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ABSTRACT

Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection
of Jupiterʼs gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as
essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through
appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat
generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior
are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as a
global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared
with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid
can match that of the average observed heat flux (nominally 2.25Wm−2), though only over a very restricted range
of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal
shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a
wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected
feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid
and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration
under tidal dissipation is addressed.

Key words: planets and satellites: dynamical evolution and stability – planets and satellites: general – planets and
satellites: interiors

1. INTRODUCTION

Earth and Jupiterʼs moon Io are the only planetary bodies in
the Solar System observed to have active silicate volcanism.
However, the internal heat sources driving volcanism in these
two cases are very different. The Earth contains sufficient
radiogenic material to drive these processes, but the primary
internal source of heat on Io is thought to be strong tidal action
by Jupiterʼs gravitational field. Following a theoretical study
(Peale et al. 1979) that predicted the active volcanism observed
by the two Voyager spacecraft, it has generally been assumed
that the heating associated with the tidal action is exclusively
due to dissipation treated essentially as a solid. Recent
reanalysis of Galileo magnetometer data shows that Io has an
induced magnetic field, which combined with other constraints
implies the presence of a global “magma ocean” (Khurana
et al. 2011). Specifically, the cited study concludes that there
exists an asthenosphere of thickness 50 km or more and
composed of at least 20% interconnected melt. While a layer of
complete melt is not precluded, it is more likely that the type of
magma ocean on Io is a partial melt layer with interconnected
liquid that can flow through a more slowly deformable matrix
of solid. The presence of a magma ocean within Io raises the
possibility that tidally induced fluid flow could generate
substantial dissipative heat. It is known both experimentally
and through analyses of the governing equations that solids and
fluids respond quite differently to tidal forces. There are
typically strong differences in the types of stress supported in
each media, and the intrinsic timescales for adjustment may
also be quite different. The large differences in timescales can
lead, for example, to the retention of inertial terms (including
rotational “forces”) in the case of fluids, while such
components are negligible in the case of solids. However, the

tidal responses of the two media should not be entirely distinct
as there are similar processes and constraints applicable to both.
The motivation for this study comes from observation that if

a global magma ocean is present within Io, previous estimates
of tidal dissipation in a solid Io provide an incomplete or
perhaps even erroneous description. The goal of this study is
therefore to provide a description of the expected fluid tidal
dissipation and compare it with that estimated for the solid in
an attempt to determine the relative contribution of each. There
are, however, uncertainties in the choice of appropriate
parameters and model formulations in each case. Because of
this, a proximate goal is to describe the behavior and parameter
dependencies in each case such that distinguishing elements of
the two process may be separated and ultimately used to
estimate the respective roles of the solid and fluid phases in Ioʼs
tidal dissipation.
The hypothesis that tidal dissipation within fluid layers may

contribute significantly to the overall energy loss budget for a
planetary object has wide reaching implications not only for the
early tidal and spin evolution of moon systems within our own
solar system, but also for planets and moons in the growing
catalog of extrasolar planetary systems. In particular, by
providing a major second possible source of dissipation, fluid
tides provide a possible mechanism to significantly increase
orbital damping rates beyond those predicted by solid-tidal
models alone. Early solar systems often experience high rates
of scattering (e.g., Mandell et al. 2007; Nagasawa et al. 2008;
Raymond et al. 2009), whereby larger perturbers may increase
the eccentricities of terrestrial-class objects (e.g., Weidenschil-
ling & Marzari 1996; Chatterjee et al. 2008; Matsumura et al.
2008; Shen & Turner 2008; Matsumura et al. 2010). Increasing
tidal dissipation may be highly beneficial for Earth-class
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objects in such systems (Henning & Hurford 2014), by
allowing orbital circularization to proceed more rapidly, and
thereby reducing the timespan over which such worlds remain
vulnerable to orbit crossings and resonances that can lead to
ejection from the stellar system or absorption into the host star
(Matsumura et al. 2013). Adding fluid tidal heating to models
may therefore help to improve survival rates of terrestrial class
objects in chaotic early solar systems. Note that young silicate
objects recently following accretion, as well as objects with
high eccentricities, are those for which silicate magma fluid
layers are more likely (e.g., Elkins-Tanton et al. 2003). While
not treated in detail here, dissipation increases due to non-
silicate liquid layers, such as surface or subsurface water
oceans, may have similar orbital consequences.

Returning to Io and the potentially observable differences
between fluid and solid tidal heat generation, an example of
distinct behavior, which will be discussed next, involves the
global distribution of the tidal dissipative heat flux. For
plausible parameter scenarios, the distribution of the dissipative
heat generated differs between the two types of tidal process.
These calculated distributions of dissipative heat may be related
to observations of the surface heat fluxes. If volcanic centers
are directly correlated with surface heat flux, then the spatial
distribution of volcanoes on Io provides criteria that may be
used to isolate the type of tidal process most active on this
moon. Estimates of Ioʼs global mean heat flow generally range
from 1.5 to 4.0Wm−2 (Moore et al. 2007), with recent
astrometric observations supporting a value of 2.24 ±
0.45Wm−2 (Lainey et al. 2009). However, most of this heat
is carried to the surface by ascending silicate magma rather
than by conduction through the lithosphere (McEwen
et al. 2004). The heat-pipe mechanism proposed for transport-
ing Ioʼs internal thermal energy to the surface (O’Reilly &
Davies 1981) involves bringing magma upward through
hotspots or “heat pipes” that are embedded within a relatively
cold lithosphere. Focusing of upwelling magma through the
lithosphere is important because it discretizes surface heat flux
patterns that are expected from tidal dissipation models.
Kirchoff et al. (2011) examined the global distribution of
volcanoes on Io using spherical harmonic analyses and
identified statistically significant clustering at spherical-harmo-
nic degrees 2 and 6. Applying an optimized distance-based
cluster analysis to the locations of hotspots and paterae
identified in the first 1:15,000,000 global map of Io (Williams
et al. 2011a, 2011b), Hamilton et al. (2013) determined that
there is a 30°–60° eastward offset in concentrations of
volcanism on Io relative to the surface heat flux maxima
predicted by conventional tidal dissipation models, which
consider that heating is primarily due to solid-body dissipation
in the asthenosphere. It should be pointed out that it is unclear
how reliably this observed offset reflects an offset in subsurface
heat fluxes. Indeed, a reliable mapping of the subsurface heat
sources that produce the surface distribution is not straightfor-
ward and the analyses and scope of potential candidates are not
presented here. Further studies focused on such mapping would
be valuable. Here we provisionally assume that an offset in the
subsurface heat sources is suggested though not confirmed by
observations. That we demonstrate a tidal heating process that
in fact allows such offset will evidently be relevant in
developing such mapping.

In all previous studies, tidal dissipation within Io has been
assumed to be due to deformation of solid or partially molten

material (Peale et al. 1979; Ross & Schubert 1985, 1986;
Segatz et al. 1988; Ross et al. 1990; Tackley 2001; Tackley
et al. 2001). The tidal force used has only included the
equatorially symmetric degree-2 spherical-harmonic terms
representing the leading terms in a Taylor expansion of the
gravitational potential associated with Ioʼs eccentric orbit. In a
related context, Tyler (2008) has emphasized that even in the
case where it is a relatively weak component, the tidal force
associated with axial tilt (obliquity) must also be examined
when calculating fluid tides because inertial effects in the fluid
lead to a tidal response that is not necessarily commensurate
with the tidal force amplitude. In this case a relatively weak
obliquity tidal force can be responsible for even the dominant
part of the tidal flow response. However, in the application
here, where eccentricity is 0.0041, obliquity is likely to be a
small fraction of a degree, and the fluid tidal response is
expected to be heavily damped (forbidding a sharply resonant
response), it is expected that the conditions for this dispropor-
tionate response due to resonances is not met and only the
eccentricity tidal forces are considered in detail. Peale et al.
(1979) showed that at least a significant fraction of tidal heat
may be expected from theoretical estimates assuming reason-
able values of the unknown dissipation parameter Q and the
Love number k2. Subsequent refinements of this work (Segatz
et al. 1988; Ross et al. 1990; Tackley 2001; Tackley et al. 2001;
Turcotte & Schubert 2002; Moore et al. 2007) have sought to
better match dissipation estimates from radiometry to interior
models. In end-member tidal dissipation models, the bulk of
Ioʼs heating occurs either within the deep-mantle or within the
asthenosphere (Ross & Schubert 1985, 1986; Segatz
et al. 1988; Tackley 2001; Hamilton et al. 2013), while in
mixed models heating is partitioned between these end-
members (Ross et al. 1990; Tackley et al. 2001; Hamilton
et al. 2013). In deep-mantle heating models, the flux of heat
through the surface is maximum near the poles and minimum at
the equator, with absolute minima occurring at the subjovian
and antijovian points. In asthenospheric models, heat flux is
minimum at the poles and maximum in the equatorial area,
with primary maxima occurring north and south of the
subjovian and antijovian points (at approximately ±30°
latitude), and secondary maxima occurring at the centers of
the leading and trailing hemispheres. Spatial variations in
surface heat flux are lower in mixed models, with maxima
migrating toward the poles as deep-mantle heating is added to
asthenospheric heating.
In Section 2, we describe the methods used to calculate the

tidal dissipation under the respective models of a thin fluid
magma ocean, and a solid that may include melt. Of course,
within each of the two model frameworks there are really a
range of solutions because the parameters required in the
calculations are poorly constrained. Each one of these solutions
comprises a complete set of solution variables, but for the
purposes here the solution variable of interest is the rate of
work performed by the tidal forces on the medium. The rate of
work performed describes the level of tidal excitation, and it is
also assumed that global/temporal averages of this work rate
correspond to rates of dissipative heat generation. The analyses
then involve describing the tidal heat generation (the solution
variable) as a function of the unknown parameters. When first
only the global integral (or surface average) is needed, the
solution variable is then represented as a scalar function
represented in a parameter space involving the unknown
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parameters as coordinates. An attempt is made to combine
these parameters into degenerate non-dimensional combina-
tions to provide the most compact space of solution scenarios.
When analyses shift toward examination of the spatial
distribution of the heating rate, then the approach is to select
end-member examples from the behavior seen in the space of
solutions. In Section 3, we summarize results describing the
behaviors of the two families of tidal-response solutions
calculated using the methods in Section 2. In Section 4, we
isolate and describe subsets of the solutions from Section 3
which satisfy primary observational constraints (e.g., total heat
flux), and then discuss differences in behavior (e.g., the
distribution of the heat flux) that may be used as further
observational criteria for distinguishing between the tidal
processes active on Io. Finally, conclusions are summarized
in Section 5.

2. METHODS

2.1. Calculation of the Tidal Response of the Solid

We compute tidal dissipation in a layered self-gravitating
solid body using the propagator matrix method (Love 1927;
Alterman et al. 1959; Takeuchi et al. 1962; Peltier 1974)
presented in comprehensive detail in Sabadini & Vermeersen
(2004). This technique assumes a model domain composed of
spherically symmetric shells, each with prescribed density,
shear modulus, and viscosity, and applies an external
gravitational potential (here a spherical-harmonic degree-2
tidal disturbance; Henning & Hurford 2014). Boundary
conditions are solved at each interface to yield solutions for
the radial and tangential displacements and stresses. This
method traditionally handles boundary conditions for solid-
solid interfaces. Our analysis was extended using the TideLab
suite of code (Moore & Schubert 2000), that uses techniques
documented in detail in Wolf (1994), as well as by alternate
methods described in Jara-Orué & Vermeersen (2011; using a
Fourier and Laplace approach respectively). These methods
handle layer interfaces with static liquid layers, which
propagate neither displacement nor stress. The TideLab code
utilized generated surface Love numbers, but not spatial
patterns, and therefore was used to validate the premise
(Henning & Hurford 2014) that weak solid layers are a
reasonable approximation for the decoupling of true liquid
layers (and may in fact better represent the model of a magma
slush). While this approach permits some of the important
effects of a fluid, such as the uncoupling of layers, the fluid
represented may be considered to be more of a lubricant than a
dynamical fluid capable of inertial resonant excitation. The
fluid treated here has then less dynamical freedom than that in
Section 2.2 and may be regarded as a strengthless medium
having gravitational mass but no inertial mass. This apparent
breach of the Equivalence Principle is permitted for sufficiently
low frequencies where a quasi-static balance of forces prevails
and inertial accelerations are small. The solution for the system
of concentric viscoelastic shells is found by computing the
purely elastic solution to the resulting system of equations, then
invoking the viscoelastic-elastic correspondence principle
(Biot 1954; Peltier 1974). For continuity with previous studies
(e.g., Henning et al. 2009), a Maxwell rheology is used. For a
cyclically driven system, the displacement field is converted
into a strain-rate field. The propagator solution coefficients for
the unit stress and strain-rate fields are then represented by full

9 by 9 element tensors in spherical coordinates for the degree-2
external tidal potential. These are then combined to determine
the work per unit volume. In the analogous viscoelastic
solution, using the Fourier tidal approach, solutions are
complex values where the imaginary component of the
computed work represents the energy lost per cycle and
thereby the tidal dissipation rate. The time-averaged tidal
dissipation from this method is provided as a function of
latitude and longitude, just as for the fluid in Section 2.2, but
the dissipation is also distributed radially over the concentric
shells. We sum the dissipation over the shells to represent a
useful first approximation of the equilibrium surface flux of
heat prior to re-distribution into heat pipes, perhaps at the base
of Ioʼs lithosphere. Beuthe (2013) presents a highly efficient
method for calculation of spatial patterns of tidal heating for
multilayered planetary objects, with the advantage of being
able to explain the range of observed patterns as arising from
weighed sums of three fundamental spatial patterns. Results
presented in Section 3.1 specifically for Io, are in agreement
with this previous work, but are shown for the purpose of
linking specific input parameters (mainly layer thickness and
viscosities) to the specific patterns and heat magnitudes they
achieve.

2.2. Calculation of the Tidal Response
of a Fluid Magma Ocean

The “Laplace Tidal Equations” were established very early
within the practice of modern science to describe the dynamics
of fluid tides on Earth, and there has been a long history of
development (Lindzen & Chapman 1969; Longuet-Hig-
gins 1968; Hough 1898; Cartwright 1999). These equations
describe the behavior of a fluid flowing in a relatively thin shell
such that approximations provide useful simplifications that
allow tractable solutions. These equations are widely used to
study tides in the terrestrial ocean and atmosphere, but the
applications to planetary problems are fewer and more recent.
Instead, many planetary applications have followed approaches
based on that for solid tides described above, even when fluids
are present. An immediate indication that the latter approach
may be incomplete when treating a fluid can be seen by
inspecting the dynamical terms included or absent in the two
sets of governing equations. Unlike the equations used to
describe the solid tides, the Laplace Tidal equations include
inertia and thereby a resonant response is permitted. More
subtle is the effect of rotation which is explicitly represented in
the Laplace Equations and has the interesting effect of
scattering energy among wave numbers, such that the spectral
distribution (as well as the amplitude) of the response need not
be commensurate with that of the forcing. In this case, there is
not a single Love number relating a tidal forcing component
with the fluidʼs response. This was shown mathematically by
Hough (1898) in demonstrating that representation of the
Eigenfunctions of the Laplace Tidal Equations (now called
“Hough functions”) involve a non-trivial series of spherical
harmonics. Lindzen (Lindzen & Chapman 1969) elaborated on
this in showing that terms associated with negative eigenvalues
must be included in the series for a complete representation of
general solutions.
The general expectation is therefore that solids and fluids

will respond differently to tidal forces, and previous considera-
tion of tides on Io are therefore incomplete if the presence of a
magma ocean is accepted. In the specific application we shall
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present, there may be more similarity between fluid and solid
tidal responses than would be generally expected. The reason
for this is that we expect that the tidal response of the fluid
magma is heavily damped and the response falls in the regime
of “creeping flow” where inertial and rotational effects are
subdued by friction. Even in this case, the fluid and solid
response to tides behave differently because of the different
types of stress that each support, and because the fluid is
confined to a thin shell. Because of the difference in material
properties, a larger surface displacement is typical of the fluid
response, and because of the thin shell, relatively strong flow
speeds are required by continuity to fill these displaced
surfaces. Details of the formulation and method we use for
solving the Laplace Tidal Equations has been previously
described (Tyler 2011). Briefly, the method is a semi-analytical
approach involving a spherical-harmonic expansion and
numerical inversion of the coefficient matrix. The only
numerical parameter to be chosen is the degree for the
truncation, and this is easily taken to be a large value (500)
upon which the solution elements discussed have become
independent. While the results for this study were obtained
through full solutions of the Laplace Tidal Equations, the
reader may verify that these solutions show correct overlap
with solutions that can be obtained from a much simpler
formulation which we include in the Appendix. The simpler
formulation is derived under the advance assumption that the
response falls within the creeping-flow regime. Some funda-
mental aspects of the approach through thin-shell fluid
dynamics is also covered in the Appendix.

While the equations used here in treating Ioʼs magma ocean
are dynamically more complete than in any previous treatment
of this or a similar application, there are limitations of the
formulation and/or expected additional dynamical components
expected. An immediate assumption is that material properties
in Io, including the parameters describing the magma layer, are
radially symmetric. This is obviously a simplifying assumption.
The Laplace Tidal Equations do not require that the parameters
be symmetric but the method of solving these equations in this
study does. With this symmetry, the thin-shell (also called
“long-wave”) assumption in these equations is quickly justified
for any fluid thickness much smaller than Ioʼs radius (the
horizontal length scale of the tidal forcing and tidal response).
However, without at least a predominance in this presumed
symmetry, the thin-shell assumption may break down and the
basis for the equations used must be re-examined. Another
factor is the omission of the dynamical effect of the overlying
lithosphere on the magma ocean tidal response. This
consideration is directly analogous to that of the effect of an
overlying ice shell on a water-ocean tidal response and has
been discussed in CITE. The argument for postponing any
detailed explicit modeling of the coupled dynamical response
of the shell and fluid is the same in this study. First, if the upper
shell is relatively thin relative to the fluid thickness (e.g., as
expected for Europa), then scaling shows that the upper shell is
primarily simply floating and does not much alter the fluidʼs
tidal response. The upper shell can of course be thermo-
dynamically important in controlling the rate of heat loss, but it
is not, to first-order consideration, important mechanically in
the fluidʼs tidal response. Second, even if the upper shell is
relatively thick (e.g., as expected for Ganymede, Callisto), the
first-order effect of the shell is simply to damp the tidal
response, and this effect is therefore included (parameterized)

in such studies as in CITE or here where the damping timescale
is treated as a free parameter.

3. RESULTS

3.1. Tidal Dissipation in the Solid

For the solid tidal dissipation solutions, the general form of
the surface expression is controlled by the layer structure, and
primarily by the viscosities and thicknesses assigned. Pervious
work (e.g., Segatz et al. 1988) has suggested solid dissipation
in Io is expected primarily in a higher melt-fraction astheno-
sphere/upper mantle, with moderate heating occurring in Ioʼs
mid- and lower-mantle. Tidal dissipation from the Ionian crust
is largely negligible due to the expected high viscosity of such
a colder lithosphere, as well as due to the very small global
volume of crustal material. Ioʼs Fe or FeS core is expected to be
fully molten, with a very low viscosity, thus contributing
negligibly to dissipation from non-inertial deformation.
In Figures 1 and 2, we present six cases of solid tidal

dissipation for comparison with the fluid tidal solution. Figure 3
shows the distribution of tidal heating as a function of depth
throughout Io for the same six example cases. In each case, the
material parameters have been selected such that the total
global dissipation rate matches the nominal 2.25Wm−2 level of
observations. Previous investigations have noted that it is
difficult for solid tidal dissipation to account for all of Ioʼs
observed heat flux. By setting the totals in Figure 1 to match
observations we have taken the opposite approach and asked
what material parameters are necessary for solid tides to reach
this level. The difficulty of previous work in matching
observations with solid dissipation alone, arises due to the
necessity to stretch the expected range of viscosities and layer
thicknesses beyond values traditionally tested. We find
however that the required stretching of expectations is not
severe. Therefore it remains plausible for solid dissipation to
account for all of Ioʼs observed heat flux, however, as
demonstrated in Figure 2, such solutions represent a much
smaller volume of the space of solutions for the expected range
of parameters. In the following paragraphs we first discuss the
input parameters for these example cases, then their relative
surface heat flux patterns in conjunction with Figure 3, and
lastly we discuss their relative total heat magnitudes in
conjunction with Figure 2.
In all modeled cases, the lithosphere thickness is 20 km, core

radius 350 km, and lithosphere viscosity 1022 Pa s. These
values are maintained in all cases because the solution is
minimally sensitive to their variation. A 50 km thick zone
below the lithosphere is included to provide space for a
“magma ocean” or magma slush layer of some form to exist.
For the purpose of modeling the solid behavior in lower layers,
it is only important that such a layer exists to mechanically
decouple the lithosphere, and to demonstrate that we do not
rely upon additional solid body heating from this volume to
reach specific target values. This zone is modeled in our
propagator solution code as a weak solid using a very low
viscosity and shear modulus. This method was verified to
closely match surface Love numbers obtained for a solution
using the additional boundary conditions for a full liquid layer
solution. The solid solution below this magma ocean is not
sensitive to the choice of 50 km thickness, and solutions are
nearly identical using such magma-accommodation layers with
for example 1, 5, 10, or 100 km.
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All silicate shear moduli also remain fixed at 5 × 1010 Pa.
While solutions are more sensitive to this selection, we chose to
isolate the role of viscosity and thickness variations here for
clarity due to the large number of loosely constrained
parameters in a multilayer system. The value 5 1010× Pa is
appropriate for solid silicate material; however, above the
solidus temperature in particular this value decreases in the
partial melt regime before becoming zero above temperature at
which solid grains lose physical contact with one another
(known as the break-down temperature). Therefore we
emphasize that the 2.25Wm−2 dissipation level may also be
achieved by cases involving decreases in the shear modulus,

and the extreme low viscosity assumptions are not then
required.
Solid Cases A–D overall represent a transition from a mantle

dominated heating pattern (A), to an asthenosphere dominated
pattern (D), with Cases E and F representing results for
asthenospheres with higher thicknesses. In Solid Case A we use
a mantle viscosity 8 10ma

14η = × Pa s, an asthenospheric

viscosity 5 10ath
14η = × Pa s, and an asthenospheric thick-

ness tath = 200 km. Cases with closer-matched viscosities
between the two layers lead to similar results, as Case A
represents the solution of a near-homogeneous or homoge-
neous planet. In Solid Case B, maη = 1.215 × 1015 Pa s,

Figure 1. Surface heat flux (W m−2) distribution due to solid tidal heating for several cases with various partitions of activity between Io’s mantle and asthenosphere.
Case A: mantle dominated with polar maxima. Cases B and C: transitional, with maη raised and athη lowered to gradually attenuate the mantle response. Case D:
asthenosphere dominated, with six near-equatorial maxima. Cases A and D closely match patterns in Segatz et al. (1988), but here all of Cases A–F are adjusted to
match a baseline total global output of 2.25 W m−2. Case E: a very low viscosity asthenosphere with high (465 km) thickness, leads to further equatorial focusing of
heat. Case F: demonstration of how asthenosphere thicknesses beyond the expected range (here 700 km) does lead to further pattern variations. Note how in
transitional cases (B, C) the relative difference between maxima and minima decreases, and the patterns achieve transition by first flattening out. See text for full case
parameter details.
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athη = 1.5 × 1014 Pa s, and again tath = 200 km. In general for
solid silicates at this forcing period, decreasing the viscosity
will increase dissipation. In Solid Case C, the asthenosphere
viscosity may be further lowered in order to further the
transition to asthenosphere dominance, with values of

maη = 1 × 1015 Pa s, athη = 6 × 1013 Pa s, and tath = 200 km.
With numerous parameters across many layers involved in each
solution, there are many alternative ways to achieve a given
total heating rate and a specific pattern, and in particular
asthenosphere dominance may be driven either by lowing the
layer viscosity or by increasing the layer thickness. As an
example, Case C may also be achieved using maη =
1 10 Pa s15× , athη = 1 × 1014 Pa s, and tath = 251 km. Solid
Case D represents the classical asthenosphere-dominated six-
maxima pattern described by previous works (e.g., Segatz et al.
1988). To reach the 2.25Wm−2 total heat flux rate with this
pattern, we invoke maη = 2 × 1015 Pa s, athη = 1 × 1014 Pa s, and
tath = 385 km. In general the viscosities used in these cases are
low, and the asthenosphere thicknesses are high, as discussed
in detail below. In agreement with the fully general solution
range reported by Beuthe (2013), in Solid Cases E and F, we
demonstrate that Case D is not a true end-member of the range
of surface heat flux patterns possible for Io. We find that Case
D has been concluded to be an end-member previously only
because it is characteristically associated with asthenospheres
of a specific moderate depth. The full range of surface heat flux
patterns achievable due to solid dissipation is better character-
ized as a cycle, driven by the thickness of any upper high-
dissipation layer akin to an asthenosphere. In the general
solution, this upper layer may be another material such as ice,

or a low viscosity silicate, and the total system behaviors is
independent of the total planet size. Patterns such as Case A are
characteristic of a homogeneous or near-homogeneous planet,
where the peak in solid tidal heating with depth occurs in the
center of the primary layer. Patterns such as Case D, E, and F
are characteristic of situations where a high dissipation upper
layer exists, and peak tidal heating occurs as a sharp spike at
the layer interface. The cause of the final patterns is a complex
result of blending the weighted sum of the tensor products for
normal and shear stresses at each location throughout a body. A
full discussion of this behavior is beyond the scope of this
paper, but is treated to some degree (Henning & Hurford 2014).
A simple understanding of the range of patterns is that shear
stress terms, which lead to greater polar heating, dominate for
situations such as Case A, and structures such as Case D
involve a more even blend of shear and normal stress
contributions.
Solid Case E uses maη = 1 × 1016 Pa s, athη = 1 × 1014 Pa s,

and tath = 465 km, while Solid Case F uses maη = 1 × 1017 Pa s,

athη = 2.2 × 1014 Pa s, and tath = 700 km. Case E is likely near
the limit of realistic asthenosphere depths possible for Io, and is
interesting for the increased equatorial focusing of heat
compared to Cases A–D. The 700 km asthenosphere thickness
of Case F is unlikely to be realistic, and is presented here to
demonstrate how the physical system continues through a
further range. The pattern in Case F is nearly the exact inverse
of Case B. Similarly, as tath is increased further the full cycle of
solid tidal solutions includes cases that are the exact inverse of
Case A and Case D, however the material layer structures
leading to these solutions are often unrealistic. Figure 3 shows
how these Cases fit together as part of a cycle. As astheno-
sphere depth is increased to high values, eventually this layer

Figure 2. Solid tidal dissipative heat flux (Log10 scale with a basis of 1 W m−2)
shown as a function of T Td F (ratio of dissipation timescale to tidal period) and
c/cr (where c is proportional to the square-root of the asthenospheric layer
thickness h, and cr is the equatorial rotation speed). These coordinates are
chosen for comparisons with the fluid-tide case and are given here a subscript
“s” to distinguish them. The lower and upper horizontal lines (magenta)
correspond to the assumption h = 20 km and h = 500 km, respectively.
Vertical lines correspond to viscosities of1 1012× and1 1015× Pa s. The solid
curve (blue) corresponds to the value matching the observed heat flux, taken
here to be 2.25 W m−2. The mantle viscosity is assumed to be 1 1017× Pa s,
and the mantle and asthenosphere rigidity is 1 × 1010 Pa m4. Simultaneous
weakening of the shear modulus along with viscosity during melting, although
not included in this figure, is found not to alter the figure’s morphology. The
system is insensitive to the core size of 350 km and lithosphere thickness
of 20 km.

Figure 3. Radial dependence of solid body tidal heating in Io, for the range of
cases from Figure 1, with gradually increasing dissipation in a low-viscosity
asthenosphere. Peak heating for the near-homogenous structure of Case A
occurs mid-layer. When a low viscosity upper layer is introduced, peak heating
occurs discontinuously at the asthenosphere-mantle interface. Heating due to
tangential shear stress components dominates for the mid-layer peak of Case A,
leading to polar maxima in surface heat flux. As any high dissipation top layer
is expanded throughout the body (e.g., Case F), the form of the solution begins
to return to the homogeneous solution. We consider Case B a primary
candidate to blend with fluid tidal heating, in order to supply heat for polar
volcanoes, yet still contain a modest asthenosphere. Heat rates are shown in
W/m to eliminate the effect of the increasing volume of material at higher radii.
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must consume the entire volume of the planet, and the solution
must return to the homogeneous case. Case F begins to show
this behavior, as a mid-layer peak in heating re-emerges when
the weaker top layer reaches approximately half of the total
solid radius.

A material viscosity of 1013 Pa s is low for silicates,
particularly in comparison to values such as 1020–1024 Pa s
expected for Earthʼs mantle (Mitrovica & Forte 2004). Silicate
viscosities in the 1012–1015 Pa s range are however commen-
surate with values achieved by the melting parameterizations of
Moore (2003) and Fischer & Spohn (1990), following
experimental data by Berckhemer et al. (1982), for tempera-
tures at or near the solidus, as well as the bulk viscosity of
silicate partial melts in the 0%–40% melt fraction range.
Therefore the values tested here are compatible with a possible
deep system of partial melt veins, heat pipes, and native solid
rock at, or just, above the solidus temperature.

Asthenosphere thicknesses of 200–500 km are high com-
pared to values of 50–100 km often considered for Io, however,
Moore (2001) demonstrates that it is reasonable for melt
production and transport to be occurring in a 500 km thick
layer on Io. Moore (2001) also shows that Io is likely to
contain a gradual continuum of melt fractions varying with
depth, making it difficult to declare where the layer boundary
for an asthenosphere based on viscosity will exist. We have
performed some simulations of systems with high numbers of
solid layers, including continuum gradations of viscosity with
depth. Such models show that total solid dissipation is strongly
controlled by the lowest-viscosity uppermost layer, and
therefore solutions such as Cases A–F change only moderately
when gradations are introduced below the asthenosphere-
mantle boundary. A full discussion of such parameter
gradations is beyond the scope of this paper and is the subject
of ongoing work.

In Section 4, we discuss the relative fraction of the total
expected parameter space for solid body heating that does or
does not fulfill the observational requirement of approximately
2.25Wm−2 in global tidal heat output. In general, while
solutions such as Cases A–F that satisfy this heat level are
possible, there is a much wider range of solid body solutions
that fall far short of the observed total heat. This key feature of
the solid body tidal heating physics for Io is strong motivation
to consider fluid layer tidal heating as an additional source of
energy. Note that it is possible to achieve the patterns shown in
Figure 1 for a wide range of total heat magnitudes, because the
patterns are primarily a result of the layer thicknesses and ratios
of layer viscosities, and not a function of the absolute value of
viscosities themselves.

In all solid heating cases heat generation is symmetric about
the subjovian point, and thus unable to explain any systematic
longitudinal offset of volcanism (e.g., Kirchoff et al. 2011;
Veeder et al. 2012; Hamilton et al. 2013) without further
invoking convection asymmetries and/or crustal inhomogene-
ities that may have been imprinted in Ioʼs geological history.

3.2. Tidal Dissipation in the Fluid

In Figure 4, we show the rate of work performed by the
temporally fluctuating (tidal) gravitational field of Jupiter as
projected onto a globally extending fluid layer of uniform
thickness (h), located near the surface of Io. The tidal work
here represents the average over the globe and over a tidal
cycle, and is equivalent to a similar temporal and spatial

average of the tidal dissipation. The equivalence of the integrals
of work and dissipation in solid tidal models is the result of
total energy conservation, together with the assumption that an
equilibrium has been reached. But in the case of fluid tidal
heating, this equivalence is not required locally because there
are also advective fluxes of energy within a fluid system. We
furthermore assume that the total tidal dissipation is equivalent
to the rate of heat production and that this is presented at the
surface as a heat flux. While these additional assumptions are
not required in discussing the global tidal response solutions
calculated, the translation to surface heat flux values is included
to ease the discussion and reference to observations.
The left panel (A) in Figure 4 shows a solution-space

diagram in which 70,000 tidal response solutions are calculated
to provide the average “heat flux” as a function of two
unknown parameter coordinates c cr and T Td F :
The parameter Td is the timescale for momentum loss from

the fluid layer. As described in the Appendix, Td Fω α= ,
which is the ratio between the forcing and attenuation
frequencies. The parameter represented by the ratio T Td F ,
where TF is the forcing (tidal) period, is then a non-
dimensional timescale associated with the dissipation and is
related to the familiar “quality factor” Q. But use of Q as a
fundamental parameter is avoided here because of potential
confusion stemming from, among other things, the fact that Q
often does not have a unique definition in problems where there
can be multiple definitions of the system energy. In the case
here, it is an arbitrary choice of whether potential energy
should be included as part of the system energy. And if it is
included a further choice is whether it should be defined with
respect to the time-varying or time-averaged geopotential.
The parameter c is the wave speed (unknown) appropriate for

the fluid, and cr is the equatorial rotation speed (74.9 m s−1).
The parameter represented by the ratio c cr is then a non-
dimensional wave speed describing how well the dynamical
adjustments in the fluid can keep up with the phase propagation
of the forcing. In the standard shallow-water relationship
(assumed here), c gh( )1 2= and therefore c depends on the
gravitational acceleration g (1.80 m s−2) and the thickness h
(unknown) of the fluid layer. In this initial study, no attempt is
made to examine potentially appropriate modifications to this
simple relationship to include stratification, effects associated
with multiple phases in the fluid, or effects due to mass-loading
or flexure of the crustal layer above. It is expected that some of
these additional effects can be included as shifts in the effective
values of c cr and T Td F , which in either case remain only
loosely constrained.
The “picket fence” of features in the lower right of Figure 4

(A) describes the resonant excitation of a primary mode by the
degree-2 tidal force, and the scattering of this energy through
harmonic components due to Ioʼs global rotation. These
resonances survive only in the weakly damped situation,
which we do not expect for the flow of a partial-melt magma
where it should be expected that there is strongly effective
viscous and form drag. The broad peak seen across the left of
the diagram is probably not best described as due to a
resonance because for these parameter values the hyperbolic
(wave-like) governing equations have approximately merged
with parabolic (diffusive) forms describing creeping flow (see
Appendix for a detailed description). The fact that there is a
peak (as opposed to a simpler monotonic dependence on
parameter coordinates) can be understood as the interplay of
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the following competing effects: the parameter T Td F is simply
equal to twice Q (under the definitions described in the
Appendix), and while Q is sometimes called the “dissipation
parameter,” Q does not alone control the amount of dissipation
in the case of fluid tidal heating. The dissipation/heating rate
would increase monotonically with decreasing Q only if the
kinetic energy of the solution remained the same in all
solutions. In fact, within this region of the parameter space, a
decrease in Q (an increase in damping) leads to less kinetic
energy in the solution and the peak seen is due to the
combination of these two competing tendencies.

The solution-space (Figure 4(A)) provides a generic
description of the dependence of the heating rate on the
nondimensional timescale for dissipation and the propagation
speed associated with a primary uncoupled wave speed in the
fluid layer. But this large generic parameter space can be
constrained by both observations and specifications of physical
processes.

Results in Khurana et al. (2011) demonstrate that Io has at
least 20% melt over a thickness of at least 50 km. We take this
as a soft constraint on h from which we assign h = 10 km and
h = 50 km as the expected minimum and maximum values.
This assumes that we can safely collapse a partial melt layer
into the equivalent thickness of a pure fluid layer for purposes
of the computation of tidal work. These limits on h are
transposed to limits on the wave speed ratio coordinate c cr in
Figure 4, under the simple shallow-water assumption described
above, and the solution is then constrained to fall between the
horizontal (magenta) lines included in the diagram. The
observed heat flux, taken here to be 2.25Wm−2, or
equivalently a global total of 93.8 terawatts (TW; Lainey
et al. 2009), provides another constraint, requiring that the
solution fall on or exterior to the solid (blue) curve shown. The
solution must, however, remain close to the contour if we
restrict our attention to solutions that contribute a significant
fraction of the observed heat.

Figure 4. Left panel (A): Fluid tidal dissipative heat flux (Log10 scale with a basis of 1 W m−2) shown as a function of the unknown parameters T Td F (the
dimensionless dissipation timescale) and c/cr (the dimensionless dynamical wave speed which depends on the fluid layer thickness h). The lower and upper horizontal
lines (magenta) correspond to the assumption h = 10 km and h = 50 km, respectively. The solid curve (blue) corresponds to the value matching the observed heat
flux, taken here to be 2.25 W m−2. The upper and lower astrices describe end-member scenarios for which the associated spatial distributions of the heat flux are shown
in the respective upper and lower right panels (B) and (C). Stars in the right panels show the locations of dark floored paterae from Veeder et al. (2012), with symbol
sizes scaled to their power output.
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From these constraints, two end-member solution scenarios
are selected (shown by green astrices). The parameter
coordinates are (T Td F = 0.32, c cr = 4.0) and (T Td F = 2.4,
c cr = 1.8), which correspond to the dimensional coordinates
(Td = 17 hr, h = 10 km) and (Td = 2.2 hr, h = 50 km), where
the dimensional dissipation timescale Td may be interpreted as
the amount of time required for the fluid to come to rest if tidal
forcing were suddenly turned off. It would be very useful if an
independent constraint on Td could be estimated. Our attempt
toward this has not been helpful, however, because of the large
range of viscosity values possible and the uncertainties on how
best to parameterize form drag for this case. We may note,
however, that the range (T Td F = 0.32–2.4) meeting the other
constraints does not appear to be unreasonable. Interestingly,
this range also straddles the value T T 1d F = (Q = 0.5),
describing the critically damped situation in which restoration
of equilibrium is most efficient and may be the result of
feedbacks.

The result we have described above in this section pertains
only to the total (or average) tidal heat associated with a wide
range of potential parameter scenarios. In this case only one
number represents each scenario. Of course there are further
aspects to the tidal response solution, some of which may be
used for further comparisons with observations, or to provide
distinguishing features of the fluid response that may be used in
future tests to separate fluid and solid responses. A distinguish-
ing element of the fluid response which also has an
observational basis for comparisons is the spatial distribution
of the heat generated. We provide here examples (Figure 4,
right panels) corresponding to the end-member scenarios
shown by the green astrices in (left panel). Solutions between
these two scenarios (and following the blue curve) show a
gradual focusing of heat generation toward the equator as c cr
(thereby h) is decreased, and an asymmetric shift along
longitude becomes more pronounced. This shift will be further
discussed in Section 4.

4. DISCUSSION

The results of this study show that either solid-body tidal
dissipation or fluid tidal dissipation can account for Ioʼs
observed surface heat flux; however, it is also possible that both
of these processes operate simultaneously. In this section, we
first examine the implications of each of these mechanisms
operating independently and then consider scenarios in which
they combine together.

4.1. Solid Tidal Dissipation Only

Let us first demonstrate that for some restricted set of
parameter choices, solid tidal dissipation acting alone can
supply the average Ionian heat flux, taken here to be nominally
2.25Wm−2. Figure 2 shows a parameter space of solutions for
the solid tidal dissipation for Io. The coordinates are derived
from the two most important controlling parameters for the
solid, athη (material viscosity) and h = tath (asthenosphere
thickness) and are intended to facilitate comparison with the
solutions for fluid tides in Figure 4. For the abscissa, we
generate a damping timescale Td from the material viscosity

athη assuming Td = A ath
1ρ η − , where ρ is the material density

(taken here to be 3500 kg m−3), and A is the surface area
involved in viscous action, in this case the constant top area of
the asthenosphere. Note that a subscript “s” refers to “solid”

and is attached to emphasize that the parameters cs and Td s,
have a necessarily different basis of formulation in the solid
and fluid cases. The axis c cr is constructed from h just as in
the fluid case, but one should note that the interpretation of h in
the fluid case was that h represents only the fluid fraction of the
asthenosphere. Hence, the potential range for h in the fluid case
used a smaller expected upper value than in the solid case here.
Mantle viscosity is assumed to be 1017 Pa s, keeping mantle
tidal contributions very low. High mantle dissipation leads to a
plateau in the heating rate across the lower left corner of the
Figure where asthenosphere activity otherwise tapers off. Note
that this Figure models only dependence on viscosity for the
purpose of comparison with the fluid, and does not include the
impact of melting and the loss of shear strength that occurs
generally for silicate systems much below η = 1012 Pa s. Thus
in practice, to understand low viscosity behavior, it is necessary
to switch to the fluid solution.
By this same scaling of Td, the 5 hr damping timescale of the

preferred solution from Figure 4 translates to a fluid system
effective viscosity of ∼7 × 1012 Pa s. However, this effective
viscosity it is not straightforward to assess because it would
result from a combination of form drag, material viscosity, and
boundary-layer friction. The material viscosity of magmas is
generally in the range from 1 to 100 Pa s, but it may not be
unreasonable for such a fluid shifting within a solid matrix at
tidal frequencies to achieve the effective interphase value
above.
Figure 2 shows that the space of solutions includes solutions

(lying on the blue curve) producing the observed 2.25Wm−2.
A subset of these solutions also fall within the expected range
for h (20–500 km) shown by the horizontal (magenta) lines. A
significantly smaller subset of these also fall within the range
for the expected material viscosity (1012–1015 Pa s), shown by
the vertical (magenta) lines. In short, solid tidal solutions
produce the observed heat flux but only for a very restricted
range of the potential parameter combinations.
Viscoelastic solid systems are well known (e.g., Nowick &

Berry 1972) to exhibit a form of material resonance (even with
inertial terms neglected), whereby there is a forcing frequency
or equivalently a temperature or pairing of viscosity and shear
modulus, at which maximum viscoelastic response occurs. This
behavior is evident in any horizontal cross-section of Figure 2.
While one might expect that the global total of solid tidal
heating would simply increase with increasing thickness of the
active layer, we find that the solid system is also able to cross
the apparent resonance band in the response by changing h
alone (where h in this context is the same as tath). This occurs
due to the focusing of stress at the bottom of the asthenosphere
layer, which rises sharply as the resonance thickness is crossed,
but which is also convolved with the changing volume of
material in tidal action as h varies. This behavior may partly be
seen in Figure 3, although viscosity is not held constant in these
cases. A modest number of calculation steps (15–20) through
such layers are necessary to resolve this behavior. Very weak
branching bands also exist in Figure 2 due to similar inter-layer
changes in the relative magnitude of stress concentrations (e.g.,
in the middle left of the phase space) but these features are too
faint to control the global tidal behavior.
Figure 2 highlights the similarities of the solid and fluid

analytical solutions. Both lead to a primary band of elevated
heat flux controlled by the layer thickness and damping, with
similar orientation and magnitude of variation. The solid
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solution resembles the creeping flow limit of the fluid solution,
but lacks the “picket fence” of finer fluid resonances at lower
thicknesses. A key difference occurs where the expected
solution for Io is placed relative to the resonance band.

In the solid case, the expected range of parameters (roughly
athη = 1012–1015 Pa s, and tath = 20–500 km) places the result
in the mid-upper left of the figure, but below the resonance
band, including only part of the lower shoulder of the band.
The peak dissipation rate of the band is somewhat beyond the
expected tidal heating range. This explains the idea that solid
dissipation, while capable of generating the observed tidal heat
rate of Io, only achieves this rate of activity in a small corner of
the expected parameter space, while the majority of the
expected solid solutions lead to insufficient heat. If only athη
and tath are considered, this location of the solid solution would
seem subject to unstable feedback: higher tidal activity would
increase partial melt, shifting the system to lower viscosity and
higher h, up the shoulder of the resonance band toward greater
dissipation. Less heating would lead to runaway cooling. These
behaviors are, however, interrupted by feedback with con-
vective cooling (Moore 2001), which leads instead to stable
solid tidal-convective equilibria at modest melt fractions.

Regarding the global distribution of the heat flux, the solid
tides appear unable to produce the longitudinal offset inferred
from observations. The mathematical reason for this is
discussed in Section 4.4.1.

4.2. Fluid Tidal Dissipation Only

Figure 4 illustrates that a global magma ocean treated as a
fluid subject to the Laplace Tidal Equations also produces the
observed average heat flux for a subset of the parameter
coordinates (blue curve). If, as expected, the fluid is over-
damped (i.e., T T 1d F < ), then the solutions to these complete
equations converge with solutions obtained for a simpler set of
equations describing creeping flow (see Appendix). Because
this convergence is expected only asymptotically (i.e.,
T T 0d F → ), rotational/inertial aspects of the fluid behavior
differing from the solid case are present even in the
overdamped case.

Regarding the global distribution of the heat flux, the fluid
tides are generally not symmetric with respect to the antijovian
meridian because rotation causes the propagation speed of fluid
adjustments to depend on whether the propagation is eastward
or westward. Solutions are included (e.g., the low-h example in
Figure 4), which can explain the observed offset and also agree
with other constraints. In summary, the fluid tides, even if
acting alone, can provide solutions in agreement with the
observed heat flux amplitude as well as the meridional offset of
the distribution, and unlike solid-tidal dissipation, may do so
over a relatively broad span of their plausible parameter space.

A feature of the full set of the solutions shown in Figure 4, is
that eccentricity driven tides are focused at the equator and
therefore there is reduced ability in explaining inferred heat
fluxes near the poles. However, in the case of obliquity driven
tidal forces, the fluid tidal response is focused at the poles
rather than the equator. Although the heat fluxes associated
with the obliquity tides have also been calculated and studied in
this research, they have not been presented here as the
amplitudes are too small to be significant. The latter
calculations assume only the very small value for the obliquity
of 0◦. 05 consistent with a Cassini state following Bills (2005).
It is possible that a higher obliquity (possibly in episodes)

together with the observed eccentricity create a fluid tidal
dissipative heat flux in agreement with both the equatorial and
polar distribution of heat fluxes inferred from observations. But
for the present eccentricity and expected Cassini-state obli-
quity, fluid tides do not readily account for the distribution of
heat flux at high latitudes.

4.3. Consideration of Feedbacks Promoting Simultaneous
Solid and Fluid Tidal Dissipation

We now discuss the potential coexistence of both solid and
fluid tidal heating at significant levels. While there may be the
somewhat singular case where both processes simply happen to
provide comparable heat levels, we note that this coincidental
match seems unlikely given the large potential ranges of each.
Of interest here is to decide whether one process may promote
the other such that both occur simultaneously at significant
levels.
The stability in time of individual parameter states may first

be addressed using the parameter-space solutions for either the
solid in Figure 2, or fluid in Figure 4. These Figures compactly
describe heat fluxes associated with various parameter
coordinates, but are also useful for estimating which parameter
coordinates are stable against perturbations in the layer
thickness (h). While these parameter spaces describe solutions
that are consistent with equations, many parameter coordinates
are unstable configurations in time due to feedbacks. First
consider solid-body solutions that fall on the lower-h side of
the elevated heating ridge in Figure 2. A perturbation
increasing the asthenospheric thickness h then leads to higher
heating rates, or equivalently higher heating will lead to more
magma production and a larger h. This is an unstable feedback,
which is ultimately only halted by a separate process involving
convective cooling. Stable points in Figure 2 reside on the
upper side of the heating ridge rather than the lower side, where
increasing h will decrease solid-body heating. The same
feedback applied to fluid tides shows that candidate solutions
discussed in the fluid case are stable when they fall on the
upper side of the ridge in Figure 4.
In one example, coexistence of solid and fluid layers in some

form is favored whenever solid-body tidal heating is significant
enough to produce magma. Solid tides are well known to
exhibit feedback with convective cooling (Moore 2003) which
typically regulates their incidence to a mid-valued melt fraction
when a layer is considered in aggregate. Moore (2003) predicts
this equilibrium melt fraction to be in the range of 40%–60%,
near the material breakdown temperature. Even if a given layer
is cooled by advective transport of heat upwards by heat pipes
and melt separation, the same feedback exists, as cooling
becomes more vigorous with increasing melt availability. The
fact that solid-body tidal activity naturally evolves to such a
melt fraction range, the same range where fluid and solid
activity are both likely to have similar heat rate magnitudes,
greatly elevates the probability of simultaneous occurrence
above a purely random pair of solutions from each space of
solutions.
Given tidal forcing as strong as at Io, there are only two

pathways to eliminate solid-body tidal heating: first by the
body becoming too hot, and second by becoming too cold.
Peale et al. (1979) found that global effective silicate
viscosities in the warm range of partial melting (e.g., 1012–
1016 Pa s) are needed to explain Ioʼs tidal heating via solid
friction. However, if the cool (or high pressure) viscosity range
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typical of Earthʼs upper mantle, 1019–1023 Pa s (Mitrovica &
Forte 2004) is applied to Io, the result is negligible solid
heating. The hot pathway includes co-existence of solid and
fluid layers, and occurs through a thermal runaway, whereby a
large fraction of the mantle is converted into melt, such that the
bulk material viscoelastically decouples from its material
resonance with the forcing frequency (Peale et al. 1979). There
are two arguments against this behavior driving present
conditions on Io. First, convective cooling prevents this
runaway process from occurring in full, and leads instead to
equilibrium at a modest melt fraction. Second, even if runaway
melting could occur, it leads to high thickness liquid layers that
are not favorable to fluid-body tidal dissipation and subsequent
replacement of the solid-tide heat source. Therefore elimination
of solid-body tidal activity via this hot pathway is implausible.

Any cold pathway to eliminating solid-body tidal heating but
still preserving fluid heating presents challenges. It is
impossible in thermal equilibrium to have a hot magma layer
above a colder layer. The weak role of pressure on Io also
makes the rise in the melting (solidus) temperature with depth
quite gradual. Thus material directly below any magma layer
on Io would be at nearly the same temperature and pressure,
and therefore within the regime of near-solidus viscosities
where solid-body tides are strongest. The shallow rise in
solidus temperature with depth will also mean that this near-
solidus state would remain true over a significant thickness,
even if temperature rose no higher all the way to Ioʼs core.
Given that a 100% melt fraction layer is unlikely to begin with,
more likely is a gradual transition in depth of a magma-slush
partial melt layer into near-solidus material below. Again, such
a configuration meets both the criterion of coexistence of fluid
and solid material, as well as solid material in the near-solidus
and partial melt viscosity range where solid-body heating is
strongest. Only the volume of solid material in the appropriate
viscosity range remains in question, and most melt transport
and percolation models (Spiegelman 1993; Moore 2001) favor
a high transition zone thickness commensurate with the
200–500 km needed for significant solid-body tides. The only
plausible mechanism to have a high melt fraction magma layer
immediately underlain by solid material at very high viscosity
is for a radical change in composition. Therefore most cold
pathways to eliminating significant solid-body tidal heating
also require cooling the moon so far as to also eliminate fluid
layers. Clearly eliminating both sources of heat would fail to
match observations.

Next, consider interactions between solid and fluid processes
over Ioʼs history. Any fluid within Io must have an origin.
Fluid may either persist since Ioʼs formation, or be produced by
later melting of solid material. At one extreme, consider a case
where solid tidal heating is fully absent, perhaps due to a very
high (cool interior) solid viscosity. Very low solid-body tidal
heating would be expected to result in near zero magma, thus
near zero fluid heating, analogous to Earthʼs inactive moon
today. Any fluid heating occurring without present day solid-
body heating on Io would therefore be required to have
remained fully self-sustaining, without any interruption, since
just after the formation of Io, or alternatively would still require
an episode of solid tidal heating in the more recent past as a
trigger. A model whereby Ioʼs present magma ocean is a small
remnant of a largely fluid interior that has been crystalizing
gradually over solar system history is untenable, as fluid-body
tidal heating is only efficient for thin layers, and therefore any

high fluid-volume initial conditions 4.5 Gyr ago will rapidly
crystalize back to a mostly solid body, with a thin (efficient for
fluid tides) magma layer. A glancing impact and the resulting
obliquity and spin interruption could provide a recent trigger.
Evidence for such impacts on Io are however rapidly erased
given Ioʼs high global resurfacing rate, and surface age of ∼1
million years (McEwen et al. 2000, 2004).
Fluid heating has the property that once it has begun to occur

at a significant rate, it prevents the freezing out of the layer
involved, since thinner layers lead to greater heating, and this
feedback can stabilize the activity at an equilibrium rate. While
thin fluid layers do promote the endurance of fluid tidal activity
through this feedback, their very small fluid-layer volume is
highly vulnerable to freeze-out if orbital oscillations cause any
era of decreased tidal forcing. A thin layer of only a few
kilometers, linked to the surface by magma heat pipes, is liable
to crystalize in only a few million years if its tidal impetus is
temporarily removed. This issue leaves little room for error in
attempting to sustain fluid tidal heating within Io for all of solar
system history, without the assistance of solid-body tidal
heating as a way to replace magma. A fluid-only model
therefore prefers steady orbital forcing, and fluid heating may
have difficulty restarting after lower eccentricity excursions in
the widely oscillating orbital behavior of the Galilean Laplace
system (e.g., Fischer & Spohn 1990; Hussmann & Spohn
2004). In contrast, solid tides have the ability to restart after
eccentricity is restored. The fact that fluid tides are not robust
against low eccentricity orbital variations over the past 4.5 Gyr,
causes a strong preference for models where solid and fluid
tidal activity occur together. The arguments here ignore
obliquity driven tides and some reconsideration is required if
Io is allowed much larger obiquity values than the present.
Lastly, we ask whether or not fluid tidal heating may cause

the known process of tidal-convective equilibrium described
above to become unworkable. For a case of Io in solid-body-
tidal-convective equilibrium, all that is required for the system
not to evolve out of such a range is that subsequently occurring
fluid heating is not so great as to carry the system on a runaway
to a 100% melt fraction. But such a runaway for the fluid
system cannot occur, because evolving to a greater thickness of
even hotter material would mean moving within Figure 4(A),
upwards and to the right of any prior solution (e.g., the
preferred solutions marked). This, however, would decrease the
fluid heat output. Thus both the solid-convective and fluid tidal
behaviors regulate the system away from complete thermal
runaway, and fluid-body tidal heating does not perturb out of
existence the tidal-convective equilibrium described by pre-
vious authors. Instead, fluid tides will merely shift the
convective-equilibrium temperature (and thus melt fraction)
to a slightly higher value. One may imagine a fluid-body tidal
heating peak superimposed upon Figure 1 of Moore (2003),
between the solidus and breakdown temperatures. Linear
summation of such a new fluid heat source peak with the peak
for solid-body tides would thus shift the total-tide-versus-
convection equilibrium intersection to a higher temperature,
with the magnitude of shift depending on the unknown fluid
dissipation rate. In theory, a dual peak of both solid and fluid
tides could lead to a pair of stable tidal-convective equilibria,
akin to the dual-peak states described in Henning et al. (2009)
for the Burgers rheology. In practice however we find that few
plausible parameter cases separate the maxima temperatures of
the two processes far enough for this to occur. Therefore
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adding fluid-body tidal heating to Io maintains the mechanism
of tidal-convective (or tidal-advective) equilibrium, and will
lead to equilibria at a modestly higher temperature and higher
melt fraction, determined by the magnitude of the fluid
dissipation term.

We therefore find numerous feedback mechanisms and
coexistence arguments that favor the simultaneous production
of similar levels of solid and fluid tidal heating within Io. The
simplest summary of this conclusion comes from the very
notion that a partial melt layer, gradually decreasing in melt
fraction with depth, is by its very nature an ideal environment
for both sources of heat, with fluid heating favored in upper
high-melt fraction levels, and solid-body tidal heating favored
in lower low-melt fraction levels. The dimensions
(200–500 km), temperatures, and melt fractions (∼0%–50%)
of such a region are commensurate with the high heat rate
solutions for both processes. Feedback between both tidal
inputs and convective (or advective) cooling will also strongly
drive Io to a stable temperature equilibrium at just such a global
state. Stable equilibrium in the thickness of such a layer is also
favored by both processes, with no tendency for unstable
runaway of asthenosphere thickness to either 0 km or RIo. Both
fluid and solid heat sources favor the creation and continued
existence of the other, while eliminating one heat source
without eliminating both (via hot or cold extremes) is very
difficult to achieve.

4.4. Comparison Between Model Predictions
and Observations

4.4.1. Solid-body Tidal Dissipation

Solid-body tidal heating models can reasonably explain Ioʼs
total power output, but the predicted distributions of surface
heat flux exhibit significant inconsistencies with the observed
locations of volcanism. For instance, if tidal heating dom-
inantly occurs within the deep-mantle, then the overall pattern
of heat flux at the surface is expected to have maxima near the
poles and be relatively low near the equator (Figure 1).
Assuming that volcanism is correlated with expected surface
heat flux, this result is inconsistent with observed concentra-
tions of volcanic centers on Io at low-latitudes (Lopes
et al. 2004; Williams et al. 2011a, 2011b). Solid-body tidal
heating within the asthenosphere offers an improvement, in that
these models predict enhanced heat flux near the equator with a
spherical-harmonic degree-2 pattern centered along the tidal
axis (Figure 1). This prediction generally agrees with the
results of spherical harmonic analysis applied to the distribu-
tion of mountains and volcanic centers on Io in that they exhibit
statistically significant power at degree-2, with concentrations
in spatial density at low latitudes (Kirchoff et al. 2011). This
result implies an important role for tidal heating within the
asthenosphere, but these solid-body models fail to account for
observed asymmetry in mountain and volcano concentrations
relative to the tidal axis (Kirchoff et al. 2011; Veeder
et al. 2012; Hamilton et al. 2013). Additionally, major volcanic
systems on Io such as Loki Patera (13°N, 309°W), are located
in relative minima in the near-equatorial surface heat flux
pattern predicted by solid-body tidal dissipation in the
asthenosphere. Loki Patera is often treated as an anomaly
among Ioʼs 133 dark floored patera because it covers only 0.07%
of Ioʼs surface area yet accounts for 10%–20% of Ioʼs total heat
flow (Veeder et al. 1994). However, other major volcanoes such

as Tvashtar (64°N 128°W), Dazhbog (55°N 302°W), Thor
(39°N, 124°W), Amerasu (38°N, 307°W), Daedalus
(20°N 307°W), Creidne (53°S, 342°W), and Catha
(54°S, 102°W) paterae (Lopes et al. 2004), together accounting
for nearly a quarter of Ioʼs total power output (Veeder
et al. 2012), are also poorly reconciled with conventional model
predictions. These discrepancies provide a strong indication that
the conventional solid-body tidal dissipation models provide an
incomplete description of Ioʼs internal heating mechanisms.
Note that the symmetry in maps of solid-body tidal heating

about the subjoin point arises mathematically due to the simple
cosine symmetry of the disturbing potential function in
longitude when at pericenter or apocenter, combined with the
fact that dissipation, always positive for both positive and
negative potential excursions, is equal in magnitude across the
surface for a given mean anomaly ahead and behind pericenter.
Therefore the orbital integral of ideal solid heating is always
symmetric.

4.4.2. Fluid-body Tidal Dissipation

Dissipation of tidal energy within fluids in Ioʼs astheno-
sphere provides an alternative to the classical solid-body tidal
heating approach. Figure 4 provides examples of expected
surface heat flux patterns for an asthenosphere in two regimes
that could account for global power output for Io. In the
creeping flow regime, patterns of predicted surface heat flux
resemble those for the asthenosphere-dominated solid-body
dissipation cases shown in Figure 1, with the same strengths
and weakness in terms of matching observed distributions of
surface features. However, in the more fluidal case, there are
differences that dramatically improve the fit between predicted
surface heat flux patterns and the observed distribution of
mountains and volcanism. The overall pattern of surface heat
flux in the more fluidal case still shows a near-equatorial
concentration, but the degree-2 maxima are located closer to
the centers of the trailing and leading hemispheres. Secondary
maxima are also located ∼30° to the east of the tidal axis. This
pattern of expected surface heat flux provides a much better
agreement with the calculated locations of volcano clusters on
Io (Kirchoff et al. 2011; Veeder et al. 2012; Hamilton
et al. 2013) and the observed distribution of major volcanoes
including Loki Patera. For example, among the fourteen largest
volcanoes on Io, which account for nearly two-thirds of the
global power output, all but Tvashtar and Catha paterae show a
close spatial association with regions of enhanced surface heat
flux expected from fluid tidal dissipation in the asthenosphere.
Nonetheless, there are many smaller volcanoes at high latitudes
that are poorly described by this model, which raises the
question: could both fluid-body tides in the asthenosphere and
solid-body tides in the deeper mantle combine to produce the
observed distribution of heat production and volcanism on Io?

4.4.3. Combined Fluid- and Solid-body Tidal Dissipation

Figure 6 provides an example of a combined case in which
50% of Ioʼs total heat comes from fluid-tidal dissipation within
a relatively fluid asthenosphere and 50% comes from solid-
body dissipation in the deep-mantle (these source depths are
shown schematically in Figure 5.) This combined model
predicts enhanced heat production and melt generation at low
to mid-latitudes, and is consistent with the observed concentra-
tion of volcanoes near the equator. Additionally, the thin
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asthenospheric layer of interconnected partial melt in this
model could promote the interaction between the densely
populated volcanic hotspots in this region. This is consistent
with the observation by Hamilton et al. (2013) that hotspots in
the near-equatorial third of Io appear self-organized into a
repelled distribution and that volcanic systems in this region
may tend toward a maximum packing arrangement due to a
resource (i.e., magma) scavenging process. Additionally, the
combined model exhibits an eastward offset in surface heat flux
maxima relative to the tidal axis by the ∼30°, which provides
excellent agreement with the location of Loki Patera and other
major volcanoes (see discussion above for the relatively fluid
asthenospheric case). The addition of a deep-mantle compo-
nent in this combined model also extends the range of
enhanced tidal heating further toward the poles, thereby
helping to reconcile the location of Tvashtar Patera. Addition-
ally, if melt feeding these high latitude volcanoes comes from a
separate deeper-source, then the combined model may explain
the observation that volcanoes at high latitudes (poleward
of±19◦. 47) exhibit a homogeneous Poisson (i.e., random)
distribution, consistent with independent formation (Hamilton
et al. 2013).

In addition to the improved agreement between predicted
surface heat flux patterns and the distribution of active
volcanism, there are some improvements with respect to
mountain distributions as well. Kirchoff et al. (2011) identified
a statistically significant anti-correlation between the degree-2
pattern of volcano and mountain distributions on Io. Using a
conventional asthenospheric-dominated model (e.g., Ross &

Schubert 1985, 1986; Segatz et al. 1988; Tackley et al. 2001;
Hamilton et al. 2013), concentrations in the distribution of
mountains appear correlated with regions of enhanced heat flux
near the subjovian and anti-Jovian points. However, an
elevated geotherm in these regions would promote more rapid
crustal subsidence and viscous relaxation of the mountains. In
the combined model shown in Figure 6, regions±30° poleward
from subjovian and anti-Jovian points have much lower
expected surface heat flux than in in the conventional model.
This would favor a thicker and stronger crust in these regions,
thereby helping to support Ioʼs extremely tall mountains, which
can reach up to 18 km in height (Schenk et al. 2001; Jaeger
et al. 2003).
This example of a 50/50 combination of fluid- and solid-

body tidal dissipation mechanisms does not consider the
intricate feedbacks between these two processes discussed
above, nor does it fully explain the location of mountains and
volcanoes on Io, but it does identify a promising new direction
in terms of considering the implications of high partial melt
fractions within Ioʼs magma ocean.

5. SUMMARY AND CONCLUSIONS

Io is perhaps the best example available for study of a
planetary body under extreme tidal heating. The tidal response
of Io is highly significant in the moonʼs internal dynamics and
structure as well as its orbit and rotation. Study of this tidal
response is of specific relevance to Io but is also clearly

Figure 5. Sketch of a model for Io with simultaneous fluid and solid tidal heating occurring in separate layers, whereby both equatorial and polar volcanic sources
receive adequate tidal heat input. In this model, fluid tidal heating originates from a thin magma ocean, asthenosphere, or magma-slush partial melt layer, and provides
tidal heat flux primarily into equatorial volcanoes in a pattern that is not symmetric about the sub-Jovian point, but instead offset in longitude by approximately 30°.
Simultaneous solid-body tidal heating occurs in this model below this high melt fraction top layer, and consistently with mantle-dominated solid-body tidal models,
produces a significant polar contribution of tidal heat flux. If significant magma mixing did not occur, this model would predict that polar volcanoes may have
observational evidence for being sourced from high depths (e.g., higher eruption temperatures), with equatorial volcanoes sourced from shallow depths. Black and
white arrows represent heating from the deep mantle and asthenosphere, respectively, and are scaled to schematically represent the latitudinal variation in heat flux.
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relevant to the general study of solar- and extra-solar planetary
systems.

This study was motivated by several observations: (1) the
tidal response of a fluid can be quite unlike that of solid; (2) Io
is expected to have a partially fluid interior; and (3) all
previous studies of Ioʼs tides treated the body as essentially a
solid. Previous estimates of the tidal response and associated
heat generation on Io are incomplete and possibly erroneous
because dynamical aspects of the fluid behavior are not
permitted in the modeling approach. This study addresses this
by modeling the fluid asthenosphere (“magma ocean”) as a
global layer of fluid governed by the Laplace Tidal Equations.
Solutions for the fluid tidal response are then compared with
solutions obtained following the solid-material approach. In
each case, a family of solutions must be considered because of
the imprecisely known parameters that must be assigned in the
calculations.

In treating Io as a solid, it is found that the tidal heat
generated can match that of the average observed heat flux
(nominally 2.25Wm−2), though only over a very restricted set
of parameters within the plausible range. Further, the
distribution of the solid tidal heat flux cannot readily explain
a longitudinal shift in the observed (inferred) low-latitude heat
fluxes. Finally, consideration of a feedback in which tidal heat
increases the thickness of the asthenosphere suggests that this
reduced set of configurations that are consistent with the
constraints, may not be stable with respect to perturbations of
the parameters controlling the tidal solution. In treating the
magma ocean on Io as a fluid, it is found that the observed
average heat flux can be provided over a wider range of
plausible parameters than in the solid case. A basic indication
of this is seen by comparing the solution sets Figures 2 and 4.
In the fluid case, magnetic observations provide the contraint
that the solution fall within the horizontal lines indicated in
Figure 4. Solutions for all but the underdamped regime
(T T 1,d F > corresponding to solutions where the tides
dissipate on timescales longer than the forcing/rotation period)
show heating rates at or exceeding that observed (blue line).

Because underdamped solutions may be unlikely, it seems that
plausible solutions from the model of the fluid tides all show
significant heat generation. Such constraints implicating high
expected heat are not available for the solid tidal case. The
longitudinal offset in subsurface heat sources, which we take
only as suggested in the observed surface heat distribution, can
also be explained within fluid-tidal solutions using a further
reduced set of parameters.
Finally, these candidate fluid-tide configurations appear to be

stable with respect to perturbations in the controlling
parameters (i.e., the configuration would not quickly migrate
to one with new parameter values). These eccentricity-driven
fluid tides are, however, focused at low latitudes and cannot
readily account for heat fluxes inferred at high latitudes.
Obliquity-driven fluid tides are indeed focused at the poles and
may provide an explanation, but only if Ioʼs obliquity is much
higher than the very small forced component expected for a
present Cassini state. A second possible scenario consistent
with all observations is that solid and fluid tidal processes are
simultaneous producers of significant heat. This is discussed in
the context of potential feedbacks acting to couple the activity
level of the solid and fluid tidal processes.
In general we conclude that consideration of both solid- and

fluid-body tidal heating is essential when modeling the
geophysical processes of any world where sufficient heat is
expected such that liquified material may exist, even if such
melt constitutes only a thin layer relative to the full body.
While this work has focused upon silicate systems, the strong
participation of Earthʼs water ocean in tidal activity for the
Earth-moon system demonstrates the crucial role of a broad
range of fluid systems in overall tidal outcomes. The fact that
fluid-body tidal heating may greatly increase the expected
amount of tidal dissipation relative to cases where it is
neglected, has strong implications for the orbital evolution of a
wide range of terrestrial-class planets and moons. For worlds
with widespread melting, fluid-body tides have the potential to
significantly decrease orbital circularization times relative to
current predictions. Therefore solid-body tidal estimates, and

Figure 6. Map of the tidal surface heat flux for a combined case that includes both fluid and solid tidal heating. In this model, both fluid and solid heating are for
illustrative purposes made to generate equal contributions. A mantle-dominated solid-body tidal case is used to improve the contribution of heat to polar volcanoes.
Note how the overall visual pattern remains dominated by the fluid-body pattern, due to the high maxima of the fluid case. Compared to the fluid case, the spread of
heat flux magnitudes between the minimum and maximum values of the solid-body case is small, and therefore is adding solid-body tidal heat is akin to adding a
significant but relatively uniform background heat flux rate onto the strongly varying fluid tidal heat pattern. Nonetheless, the combined model achieves the goal of
supplying tidal heat to both the poles and equator, with equatorial maxima shifted ∼30° in longitude from the subjovian point. Stars in the right panels show the
locations of dark floored paterae from Veeder et al. (2012), with symbol sizes scaled to their power output.
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orbital behaviors derived from them, should be considered as
lower bounds if fluid is plausibly present within the system. In
general, decreasing orbital circularization times by increasing
tidal dissipation can be greatly beneficial to planets within
young systems, by reducing the time during which a given
object is vulnerable to orbit crossings and subsequent orbital
instabilities.
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APPENDIX
THIN-SHELL FLUID DYNAMICS:

THE LAPLACE TIDAL EQUATIONS

Let us first review the statements of mass and momentum
conservation appropriate for a thin layer of fluid of uniform
density. Approximations derived from the assumed thinness of
the layer reduce the intrinsically three-dimensional flow
problem to one involving only two-dimensional variables
reflecting the integrals over thickness of the thin layer. We
adopt spherical coordinates and refer to the thin layer as a “thin
shell”; by comparison the term “thin sheet” is used in Cartesian
coordinates.

The thin-shell approximation is based on the assumption that
the shell thickness is much smaller than the horizontal scales of
flow variability. From the tangential (also called “horizontal”)
flow velocity u we define the depth integrated flow momentum
s in the shell of thickness h and constant water density oρ as

s udr (1)
h

o∫ ρ=

where dr is the radial (vertical) increment. The dynamical mass
anomaly m is simply a rescaling of the dynamic sea-surface
displacement :η

m . (2)oρ η=

Similarly, we represent the tidal forcing as

m , (3)F o Fρ η=

where gF Tη = Φ is the equilibrium tidal height ( TΦ is the
gravitational potential and g is the surface gravitational
acceleration).

Written in terms of these variables, the Laplace tidal
equations

s s r sf c m mˆ ( ) , (4)t F
2 α∂ − × = − ∇ − −

sm · 0 (5)t∂ + ∇ =

are statements of momentum conservation (4) and mass
conservation (5) for a fluid in a thin shell, where
f 2 cos( )W θ= is the Coriolis parameter (with Ω the rotation
rate and θ the colatitude), r̂ is the unit radial vector, c gh( )1 2=
is the shallow-water wave speed, and α is a Rayleigh drag
coefficient describing the inverse timescale for dissipation.

We derive an energy equation by taking the dot product of
the flow velocity u s h( )ρ= with the momentum Equation (4)
which, with use of vector identities, can be written as

( )FE · , (6)t k w∂ + ∇ = − 
where s sE h· (2 )k oρ= is the kinetic energy density (energy

per unit surface area on the globe), F sm m g( )w F o
1ρ= − =−

um m c( )F
2− is the flux of wave-field energy m m c( )F

2− due
to advection by the flow, the rate of work done by tidal forces is

g m m m( )o F t
1ρ= − − ∂− , and the rate of dissipation is =

s sh E( ) · 2o k
1α ρ α− =− . Other forms of this equation are

possible because of the arbitrary reference level in defining
potential energy density. A different form of the energy
equation that can be derived by combining (6) with other
relationships described above is

( ) ( )FE E · , (7)t k p w∂ + + ∇ = − 
where E gm (2 )p o

2 ρ= and g m mo F t
1ρ= ∂− (other terms

defined as above). Alternatively, we may take Ep =
g m m( ) (2 )F o

2 ρ− and g m m m( )o F t F
1ρ= − − ∂− . As we

see, the differences in these representations involve the reference
level assumed in the definition of the potential energy Ep. Note
that while the definition of the rate of work  depends on the
definition of potential energy, the global integral of  averaged
over a tidal cycle is equivalent in all forms and balances the
integrated time-averaged .
Equations (4)–(5) are solved for the variables s and m using

the method described in Tyler (2011). While f and mF are
known rather precisely, there is a range of acceptable values for
c and α. In this case we calculate solutions from the full range
of combinations of these free parameters and draw conclusions
from analyses of this collection. That is, we solve the
governing equations many times to create the parameter space
as a function of the free parameters c and α. Because the
parameters c and α may not draw intuitive appeal, we draw
reference to derived parameters, h c g2= and Q (2 ).Fω α=
The first of these follows from the definition of the shallow-
water wave speed given above. The second, Q, can be regarded
as the “Q factor” (also called “quality factor,” and “specific
dissipation”) provided that Ek is regarded as the energy density
of the system that Q is intended to describe. Specifically, Q is
defined as π2 multiplied by the energy stored and divided by
the energy dissipated per cycle). When the “energy stored” is
regarded as Ek and the dissipation is E2 kα= (as above), the
parameter Q we use can be regarded as the Q factor. More
generally, one should regard the Q (2 )Fω α= used here as the
non-dimensional timescale associated with the dissipation
prescribed by α. For plotting purposes, and to avoid confusion
with other uses of Q, we describe the non-dimensional
timescale not as Q but rather Td Fω α= , which is a clear and
simple ratio between the forcing and attenuation frequencies.
With the Q used above, this is also T Q2d = .

A.1 Creeping Flow Analytical Solution

A simple analytical solution to the Equations set (4) and (5)
is available in the limit of creeping flow, where it is assumed
that the acceleration terms on the left side of (4) are negligible
compared to the drag term, and the balance must therefore be
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between the terms on the right side of (4). The momentum
equation is then replaced by sc m m0 ( )F

2 α= − ∇ − − , while
the equation for mass conservation (4) remains the same. These
two equations can be combined to give

m
c

m
c

m (8)t F

2
2

2
2

α α
∂ − ∇ = − ∇

from which the solution for m is easily obtained. Unlike the
more generally applicable (4), the reduced form (8) has simple
eigenfunctions represented by spherical harmonics which can
be used to replace this partial differential equation with an
algebraic equation. In this case, the operators translate into
coefficients following it Fω∂ → − , n n a( 1)2 2∇ → − +
(where a is the radius of the spherical shell and n is the
harmonic degree of mF). The solution can be written as the real
part of the expression

( )
m

i c c
m

1

1
, (9)

d

F2
=

+

where the factor c cd describes the ratio of a speed

c Q( ) ( ) (2 )d F F
2 (1 2) (1 2)ω α κ ω κ= = associated with the dis-

sipation ( n n a( ( 1))1 2κ = + is the associated wavenumber)
and the shallow-water wave speed c defined above. (It is
insightful to note that Fω κ may be regarded as simply the
speed associated with propagation of the tidal forcing.) When
the ratio c cd is much less than one (i.e., dissipation is small),
then the solution is the equilibrium tidal solution m mF= .
When the ratio is much larger than one, we see that the
amplitude of the response is generally less than the equilibrium
value and the two are ninety degrees out of phase. The solution
for the momentum s c m m( )F

2 1α= − ∇ −− follows directly
from the assumed momentum balance described in the first
paragraph of this section. Expressions for  and  follow
from the solution m, s as described in the last section.
Specifically, one can show that maximum work/dissipation
appears when c c( ) 1d

2 = . This explains the broad peak in the
low Q asymptotic behavior of the complete solutions shown in
Figure 4. In the creeping-flow limit, the maximum rate of work/
dissipation/heating occurs when the speed at rate which
momentum is propagated (c) matches the speed at which
momentum is dissipated.

The last sentence may provide the best description of the
physical criteria for the peak in dissipation, and it is interesting
to compare this with what would be expected in the case of an
assumed equilibrium tide. Under the equilibrium-tide assump-
tion, the dilation and contraction of the layer thickness h are
prescribed. As a consequence, fluid velocities are required for
mass conservation and these velocities increase inversely with
h. Dissipation, will increase with flow speed under a power
law, which in the simplest case of linear Rayleigh drag involves
the rms flow speed squared. A thinner h therefore leads to
higher dissipation despite the smaller volume of fluid involved.
The physics of this dependence of dissipation on h is quite
simple as it only involves two components: conservation of
mass, and the expectation that a component of dissipation
increases with a power (equal to or higher than 2) of the rms
flow speed. One might imagine a circus tent in which the top is
pumped up and down at a prescribed rate. The flow speed of air

through the sides is set by the conservation of the volume of air
and increases inversely with the height of the sides. This
process may help to explain how silicate melt within a thin
shell may achieve flow speeds large enough to decouple from
the more slowly deforming rock matrix through which it
moves.
One sees from the results presented that even in the creeping-

flow limit the flow speed and therefore the dissipation is not
correctly predicted by the equilibrium-tide assumption. The
simple flow speeds expected from continuity and the
equilibrium assumption show a monotonic dependence on
c cr (and therefore h), while both the creeping-flow analytical
solution and the more complete Laplace Tidal Equation
solutions at low Q show a non-monotonic dependence of the
dissipation on both c cr and Q. Of course the failure of the
equilibrium-tide assumption in studies of dissipation should not
be surprising because the equilibrium tide is formally
consistent only with the case of zero dissipation and work.
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