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ABSTRACT

We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars.
These EoS tables are based on a density-dependent relativistic hadron field theory where baryon–baryon interaction
is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along
with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich
which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We
have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon–hyperon interaction
mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases
encompass a wide range of densities (10−12 to ∼1 fm−3), temperatures (0.1 to 158.48 MeV), and proton fractions
(0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure,
or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated
EoS (with the crust included self-consistently) results in a 2.1 M� maximum mass neutron star for the npΛφ case,
whereas that for the npΛ case is 1.95 M�. The npΛφ EoS represents the first supernova EoS table involving hyperons
that is directly compatible with the recently measured 2 M� neutron stars.
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1. INTRODUCTION

Compact astrophysical objects are born in the aftermath
of massive stars (>8 M�) through core-collapse supernova
(CCSN) explosions in the penultimate stage of their evo-
lution (Bethe 1990). In the CCSN mechanism, the gravita-
tional collapse of the iron core begins as the core exceeds the
Chandrasekhar mass. The subsequent core bounce occurs when
the core density reaches beyond normal nuclear matter den-
sity and a hydrodynamic shock is generated. If the shock wave
is strong enough, this might lead to a prompt supernova ex-
plosion, which, however, is not found in recent state-of-the-art
computer simulations. The hot and neutrino-trapped protoneu-
tron star (PNS) settles into hydrostatic equilibrium immediately
after the core bounce. The PNS could evolve either into a neutron
star or into a black hole within a few seconds after the emission
of neutrinos. Though the CCSN explosion mechanism has been
explored for the past five decades, a complete understanding of
this phenomenon is still beyond our reach. In most CCSN simu-
lations, the shock stalls after traveling a few hundred kilometers.
The revival of the shock by neutrino heating (Bethe & Wilson
1985) or the generation of a second shock due to a first order
hadron-quark phase transition (Sagert et al. 2009) could trig-
ger a delayed CCSN explosion. Regarding the latter, until now
this mechanism was only shown to be working for equations
of state (EoS) that are not compatible with the latest neutron
star mass measurements such as those from Antoniadis et al.
(2013).

Besides the dimensionality of the problem (Nordhaus et al.
2010) and neutrino reaction rates, the EoS of matter plays a
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tremendous role in a successful CCSN explosion (Janka 2012).
The first nuclear EoS table suitable for CCSN simulations was
formulated by Hillebrandt & Wolf (1985), followed by the
Lattimer and Swesty (LS) EoS (Lattimer & Swesty 1991) and
the Shen EoS (Shen et al. 1998). The last two EoS tables describe
all possible compositions of matter depending on wide ranges of
density, temperature, and proton fraction such as free nucleons,
light nuclei in coexistence with nucleons, the ideal gas of
nuclei, and uniform nuclear matter. The LS EoS table was based
on Skyrme interaction for uniform matter and a compressible
liquid drop model for non-uniform matter. On the other hand,
for the first time, the Shen EoS table was constructed using
the relativistic field theory for low- and high-density uniform
matter. Non-uniform matter was described by the Thomas-Fermi
model. Both of these two approaches, LS and Shen, employed
the single nucleus approximation and neglected shell effects.
The LS and Shen EoS tables have been used extensively for
CCSN simulations over the years.

Recently, several new EoS were developed, keeping in pace
with updated knowledge from nuclear structure, experimental
data, or neutron star observations, aiming at an improved
underlying description and with possibly new particle degrees of
freedom taken into account (Hempel & Schaffner-Bielich 2010;
Raduta & Gulminelli 2010; Shen et al. 2010, 2011a, 2011b;
Fischer et al. 2011, 2014; Blinnikov et al. 2011; Hempel et al.
2012; Steiner et al. 2013; Buyukcizmeci et al. 2014; Togashi
et al. 2014). One such notable nuclear EoS, called the HS EoS,
was formulated within the framework of the nuclear statistical
equilibrium (NSE) model (Hempel & Schaffner-Bielich 2010).
The HS EoS table treated the ensemble of nuclei and nucleons
in the NSE model using the relativistic mean field model for
interacting nucleons, incorporated excluded volume effects in
the thermodynamically consistent manner, considered excited
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states of nuclei, and matched the low-density matter with
uniform matter at high density (Hempel & Schaffner-Bielich
2010). A new nuclear EoS table was generated adopting the
virial expansion for a non-ideal gas of nucleons and nuclei
by Shen et al. (2010). The statistical model by Botvina &
Mishustin (2004, 2010); Buyukcizmeci et al. (2014), is based
on the multifragmentation of nuclei in heavy-ion collisions. In
Buyukcizmeci et al. (2013), it was compared with some of the
other aforementioned approaches. For the first time, the EoS
has been constructed in a variational calculation using bare
nuclear forces such as Argonne v18 (AV18) and Urbana IX
(UIX) by Togashi et al. (2014) and Constantinou et al. (2014),
which, however, does not yet include the case of non-uniform
matter.

The EoS described above would not only influence the
supernova dynamics but also the formation of neutron stars
and their structures. Neutron star observations could provide
important inputs in the construction of EoS tables for CCSN
simulations. The first supernova EoS table directly based on
measured masses and radii of neutron stars was developed by
Steiner and collaborators (Steiner et al. 2013). Unlike radii,
neutron star masses have been estimated to a very high degree
of accuracy. This has been possible because post-Keplerian
parameters, such as orbital decay, periastron advance, Shapiro
delay, and time dilation, have been measured in many pulsars.
Currently, the accurately measured highest neutron star mass
is 2.01 ± 0.04 M� (Antoniadis et al. 2013). This puts a strong
constraint on the β-equilibrated EoS. Most of the nuclear EoS
mentioned above result in 2 M� neutron stars.

Observed neutron star masses are also probes of compositions
of dense matter. It has long been debated whether or not novel
phases of matter such as hyperons, Bose–Einstein condensates
of kaons, and quarks may exist in neutron star interior. It may
happen that the phase transition from nuclear matter to exotic
matter could occur in the early post-bounce phase of a CCSN.
Strange degrees of freedom would be crucial for the long-term
evolution of the PNS. It is to be noted that strange matter
typically makes the EoS softer, resulting in a smaller maximum
mass neutron star than that of the nuclear EoS (Glendenning
2000). van Dalen et al. (2014) showed that the observed high
masses of neutron stars in combination with hypernuclear data
put tight constraints on the interactions of hyperons in neutron
star matter. Note that there is also an interesting interplay
between the strangeness content and the symmetry energy on
properties of neutron stars, which was recently discussed by
Providência (2013) for the case of hyperonic EoS.

Several EoS, including quark and hyperon matter, were
developed for and applied to supernova simulations (Ishizuka
et al. 2008; Nakazato et al. 2008, 2012; Sagert et al. 2009;
Sumiyoshi et al. 2009; Shen et al. 2011c; Oertel et al. 2012;
Peres et al. 2013; Banik 2014). None of the EoS tables with
exotic matter was directly compatible with the 2 M� neutron
star or they were just barely acceptable. On the other hand, many
model calculations, including exotic matter such as hyperons,
showed that the EoS of β-equilibrated matter may lead to 2 M�
or more massive neutron stars (Weissenborn et al. 2012a, 2012b;
Lastowiecki et al. 2012; Colucci & Sedrakian 2013; Lopes &
Menezes 2014; Gusakov et al. 2014; van Dalen et al. 2014).

Recently, Fischer et al. (2014) published an quark–hadron
hybrid EoS with a maximum mass above 2 M�, which, however,
did not lead to a phase–transition-induced explosion. The
limited number of realistic supernova EoS with exotic degrees
of freedom motivates us to construct a hyperon EoS in the

relativistic mean field theory with density-dependent couplings
that is compatible with a 2 M� mass neutron star.

The paper is organized as follows. Section 2 describes the
methodology for the calculation of EoS tables including Λ
hyperons. The results of hyperon EoS tables are discussed
in Section 3. Section 4 gives a summary and conclusions. In
the Appendix, we give detailed information about the definition
of the various quantities stored in the final EoS tables and discuss
their accuracy and consistency.

2. METHODOLOGY

Here we describe the models to construct the temperature-
dependent hyperon EoS spanning over different regimes of
baryon number density, temperature, and proton fraction. Com-
positions of matter vary from one region to the other. Con-
stituents of matter are nuclei, (anti-)neutrons, (anti-)protons,
(anti-)Λ hyperons, electrons, positrons, and photons. We make
the standard assumption that electrons and positrons form a
uniform background in this calculation. We do not include the
contributions of muons, because in standard core-collapse super-
nova simulations the net muon lepton fraction is zero. If desired,
muons could be added to the EoS as another non-interacting par-
ticle species. The contribution of the neutrinos is similarly not
taken into account in the EoS. These are typically handled by
neutrino transport, because weak equilibrium is generally not
obtained. In the following, we discuss various models to com-
pute the EoS of matter in different regimes, where we restrict
the discussion on the non-trivial baryonic contribution.

2.1. Density-dependent Relativistic Mean
Field Theory for Baryons

The relativistic mean field (RMF) model with density-
dependent couplings is adopted in this calculation for inter-
acting baryons. We exploit this density-dependent RMF model
for a transition from non-uniform nuclear to Λ hyperon matter.
The baryon–baryon interaction in this model is mediated by the
exchange of σ , ω, and ρ mesons. The model may also be ex-
tended to include hyperon–hyperon interaction through hidden-
strangeness mesons—scalar meson f0(975) (denoted hereafter
as σ ∗) and the vector meson φ(1020) (Schaffner & Mishustin
1996).

The Lagrangian density (L) of the density-dependent RMF
model is given by (Hofmann et al. 2001a, 2001b; Banik &
Bandyopadhyay 2002; Typel et al. 2010),

L=
∑
F

Ψ̄F (iγμ∂μ − mF + gσF σ − gωF γμωμ

− gρF γμτF · ρμ)ΨF +
1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4
ωμνω

μν

+
1

2
m2

ωωμωμ − 1

4
ρμν · ρμν +

1

2
m2

ρρμ · ρμ + LYY , (1)

where mF is the bare mass of the baryon F and τF is the isospin
operator. Here ΨF denotes the isospin multiplets for baryons. In
principle, the sum may go over baryon multiplets F = N, Λ, Σ, Ξ.

The appearance of hyperons depends on the hyperon–nucleon
interaction strength in dense matter. The hyperon potential
depths in normal nuclear matter are determined from hypernu-
clei data (Schaffner & Mishustin 1996; Schaffner & Gal 2000;
Weissenborn et al. 2012a; Oertel et al. 2012). For example, the
potential depth of Λ hyperons in nuclear matter at the satura-
tion density is obtained from Λ hypernuclei data and is found
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to be attractive. Unlike Λ hypernuclei data, Σ hypernuclei data
as well as Ξ hypernuclei data are scarce. This leads to large
uncertainties in estimating the potential depths of Σ and Ξ hy-
perons in nuclear matter. It was noted that Σ hypernuclei data
indicated a repulsive Σ potential depth in nuclear matter (Brat
et al. 1999; Schaffner & Gal 2000). Such a repulsive ΣN in-
teraction might rule out the appearance of Σ hyperons in dense
matter or at least push their onset to very high densities. A few
Ξ-hypernuclei data gave rise to a less attractive Ξ potential depth
in normal nuclear matter than the Λ potential depth (Schaffner
& Gal 2000; Weissenborn et al. 2012a; Oertel et al. 2012). Fur-
thermore, Λ hyperons, being the lightest hyperons among all
hyperons, would be populated first in the system unless the po-
tentials of the others would be very attractive. The appearance
of heavier hyperons would be delayed to higher densities. Con-
sidering all these facts, we restrict ourselves to nucleons (N) and
Λ hyperons in this calculation. Despite this simplification, the
EoS with Λs included allows us to study the general features
of the strange degrees of freedom in core-collapse supernovae.
Note that the same implication was used by Peres et al. (2013).

Arguments similar to those given above for the heavier
hyperons apply for delta baryons, where it was typically found
that these appear, if at all, only at the highest densities in neutron
stars (Glendenning 1985). In addition to the mass, the charge
or isospin of hyperons and deltas is also important. It was only
recently pointed out by Pagliara et al. (2014) that more modern
density functionals that lead to lower symmetry energies at high
densities could lead to an earlier onset of deltas in neutron stars.
We leave the interesting aspect of including delta baryons for
future study.

The Lagrangian density (LYY ) responsible for hyperon-
hyperon interaction is given by

LYY =
∑
F=Λ

ψ̄F (gσ ∗F σ ∗ − gφF γμφμ)ψF

+
1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2

)
− 1

4
φμνφ

μν +
1

2
m2

φφμφμ. (2)

The attractive Λ–Λ interaction is mediated by the exchange
of σ ∗ meson. However, it is evident from double Λ hypernuclei
data that this attractive interaction is very weak (Takahashi
et al. 2001; Nakazawa et al. 2010; Gal & Millener 2011).
Consequently, we omit the inclusion of σ ∗ in Equation (2).

The field strength tensors for vector mesons are given by

ωμν = ∂μων − ∂νωμ

ρμν = ∂μρν − ∂νρμ

φμν = ∂μφν − ∂νφμ. (3)

Though the structure of the density-dependent RMF La-
grangian density closely follows that of the RMF model
(Shen et al. 1998), there are important differences between
those models. In the RMF calculation with density-independent
meson-baryon coupling constants, non-linear self interaction
terms for scalar and vector fields are inserted to account for
higher order density-dependent contributions. However, this
is not necessary here as meson–baryon vertices gαF , where
α denotes the σ , ω, and ρ fields, are dependent on Lorentz
scalar functionals of baryon field operators and adjusted to
the Dirac–Brueckner–Hartree–Fock (DBHF) calculations of nu-
clear matter (Typel & Wolter 1999; Hofmann et al. 2001a,
2001b).

In mean field approximations adopted here, meson fields
are replaced by their expectation values. Only the time-like
components of vector fields and the third isospin component of
the ρ field have non-vanishing values in a uniform and static
matter. The mean meson fields are denoted by σ , ω0, ρ03,
and φ0.

The grand-canonical thermodynamic potential per unit vol-
ume of the hadronic phase is given by

Ω
V

= 1

2
m2

σ σ 2 − 1

2
m2

ωω2
0 − 1

2
m2

ρρ
2
03 − 1

2
m2

φφ2
0 − Σr

∑
i=n,p,Λ

ni

− 2T
∑

i=n,p,Λ

∫
d3k

(2π )3
[ln(1 + e−β(E∗−νi )) + ln(1 + e−β(E∗+νi ))],

(4)

where the temperature is defined as β = 1/T and E∗ =√
(k2 + m∗2

i ). In the present work, all Fermi–Dirac integrals
are solved with the very accurate and efficient methods of
Aparicio (1998) and Gong et al. (2001), complemented by
analytic approximations where these are even more reliable.

The chemical potential of the ith baryon (μi) is defined as

μi = νi + Σv
i , (5)

where Σv
i is the vector self-energy and it is given by

Σv
i = gωiω0 + gρiτ3iρ03 + gφiφ0 + Σr , (6)

and the rearrangement term has the form

Σr =
∑

i=n,p,Λ

[
−∂gσi

∂ni

σns
i +

∂gωi

∂ni

ω0ni +
∂gρi

∂ni

τ3iρ03ni

+
∂gφi

∂ni

φ0ni

]
. (7)

Similarly, the expression of scalar self energy for the ith baryon
is given by

Σs
i = gσiσ. (8)

Now one can define the effective Dirac baryon mass as m∗
i =

mi − Σs
i .

For our calculations we assume μn = μΛ, i.e., that there is
equilibrium with respect to the strangeness changing reactions.
This is justified because of the moderately long dynamic
timescales in supernovae in the range of milliseconds, the
high temperatures encountered inside the proto-neutron star,
and because we expect that the Λ hyperon abundance is
only significant at high densities, where weak equilibrium is
established.

Next we calculate the thermodynamic quantities of the
baryonic matter such as the pressure P = −Ω/V and the energy
density

ε = 1

2
m2

σ σ 2 +
1

2
m2

ωω2
0 +

1

2
m2

ρρ
2
03 +

1

2
m2

φφ2
0

+ 2
∑

i=n,p,Λ

∫
d3k

(2π )3
E∗

(
1

eβ(E∗−νi ) + 1
+

1

eβ(E∗+νi ) + 1

)
.

(9)

Similarly, we can compute neutron, proton, and Λ number
densities which include contributions from both particle and
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Table 1
Parameters of Nucleon–Meson Couplings as

Defined in Equations (11) and (12) Are Recorded Here

i giN (n0) ai bi ci di

σ 10.686681 1.357630 0.634442 1.005358 0.575810
ω 13.342362 1.369718 0.496475 0.817753 0.638452
ρ 3.626940 0.518903

Notes. The parameters are obtained by reproducing properties of finite nuclei
and the parameter set is known as the DD2 set (Typel et al. 2010). This
parameterization leads to nuclear saturation properties such as saturation density
(n0 = 0.149065 fm−3), binding energy (16.02 MeV), incompressibility of
matter (242.7 MeV), symmetry energy (31.67 MeV), and its slope (55.03 MeV).
All parameters are dimensionless.

antiparticles (Shen et al. 2011c). The number density of the
i(=n, p, Λ)th baryon is ni = 2

∫
(d3k/(2π )3)((1/(eβ(E∗−νi ) + 1))−

(1/(eβ(E∗+νi ) + 1))). The scalar density for the ith baryon (ns
i ) is

ns
i = 2

∫
d3k

(2π )3

m∗
i

E∗

(
1

eβ(E∗−νi ) + 1
+

1

eβ(E∗+νi ) + 1

)
. (10)

We can calculate the entropy density using s = β(ε + P −∑
i=n,p,Λ μini). The entropy per baryon is given by S = s/nB ,

where nB is the total baryon density, i.e., nB = ∑
i ni .

The density dependence of nucleon–meson couplings was
determined by Typel & Wolter (1999) and Typel et al. (2010).
The functional forms of the density-dependent couplings gσN

and gωN are given by

gαN = gαN (n0)fα(x),

fα(nB/n0) = aα

1 + bα(x + dα)2

1 + cα(x + dα)2
, (11)

where n0 is the saturation density, α = σ, ω, and x = nB/n0.
For ρ mesons, we have

gρN = gρN (n0)exp[−aρ(x − 1)]. (12)

In this work, we employ the DD2 parameter set (Typel
et al. 2010; Fischer et al. 2014), where the coefficients in
Equations (11) and (12), the saturation density, the
nucleon–meson couplings at the saturation density, and the mass
of σ mesons are determined by fitting the properties of finite
nuclei such as binding energies, spin-orbit splittings, charge and
diffraction radii, surface thickness, and neutron skin. In this fit-
ting, experimental masses are used for the nucleons. In our EoS
calculations, we also use the experimentally measured masses
of nucleons. The saturation properties of symmetric nuclear
matter are obtained as n0 = 0.149065 fm−3, binding energy
per nucleon 16.02 MeV, incompressibility 242.7 MeV, neutron
effective Dirac mass m∗

n/mn = 0.5628, proton effective Dirac
mass m∗

p/mp = 0.5622 and, the symmetry energy 31.67 MeV.
The value of the parameter corresponding to the density depen-
dence of the symmetry energy at the saturation density is found
to be 55.03 MeV. For detailed definitions of these quantities,
see, e.g., Typel et al. (2013). These nuclear matter properties
are consistent with constraints from theoretical calculations of
neutron matter, experimental findings, and astrophysical obser-
vations of neutron stars (Fischer et al. 2014; Lattimer & Lim
2013). Note that the values that we obtain differ slightly from
those previously reported in Typel et al. (2010). Meson–nucleon
couplings at the saturation density and masses of baryons and

Table 2
Masses of Baryons and Mesons in Units of MeV Used in This Calculation

Neutron Proton Λ σ ω ρ φ

939.56536 938.27203 1115.7 546.212459 783.0 763.0 1020.0

mesons used in the calculation are shown in Tables 1 and 2,
respectively.

Nucleons do not couple with φ mesons, i.e., gφN = 0.
The density-dependent meson-Λ hyperon vertices are obtained
from the density-dependent meson–nucleon couplings using Λ-
hypernuclei data (Schaffner & Mishustin 1996) and the SU(6)
symmetry of the quark model. In the RMF model, vector meson-
hyperon coupling constants were determined from the SU(6)
symmetry relations of the quark model (Schaffner & Mishustin
1996; Dover & Gal 1985). Similarly, we obtain vector meson-
Λ hyperon couplings in this model from the SU(6) symmetry
relations (Schaffner & Mishustin 1996)

1

2
gωΛ = 1

3
gωN,

gρΛ = 0,

2gφΛ = − 2
√

2

3
gωN . (13)

Next we obtain the scalar meson coupling to Λ hyperons (gσΛ)
from the potential depth of Λ hyperons in normal nuclear matter.
The Λ hyperon potential in saturated nuclear matter is obtained
from the experimental data of the single particle spectra of Λ
hypernuclei. In the density-dependent RMF model, the potential
depth of Λ hyperon in saturated nuclear matter is given by

UN
Λ (n0) = gωΛω0 + Σr

N − gσΛσ0, (14)

where Σr
N is the contribution of only nucleons in the rear-

rangement term as given by Equation (7). In this calculation,
the value of the Λ potential in normal nuclear matter is taken
as UΛ(n0) = −30 MeV (Millener et al. 1988; Mares et al.
1995; Schaffner et al. 1992) and the ratio of gσΛ and gσN is
RσΛ = gσΛ/gσN = 0.62008. Note that Lastowiecki et al. (2012)
also extended the DD2 parameterization by including hyperons
to describe the structures of hybrid stars. However, they used dif-
ferent assumptions, namely, an SU(3) rescaling with an overall
factor R = 0.83 and they considered the whole baryon octet.

2.2. Extended Nuclear Statistical Equilibrium Model

In the widely used nuclear EoS of Shen and collaborators
(Shen et al. 1998, 2011c), heavy nuclei were treated in the
Thomas–Fermi approach. The other commonly used nuclear
EoS of LS (Lattimer & Swesty 1991) utilizes a liquid-drop de-
scription of nuclei and a non-relativistic parameterization of the
nucleon interactions. In both approaches, the gas of α particles
was dealt with the Maxwell–Boltzmann statistics. Heavy nuclei
are populated at low temperature and low density. In the LS and
Shen EoS, they used the single nucleus approximation for heavy
nuclei having an average representative atomic mass and charge
in inhomogeneous nuclear matter.

We adopt the extended NSE model of Hempel & Schaffner-
Bielich (2010) to describe the matter composed of light and
heavy nuclei along with unbound nucleons at low temperatures
(∼10 MeV) and low densities below the saturation density. The
region where heavy nuclear clusters co-exist with nucleons is
known as non-uniform or inhomogeneous nuclear matter. In the
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HS model, nuclei are described as non-relativistic particles using
Maxwell–Boltzmann statistics and medium corrections such as
internal excitations or Coulomb screening. Excluded volume
effects are taken into account, which ensure the dissolution
of heavy nuclei at high densities. Interactions among unbound
nucleons are described by Equation (1), employing the same
parameter set DD2, but not including hyperons. This is justified
because the fraction of Λ hyperons is negligibly small in low-
temperature and density domains.

Approximately 8000 nuclear species are considered in the
extended NSE model of HS. Experimental masses of nuclei
(A � 2) used in the model are taken from the atomic mass
table of Audi et al. (2003). For exotic nuclei without measured
masses, theoretical nuclear structure calculations within the
framework of finite-range droplet model (FRDM) (Möller et al.
1995) are exploited. Note that nuclei beyond the neutron drip
line are not considered. By using nuclear mass tables, nuclear
shell effects are automatically included into the calculation.
This is necessary to obtain the correct low-density limit, e.g.,
relevant for consistency with recent electron-capture rates (see
Juodagalvis et al. 2010) and with the simulation of the progenitor
star, or if one wants to connect to a non-NSE EoS. However, we
also point out that the modification of the nuclear shell structure
at high densities is not well described by the HS approach.
The HS EoS goes beyond the single nucleus approximation
(SNA). Regarding a distribution of only heavy nuclei, it is well
known that the SNA has only a small effect on thermodynamic
quantities (Burrows & Lattimer 1984). However, here we also
include various light nuclei, which, together with unbound
nucleons, dominate the composition of shock-heated matter
(Sumiyoshi & Röpke 2008) and have a non-negligible impact on
thermodynamic quantities (Hempel & Schaffner-Bielich 2010).
Note that the results for light nuclei of the HS model are in
good agreement with that of the quantum many-body calculation
(Hempel et al. 2011) and also qualitatively with experimental
data from heavy-ion collisions (Qin et al. 2012).

The thermodynamic quantities, such as pressure and energy
density, are obtained from the total canonical partition function
given by

Z(T , V, {Ni}) = Znuc

∏
A,Z

ZA,ZZCoul , (15)

with V denoting the volume of the system. One can write down
the Helmholtz free energy using the partition function as

F (T , V, {Ni}) = − T lnZ (16)

= Fnuc +
∑
A,Z

FA,Z + FCoul , (17)

where Fnuc, FCoul, and FA,Z are the free energies of nucleons,
the Coulomb free energy, and the free energy of the nucleus
represented by the Maxwell–Boltzmann distribution (Hempel
& Schaffner-Bielich 2010).

After implementing the excluded volume effects in a ther-
modynamically consistent manner, the number density of the
nuclei is given by (Hempel & Schaffner-Bielich 2010)

nA,Z = κgA,Z(T )

(
MA,ZT

2π

)3/2

× exp

(
(A − Z)μ0

n + Zμ0
p − MA,Z − ECoul

A,Z − P 0
nucVA,Z

T

)
,

(18)

where κ is the volume fraction available for nuclei and defined
in terms of local number densities and takes values between 0
and 1. It may be worth noting that Equation (18) can be used
to derive a modified Saha equation due to excluded volume
corrections.

Next one can define the free energy density (Hempel &
Schaffner-Bielich 2010)

f =
∑
A,Z

f 0
A,Z(T , nA,Z) + fCoul(ne, nA,Z) + ξf 0

nuc(T , n′
n, n

′
p)

− T
∑
A,Z

nA,Zln (κ) , (19)

where the first term is the contribution of the non-interacting
gas of nuclei. Here fCoul is the Coulomb free energy. The free
energy density of the interacting nucleons f 0

nuc is multiplied by
the available volume fraction of nucleons ξ . The local number
densities of neutrons and protons are denoted by n′

n and n′
p,

respectively. The last term, which corresponds to a hard-core
repulsion of nuclei, goes to infinity when κ approaches zero
near saturation density and the uniform matter is formed.

The energy density is given by the following expression
(Hempel & Schaffner-Bielich 2010):

ε = ξε0
nuc(T , n′

n, n
′
p) +

∑
A,Z

ε0
A,Z(T , nA,Z) + fCoul(ne, nA,Z) ,

(20)

ε0
A,Z(T , nA,Z) = nA,Z

(
MA,Z +

3

2
T +

∂g

∂T

T 2

g

)
. (21)

Similarly, the total pressure becomes

P = P 0
nuc(T , n′

n, n
′
p) +

1

κ

∑
A,Z

P 0
A,Z(T , nA,Z) + PCoul(ne, nA,Z),

(22)

P 0
A,Z(T , nA,Z) = T nA,Z. (23)

Note that all quantities above relating to nucleon contribu-
tions are calculated with the RMF model (DD2), as described in
Section 2.1 and taking into account general Fermi–Dirac statis-
tics. In the original work of Hempel & Schaffner-Bielich (2010),
TMA interactions were used instead. Some further changes were
made to improve the description of non-uniform matter. Here
we briefly list only the relevant ones: for simplicity, nuclei are
only considered up to a temperature of 50 MeV, instead of
20 MeV used previously. In the internal partition function of
nuclei, gA,Z(T ) in Equation (18), which is taken from Fái &
Randrup (1982), only excited states up to the binding energy of
the corresponding nucleus are included. Our basic idea is that we
want to keep the nucleus bound. If no cutoff in the integral for
the excited states was used, arbitrarily large excitation energies
would contribute to the energy density. The energy and entropy
stored in nuclei would increase with increasing temperature to
unphysically large values. We found in different applications
of the EoS that the usage of the cutoff leads to a more well-
balanced behavior. Nevertheless, it is clear that our description
of excited states remains on a rather heuristical level.
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2.3. Matching Procedure

In principle, the hyperonic EoS as presented in Section 2.1
could be used directly for the description of the unbound baryon
contribution (denoted by the subscript “nuc”) in the statistical
model that was summarized in Section 2.2. However, because
a complete nucleonic supernova EoS table for the parameter
set DD2 and as described in Section 2.2 is already publicly
available, called HS(DD2) (see Fischer et al. 2014), here we
follow a different strategy. We expect that nuclei will not be
present with high abundances at conditions where hyperons
can be formed, i.e., at high densities or high temperatures.
Therefore, we do not repeat the calculation of the EoS with
non-uniform matter distributions including hyperons, but only
replace certain parts of the existing table with the new uniform
hyperonic EoS using physical criteria specified in the following.
In consequence, the new tables never contain a mixture of
hyperons and nuclei.

For the merging of the two tables, we follow a standard
thermodynamic criterion, namely that the free energy per baryon
at fixed T, nB, and Yp has to be minimized. However, this physical
criteria alone could lead to odd transition behaviors, because
transitions from one EoS to the other could also be induced by
numerical errors. Here, such unphysical transitions are avoided
by introducing a minimal hyperon mass fraction of 10−5, i.e.,
the hyperon EoS replaces the nucleonic EoS only if it has a
lower free energy per baryon and if XΛ > 10−5. Using these
two criteria for the merging of the two EoS, we obtain a smooth
and continuous transition boundary.

3. RESULTS AND DISCUSSION

We compute the hyperon EoS tables using the DD2 parameter
set of Table 1. We denote the hyperon EoS table without φ
mesons as BHBΛ corresponding to the composition npΛ and
the hyperon EoS table with φ mesons as BHBΛφ for the npΛφ
case. In both cases, the tables are constructed for temperatures
T = 0.1 to 102.2 � 158.49 MeV and proton fractions Yp =
0.01 to 0.6, whereas baryon densities range from nB = 10−12

to 1 fm−3 for the BHBΛ and nB = 10−12 to 101.08 � 1.2 fm−3

for the BHBΛφ tables. We have different density ranges for
the two tables (which are also different compared to the original
nucleonic HS(DD2) table), because we could not obtain physical
solutions at higher values. We adopt a linear grid spacing of 0.01
for Yp and logarithmic grid spacing of 0.04 for T and nB. An
overview of the two EoS tables is given in Table 3. Before
we go into a detailed description of thermodynamic quantities
in hyperon EoS tables, we discuss the β-equilibrated matter
relevant for cold neutron stars.

We generate the EoS of neutron stars by imposing charge
neutrality with the inclusion of electrons and the β-equilibrium
condition without neutrinos into hyperon EoS tables at a very
low temperature T = 0.1 MeV. Fractions of different particle
species in β-equilibrated hyperon matter with and without φ
mesons are plotted as a function of baryon mass density in
Figure 1. Here and in the following, we define a “baryon
mass density” ρB by ρB = nB · mu, with the atomic mass
unit mu. The solid lines represent the npeΛφ case, whereas
the dashed lines represent the npeΛ case. The beginning of
the inner crust is clearly visible by the sudden appearance of
free neutrons at a density of ∼3 × 1011 g cm−3. In both cases,
heavy nuclei dissolve into their fundamental constituents, i.e.,
nucleons, below the saturation density and a uniform nuclear
matter is formed just after that, marking the transition to the
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Figure 1. Mass fractions of various species are plotted as a function of baryon
mass density with (solid lines) and without (dashed lines) φ mesons in β-
equilibrated hyperon matter. The curve labeled with “A” shows the mass fraction
of heavy nuclei.

(A color version of this figure is available in the online journal.)

neutron star core. There, proton fractions increase as baryon
density increases. The positive charges of protons are balanced
by negative charges of electrons. When the baryon density
reaches 2.1 n0, Λ hyperons begin to populate the system in
both cases. As the Λ fraction rises, neutron and proton fractions
drop. Furthermore, it is noted that the Λ fraction for the npΛ
case is higher than that of the npΛφ case. This may be attributed
to the strong repulsive interaction due to φ mesons at higher
densities. This might have a significant impact on the EoS and
mass–radius relationship of neutron stars with and without φ
mesons.

The mass–radius relationship of the sequence of neutron stars
is shown in Figure 2. The solid line represents the nucleons-
only neutron star. On the other hand, bold (blue) and light
dashed (red) lines represent neutron stars including hyperons
with and without φ mesons, respectively. Note that the crust
EoS is contained self-consistently, i.e., no external models have
to be used. It is evident from Figure 2 that Λ hyperons make
the EoS softer, resulting in a smaller maximum mass neutron
star compared with that of the nucleons-only case. Further,
we find that the hyperon-hyperon interaction mediated by φ
mesons makes the hyperon EoS stiffer than the case without φ
mesons. Consequently, the npeΛφ case has a higher maximum
mass than that of the npeΛ case because of the repulsive
contribution of φ mesons in the hyperon EoS in the former
case. The maximum masses corresponding to the nucleons-only,
npeΛ, and npeΛφ neutron star sequences are 2.42, 1.95, and
2.10 M�, respectively. We remark that the different extension
of the neutron star DD2 EoS with hyperons done previously
by Lastowiecki et al. (2012) gave a maximum mass of only
1.94 M�. It is important to note that the maximum mass of the
npeΛφ case is well above the benchmark-measured neutron star
mass of 2.01 ± 0.04 M� (Antoniadis et al. 2013). This is the first

6
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Table 3
Overview of the EoS Tables Presented in This Paper

BHBΛ BHBΛφ

Constituents Uniform matter n, p, Λ n, p, Λ
Non-uniform matter n, p, {A, Z} n, p, {A, Z}

T Range −1.0 � log10(T ) � 2.2 −1.0 � log10(T ) � 2.2
(MeV) Grid spacing Δ log10(T ) = 0.04 Δ log10(T ) = 0.04

Points 81 81

Yp Range 0.01 � Yp � 0.60 0.01 � Yp � 0.60
() Grid spacing ΔYp = 0.01 ΔYp = 0.01

Points 60 60

nB Range −12 � log10(nB ) � 0 −12 � log10(nB ) � 0.08
(fm−3) Grid spacing Δ log10(nB ) = 0.04 Δ log10(nB ) = 0.04

Points 301 303

Notes. In both tables, non-uniform matter is modeled as a mixture of free neutrons (n), free protons (p), and an ensemble
of heavy nuclei ({A,Z}). Uniform matter in general consists of neutrons, protons, and Λ (Λ), whereas Λ is only considered
when the conditions described in Section 2.3 are met. Besides the range of density, the two tables cover the same conditions
(i.e., in temperature and proton fraction).

0.0

0.5

1.0

1.5

2.0

2.5

M
[M

]

8 10 12 14 16 18 20
R [km]

npe
npe
npe

Figure 2. Masses of the neutron star sequence are plotted as a function of radius
with (blue) and without (red) φ mesons in hyperon and nucleon matter (solid
line), corresponding to the BHBΛφ, BHBΛ, and HS(DD2) EoS, respectively.
Crosses mark the maximum mass configurations.

(A color version of this figure is available in the online journal.)

supernova EoS with hyperons that is compatible with a 2 M�
neutron star.

We calculate the strangeness fractions fs in maximum mass
neutron stars, defined as the ratios of the total numbers of
strangeness and the total baryon numbers, and find that in the
npeΛ case it is 0.071 and in the npeΛφ case it is 0.059. Using
these values, we can roughly confirm the empirical relation of
Weissenborn et al. (2012b),

M
emp
max

M�
= Mmax(fs = 0)

M�
− c

(
fs

0.1

)
, (24)

where c = 0.6, and that the maximum mass reduces with the
strangeness fraction.

Figure 3 gives a general overview of the composition. The
lines delimit regions where the mass fractions of light and

heavy nuclei, and of Λ hyperons that exceed 10−4. Light and
heavy nuclei are distinguished here via their charge number
(Z � 5 and Z � 6, respectively). For Λs in Figure 3, the
minimal mass fraction of 10−5 is also shown, which marks
the transition to npΛ-matter and thus shows the results of the
matching procedure. The structure of the regions where light
and heavy nuclei are abundant is similar to what was reported
in Hempel & Schaffner-Bielich (2010). Regarding Λ hyperons,
we observe that for the low temperatures selected in Figure 3,
there is no overlap with the regions where nuclei appear. For
the conditions shown in Figure 3, Λs instead only appear for
densities above ∼ n0, whereas their onset is slightly decreasing
with increasing temperature. We also observe that they are
slightly more abundant for low Yp.

Figure 4 gives complementary information about the com-
position by showing “phase diagrams” in the Yp–ρB space.
For T = 10 MeV, there is an unexpected kink for XA for Yp
between 0.4 and 0.5. This is probably related to the limitation
of the composition in the HS(DD2) model regarding the max-
imum asymmetry and mass number that nuclei can have. In
the bottom panel of Figure 4, a temperature of �48 MeV is
selected. Note again that for T � 50 MeV, the HS model does
not take into account the formation of nuclei. The tempera-
ture of �48 MeV corresponds to the highest temperature in our
final EoS tables, where nuclei can, in principle, still appear. It
is important to note that the small fraction of “heavy” nuclei
XA that can be seen in Figure 4 at this high temperature, ac-
tually corresponds to intermediate mass nuclei such as carbon.
Here the abundance of nuclei is decreasing exponentially with
their mass number. At the temperature of �48 MeV, we find
that the lines for Λs almost coincide with those of light nu-
clei. For moderate asymmetries (e.g., Yp = 0.3), an isothermal
compression would lead to a transition from npΛ-matter to a
mixture of nucleons and light nuclei, and then above ∼1014 g
cm−3 back to npΛ-matter. This “peninsula” of light nuclei must
be seen as a result of the minimization of the free energy. For
very low densities and such high temperatures, there would be
almost no nuclei present. Instead, there is a thermal contribu-
tion of Λs that makes them the favorite phase. At intermediate
densities, light nuclei play a more important role than Λs. At
high densities, where the formation of Λs is driven by density
and by high chemical potentials, they again form the most stable
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Figure 3. Phase diagrams at Yp = 0.1, 0.3, and 0.5 (bottom to top) in the T–ρB

plane for the BHBΛφ EoS. The lines delimit regions where the mass fractions
of light nuclei (Xa), heavy nuclei (XA), and Λ hyperons (XΛ) exceed 10−4. The
thin dashed magenta line also shows where the mass fraction of Λs exceeds
10−5. Λs occur abundantly only at high densities.

(A color version of this figure is available in the online journal.)

phase. As mentioned earlier, a more detailed calculation should,
in principle, consider all possible degrees of freedom at all
conditions.

Figure 5 exhibits the composition of supernova matter at dif-
ferent regimes of temperatures, proton fractions, and densities.
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Figure 4. Phase diagram at T = 1, 10, and �48 MeV (bottom to top) in the
Yp–ρB plane for the BHBΛφ EoS. The lines delimit regions where the mass
fractions of light nuclei (Xa), heavy nuclei (XA), and Λ hyperons (XΛ) exceed
10−4. The thin dashed magenta line also shows where the mass fraction of
Λs exceeds 10−5. For T = 1 and 10 MeV, Λ occurs abundantly only at high
densities. For T � 48 MeV, the isocontours of light nuclei and Λs almost
coincide.

(A color version of this figure is available in the online journal.)

Fractions of neutrons (Xn), protons (Xp), light nuclei (Xa), heavy
nuclei (XA), and Λs (XΛ) are shown as a function of baryon
mass density for T = 1, 10, and 100 MeV and Yp = 0.1, 0.3,
and 0.5 for the npΛφ case. For T = 1 MeV and Yp = 0.1,

8



The Astrophysical Journal Supplement Series, 214:22 (16pp), 2014 October Banik, Hempel, & Bandyopadhyay

10
-4

10
-2

10
0

X
n

X
p

X
a

X
A

XΛ

10
-4

10
-2X

i

5 10 1510
-4

10
-2

5 10 155 10 15

log
10

(ρ
B
) [g/cm

3
]

T= 1 MeV

Y
P =

 0
.1

Y
P =

 0
.3

Y
P =

 0
.5

T= 100 MeVT= 10 MeV

BHBΛφ

Figure 5. Mass fractions of neutrons (Xn), protons (Xp), light nuclei (Xa), heavy nuclei (XA), and Λ hyperons (XΛ) are plotted as a function of baryon mass density
for BHBΛφ corresponding to the npΛφ case.

(A color version of this figure is available in the online journal.)

almost only free neutrons and protons exist up to a mass den-
sity of ∼107 g cm−3. Beyond this density point, the free proton
fraction drops sharply because protons are now bound inside
light nuclei coexisting with free neutrons, which, at this low
temperature, are mostly alpha-particles. Similarly, the free neu-
tron fraction is reduced. The shape of the curve for light nuclei
tends to be symmetric and the width of it increases with higher
values of proton fraction. Heavy nuclei (Z � 6) start populating
the system around 109 g cm−3, replacing light nuclei. This trend
is noted also for other values of proton fractions. The fraction
of heavy nuclei grows and reaches its maximum value at higher
mass densities with an increasing proton fraction, as is evident
from the T = 1 MeV panel of Figure 5. Consequently, fractions
of free neutrons and light nuclei fall rapidly. Heavy nuclei dis-
solve into their fundamental constituents at ∼1014 g cm−3 and
form a uniform matter of neutrons and protons. It is observed
that Λ hyperons appear with significant abundance at a density
above 2n0 at the cost of neutrons when the zero-temperature
threshold condition μΛ = μn � mΛ is satisfied. The higher the
proton fraction, the smaller the population of Λs is. Note again
that we include Λ hyperons in the hyperon EoS tables only when
its fraction is above 10−5.

Now we focus on the case of T = 10 MeV of Figure 5 (middle
panel). Here light nuclei are formed, replacing free nucleons at
higher mass densities. Though significant populations of light
nuclei are noted for different Yp, the distribution of heavy nuclei
is appreciable and very sharp only for Yp = 0.5. It was found
that just like the T = 1 MeV case, nuclei melt down to form a
uniform nuclear matter before the saturation density is reached
and Λs appear at higher densities. For T = 1 and 10 MeV, we
do not find any thermal Λs, as expected.

Next we discuss the case of T = 100 MeV in Figure 5
(right panel). Note that in the HS(DD2)-EoS nuclei are only
considered up to a temperature of 50 MeV, because their
contribution is small for such high temperatures. Thus, only
uniform matter of neutrons, protons, and Λs is found to exist
in this case. A significant fraction of Λ hyperons is thermally
produced at low densities with the constraint μn = μΛ and
it grows with density at the expense of neutrons. We find
qualitatively similar behavior for the hyperon case without φ
mesons, as shown in Figure 6. The only difference between the
npΛ and npΛφ cases is found in Λ fraction at high densities as
is also evident from Tables 4–7 which show excerpts from our
full EoS tables.

These tables also show that very low values of the effective
Dirac masses are found at very high densities. Small or even
negative values of the nucleon effective Dirac mass are well
known to occur in relativistic mean-field models (see Zimanyi
& Moszkowski 1990; Schaffner & Mishustin 1996). In our case
with T = 0.1 MeV, vanishingly small or negative values of the
nucleon effective Dirac mass occur beyond the central density,
corresponding to the maximum neutron star mass.

Free energy per baryon is shown as a function of baryon
mass density in Figure 7. Here and in all following plots, we
only show the baryonic contribution. Free energy per baryon is
measured with respect to the arbitrary value of m0 = 938 MeV.
This figure also shows various regimes of temperatures, T = 1,
10, and 100 MeV and proton fractions, Yp = 0.1, 0.3, and 0.5.
Furthermore, the results of hyperon matter with (solid line) and
without (dashed line) φ mesons are shown in Figure 7. At lower
densities, there is practically no difference between the results of
nuclear and hyperon matter for different situations considered.
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Table 4
Data from BHBΛ EoS Table for T = 0.1 MeV and Yp = 0.01 and 0.5

log10(ρB ) nB log10(Yp) Yp F Eint S Ā Z̄ m∗ Xn Xp Xa XA P μn μp ā z̄ XΛ
(g cm−3) (fm−3) (MeV) (MeV) (kB) (MeV) (MeV fm−3) (MeV) (MeV)

3.22025 1.0E-12 −2 0.01 −0.385878 7.97106 18.5126 76 26 939.565 0.970769 0 0 0.02923 0.971141E-13 −1.65569 −20.2045 3.01 1.01 0
14.2203 0.1 −2 0.01 11.5293 18.0360 0.010149 0 0 631.434 0.99 0.01 0 0 0.949866 20.5277 −84.6839 0 0 0
15.2203 1.0 −2 0.01 288.255 294.761 0.260104E-02 0 0 9.95451 0.248928 0.01 0 0 336.830 626.015 377.824 0 0 0.741072

3.22025 1.0E-12 −0.30103 0.5 −7.77206 −1.2157 0.506831 56 28 938.272 0 0 0 1 0.153089E-14 −13.739 −3.63947 4 2 0
14.2203 0.1 −0.30103 0.5 −13.6378 −7.13086 1.29635 0 0 625.119 0.5 0.5 0 0 −0.609824 −20.6929 −20.6166 0 0 0.0
15.2203 1.0 −0.30103 0.5 305.76 312.266 0.283803E-02 0 0 52.0946 0.088970 0.5 0 0 491.997 693.182 900.493 0 0 0.411030

Notes. This table gives the values of quantities of six single rows in the so-called Shen98 format, as specified in Appendix A.2. The complete hyperon table without φ mesons (BHBΛ) is available at
http://phys-merger.physik.unibas.ch/∼hempel/eos/v1.0/bhb_l_frdm_shen98format.zip. Data points with fewer digits are shown here for guidance regarding its form and content.

Table 5
Same as Table 4, but for T = 100 MeV

log10(ρB ) nB log10(Yp) Yp F Eint S Ā Z̄ m∗ Xn Xp Xa XA P μn μp ā z̄ XΛ
(g cm−3) (fm−3) (MeV) (MeV) (kB) (MeV) (MeV fm−3) (MeV) (MeV)

3.22025 1.0E-12 −2 0.01 −2.13589E+10 2.40721E+11 2.62080E+09 0 0 773.734 0.814211 0.01 0 0 0.0213589 −939.565 −938.272 0 0 0.175788
14.2203 0.1 −2 0.01 −279.137 206.844 4.79475 0 0 542.722 0.772041 0.01 0 0 11.4656 −161.377 −627.033 0 0 0.217959
15.2203 1.0 −2 0.01 165.051 411.954 2.40397 0 0 19.9808 0.274440 0.01 0 0 407.159 573.612 278.197 0 0 0.715560

3.22025 1.0E-12 −0.30103 0.5 −2.13589E+10 2.40721E+11 2.62080E+09 0 0 854.728 0.411164 0.5 0 0 0.0213589 −939.565 −938.272 0 0 0.0888365
14.2203 0.1 −0.30103 0.5 −341.599 170.628 5.05722 0 0 619.9245 0.408025 0.5 0 0 11.2739 −242.685 −216.873 0 0 0.091975
15.2203 1.0 −0.30103 0.5 177.458 423.538 2.39574 0 0 71.3397 0.105272 0.5 0 0 554.206 614.827 846.663 0 0 0.394728

Notes. The complete hyperon table without φ mesons (BHBΛ) is available at http://phys-merger.physik.unibas.ch/∼hempel/eos/v1.0/bhb_l_frdm_shen98format.zip. Data points with fewer digits are shown here for
guidance regarding its form and content.
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Table 6
Same as Table 4, but Now for the BHBΛφ EoS Table for T = 10 MeV

log10(ρB ) nB log10(Yp) Yp F Eint S Ā Z̄ m∗ Xn Xp Xa XA P μn μp ā z̄ XΛ
(g cm−3) (fm−3) (MeV) (MeV) (kB) (MeV) (MeV fm−3) (MeV) (MeV)

3.22025 1.0E-12 −2 0.01 −243.554 23.2555 26.0303 8 6 939.552 0.99 0.01 0 0 1.0E-11 −234.647 −280.577 2 1 0
14.2203 0.1 −2 0.01 7.01729 22.2363 0.871332 19.81 6 633.164 0.989845 0.009922 0.000232 0 1.32322 19.9713 −107.445 3.11 1.04 0
15.2203 1 −2 0.01 331.522 340.708 0.268107 0 0 29.9543 0.414247 0.01 0 0 448.471 781.568 468.839 0 0 0.575753

3.22025 1.0E-12 −0.30103 0.5 −250.549 22.6219 26.6665 8 6 938.919 0.5 0.5 0 0 1.0E-11 −241.478 −241.457 2 1 0
14.2203 0.1 −0.30103 0.5 −19.8927 −1.34810 1.20389 0 0 627.659 0.5 0.5 0 0 −0.069936 −21.5511 −21.4705 0 0 0.0
15.2203 1.0 −0.30103 0.5 319.375 328.752 0.287131 0 0 61.3811 0.149693 0.5 0 0 533.660 773.293 930.939 0 0 0.350307

Notes. The complete hyperon table with φ mesons (BHBΛφ) is available at http://phys-merger.physik.unibas.ch/∼hempel/eos/v1.0/bhb_lp_frdm_shen98format.zip. Data points with fewer digits are shown here for
guidance regarding its form and content.

Table 7
Same as Table 6, but for T = 100 MeV

log10(ρB ) nB log10(Yp) Yp F Eint S Ā Z̄ m∗ Xn Xp Xa XA P μn μp ā z̄ XΛ
(g cm−3) (fm−3) (MeV) (MeV) (kB) (MeV) (MeV fm−3) (MeV) (MeV)

3.22025 1.0E-12 −2 0.01 −2.13590E+10 2.40721E+11 2.62080E+09 0 0 773.746 0.814225 0.01 0 0 0.0213589 −939.565 −938.272 0 0 0.175775
14.2203 0.1 −2 0.01 −278.401 205.785 4.77680 0 0 549.326 0.782574 0.01 0 0 11.5394 −159.885 −627.353 0 0 0.207427
15.2203 1.0 −2 0.01 208.007 455.691 2.41179 0 0 39.9208 0.414758 0.01 0 0 504.552 714.667 348.584 0 0 0.575242

3.22025 1.0E-12 −0.30103 0.5 −2.13590E+10 2.40721E+11 2.62080E+09 0 0 854.734 0.411170 0.5 0 0 0.0213589 −939.565 −938.272 0 0 0.0888298
14.2203 0.1 −0.30103 0.5 −341.465 170.346 5.05305 0 0 621.205 0.410135 0.5 0 0 11.2864 −242.108 −216.932 0 0 0.089865
15.2203 1.0 −0.30103 0.5 191.740 438.178 2.39932 0 0 79.6312 0.153005 0.5 0 0 588.225 687.012 871.080 0 0 0.346994

Notes. The complete hyperon table with φ mesons (BHBΛφ) is available at http://phys-merger.physik.unibas.ch/∼hempel/eos/v1.0/bhb_lp_frdm_shen98format.zip. Data points with fewer digits are shown here for
guidance regarding its form and content.
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Figure 6. Mass fractions of neutrons (Xn), protons (Xp), light nuclei (Xa), heavy nuclei (XA), and Λ hyperons (XΛ) are plotted as a function of baryon mass density
for BHBΛ corresponding to the npΛ case.

(A color version of this figure is available in the online journal.)

This may be attributed to no Λs for T = 1 and 10 MeV or just
a low abundance of thermal Λs in the case of T = 100 MeV,
as shown in the previous figures. On the other hand, the free
energy is reduced when Λs are populated significantly at higher
densities and higher temperatures compared with the nuclear
EoS. It is noted that when hyperon-hyperon interaction is
mediated by φ mesons in the npΛφ case, the free energy is
higher than that of the npΛ case.

Pressure as a function baryon mass density is displayed in
Figure 8 for temperatures T = 1, 10, and 100 MeV and proton
fractions Yp = 0.1, 0.3, and 0.5. Just like the free energy case,
we find the hyperon EoS with and without φ mesons at high
densities and temperatures to be softer than the nuclear EoS.
Furthermore, the hyperon EoS in the npΛφ case is stiffer than
the hyperon EoS in the npΛ case. It is worth noting here that
there is no kink or jump in pressure when Λs appear in the
system. This indicates that it is a smooth transition from nuclear
to hyperon matter.

Figure 9 demonstrates the behavior of entropy per baryon
as a function of baryon mass density. We consider the same
values of temperatures and proton fractions as before. For low
temperatures, there is not much difference between the results
with or without Λ hyperons. Note that the kinks at low densities
originate from changes in the nuclear composition which are
related to nuclear shell effects. There are some effects of Λ
hyperons for higher baryon densities at T = 10 MeV. As
the temperature increases to T = 100 MeV, this difference
is pronounced. In this case, the entropy per baryon including Λ
hyperons is higher than that of the nuclear matter. However, we
cannot differentiate between the results of hyperon matter with
and without φ mesons.

Examples of data from hyperon EoS tables with and without
φ mesons are recorded in Tables 4–7. For T = 0.1, 10, and
100 MeV, selected rows of the main tables with fixed values of
Yp and baryon mass density (ρB) are displayed in those tables.
The various quantities are explained in Appendix A.2. Two
variants of the hyperon EoS tables with (BHBΛφ) and without
(BHBΛ) φ mesons in binary as well as Shen98 formats are
available online.5 Both hyperon EoS tables are also available
in the comprehensive CompOSE EoS database,6 as well as on
the stellarcollapse.org Web site.7 Tables in Shen98 format do
not include electrons, positrons, and photons whereas binary
data files of EoS tables take into account the contributions of
electrons, positrons, and photons. Further details are given on
the Web site of footnote4.

4. SUMMARY AND CONCLUSIONS

We have constructed hyperon EoS tables including Λ hyper-
ons for supernova simulations and neutron stars in a density-
dependent relativistic mean field model. We also take into ac-
count the Λ-Λ interaction mediated by φ mesons in this calcu-
lation. The NSE model of Hempel & Schaffner-Bielich (2010)
is adopted for the description of matter made of light and heavy
nuclei coexisting with unbound nucleons below saturation den-
sities and temperatures up to 50 MeV. We have denoted the
calculation including Λ hyperons without φ mesons as the npΛ
case and that of the Λ hyperons with φ mesons as the npΛφ case.

5 See http://phys-merger.physik.unibas.ch/∼hempel/eos.html.
6 See http://compose.obspm.fr and Typel et al. (2013).
7 See http://stellarcollapse.org/equationofstate.
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Figure 7. Free energy per baryon with respect to m0 = 938 MeV is plotted as a function of baryon mass density for temperatures T = 1, 10, 100 MeV and proton
fraction Yp = 0.1, 0.3 and 0.5. Results from the nucleonic EoS table HS(DD2) (green) and the two hyperon EoS tables BHBΛ (dashed line) and BHBΛφ (red) are
shown here.

(A color version of this figure is available in the online journal.)

Figure 8. Pressure is exhibited as a function of baryon mass density for temperatures T = 1, 10, 100 MeV and proton fractions Yp = 0.1, 0.3 and 0.5. Results from
the nucleonic EoS table HS(DD2) (green) and the two hyperon EoS tables BHBΛ (dashed line) and BHBΛφ (red) are shown here.

(A color version of this figure is available in the online journal.)
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Figure 9. Entropy per baryon is shown as a function of baryon mass density for temperatures T = 1, 10, 100 MeV and proton fractions Yp = 0.1, 0.3, and 0.5. Results
from the nucleonic EoS table HS(DD2) (green) and the two hyperon EoS tables BHBΛ (dashed line) and BHBΛφ (red) are shown here.

(A color version of this figure is available in the online journal.)

The DD2 parameter set Typel et al. (2010) has been used in this
calculation for the nucleons. The vector meson-Λ hyperon cou-
plings are obtained from the SU(6) symmetry relations of the
quark model, whereas the scalar meson-Λ hyperon coupling is
determined from the potential depth of the Λ hyperon in nu-
clear matter at the saturation density of −30 MeV, which is
extracted from the experimental binding energies of Λ hyper-
nuclei. The system is populated with Λs using the equilibrium
condition μn = μΛ. The contribution of Λs is considered in
our calculation when its corresponding EoS gives a lower free
energy than the EoS of only nuclei and nucleons and when the
Λ mass fraction exceeds 10−5 at the same time. It is noted that
the fraction of Λ hyperons is negligible at low-density and low-
temperature domains. The population of Λ hyperons grows in
uniform matter at the cost of neutrons at high density. A signif-
icant fraction of thermal Λ hyperons is populated in the system
at higher temperatures.

The free energy of the system including Λ hyperons is lower
compared to that of the nuclear matter case. However, Λ hy-
peron matter involving φ mesons has higher free energy than
that of the Λ hyperon matter without φ mesons. In the case of
entropy per baryon, one notices that it is higher than the case
of nuclear matter when more degrees of freedom in the form of
Λ hyperons appear in the system. This indicates different ther-
mal properties of the EoS, which are known to be important for
neutron-star mergers (Bauswein et al. 2013; Kaplan et al. 2014)
and black hole formation (Hempel et al. 2012). We observe that
the EoS (pressure versus baryon mass density) of the Λ hyperon
matter with and without φ mesons is softer than the nuclear
EoS. Furthermore, the repulsive interaction of φ mesons makes
the EoS of the npΛφ case stiffer than that of the npΛ case.

It is important to note that the pressure grows smoothly with
baryon density even after the appearance of Λ hyperons. We
did not find any indication for a first-order phase transition con-
nected with the appearance of hyperons, as discussed, e.g., by
Schaffner-Bielich et al. (2002), Gulminelli (2012), and Gul-
minelli (2013).

We have generated two Λ hyperon EoS tables with
(BHBΛφ) and without (BHBΛ) φ mesons covering temper-
atures (0.1–158.48 MeV), proton fractions (0.01–0.6), and
baryon density (10−12–�1 fm−3). The EoS tables are written
in two different formats: the first format is similar to the one
used by Shen et al. (1998), and the second one corresponds to
extended tables including electrons, positrons, and photons in
a binary format. Tables 4–7 illustrate certain parts of the main
tables.

Finally, we impose the charge neutrality and β-equilibrium in
our Λ hyperon EoS tables and calculate mass–radius relationship
of the neutron star sequence at T = 0.1 MeV. We obtain max-
imum neutron star masses 2.1 M� and 1.95 M� corresponding
to the Λ hyperon EoS with and without φ mesons, respectively.
The maximum neutron star mass of Λ hyperon matter includ-
ing φ mesons is compatible with the recently measured 2.01 ±
0.04 M� neutron star.

We shall perform supernova simulations with new hyperon
EoS tables and publish those results separately in the future.
New hyperon EoS tables will be also useful for neutron star
merger calculations.

Numerical calculations of this work have been partly car-
ried out in the blade server of the Astroparticle Physics and
Cosmology Division, Saha Institute of Nuclear Physics,
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APPENDIX

DESCRIPTION OF THE TABLES IN Shen98 FORMAT

The EoS tables are presented in two different formats,
“Extended” and “Shen98”, online.8 Here we restrict ourselves
to the description of the latter where the information are stored
in a format that is similar to the tables of Shen (Shen et al. 1998,
2011c), which is widely used in many different astrophysical
applications.

A.1. Parameter Grid and Data Structure

Table 3 gives an overview of the two hyperonic tables BHBΛ
and BHBΛφ, regarding the constituents considered, and the
points in the parameter space of temperature, density, and proton
fraction which were calculated. For density and temperature,
we have a logarithmic spacing, and for the proton fraction it
is linear. Besides the range of density, the two tables cover the
same conditions (i.e., in temperature and proton fraction).

We arrange the data as follows. We group them in blocks of
constant temperature, starting with the lowest value. Within each
temperature block, we group the data according to the proton
fraction, again starting with lowest values. For given temperature
and proton fraction, we list all baryon number densities with
increasing values.

A.2. Entries of the Tables

For each grid point specified by density, temperature, and
electron fraction, there are 20 different thermodynamic quan-
tities in the tables. Those thermodynamic quantities are ex-
plained below. Note that only baryonic contributions to different
quantities are recorded. The contributions of photons, electrons,
positrons, and neutrinos are to be added separately.

1. Logarithm of baryon mass density (log10(ρB) [g cm−3]).
The baryon mass density is defined as the baryon number
density multiplied by the value of the atomic mass unit
mu = 931.49432 MeV.

2. Baryon number density (nB [fm−3]).
3. Logarithm of total proton fraction (log10(Yp) []).
4. Total proton fraction (Yp []).

Note that the total proton fraction Yp is given by all protons
(i.e., free and bound in nuclei) and thus is equal to the
electron fraction to obtain charge neutrality.

5. Free energy per baryon (F [MeV]).
Free energy per baryon relative to 938 MeV is defined by

F = f

nB

− 938. (A1)

We have chosen the reference value of 938 MeV because
it was also used in the original table of Shen et al. (1998).
Note that this value is otherwise completely arbitrary and
not used in the EoS calculations.

6. Internal energy per baryon (Eint [MeV]).
Eint relative to mu is defined by

Eint = ε

nB

− mu. (A2)

8 See http://phys-merger.physik.unibas.ch/∼hempel/eos.html.

7. Entropy per baryon (S [kB]).
8. Average mass number of heavy nuclei (Ā []).

This is defined as Ā = ∑
A,Z�6 AnA,Z/

∑
A,Z�6 nA,Z .

9. Average charge number of heavy nuclei (Z̄ []).
This is defined as Z̄ = ∑

A,Z�6 ZnA,Z/
∑

A,Z�6 nA,Z .

Note that Z̄ and Ā are set to zero if XA = 0, i.e., if no heavy
nuclei are present.

10. Nucleon effective Dirac mass (m∗ [MeV]).
In the RMF calculation, we use separate values for neutron
and proton masses. However, we store only the average
value of neutron and proton effective Dirac masses.

11. Mass fraction of unbound neutrons (Xn []).
This is defined as Xn = nn/nB .

12. Mass fraction of unbound protons (Xp []).
It is given by Xp = np/nB .

13. Mass fraction of light nuclei (Xa []).
This is defined as Xa = ∑

A,Z�5 AnA,Z/nB .
14. Mass fraction of heavy nuclei (XA []).

This is defined as XA = ∑
A,Z�6 AnA,Z/nB .

15. Baryon pressure (P [MeV/fm3]).
16. Neutron chemical potential relative to neutron rest mass

(μn − mn [MeV]).
The value of mn is specified in Table 2, which also
corresponds to the value used in our calculations. Note
that μΛ = μn wherever Λs are present.

17. Proton chemical potential relative to proton rest mass
(μp − mp [MeV]).
The value of mp is specified in Table 2, which also
corresponds to the value used in our calculations.

18. Average mass number of light nuclei (ā []).
This is defined as ā = ∑

A,Z�5 AnA,Z/
∑

A,Z�5 nA,Z .
19. Average charge number of light nuclei (z̄ []).

This is defined as z̄ = ∑
A,Z�5 ZnA,Z/

∑
A,Z�5 nA,Z .

Note that z̄ and ā are set to zero if Xa = 0, i.e., if no light
nuclei are present.

20. Mass fraction of Lambda hyperons (XΛ []).
It is defined as XΛ = nΛ/nB .

A.3. Accuracy and Consistency of the EoS Tables

We have performed the following consistency checks on the
EoS tables.

1. Thermodynamic consistency requires

ε = T s − P + μn(1 − Yp)nB + μpYpnB. (A3)

The modulus of the relative thermodynamic accuracy

Δ = T s − P + μn(1 − Yp)nB + μpYpnB

ε
− 1, (A4)

is on average 2.0 × 10−6 in the EoS tables.
2. Sum rule of particle fractions is given by

Xn + Xp + Xa + XA + XΛ = 1, (A5)

and is satisfied by the EoS tables with an accuracy higher
than 1.8 × 10−7. The average deviation is 2.6 × 10−8.

3. We have also checked that the EoS tables fulfill the
thermodynamic stability criteria

∂s

∂T
� 0, (A6)
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and
∂P tot

∂nB

� 0. (A7)

The second of the two relations is only fulfilled for the
total pressure, i.e., if the electron contribution is added
P tot = Pe + P . There are just 10 grid points in the table,
where this second relation is slightly violated.

Note that all numbers which we have given here are directly
calculated from the tables in the Shen98 format. Because only
seven digits are stored in these tables, the highest deviations
originate mostly from round-off errors. In our actual calcula-
tions, and in some other binary versions of the tables where
all quantities are stored with double precision, the accuracy is
even higher. Note that we also do not apply any smoothing or
averaging prescription, as is done in, e.g., Shen et al. (2011b,
2011a).
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