, . . . , xn} have exactly q “1” and that
∨Cij∈S(t(xi)∧ t(xj)) = 0. The other details are similar to
those of the VC algorithm.

4 Summary
We have present quantum algorithms for one kind of

NP problems. These algorithms are quadratically faster
than classical algorithms. These quantum algorithms
can be modified. We can only make some mathemati-
cal technique to change slightly to solve other NP prob-
lems. Though these algorithms are not polynomial, they
are still significantly faster than the classical ones. In
fact, except simulating properties of quantum systems, it
is still an open question whether quantum computer can
solve all NP problems polynomially. From our discussions
we see that the bottleneck rests wholly on the problem if
we can find a polynomial quantum search algorithm. At
the moment, it seems that such a hope is illusive as it has
been shown that Grover’s quantum search algorithm is the
optimal one though some improvements in the successful
probability need be made.[7]
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