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Abstract
An eight-level axisymmetric model with simple parameterizations for clouds
and the atmospheric boundary layer was developed to examine the evolution
of vortices that are precursors to tropical cyclones. The effect of vertical
distributions of vorticity, especially that arising from a merger of mid-level
vortices, was studied by us to provide support for a new vortex-merger theory
of tropical cyclone genesis. The basic model was validated with the analytical
results available for the spin-down of axisymmetric vortices. With the inclusion
of the cloud and boundary layer parameterizations, the evolution of deep
vortices into hurricanes and the subsequent decay are simulated quite well.
The effects of several parameters such as the initial vortex strength, radius of
maximum winds, sea-surface temperature and latitude (Coriolis parameter) on
the evolution were examined. A new finding is the manner in which mid-level
vortices of the same strength decay and how, on simulated merger of these mid-
level vortices, the resulting vortex amplifies to hurricane strength in a realistic
time frame. The importance of sea-surface temperature on the evolution of
full vortices was studied and explained. Also it was found that the strength of
the surface vortex determines the time taken by the deep vortex to amplify to
hurricane strength.

1. Introduction

Tropical cyclones (TC), also called hurricanes, are large three-dimensional vortices in the
atmosphere. Computational models are very useful tools for studying these systems since
direct controlled experiments are not possible and laboratory simulations are difficult. A
wide variety of models of different resolution and sophistication are used for basic TC
studies. These range from high-resolution general circulation models (GCM), the regional
models such as MM5, RAMS and WRF and simple three-level models. With the availability
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of increasing computing power, there is a natural tendency to use bigger models such as
MM5/WRF. For example, Fudeyasu et al (2008) have successfully simulated the life cycle
of tropical cyclones using the global, nonhydrostatic, cloud-system-resolving model NICAM
at a horizontal resolution of 7 km. At the same time, the use of simpler three-layer models
continues because they can throw light on important processes (Emanuel 1989, Zhu et al 2001,
Zhu and Smith 2002). The aim is to retain the minimum number of relevant features to get a
reasonable picture.

The present authors have proposed a model of TC genesis (Venkatesh 2003, Venkatesh
and Mathew 2004) in which mesoscale mid-level vortices (termed MCV, for mesoscale
convectively generated vortices) play a crucial role in the early stages. In this model, the early
stages consist of mid level MCVs that interact. This process is largely two-dimensional and
non-axisymmetric. The later stages consist of the larger merged vortex, which extends down
to the boundary layer. We consider the initial evolution to be ‘top-down’ in a manner similar
to that proposed by others (Bister and Emanuel 1997, Ritchie and Holland 1997). Subsequent
development of the merged vortex takes place in an essentially axisymmetric manner. The
other view of TC genesis is the ‘bottom-up’ approach suggested by Hendricks et al (2004) and
Montgomery et al (2006). Interactions of mesoscale vortices prior to TC genesis have been
observed in the Pacific (Ritchie and Holland 1997) and the Bay of Bengal (Venkatesh 2006).
Some of the important issues that can be elucidated from numerical simulations are: (i) the
difference in the evolution of mid-level MCVs and deep vortices, which extend down to the
boundary layer, (ii) evolution of MCVs following merger and (iii) the effect a weak surface
vortex has on mid-level vortices. The objective of this study is to answer these questions.

To simulate the essential features of this process, a multi-level model is required.
Therefore, an eight-level, axisymmetric, balanced vortex model was developed. The main
features of this model are that it solves the hydrostatic, balanced flow equations with simple
parameterizations of the boundary layer and clouds. Also, the height is used as a coordinate
instead of the pressure (or sigma) as is common in many atmospheric models. An advantage
of using height is that the location and extent of the mid-level vortices can be specified exactly.
The need to develop another simple hurricane model arose because most of the simple models
that have been developed (Zhu et al 2001, Zhu and Smith 2002), including those available
in the public domain (Emanuel 1995), have been three-layer models. In a three-layer model,
the cloud parameterization is done in a very simple manner, keeping the essential physics
required for studying certain effects. Such a model would not be appropriate for our study
since we are interested in mid-level vortices and their extension to the boundary layer, as
well as finite-amplitude effects. Therefore, a model with eight layers, which are sufficient
to resolve the vertical structure, was developed. The model is similar to Sundqvist’s (1970)
ten-level hurricane model, which has been used extensively by Challa and Pfeffer (1980) and
Challa et al (1998) for many studies. The model of the boundary layer cumulus mass flux is
similar to Emanuel’s model based on quasi-equilibrium.

The structure of the paper is as follows: formulation of the model equations is described
in section 2. The numerics and computational details of the validation with semi-analytical
results are provided in section 3. Section 4 contains the main results of the simulations
we carried out. Studies with deep vortices, mid-level vortices and the parameter sweep
experiments are described. Conclusions are presented in section 5.

2. Model formulation

As stated in the Introduction, three-layer models are not adequate for our study since we are
interested in mid-level vortices and their extension to the boundary layer. To represent the
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vertical structure, a sufficient number of layers, at least five, are required. The present model
formulation can handle an arbitrary number of levels. However, to keep the model economical,
eight levels are used.

To obtain a reasonable representation of the flow structure and physics, an axisymmetric,
hydrostatic balanced vortex model is used with the effects of clouds, radiation, boundary layer
and sea surface parameterized in a simple manner. The balanced vortex approximation was
first used by Eliassen (1952) for the study of meridional circulations. It has since been used
extensively in hurricane-related studies (Schubert and Hack 1982, 1983) and also for studies
of idealized monsoon systems (Wirth 1998). The main assumptions are that the radial flow
is in a state of gradient wind balance and that there is hydrostatic balance in the vertical.
Together, they imply that the azimuthal velocity and temperature perturbations are related by
the thermal wind equation. Also, the secondary flow in the vertical plane can be obtained by
solving a generalized Poisson equation.

The domain was divided into the surface boundary layer and the outer region. The
boundary layer was considered to be the sub-cloud layer and to have a constant depth hBL.
The outer region extended from the top of the boundary layer to a height zmax.

The prognostic equations in the interior are for the azimuthal velocity v and the saturation
equivalent potential temperature θ∗

e (which is nearly a conserved quantity).

∂v

∂t
= −uη−w

∂v

∂z
+ Dv, (1)

∂θ∗
e

∂t
= −u

∂θ∗
e

∂r
−w

∂θ∗
e

∂z
+ Dθ + Ḣrad. (2)

Here u is the radial velocity, w the vertical velocity, Dv represents the diffusion of v
(modelled), η = f + ζ = f + v/r + ∂v/∂r is the absolute vorticity, f is the Coriolis parameter
due to the Earth’s rotation, Dθ represents the diffusion of θ∗

e and Ḣrad the radiative cooling
term. In Sundqvist’s model, specific humidity is used as the second prognostic variable. Using
θ∗

e instead has the advantage that explicit treatment of condensation is not required in the
prognostic equations (heating due to the condensation term appears in the cloud model as will
be described later). A mean value of the virtual potential temperature θ̄v was defined, which
is a function of z only. Perturbations of the virtual potential temperature (θv = θ [1 + 0.61q])
from the mean value θ̄v were related to v by the thermal wind equation

θ̄v

ρ̄g

∂

∂z

[
ρ̄v2

r
+ ρ̄ f v

]
=
∂θv

∂r
. (3)

Given v, this equation can be solved for θv . An additional constraint is that the values of
θv should be less than θ∗

v (the saturation value), which was calculated from θ∗
e and the

pressure p.
The perturbation pressure was obtained from the gradient wind relation

1

ρ

∂p

∂r
=
v2

r
+ f v. (4)

The flow in the r–z plane was obtained by solving a Poisson equation for the
streamfunction ψ

∂

∂r

[
A
∂ψ

∂r
+ B

∂ψ

∂z

]
+
∂

∂z

[
C
∂ψ

∂r
+ D

∂ψ

∂z

]
=
∂Sq

∂r
+
∂S f

∂z
, (5)
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where

A = −
1

r

g

θ̄

∂θ̄v

∂z
, B =

1

ρ̄r

∂

∂z

[
ρ̄v2

r
+ ρ̄ f v

]
,

C =

(
2v

r
+ f

)
1

r

∂v

∂z
,

D = −

(
2v

r
+ f

)
1

r

(
∂v

∂r
+
v

r
+ f

)
,

Sq =

(
ρ̄gQ̇

C p T̄

)
, S f = −

(
2v

r
+ f

)
Dv.

Boundary conditions for solving the ψ are needed at the lower, upper, inner and outer
boundaries. They were prescribed as follows: (i) at r = 0 and z = zmax,ψ = 0, (ii) in the lower
domain, i.e. at z = hBL, ψ is calculated from the boundary layer model and (iii) at r = rmax,
extrapolation boundary conditions were used.

The velocity components u and w were obtained from the streamfunction:

u =
1

ρ̄r

∂ψ

∂z
, w = −

1

ρ̄r

∂ψ

∂r
.

A detailed derivation of the above equation (5) can be found in appendix C of
Venkatesh (2003).

Models are needed for the diffusion terms Dv and Dθ and radiation Ḣrad in equations (1)
and (2), heating rate Q̇ in the source term Sq of equation (5), and ψ and θv at the top of the
boundary layer. The diffusion terms were obtained from the simple eddy viscosity model:

Dv =
∂

∂z
(τφz)+

1

r2

∂

∂r
(r2τφr )

with

τφz = KV
∂v

∂z
, τφr = K H

(
∂v

∂r
−
v

r

)
and

Dθ =
∂

∂z

(
KV

∂θ∗
e

∂z

)
+

1

r2

∂

∂r

(
r2 K H

∂θ∗
e

∂r

)
where K H and KV , the eddy diffusivities (assumed to be the same for both momentum and
heat transfer), were calculated from the boundary layer model, and are functions of r and z.
The radiation term

Ḣrad = −
θ ′

e

τrad
, (6)

where τrad is a decay time of the order of 24 h.
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2.1. The boundary layer model

The boundary layer is modelled by a single layer in which the evolution equation solved for
θe is

∂θe

∂t
= −u

∂θe

∂r
−wm

∂θe

∂z
+ Dθ + Ḣrad. (7)

The azimuthal velocity is assumed to decrease linearly from its value at the top of the
boundary layer, to the top of the surface layer by 20% (Montgomery et al 2001). The radial
inflow velocity uBL is deduced in a manner similar to Ooyama (1969) and Emanuel (1986). In
equation (1) for v in the boundary layer, the major balance is between the diffusion term and
the radial advection term. So,

uBLη = −
CD|v|v

hBL
.

In regions of strong convective activity, vertical velocity can become large and the vertical
convection term is included. Otherwise the computed values of u can become unrealistic.
Therefore, in cloud regions, the following expression is used.

uBLη = −
CD|v|v

hBL
−wBL

∂v

∂z
.

In the lower part of the boundary layer, the surface layer, Deacon’s formula is used to calculate
the aerodynamic drag coefficient

CD = 1.1 × 10−3 + 4.0 × 10−5V .

Here, V is the speed at the top of the surface layer (10 m) in metres per second. This formula
is probably the most widely used one in models of this class (Montgomery et al 2001,
Ooyama 1969).

Matching of the fluxes at the top of the boundary layer leads to estimates of the eddy
diffusivities

KVBL = CD ∗ V/hBL,

K HBL = KVBL ∗ (lh/ lv)
2

with typical values of lh and lv being 2000 and 200, respectively. In the interior, the eddy
viscosities decay with height z above the boundary layer value by a factor exp(−a(z/zmax)

2).
Values in the range 3–10 for the constant a did not cause any significant change to the results.
Also, the minimum values of 1 for KV and 100 for K H were prescribed.

The streamfunction at the top of the boundary layer is required for the interior solution.
It is the sum of two parts: the Ekman pumping component and the additional cumulus mass
flux in regions of convection. The Ekman pumping component wca, also called the clear air
component, results from the induced radial velocity uBL. Therefore

ψEkman = ρBLuBLhBL.

2.2. The cloud model

Clouds are very important constituents of the atmosphere and the most difficult to model. An
accurate representation of clouds requires covering a range of scales from the microphysical
to the mesoscale. There are various degrees of approximation from one-dimensional models
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to those with full microphysics (Houze 1993). Since incorporation of such details would
increase the complexity and be inappropriate in our model, we model only the primary effects
of cumulus clouds.

The cloud model in this study consists of a boundary layer part and an interior part.
Grid points where the Ekman pumping is upward (w > 0) are considered to have deep
cumulus clouds. In the boundary layer the cumulus mass flux is calculated by a formulation
that is similar to Emanuel (1995). The equation for moist entropy in the boundary layer
sb = C p ln θe is

dhsb

dt
+ (wca − δwcm)(sm − sb)/hBL =

CD|Vb|(k∗
s − kb)

Tb
+ Q̇rad/Tb, (8)

where δwcm is the net cumulus updraft velocity (this is the difference between the updraft
and downdraft velocities), Vb the surface layer velocity, kb the moist enthalpy of the boundary
layer, k∗

s the saturation moist enthalpy at the sea-surface, Q̇rad the radiative cooling term,
Tb the boundary layer temperature, dh/dt the horizontal derivative and sm the entropy at the
‘middle’ level where downdrafts originate. The quasi-equilibrium assumption implies that the
time derivative and the radiative cooling term are neglected. Then, the equilibrium cumulus
updraft velocity

δwcmeq =
CD|Vb|(k∗

s − kb)

Tb
+wca. (9)

The actual cumulus mass flux relaxes to this equilibrium value on a timescale τmc that is of
the order of a few hours.

∂δwcm

∂t
=
δwcmeq − δwcm

τmc
. (10)

In the interior, the local heating rate Q̇ is determined by calculating the difference
between the ‘cloud temperature’ at that point and the local temperature. In terms of the model
variables,

Q̇(r, z)= ξ(θC
v − θv). (11)

θC
v is the potential temperature of a parcel that is lifted moist adiabatically (keeping θ∗

e
constant) from the top of the subcloud layer. Therefore, θC

v is equal to θ∗
v , calculated from

θ∗
e at the lowest interior level and the local value of pressure. The parameter ξ is found for

each column by equating the column integral of Q̇ to the enthalpy flux into the column from
the boundary layer, which in turn is mainly the transfer from the sea surface. The enthalpy
flux is modelled as

eflux = δwmcTBL
1s

hBL
,

where

1s =1(C p ln θe)= Cp
1θe

θe

and 1θe = θ∗
es − θeBL .
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Figure 1. Schematic diagram of a portion of the staggered grid used for the computation. The
azimuthal velocity (v) is located at the cell centre, whereas the radial (u) and vertical (w) velocities
are at the cell faces. The streamfunction ψ is located at cell the corners of a cell.

3. Numerics and simulation details

The domain of calculation is in the r–z plane, bounded by rmax and zmax, respectively. The
locations of the various quantities on the grid used are as shown in figure 1. In the staggered
grid, θ∗

e , θv and the other thermodynamic quantities are co-located with v at the cell centre,
while u and w are at the cell faces and the streamfunction ψ is at the corners. The staggered
grid used here is similar to the Arakawa C-grid. The advantage of using such a grid is that
oscillations of pressure are suppressed. Moreover, application of the boundary conditions can
be done exactly.

To start the calculation, initial fields of v and θ∗
e have to be specified. The initial velocity

field for a deep vortex was calculated using the following expression:

v(r, z)=
2vmax(r/rvmax)

1 + (r/rvmax)
2

[
1 −

z

zmax

]
. (12)

For a Rankine vortex, the velocity increases linearly up to rvmax and then varies as 1/r . This
profile is a smoothened approximation since the velocity increases linearly for small r/rvmax ,
decreases as 1/r for large r/rvmax and varies smoothly in between. The maximum value is vmax

at rvmax . The velocity field initialization for a mid-level vortex is described in section 4.4. The
initial values of p, θ and θ∗

e are from Jordan’s mean tropical sounding (Jordan 1958). Initial
values of u and w are set to zero.

The sequence of computations in each time step is as follows:

1. The prognostics equations for v (equation (1)) and θ∗
e (equation (2)) are integrated using

a second-order time-stepping scheme. Details of the scheme are described below.
2. Pressure is calculated from the balance condition (equation (4)) and perturbation θv from

equation (3).
3. Various parameterized quantities (eddy diffusion terms, heating rates from the cloud and

radiation models) are calculated in the interior. The source terms for the Poisson equation
and the prognostic equations are thus obtained.
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4. Integration of the boundary layer model is done to obtain the boundary conditions for the
Poisson equation and the prognostic equations.

5. The Poisson equation for the streamfunction ψ (equation (5)) is solved using a standard
iteration scheme.

6. The radial and vertical velocities are calculated from ψ .

In this sequence of calculations, steps 1 and 5 are most important. A mixed scheme (Kim and
Moin 1985, Khalili et al 1997) of explicit time-stepping for nonlinear terms (denoted NL) and
implicit time-stepping for diffusion terms was implemented for equation (1) as

vn+1
− vn

1t
= −

1

2

(
3NLn

− NLn−1
)

+
1

2

(
Dn+1
v + Dn

v

)
. (13)

Approximate factorization of the diffusion terms leads to the form(
I −

1t

2
Dz

) (
I −

1t

2
Dr

)
vn+1

= vn
−
1t

2

(
3NLn

− NLn−1
)

+
1t

2
(Dr + Dz) v

n, (14)

where I is the identity operator, and terms of order (1t)2 have been dropped. Then, inversion
of tridiagonal matrices in each direction suffices. The prognostic equation for θ∗

e (2) is treated
similarly. A CFL condition for stability is

1t =
hBLCFL

Vmax
.

Here, CFL = 0.75 was used.
The Poisson equation for ψ was solved iteratively, with central differences used for

evaluating the derivatives. For the other equations also, central differences are used for
discretization.

The numerical parameters that can be varied in the model are given in table 1. In addition,
there are flags for switching on the clouds and radiation and for specifying a full or mid-level
vortex in the initial field. The main differences between Sundqvist’s model and the present
model are as follows. (i) The vertical coordinate z is used here instead of pressure, (ii) an
evolution equation for θ∗

e is used, not humidity q and (iii) the modelling of cloud heating is
different.

3.1. Validation of the numerics: decay of a deep vortex

To test the dynamics and the numerics of the model/code, it was run with cloud terms
switched off. Eliassen and Lystad (1977) studied a similar problem and arrived at an
expression for the half-life based on a simplified theory. Montgomery et al (2001) have also
used this expression to study the effect of drag parameterizations on the computed half-lives.
The expression for the half-life is

t1/2 =
H − h

ξ 2CDVinitial
,

where H is the height of the vortex, h the boundary layer height, CD the drag coefficient,
Vinitial the maximum initial azimuthal velocity and ξ the reduction factor.

The computed and theoretical values of half-lives are listed in table 2. One can see that
there is reasonable agreement with the theory. This is a validation of the basic numerics of the
code and also the range of eddy viscosities chosen. The differences could be due to the fact
that in the theory an assumption is that the flow evolves to a state of cyclostrophic balance.

8
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Table 1. List of model and simulation parameters that can be varied in the code.

Parameter Symbol Units Mean value
(control)

Domain size: horizontal Rmax km 500
Domain size: vertical zmax km 16.0
Boundary layer height hBL km 1.0
Initial vortex strength vmax m s−1 11.0
Radius of maximum winds rvmax km 90.0
Sea-surface temperature (SST) Tsea K 300.5
Base latitude deg 20
Vortex height km 16.00
Radiation time constant τrad h 24.0
Base latitude deg 20.0
Cumulus mass flux time constant τmc h 2.0
Base drag coefficient in Deacon’s formula CD0 – 1.1 × 10−3

Velocity-dependent part of drag CDr s m−1 4.0 × 10−5

Time step 1t min 5
Integration time tmax h 240
CFL number CFL – 0.75
Number of cells in the r direction nr – 50
Number of vertical layers nz – 8

Table 2. Comparison of computed half-lives with the theory of Eliassen and Lystad for various
initial vortex strengths, and with vortex heights (H ) of 5 and 10 km.

t1/2 (h)

Vinitial Theory Computed
(m s−1) H = 5 km H = 10 km

10 115.0 101.70 111.32
20 46.0 48.60 50.31
30 25.0 28.00 28.95
50 11.0 11.83 12.94

The decay of the maximum velocity is algebraic in time. For V0 = 10 and 20, velocities
decay at the same rate throughout and the velocity maximum is at the surface at all times. For
stronger and deeper vortices (V0 = 30, 50; H = 10 km), the vorticity near the surface decays
at a slightly faster rate and the velocity maximum is lifted up. This indicates that the eddy
viscosities are not sufficient in the later stages. However, since this happens after the velocity
has reached a quarter of the initial value, we do not expect it to have a significant impact on
other simulations.

The computational costs of running this model are quite low. For example, a 10 day run
with the full model (50 radial points and 1t of 5 min) takes 4 min of real time on a desktop
system with a 3 GHz Intel Pentium IV processor and 1 GB of RAM.

4. Studies with the full model

The studies with the full model were of deep vortices whose velocity maxima in the vertical
were at the top of the boundary layer, and mid-level vortices whose velocity maxima were at
level 3 or 4.

9
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Table 3. List of experiments conducted with full vortices. The parameters changed and the values
are listed.

Parameter Units Range

Initial vortex strength: V0 m s−1 2, 5, 8, 10, 11 and 12
Domain size: Rmax km 500, 1000
Radius of maximum winds km 50, 60, 70, 80, 90, 100, 125, 150
Tsea K 298.5–302.5 (in steps of 0.5)
Base latitude deg 15, 16, 17, 18, 19, 20, 22.5, 25.0
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Figure 2. Evolution of the vortex with an initial maximum velocity of 11 m s−1. Azimuthal
velocity contours are plotted at intervals of 2.5 m s−1, starting from 2.5 until 10 m s−1 and at
intervals of 5 m s−1 from 10 m s−1 onwards.

A number of parameter studies were conducted using the model. A list of them is given
in table 3.

4.1. Evolution of deep vortices

The behaviour of a deep vortex that extends from the top of the boundary layer to the top
of the troposphere was studied by a series of simulations in which the cloud model was
turned on. The initial vortex had maximum velocity at the top of the boundary layer and
decreased linearly with height, reaching zero at zmax. The radial profile of azimuthal velocity
was the same as that used for the decay studies (equation (12)). The mean initial profiles for
θv , p̄ and θe were taken from Jordan’s sounding, which has been used in many such studies
(Ooyama 1969).

A typical run for which a hurricane life cycle was simulated by the model consisted of the
following parameters: Tsea = 300.5 K, rvmax = 90 km, initial Vmax = 11 m s−1. The variation
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Figure 3. Radial flow in the boundary layer (uBL) with and without cloud heating as a function of
time.

of the velocity field with time is shown in figure 2. Initially, the radius of maximum wind
is 90 km. The initial wind is strong enough to cause large sea-surface fluxes. This leads
to increased heating and updraft mass flux in the clouds. This increases the radial flow in
the boundary layer, which increases the azimuthal velocity (the first term in equation (1)).
There are two main effects of the cloud. One is in increasing uBL and the other in
lifting the streamlines (by vertical heating) and thus increasing the stretching. Initially, the
streamlines consist of horizontal segments (inflow in the boundary layer and outflow at higher
levels) connected by a curved section. As the vorticity intensifies, the vertical velocity gets
established; with larger values away from the surface (mid-levels), streamlines get lifted up
due to advection by the vertical velocity.

The time evolution of the radial inflow with and without the cloud heating term is shown
in figure 3. Without clouds, the radial inflow decreases and approaches zero as the vortex
decays. The effect of clouds is to increase the inflow, which in turn increases the vertical
velocities.

Evolution of the heating rate due to clouds is shown in figure 4. One can see that
the maxima move inwards and upwards as the time progresses. Also, the heating rates
increase during the growth phase (48 h). The interaction between the azimuthal component of
surface wind, sea-surface fluxes, cumulus heating at higher levels and secondary circulation
constitutes a positive feedback cycle. Higher surface azimuthal winds (v) increase the sea-
surface fluxes, which in turn increase the cumulus heating at higher levels. This increases the
secondary flow (u, w), which leads to increased azimuthal winds.

As the vortex amplifies, the radius of maximum winds decreases. Velocities also increase
at the upper levels by both diffusion and advection. This positive feedback leads to rapid
amplification of the vortex (phase 1). The velocity reaches storm strength in 17 h and hurricane
strength in 25 h. Then there is slowing down of the increase as the dissipative processes
increase (phase 2). The velocity maxima are reached at 48 h. There is a balance of the
tendencies to intensify and decay, so that near steady state is reached. Then there is the third
phase that consists of a slow decay of the vortex. The rate of decay here is lower than that for
the case with no clouds as the cloud heating opposes the decay.
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Figure 4. Cross sections of the heating rate for integration started with initial Vmax = 11 m s−1 at
(a) t = 12 h, (b) t = 18 h, (c) t = 24 h and (d) t = 48 h.

The structure of the vortex when maximum velocity is reached (48 h) is shown in figure 5.
Contours of the azimuthal velocity v are shown in figure 5(a). The maxima close to the
centre and the decrease both radially and in the vertical can be seen. From the plot of
the streamfunction (figure 5(b)), the secondary circulation can be seen. The radial inflow
in the boundary layer, large upward velocities in the central portion and radial outflow at
higher levels can be seen. The high amounts of moisture in the boundary layer and regions
of heating in the centre can be inferred from the contour plots of the saturated equivalent
potential temperature θ∗

e (figure 5(c)). The warm core structure of the vortex is clearly seen
from figure 5(d), where the perturbation potential temperature (θ ′

v) is plotted.
The radial profiles of azimuthal velocity are shown in figure 6. The growth is rapid with

the maximum velocity increasing and the radius of maximum winds decreasing from 90 km
initially to 20 km at 48 h. The variation is qualitatively similar to that simulated by Sundqvist’s
model. The time taken to reach the maximum velocity is longer though (84 h) in their case. In
the decay phase, the shape of the radial profile is nearly the same.

4.2. Finite amplitude nature

The finite-amplitude nature is evident on comparing simulations performed with different
maximum initial velocities. The results are shown in table 4 and figure 7. In table 4, Vmax is
the maximum velocity reached in the run, tV max the time at which this velocity is reached,
Thurricane the duration for which v is above 33 m s−1 and Tstorm the duration for which v
is above 17 m s−1. For a very weak vortex (V0 = 2), there is hardly any increase in the
velocity. For V0 = 5 m s−1, there is some amplification with a doubling of the initial strength
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In the r–z plane, contours are plotted for the following fields: (a) azimuthal velocity v (m s−1), (b)
streamfunction, (c) saturated equivalent potential temperature θ∗

e (K) and (d) perturbation potential
temperature θ ′

v (K).

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200  250  300

r (km)

v
(m/s)

t = 00
t = 12
t = 18
t = 24
t = 48

Figure 6. Evolution of the vortex with an initial maximum velocity of 11 m s−1. Radial distribution
of azimuthal velocity is plotted at different times (in hours).

by 86 h, followed by a decay. For V0 = 8 m s−1, more rapid intensification takes place and
tropical storm strength is reached within 2 days, a maximum velocity of 24 m s−1 in 64 h,
followed by a slow decay. For V0 = 10 m s−1 the behaviour is similar in structure to that
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Table 4. Effect of initial vortex strength on the evolution of the system. Vmax is the maximum
velocity reached in the run, tV max the time at which this velocity is reached, Thurricane the duration
for which v is above 33 m s−1 and Tstorm the duration for which v is above 17 m s−1.

V0 Vmax tV max Thurricane Tstorm

(m s−1) (m s−1) (h) (h) (h)

2.0 2.01 34.42 – –
5.0 11.98 86.63 – –
8.0 23.93 64.02 – 132

10.0 32.93 49.87 – 220
11.0 37.32 48.01 78 224
12.0 41.90 48.01 118 227
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Figure 7. Evolution of full vortices of different initial strengths (v0) is shown by plotting the
maximum azimuthal velocity (v) with time.

with V0 = 11 m s−1, except that the maximum velocity just reaches the hurricane strength of
33 m s−1. For V0 = 12 m s−1, the maximum velocity reached is 41.90 m s−1 and the hurricane
is sustained for nearly 5 days. The finite amplitude effect observed in these simulations is
similar to the results of Rotunno and Emanuel (1986) and Emanuel (1989).

The maximum potential intensity (MPI) theory of Emanuel (1988) and Holland (1997)
provides a limit on the strength of a hurricane based on the environmental factors such as
ambient humidity and SST. We found that the maximum strength reached in the simulations
is lower than the value from MPI for similar ambient conditions. For example, for Tsea =

300.5 K, a Vmax of 45.97 m s−1 is predicted by MPI, while our calculation is 41.90 for an
initial vortex strength of 12 (table 4).

The reason for the finite amplitude nature can be understood as follows. In figure 8, the
evolutions of the individual terms (denoted by T1, T2 and T3) on the rhs of equation (1),
at a point close to the maxima of azimuthal velocity, for various values of the initial vortex
strengths are compared. At this point, T1 (−uη) and T3 (Dv) are negative for the most part,
while T2 (−w∂v/∂z) is positive. Vortex amplification is due to T2, which is mainly due to the
induced vertical velocity. This tendency is opposed by terms T2, radial advection, and T3, the
turbulent diffusion term. The relative magnitude of T2 with respect to T1 and T3 determines
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Figure 8. Evolution of the terms (T1, T2 and T3) on the rhs of equation (1), at a point close to the
maxima of azimuthal velocity, for full vortices of different initial strengths.

whether amplification or decay occurs. For small initial velocities (v0 = 2 m s−1, figure 8(a)),
T1 dominates T2 and therefore there is only decay of the vortex.

For intermediate velocities (v0 = 5 m s−1, figure 8(b)), after about 24 h, T2 increases
rapidly, since the radial inflow in the boundary layer is of sufficient strength to higher vertical
velocities at higher levels. The corresponding increase in T1 is not sufficient. It takes some
time for T3 to increase and arrest further growth of the vortex, so only a moderate strength is
reached followed by a decay phase.

For velocities above a threshold (v0 = 8, 11 m s−1, figures 8(c) and (d)), the radial inflow
in the boundary layer, and the corresponding induced vertical velocities at higher levels close
to the centre of the vortex, is sufficiently high and T2 increases exponentially. There is a lag
of around 12 h for T3 to increase. Then quasi-equilibrium is reached before T3 dominates and
causes the vortex to decay.

4.3. Parameter sweep experiments

The effect of various parameters on the formation is described below. For these comparisons,
the case with V0 = 11 was chosen as the control run.

On doubling the domain, keeping the grid size the same, the change in the maximum
velocity is marginal (from 32.93 to 33.42). This shows that the domain of 500 km is adequate
for the present study.

15



Fluid Dyn. Res. 42 (2010) 045506 T N Venkatesh and J Mathew

Table 5. Effect of the initial radius of maximum winds (rvmax ) on the evolution of the system.

rvmax (km) 50 60 70 80 90 100 125 150
Vmax (m s−1) 24.20 27.75 31.19 34.16 37.32 39.84 45.92 50.92

Table 6. Effect of SST on the evolution of the system.

Tsea (K) 298.5 299.0 299.5 300.0 300.5 301.0 301.5 302.0 302.5
Vmax (m s−1) 30.18 30.97 33.13 35.24 37.19 40.01 43.40 46.96 48.73
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Figure 9. Evolution of the terms T1 and T2 on the rhs of equation (1) for full vortices when the
SST is varied.

If the radius of maximum wind is decreased from 100 to 50 km, (a change of 50%),
the maximum wind decreases from 39.84 to 24.20 m s−1 (a change of 39.3%) (table 5). The
reduction is due to the reduced strength of the initial vortex. If the radius of maximum wind
is increased to 150 km (a change of 50%), the maximum wind increases to 50.92 (a change
of 27.8%). The percentage decrease/increase is lower than that of the change in rvmax . This
suggests that this parameter has a moderate impact.

Amplification depends more on the initial velocity, as seen from table 4 and figure 7. If
both the velocity and the radius of maximum wind are varied keeping the vorticity constant,
the behaviour is similar to that seen in table 4.

The variation of the maximum velocity reached when the sea-surface temperature is
varied is shown in table 6. The nonlinear nature of the effect of SST can be seen. A decrease
of 2 K results in a decrease Vmax of around 7 m s−1, while an increase of 2 K results in an
increase Vmax of around 11.5 m s−1. When SST is changed, the major impact is on the vertical
velocities (the term T2), while the radial flow (the term T1) is affected marginally (figure 9).
The changes in vertical velocity are in turn due to reduction/increase of fluxes from the sea.
This is to be expected as the heating is linked to the sea-surface fluxes in our formulation of
the model. The large percentage change shows that this is an important parameter.

The effect of the Coriolis parameter was studied by varying the base latitude as given
in table 3. The maximum values of v reached are shown in table 7. The general trend (from
17◦N) is that vmax decreases with increasing latitude. This is because an increase in the value
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Table 7. Effect of the Coriolis parameter on the evolution of the system.

Latitude (◦N) 15 16 17 18 19 20 22.5 25
Vmax (m s−1) 39.27a 41.85a 42.17 39.89 38.86 37.19 34.96 33.03

a Oscillations are observed.

Table 8. Effect of the Coriolis parameter on the evolution of the system, with an increased value
of the eddy viscosity parameter: lh = 2400.

Latitude (◦N) 15 16 17 18 19 20 22.5 25
Vmax (m s−1) 33.03 32.75 31.05 29.97 29.21 28.59 26.91 25.82

of f leads to an increase in the term T2, which tends to oppose the amplification of the vortex.
For latitudes 15◦N and 16◦N, large fluctuations are observed in the velocity versus time graph.
Decreasing the time step did not change the results, indicating that this was not a problem of
numerical stability. The decrease of inertial stability when the Coriolis parameter is reduced
could be the cause. Most other studies like those of Emanuel, Sundqvist and Zhu et al have
used the 20◦N as the base latitude, probably for this reason. As a further check, the horizontal
eddy viscosity term (KH) was increased by increasing lh from 2000 to 2400. This led to a
suppression of the oscillations and a decrease in the maximum velocity reached (from 39.27
to 33.03). With this higher value of lh, the Vmax decreases monotonically as latitude increases
(table 8).

4.4. Mid-level vortices

The mechanism for the formation of mid-level vortices is well known and can be explained
by the thermal wind relation (Raymond and Jiang 1990). In a region of the tropics having a
large cumulus cloud, stratiform heating takes place in the anvil region due to the release of
latent heat of condensation. If the region is not saturated, there is re-evaporation of rain in
the lower troposphere, causing it to cool. Thus a vertical dipole of heating is formed. If this
heating pattern is sustained and if the local Rossby radius of deformation is reduced, it results
in temperature perturbations having nearly the same spatial pattern. Thermal wind balance
then requires the formation of a mid-level vortex. This process is simulated by specifying the
heating pattern by the function Q̇(r, z)= − sin(2π z/zmax) exp(−αr2). The resulting velocity
field has a maximum in the middle of the domain (zmax/2).

4.4.1. Decay of mid-level vortices. To demonstrate the decay of mid-level vortices,
simulations were performed keeping all the other parameters the same as in the previous
study but changing the initial condition to that for a mid-level vortex. In the vertical, the
velocity maximum was chosen to be at levels 4 and 5. Above and below this level, the variation
of velocity was taken to be (1/2)(1.0 + tanh(3(zc − 1/2))), where zc is the vertical distance
measured from this level, normalized by the vertical distance to the domain limits (boundary
layer height below and zmax above).

The main forcing here is that due to turbulent dissipation, which is weak at mid-levels
because no surface processes are present. In the model, the minimum values of the eddy
viscosities were set as 1 m2 s−1 in the vertical direction and 100 m2 s−1 in the radial direction.
This led to a very slow spin-down. The results are shown in figure 10. For the same vortex
strengths, which caused hurricane formation when placed just above the boundary layer, there
is either slow decay (V0 = 10) or marginal increase (V0 = 12). There is slow diffusion of the
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Figure 10. Evolution of mid-level vortices of different initial strengths (v0) and the location of
the radius of maximum winds (rvmax ) are shown by plotting the maximum azimuthal velocity (v)
against time.

vorticity causing the surface vortex to grow, but the magnitude reached even after 10 days is
too small for convection to be triggered. Thus, for all practical purposes, the vorticity can be
considered constant.

4.4.2. Extension to the boundary layer. The present model, being an axisymmetric one,
cannot simulate the baroclinic, three-dimensional merger of two mid-level vortices. We use
the results available in the literature for this problem and study the evolution following
a merger by introducing a suitable ‘merged’ vortex. The ‘merged vortex’ is simulated by
specifying a mid-level vortex with increased vertical extent. This is due to the existence of an
optimum aspect ratio as shown by studies of Reinaud et al (2003).

We construct ‘merged’ mesoscale vortices by stretching the vertical profile of velocity.
The velocities of the level of maximum velocity and the levels above are left untouched. Each
level below is assigned the value of the level above it (of the original profile). The reason
for this is that in the simulations of merger of mid-level vortices (Ritchie and Holland 1997),
the increase in the vertical direction is mainly below the initial vortex. The increase above is
marginal.

While considering mid-level vortices, there are two possibilities: (i) only a mid-level
vortex is present with no surface vorticity and (ii) a weak surface vortex is present along
with the merged mid-level vortices. Ritchie and Holland (1997) have shown that the presence
of a surface vortex typical of a monsoon trough enhances the merger process. This was
demonstrated also by vortex patch simulations, where presence of a large-scale depression
results in an increase in the distances up to which merger takes place (Venkatesh 2003).
Montgomery and Enagonio (1998) simulated a mid-level vortex with peripheral convection
and showed that the axisymmetrization process leads to a spin-up of a surface vortex.
Therefore, simulations were performed for both the cases.

For the second case, an additional surface vortex obtained by extending the tanh velocity
profile to the top of the boundary layer was used. The strength of the surface vortex was varied
from 2.4 × 10−5 to 2.2 × 10−4. These values are comparable with the value (23 × 10−5 s−1)
taken by Ritchie and Holland (1997). The results for both the cases are as follows.
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Figure 11. Evolution of the maximum azimuthal surface wind (m s−1) is shown when (a) only a
mid-level vortex is present (dashed line) and (b) a mid-level vortex and a surface vortex vortex are
present (solid line). The initial strengths of the mid-level and surface vortices are Vmax = 12 and
7 m s−1, respectively.

Without a surface vortex

For both the half extended case (stretching of velocity profile by one level) and extended
case (stretching of velocity profile by two levels), with the surface velocity set as zero, the
overall behaviour is identical. The reason for this is that vertical diffusion makes the velocity
profiles below the vortex reach a similar state in a very short time for both the cases. The
subsequent development is then identical. Initially, the mid-level vortex decays slowly and the
surface vorticity grows. By 100 h, the surface vortex is strong enough for surface fluxes and
convection to develop. Then there is rapid growth of the surface vorticity and reduction of the
mid-level vorticity (due to eddy diffusion). By 150 h, the surface vortex becomes stronger and
intensifies, reaching hurricane intensity by 200 h (figure 11). In reality, it is unlikely that this
sequence of events would occur, as the time taken for the surface vortex to amplify (100 h)
is too large. The chief effect of mean winds, which cannot be accounted for in the present
model, would be to advect the mid-level vortices over a period of 4–5 days. In simulations by
Rogers and Fritsch (2001), the time for vorticity to reach the surface is of the order of a few
hours.

With a surface vortex

The time evolution of velocity for this case is when the surface vorticity is 17 × 10−5 as is
shown in figure 11. The surface vortex initiates convection and grows rapidly, overtaking the
mid-level vortex within a day. It intensifies to hurricane strengths in 60 h and a maximum
velocity of 35 m s−1 is reached by 75 h, followed by a gradual decay. The structure of the
vortex at steady state is similar to that obtained from the amplification of a full vortex. It
should be noted that a full vortex with V0 = 8 m s−1 does not intensify into a hurricane. The
evolution in this case is closer to that of the full vortex with V0 = 12 m s−1. Furthermore, there
is a longer quasi-steady state.

The strength of the surface vortex determines the time taken for amplification (see
table 9). For weak surface vortices, the time needed to reach hurricane strength is more than
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Table 9. Effect of the strength of the surface vortex on the time taken to reach hurricane strength.

Surface vorticity 2.4 4.8 7.3 9.7 12.2 14.6 17.0 19.5 22.0
(×10−5 s−1)
thurr (h) 178 142 123 112 115 83 60 42 31

5 days. For vortices with strength 17 × 10−5 s−1 or greater, the timescale of amplification is
realistic.

5. Summary and conclusions

A simple axisymmetric model has been developed for tropical cyclone-related studies. A
feature of this model is that it can resolve the vertical structure of vortices that are likely
to be present in the early stages of genesis. The model numerics has been validated using
the analytical results available for spin-down half-lives. For full vortices, studies of the finite
amplitude nature and the dependence on various parameters, like the sea-surface temperature,
Coriolis parameter and initial vortex strength, have been carried out and these compare well
with other simulations of this kind.

The main results of the balanced vortex calculations are the following: If no cloud heating
is present, full vortices decay in about 5 days with the decay rate increasing with the initial
strength. Mid-level vortices, on the other hand, decay very slowly and can be assumed to
remain nearly steady. With cloud heating and sea-surface fluxes, full vortices amplify, reach
hurricane strength within 2 days, are in a quasi-steady state for around 4–5 days and decay
slowly. The finite amplitude nature of this amplification is also evident. While weak vortices
decay, those above a threshold (V0 = 10 m s−1, rvmax = 90 km) amplify. The maximum velocity
reached and the duration of the hurricane depend on the initial velocity. The sea-surface
temperature has a crucial role, and the maximum velocity reached depends on small changes
to it.

Merged mid-level vortices with an increased vertical extent but with no vorticity at the
surface amplify but not on a realistic time-scale. Merged mid-level vortices with an increased
vertical extent and with a surface depression of typical strength amplify and reach hurricane
strengths.

A novel feature of this paper is that a comparison of the evolution of mid-level vortices
and full vortices was done. It is shown that mid-level votices decay if no other effects
are present. Also it is shown that if merger is simulated and the strength of the surface
vortex increases, there is a rapid intensification of these vortices, in a manner similar to full
vortices. These results form an important part of the evidence in favour of the authors’ model
(Venkatesh and Mathew 2004) for tropical cyclone genesis.
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