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ABSTRACT

We test a new “hybrid” scheme for simulating dynamical fluid flows in which cylindrical components of the
momentum are advected across a rotating Cartesian coordinate mesh. This hybrid scheme allows us to conserve
angular momentum to machine precision while capitalizing on the advantages offered by a Cartesian mesh, such as
a straightforward implementation of mesh refinement. Our test focuses on measuring the real and imaginary parts of
the eigenfrequency of unstable nonaxisymmetric modes that naturally arise in massless polytropic tori having a range
of different aspect ratios and on quantifying the uncertainty in these measurements. Our measured eigenfrequencies
show good agreement with the results obtained from the linear stability analysis of Kojima and from nonlinear
hydrodynamic simulations performed on a cylindrical coordinate mesh by Woodward et al. When compared against
results conducted with a traditional Cartesian advection scheme, the hybrid scheme achieves qualitative convergence
at the same or, in some cases, much lower grid resolutions and conserves angular momentum to a much higher
degree of precision. As a result, this hybrid scheme is much better suited for simulating astrophysical fluid flows
such as accretion disks and mass-transferring binary systems.
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1. INTRODUCTION

1.1. Context

Binary star systems, especially those containing compact
components, are of great current interest in astrophysics. Bi-
naries containing white dwarf components, in particular, are
quite common because white dwarfs represent the most fre-
quent endpoint for stellar evolution. Even double white dwarf
binaries, which are formed through common envelope evolution,
are estimated to number ∼2.5 × 108 in our Galaxy (Nelemans
et al. 2001). When gravitational radiation drives these binaries
to a semi-detached state, these mass transferring systems are
thought to be progenitors to both type Ia supernovae (Geier
et al. 2007; Rosswog et al. 2009; Fryer et al. 2010; Schaefer &
Pagnotta 2012) and to hydrogen-poor R Coronae Borealis stars
(Webbink 1984; Staff et al. 2012). Yungelson et al. (2004) review
many possible evolutionary paths of binary systems. Tylenda
et al. (2011) point to the evolution of V1309 Sco as an exam-
ple of a system in which an actual merger has been witnessed
observationally.

Our desire is to employ computational fluid techniques to
model, in a self-consistent manner and to a high degree of ac-
curacy, mass transfer in a wide variety of interacting binary star
systems over hundreds, if not thousands, of orbits. Examples of
our efforts, to date, include D’Souza et al. (2006), Motl et al.
(2007), Even & Tohline (2009), and Marcello & Tohline (2012).
Related work by other groups includes Benz et al. (1990), Fryer
et al. (2006, 2010, 2012), Yoon et al. (2007), and Raskin et al.
(2012). Such a capability would allow us to not only better
understand the behavior of binaries that are dynamically un-
stable toward merger or tidal disruption of the donor but also
examine how spin–orbit coupling—for example, the exchange
of angular momentum between the donor star and a disk sur-

rounding the accretor—facilitates dynamical stability and leads
to long phases of quasi-steady mass transfer. With such a tool
we could simulate how slow accretion can bring an initially
sub-Chandrasekhar-mass accretor to the brink of critical col-
lapse, how a transition from sub- to super-Eddington accretion
rates affects common-envelope development and evolution, and
the steady-state structure of mass-transferring AM CVn type
binaries.

In simulating these systems numerically, a faithful represen-
tation of the flow will be achieved only if the grid resolution is
sufficiently high across a range of dynamically interesting flow
regions. These regions can vary in structure as well as in identity
over time, so the grid needs to adapt accordingly. For example,
even when only considering double degenerate binaries, the
smallest length scales (surface layers of both stars, scale height
of the disk, and fluid flow through the L1 Lagrange point) can be
tiny compared to the binary separation. At the other extreme, an
envelope consisting of an optically thick atmosphere engulfing
both stars can develop shortly after accretion begins, quickly
filling the original computational domain. This “common enve-
lope” structure may expand to a size many times larger than the
binary separation. Adaptive mesh refinement (AMR) techniques
can be called upon to provide an appropriately high degree of
spatial resolution in various, as well as in time-varying, regions
of the flow. Astrophysical simulation codes that employ AMR
include FLASH (Fryxell et al. 2000), ZEUS (Hayes et al. 2006),
PLUTO (Mignone et al. 2007), and Scorpio, recently developed
by D. C. Marcello et al. (2014, in preparation). AMR techniques
can be straightforwardly implemented on a Cartesian mesh but
are more difficult to employ across curvilinear grids. Despite
this difficulty, AMR has been implemented on both spherical
and cylindrical coordinate grids (Fryxell et al. 2000).

On the other hand, advection schemes implemented on Carte-
sian meshes are most naturally designed to conserve linear
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momentum rather than angular momentum. Because binary
evolutions can be faithfully followed through hundreds of or-
bits only if the simulation conserves angular momentum to a
high degree of accuracy, in the past we have chosen to use a
cylindrical computational grid, which more naturally facilitates
conservation of orbital angular momentum. However, even a
cylindrical grid does not match the symmetry of each individual
binary component. In the absence of a mesh refinement capa-
bility we have not had the full freedom to distribute resolution
where it is needed.

Alternative curvilinear meshes designed to address some of
the above outlined shortcomings have been used in previous
disk and torus simulations. For example, Zink et al. (2008) dis-
cuss a multi-patch technique meant for spherically symmetric
or axisymmetric simulations, and Fragile et al. (2009) introduce
a “patched-sphere” mesh similar to the multi-patch technique.
However, as with a cylindrical coordinate grid, such schemes
do not easily accommodate mesh refinement techniques. Ulti-
mately, Zink et al. (2008) say that Cartesian mesh-refinement
is likely better suited to problems like binary mergers. Histor-
ically, therefore, it has been difficult to achieve both high and
adaptive spatial resolution while at the same time achieving a
high degree of angular momentum conservation. The hybrid ad-
vection scheme designed by Call et al. (2010) and implemented
here allows us to have our cake and eat it, too. It facilitates
conservation of angular momentum to machine accuracy on a
refined Cartesian mesh.

Mignone et al. (2012) state that their method, implemented in
the PLUTO code, allows for conserving angular momentum on
a Cartesian mesh to machine precision. However, it appears as
though this only applies to local “shearing-box” models. Their
scheme breaks down the azimuthal fluid velocity into two pieces:
an average plus a residual term. The average fluid velocity is
handled in a linear step by moving the fluid in the direction of
the orbital motion. The residual velocity is then handled in the
standard way. Only the residual portion is subject to the Courant
condition, so this leads to larger time steps, and the apparent
motion of the fluid through the grid is much smaller, leading to
less numerical dissipation. However, this method requires that
the average angular motion be parallel to one of the coordinate
bases describing the grid and that the relevant grid direction use
periodic boundary conditions. This is not the case for a global
simulation performed on a Cartesian mesh, which is what we
are doing in this work. The method implemented in PLUTO
would be a very suitable choice for simulating axisymmetric tori
as we have done in this work. It would not, however, provide a
significant advantage for binary mass-transfer simulations, even
if performed on a cylindrical grid, as the fluid is largely rotating
with a uniform angular velocity.

While our new method will allow us to conserve angular
momentum at a level that is necessary to faithfully follow
interacting binary simulations through thousands of orbits, it
does not ease the computational burden of simulating the large
number of time steps needed for such a simulation. In particular,
the Courant limit on the size of individual time steps remains an
impediment. By facilitating the straightforward implementation
of AMR, however, our new scheme simplifies the task of load
balancing and thereby enhances a code’s ability to efficiently and
more fully use the capabilities of massively parallel computers,
allowing simulations to be carried through thousands of orbits.
As our discussion in Section 3 indicates, the port of our new
hybrid scheme to Octopus is yet another step toward achieving
this goal.

1.2. Overview of This Work

In this paper we demonstrate the utility of the hybrid
scheme by focusing on a quantitative analysis of nonax-
isymmetric, dynamical instabilities that arise spontaneously in
Papaloizou–Pringle tori (Papaloizou & Pringle 1984), hereafter
referred to as PP tori. Each PP torus is a non-self-gravitating,
differentially rotating, geometrically thick, axisymmetric disk
in orbit about a central point mass. Its internal structure is de-
fined by a balance between gas pressure gradients and gradients
in the effective potential. The vertical thickness of the disk/
torus relative to its radial extent is determined by the choice
of the polytropic index for the gas and an initial angular mo-
mentum distribution. (See Section 2 for details.) These config-
urations are suitable for demonstrating the capabilities of our
hybrid scheme for the following reasons: (1) they each have a
simple analytically definable initial state, (2) while each initial
state is axisymmetric, the system is unstable to the development
of nonaxisymmetric structure, hence, its evolution has a fully
three-dimensional character, and (3) the eigenvector of the most
unstable mode for each chosen initial configuration, while not
known analytically, should be well defined and its measured
properties—for example, its complex eigenfrequency—should
be reproducible and independent of the specific numerical
scheme that is used to perform the dynamical simulation. At
the same time, the PP torus provides a good test for hydro codes
such as ours because of the challenges it provides. A Carte-
sian mesh is not ideally suited for the initially axisymmetric
torus problem and thus gives the hybrid scheme an opportunity
to prove its worth, for example, by partially overcoming the
spurious m = 4 modes that are excited by the structure of an
underlying Cartesian grid.

Each of our simulations is carried out on a rotating and re-
fined Cartesian grid. The hydrodynamic code we are using (see
Sections 2.2 and 2.3) has AMR capabilities but for simplicity
we have chosen not to activate the AMR feature. Instead, for
each simulation, the volume of the grid that is occupied by
the initial torus is resolved using a time-invariant, fixed level
of refinement (LOR). The effect of grid resolution is assessed
by repeating individual simulations several times using a dif-
ferent (fixed) number of refinement levels. Typically, we em-
ploy four, five, or six LORs. In addition, for each initial state
and for each specified LOR, the dynamical evolution is car-
ried out using two separate advection schemes: (1) a traditional
“Cartesian” scheme in which the x, y, and z components of
the linear momentum are advected across the refined Carte-
sian grid and (2) our new “hybrid” scheme in which radial
momentum and angular momentum—instead of the x and y
components of the momentum—are advected across the re-
fined Cartesian grid. In total, results from 23 simulations are
reported here.

For each simulation, the real and imaginary components of the
complex eigenfrequency of the fastest growing unstable mode
are measured and, as appropriate, compared with previously
published results from the nonlinear hydrodynamic simulations
performed on a uniformly zoned cylindrical mesh by Woodward
et al. (1994, hereafter WTH) and from the linear stability anal-
ysis presented by Kojima (1986). In an effort to eliminate any
subjective bias that might be introduced into the measurement
of these eigenfrequencies and, at the same time, to facilitate
future efforts to reproduce our results, we introduce a mathe-
matically prescriptive method for quantifying both the value
of and uncertainty in each eigenfrequency measurement. In
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Table 1
Torus Geometries

Model R−/R+ R0/R+ R−/R0

1 0.1 0.1818 0.55
2 0.2 0.3333 0.60
3 0.3 0.4615 0.65
4 0.4 0.5714 0.70
5 0.5 0.6666 0.75
6 0.6 0.7500 0.80
7 0.7 0.8235 0.85

doing this we are able to meaningfully assess the performance of
our new hybrid advection scheme, relative to the performance of
the traditional Cartesian advection scheme. We show that quali-
tative convergence is achieved with the hybrid scheme at either
the same or sometimes at significantly lower grid resolutions.

At the same time, we show that the hybrid scheme allows
conservation of the system’s total angular momentum to ma-
chine accuracy. As explained above, this is a highly desirable
feature that is not possible to achieve using a familiar Cartesian
advection scheme. This is perhaps the most significant attribute
of our hybrid scheme. Historically, the expectation has been
that angular momentum conservation can be achieved when
modeling an astrophysical disk or binary system only if one
adopts a coordinate grid—for example, cylindrical or spherical
coordinates—whose underlying basis vectors accommodate the
curvilinear features of the flow. Our hybrid scheme facilitates
conservation of angular momentum on a Cartesian grid.

The hydrocode that has been used to carry out the primary set
of simulations reported in this paper employs OpenMP to enable
multiple execution threads within a single, multi-core compute
node. All of the models in our primary set of simulations—
totaling 22 in number and using up to six LORs—fit within
a single node of our high-performance computing system. In
Section 3 of this paper we present results from one simulation
that was conducted on a rotating Cartesian grid with seven
LORs. This single simulation was run using Octopus, a closely
aligned hydrocode built on top of High Performance ParalleX
(HPX), a newly emerging parallel runtime system.

2. METHODS

2.1. Initial Models

As has already been stated, the initial axisymmetric equi-
librium models used in this study were all geometrically thick
(uniform specific angular momentum) massless tori with struc-
tures as derived by Papaloizou & Pringle (1984). There have
been a number of published studies of the nonaxisymmetric
stability of these massless tori. Some of these are linear stabil-
ity analyses (Papaloizou & Pringle 1984; Kojima 1986; Frank
& Robertson 1988), while others are nonlinear hydrodynamic
simulations either in two dimensions (Hawley 1987, 1990) or
in full three dimensions (Zurek & Benz 1986; Hawley 1990;
WTH). Our initial models have been chosen to provide a direct
comparison with the linear stability analysis of Kojima (1986)
and the nonlinear hydrodynamic results of WTH.

We generated the same sequence of seven initial models used
by WTH, as detailed here in Table 1; Figure 1 displays the cross-
sectional surface of each. The models in this sequence vary in
the ratio of the inner radius R− to the outer radius R+.
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Figure 1. Meridional-plane cross sections of the seven different axisymmetric
equilibrium disks evolved in this paper, listed in Table 1. Each disk has an n = 3
polytropic index and a uniform specific angular momentum (q = 2). Lengths
have been normalized to the radius of pressure maximum, R0.

(A color version of this figure is available in the online journal.)

Following Papaloizou & Pringle (1984), we assume a poly-
tropic equation of state for the fluid,

p(ρ) = Kρ1+ 1
n , (1)

where, n is the polytropic index and K is the polytropic constant,
and we impose a power-law rotation profile given by

Ω(R) = Ω0

(
R0

R

)q

, (2)

where Ω0 = Ω(R0) is the angular velocity in the equatorial
plane at the radius of pressure maximum, R0. Throughout this
work we assume n = 3 and q = 2 (uniform specific angular
momentum). As Papaloizou & Pringle (1984) have shown, a
solution of the hydrostatic balance equation,

− 1

ρ
∇p − ∇Φeff = 0, (3)

where,

Φeff ≡ − GMpt

(R2 + Z2)1/2
+

1

2
Ω2

0(R)R2, (4)

yields the following axisymmetric equilibrium density
distribution:

ρA(R,Z) =
(

GMpt

4K

)3

×
[

1

(R2 + Z2)1/2
− R−

R2(1 + R−/R+)
− 1

(R+ − R−)

]3

,

(5)

where, Mpt is the specified mass of the central point mass. In
our simulations, we normalize all lengths to the outer edge of
the torus, such that R+ = 1.0, and vary R−. (For illustration
purposes, Figure 1 is handled differently.) The mass Mpt is
chosen such that ρmax = ρA(R0, 0) = 1.0.

Before each model was introduced into the hydrocode, the
initial axisymmetric density distribution was perturbed by a
single-mode “kick,”

ρ(R,Z, θ ) = ρA(R,Z)[1 + a cos(mkickθ )],
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where, mkick is the specific azimuthal mode that we choose to
excite, and a = 10−2. No velocity perturbation was introduced.

2.2. Hydrodynamic Code

The perturbed models are evolved on a rotating Cartesian grid
using Scorpio (D. C. Marcello et al. 2014, in preparation) with
modifications as detailed here. We enforce a polytropic equation
of state that is evolved with the same polytropic index, n = 3,
which was used to construct the initial models, and a mass
density floor of 10−10ρmax. Since the PP torus is massless, we
evolve the system in a time-independent gravitational potential
given by a central object of mass Mpt. For more code details,
please see Appendix B.

This work presents simulations run at different resolutions.
Because we use an octree-based grid, it is convenient to speak
in terms of the number of levels of refinement of the coarsest
8 × 8 × 8 grid. Each additional LOR doubles the resolution in
the most refined region. A simulation run at “N” LOR has a
maximally refined grid spacing of Δx = (xmax −xmin)/(8×2N ),
where xmax and xmin are the maximum and minimum extents
of the simulation domain, respectively. For the purposes of this
study, we use a fixed mesh refinement based on the geometry of
the torus, rather than an adaptive mesh. As illustrated in Figure 2,
the grid is fully refined throughout the volume occupied by the
initially axisymmetric torus.

Table 2 gives three different numbers for each model at each
LOR in an effort to fully reveal the grid properties. For each
model, the top row repeats the ratio of the inner radius to
the outer radius, R−/R+, shown in Table 1; a measure of the
slenderness of the torus. The next three rows give three different
numbers for four LORs: the number (in millions) of fully refined
(smallest grid spacing) zones, the number of fully refined (leaf)
subgrids (each containing 8 × 8 × 8 zones), and the ratio of the
radius at pressure maximum to the finest grid spacing, R0/Δx.
The next nine rows give the same set of numbers for five, six,
and seven LORs. The first two numbers are related by a factor of
83 = 512, so Table 2 gives two potential metrics for quantifying
how well a torus is resolved. The first is simply the total number
of fully refined zones inside of the torus, which decreases with
increasing R−/R+, while the ratio R0/Δx increases with R−/R+.
These two metrics seem to contradict each other. The first
(number of fully refined zones) suggests that at any given LOR,
a fatter (lower R−/R+) torus is better resolved, while the second
(R0/Δx) would indicate that a skinnier (higher R−/R+) torus
is better resolved. This illustrates that comparing resolution
between different models is not straightforward.

It seems clear that determining whether or not the resolu-
tion used to simulate a particular model is sufficient must be
done on a model-by-model basis. Hawley et al. (2013) dis-
tinguish between true numerical convergence and “qualitative”
convergence. In our hydrodynamic simulations, we do not ex-
pect to be able to achieve true numerical convergence, charac-
terized by errors in the solution approaching zero. Rather, we
strive to achieve qualitative convergence, a condition that is ob-
tained when physically important macroscopic quantities do not
change by a significant amount with an increase in resolution.
However, one must be cautious when using this criterion, as the
lack of change from one resolution to another may only be an
indication that neither resolution is resolving some important
physical process. In the case of our rather idealized toroidal
models, the physically relevant dynamic processes that deter-
mine the eigenvectors of unstable modes should be resolved
sufficiently well that this will not be a problem.

Figure 2. Comparison of the mesh structure of a R−/R+ = 0.7 torus simulation
taken from three different resolutions. From top to bottom are four, five, and
six LORs. All simulations are run using Cartesian momentum advection. The
four-LOR simulation is shown at t = 1.5torb, the five-LOR simulation is shown
at t = 2.0torb, and the six-LOR simulation is shown at t = 2.8torb.

(A color version of this figure is available in the online journal.)
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Table 2
Resolutiona

R−/R+

LORs Metrics 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Zones (×106) . . . . . . 0.303 . . . . . . . . . 0.106
4 Subgrids . . . . . . 592 . . . . . . . . . 208

R0/Δx . . . . . . 19.23 . . . . . . . . . 34.31

Zones (×106) 2.43 2.07 1.64 1.38 0.987 0.844 0.668
5 Subgrids 4744 4040 3208 2696 1928 1648 1304

R0/Δx 15.15 27.78 38.46 47.62 55.56 62.50 68.63

Zones (×106) . . . . . . 10.73 . . . . . . . . . 3.232
6 Subgrids . . . . . . 20952 . . . . . . . . . 6312

R0/Δx . . . . . . 78.22 . . . . . . . . . 139.58

Zones (×106) . . . . . . . . . . . . . . . . . . 19.31
7 Subgrids . . . . . . . . . . . . . . . . . . 37712

R0/Δx . . . . . . . . . . . . . . . . . . 279.16

Note. a Information is shown only for simulations performed here.

2.3. Description of the Hybrid Angular Momentum
Conservation Scheme

We evolve the following two coupled fluid equations,

∂

∂t
ρ + ∇ · ρu = 0, (6)

and
∂

∂t
(ρv) + ∇ · (ρvu) = −∇p − ρ∇Φ, (7)

where ρ is the mass density, p is the gas pressure, both v and
u identify the same fluid velocity field (that is, v = u), and Φ
is the gravitational potential generated by a central point mass,
Mpt, specifically,

Φ = − GMpt

(x2 + y2 + z2)1/2
. (8)

We use two different variables to represent the same velocity
field to emphasize that, following Call et al. (2010), we have
the freedom to choose different coordinate bases for each of the
velocity terms that appear in the dyadic tensor product, vu, in
the nonlinear advection term of Equation (7). See Appendix A
for further elaboration.

We evolve the fluid with the same polytropic equation of state,
Equation (1), given in Section 2.1. Because we are using this
polytropic equation of state, there is no need to evolve an energy
equation.

When rewriting the “momentum conservation” Equation (7)
in terms of three orthogonal vector components, we begin by
identifying two familiar sets of equations: when advecting
Cartesian momentum components—sx ≡ ρvx , sy ≡ ρvy ,
sz ≡ ρvz—we start with

∂

∂t
sx + ∇ · (sxu) = −êx · ∇p − êx · ∇Φ, (9)

∂

∂t
sy + ∇ · (syu) = −êy · ∇p − êy · ∇Φ, (10)

∂

∂t
sz + ∇ · (szu) = −êz · ∇p − êz · ∇Φ, (11)

and, when advecting cylindrical momentum components—sR ≡
ρvR, �z ≡ Rρvϕ, sz ≡ ρvz—the z component is identical to the
Cartesian case but the other two orthogonal components are

∂

∂t
sR + ∇ · (sRu) = − êR · ∇p − êR · ρ∇Φ +

�2
z

ρR3
, (12)

∂

∂t
�z + ∇ · (�zu) = − Rêϕ · ∇p − Rêϕ · ρ∇Φ, (13)

where, R ≡ (x2 + y2)1/2.
These familiar sets of equations are morphed into the sets

of equations used in our hybrid scheme by recognizing several
things. First, as is demonstrated in Appendix A, in the divergence
term of all five identified momentum component equations, we
can immediately replace u by the velocity field as viewed from
a frame of reference that is rotating at angular frequency, Ω0,
namely,

u′ = u − êϕRΩ0, (14)

because ∇ · (êϕRΩ0) = 0, that is, because the velocity field in-
troduced by the frame rotation is divergence free. All of the
other elements of the five component equations remain un-
changed when u is replaced by u′—in particular, all five ad-
vected quantities, sx, sy, sz, sR, and �z, still refer to compo-
nents of the inertial-frame momentum (or angular-momentum)
density. Second, when advecting Cartesian components of the
momentum across a rotating grid, an additional source term,

Srot = −�0 × (ρu) = Ω0sy êx − Ω0sx êy, (15)

must be inserted on the right-hand side to account for the time-
varying orientation of the Cartesian unit vectors. These modifi-
cations permit us to rewrite all three Cartesian components of
the momentum conservation equation in the form that we have
used for this project:

∂

∂t
sx + ∇ · (sxu′) = − ∂

∂x
p − ρ

∂

∂x
Φ + Ω0sy, (16)

∂

∂t
sy + ∇ · (syu′) = − ∂

∂y
p − ρ

∂

∂y
Φ − Ω0sx, (17)
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∂

∂t
sz + ∇ · (szu′) = − ∂

∂z
p − ρ

∂

∂z
Φ. (18)

Third, we note that an evaluation of the advection term
that appears on the left-hand side of each component of the
momentum equation, which is generically of the form

∇ · (Ψu′) (19)

requires an assessment of the divergence of the three-
dimensional flow field at each location on the computational
grid. But, in practice, it should not matter whether this “assess-
ment” is done on a Cartesian mesh or on a cylindrical mesh (or
on any of a multitude of other mesh choices); the result should
be the determination of the proper scalar value at every point on
the chosen computational grid. So, although the familiar form
of the set of equations governing the time-rate-of-change of the
cylindrical components of the momentum, presented above, was
derived with the implicit assumption that each term would be
evaluated on a cylindrical coordinate mesh, we can just as well
evaluate the advection term on a Cartesian mesh. This only re-
quires that the divergence operator and the “transport” velocity,
u′, be handled in exactly the same manner as they are handled
when evaluating advection in the Cartesian set of equations.
In the hybrid scheme being presented here, all simulations are
conducted on a Cartesian mesh so, in all cases, the divergence
operator and the transport velocity are broken down into Carte-
sian components before the advection term is evaluated.

Finally, because a Cartesian mesh is being adopted, the
gradient operator on the right-hand side of each component of
the momentum equation is also explicitly broken down into its
Cartesian components. This means that, for our hybrid scheme,
the right-hand sides of Equations (12) and (13) incorporate the
operator projections,

êR · ∇ =
[
î
( x

R

)
+ ĵ

( y

R

)]
· ∇ = x

R

∂

∂x
+

y

R

∂

∂y
, (20)

êϕ · ∇ =
[
ĵ

( x

R

)
− î

( y

R

)]
· ∇ = y

R

∂

∂x
− x

R

∂

∂y
. (21)

With all of these recognitions in hand, in our hybrid scheme
the three components of the cylindrical momentum equations
are

∂

∂t
sR + ∇ · (sRu′) = − 1

R

(
x

∂

∂x
+ y

∂

∂y

)
p

− ρ

R

(
x

∂

∂x
+ y

∂

∂y

)
Φ +

�2
z

ρR3
, (22)

∂

∂t
�z + ∇ · (�zu′) =

(
y

∂

∂x
− x

∂

∂y

)
p + ρ

(
y

∂

∂x
− x

∂

∂y

)
Φ,

(23)

∂

∂t
sx + ∇ · (sxu′) = − ∂

∂z
p − ρ

∂

∂z
Φ. (24)

As discussed by Call et al. (2010), it is noteworthy that the
right-hand side of the hybrid-scheme equation that governs
transport (and conservation) of angular momentum does not
contain a Coriolis term. This is because �z, the quantity being

advected and tracked, is the angular momentum density as
measured in the inertial frame of reference. As is demonstrated
in Section A.4 of Appendix A, a Coriolis term arises if
the equation is written in a form where the quantity being
advected is the rotating-frame angular momentum density. This
equation, which contains a Coriolis term, is more familiar to
the astrophysics community—see, for example, Norman et al.
(1980) and New & Tohline (1997). For purposes of angular
momentum conservation, however, we consider it to be far
preferable to adopt a version of the equation in which the
velocity does not explicitly appear in the source term.

Finally, we note that sR and �z can be straightforwardly ex-
pressed in terms of Cartesian components of u or u′. Specifically,
remembering that u = v,

sR ≡ ρvR = ρ

R
(xux + yuy) = ρ

R
(xu′

x + yu′
y), (25)

�z ≡ Rρvϕ = ρ(xuy − yux) = ρ(xu′
y − yu′

x) + ρΩ0(x2 + y2).

(26)

2.4. Postprocessing

We want to quantify small deviations from the initial axisym-
metric density distribution, which can be described by

δρ

ρ
= f (R,Z)e−i[ωt−mθ], (27)

where m is the azimuthal mode number and ω is a complex
frequency. In order to do this, we describe the mass density in
the system in terms of a discrete Fourier series,

ρ(J,L,K, t) = 1

2
c0(J,K, t) +

Lmax∑
m=1

cm(J,K, t)

× cos

[
m

2πL

Lmax
+ φm(J,K, t)

]
, (28)

where J is the radial index, K is the vertical index, and L is the
azimuthal index. For each Z we use a two-dimensional third-
degree bivariate spline technique (Dierckx (1981), as imple-
mented in scipy.interpolate.RectBivariateSpline) to interpolate
mass density values from the Cartesian grid (x, y) to a polar
coordinate grid (R, θ ). We then employ a Fourier transform to
determine the coefficient of the discrete Fourier series as fol-
lows:

am(J,K) = 2

π

Lmax∑
L=1

ρ(J,L,K) cos(mLδθ )δθ,

bm(J,K) = 2

π

Lmax∑
L=1

ρ(J,L,K) sin(mLδθ )δθ,

cm(J,K) = [am(J,K)2 + bm(J,K)2]1/2,

φm(J,K) = arctan[−bm(J,K)/am(J,K)],

Dm ≡ cm∑Lmax
i=0 ci

.

After running each simulation and plotting the time variation of
Dm and φm for various modes, the components of the complex
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Figure 3. Data from the Cartesian advection simulation of Model 3 (R−/R+ =
0.3) is used to demonstrate four diagnostic diagrams, providing a direct
comparison to Figure 2 in WTH. (a) A “Dm–t” diagram showing the Fourier
amplitude of modes m = 1, 2, 3, 4 at the radius of pressure maximum in the
equatorial plane. (b) A “φm–t” diagram showing the phase angle of the m = 1
mode, again at the radius of pressure maximum in the equatorial plane. (c) A
“Dm–r” diagram showing the amplitude of the m = 1 mode as a function of
radius in the equatorial plane at time t = 2.5torb. (d) A “φm–r” diagram showing
the azimuthal location of the density maximum (m = 1) as a function of radius
in the equatorial plane at time t = 2.5torb.

frequency ω for a dynamically growing eigenmode of the system
can be written as

Re(ω) = dφm

dt
,

Im(ω) = d ln cm

dt
.

In order to compare with Kojima (1986), we use the quantities

y1 ≡ [Re(ω)/Ω0 − m] =
[

1

Ω0

dφm

dt
− m

]
, (29)

and

y2 ≡ Im(ω)/Ω0 =
[

1

Ω0

d ln cm

dt

]
, (30)

to describe the properties of the unstable modes. When plotting
ln Dm versus time (a “Dm–t” diagram, as shown, for example,
in Figure 3(a)), where t is normalized to torb ≡ 2π/Ω0, the
value of y2 is the slope of the line divided by 2π . Similarly,
y1 is straightforwardly obtained when plotting φm versus time
(a “φm–t” diagram, Figure 3(b)) by taking the period measured
from the graph, dividing by 2π , and then subtracting m. Note
that φm must be plotted in the inertial frame. Here we usually will
present results only at the radius of pressure maximum, R0, and
in the equatorial plane. In order to gain a better understanding of
the structure of these fluctuations at different radii, however, we
can perform the same Fourier transform at many different radii
along the equatorial plane. We can then obtain a more complete
picture of the structure of the unstable eigenvector by plotting,
for one particular point in time, the amplitude of a single Fourier
mode as a function of radius (a “Dm–r” diagram, Figure 3(c)),
and the phase angle of a single Fourier mode as a function of
radius (a “φm–r” diagram, Figure 3(d)).

2.5. Quantifying Results

We have devised a formulaic method for quantifying both
the growth rate and the quality of the measurement. The idea is
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Figure 4. Data from a simulation of Model 3 (R−/R+ = 0.3) using the hybrid
scheme and five LORs. (a) Shows a Dm–t plot, with vertical lines marking the
starting and ending points of the region used to determine S̄; the portion of the
curve used to measure this slope is shown in bold. A dashed line with a slope
equal to the S̄ is also shown. (b) Shows the windowed slope measurement, S(t),
with vertical lines marking the starting and ending points of the region used to
measure S̄. The horizontal dashed line identifies the measured slope.

that an analysis of simulations that display long, relatively quiet
periods of exponential growth should produce much smaller
error bars than the analysis of simulations that display only short,
noisy segments of exponential growth. A formulaic method of
this type minimizes human judgment and helps ensure that the
measurements are reproducible.

As is illustrated in Figures 4(a) and 5(a) we begin the analysis
by generating a Dm–t plot from the results of each simulation. (A
full suite of Dm–t plots from our five-LOR evolutions are shown
in Figure 6.) This plotted Dm–t curve contains 100 individual
data points for each orbit. Starting at t = torb/8, with a window
of width torb/4 centered on that time, a linear regression is used
to determine the slope, S. This window is moved continuously
across the Dm–t plot to generate a set of data, S(t), as shown in
Figures 4(b) and 5(b).

The relatively flat portion of the Figure 4(b) S(t)
curve—bounded by the two vertical solid lines at tstart = 1.7 torb
and tend = 3.76 torb—corresponds to the period of relatively
clean exponential growth in the Figure 4(a) Dm–t plot. In order
to determine the best portion of the simulation over which to
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Figure 5. Same as Figure 4, but from a simulation of Model 7 (R−/R+ = 0.7)
using the Cartesian momentum advection scheme and five LORs.

measure a slope of the Dm–t graph, that is, in order to determine
the best time boundaries, tstart and tend, we first define the error
bar size as

δy2 =
√

1
iend−istart

∑iend
i=istart

(Si − S̄)2

tend − tstart
, (31)

where istart and iend are the starting and ending points of the
selected section, respectively, and Si is the value of S(t) at
each time ti. Every allowable combination of istart and iend
is considered (as long as tend − tstart � 1.0torb), and the best
time boundaries are defined by the interval which generates the
smallest error bar, δy2 |min. We then define the measured slope to
be the mean of S(t) in the selected region,

2πy2 = S̄ = 1

iend − istart

iend∑
i=istart

Si. (32)

The magnitude of δy2 |min is not meaningful by itself, but it can
be used to compare the relative quality between two separately
measured slopes.

Figures 4 and 5 show examples of Dm–t plots (top) with their
corresponding S(t) plots (bottom). The dashed lines shown in
both the Dm–t and S(t) plots represent the measured slope, S̄,
for the relevant model simulation. Figure 4 shows data from a
simulation that generated a relatively small δy2 |min. In contrast,
Figure 5 shows data that generated a larger δy2 |min. Notice that,
when compared to Figure 4, the region of exponential growth
is shorter and S(t) is much less constant in the selected region
identified in Figure 5.

Additionally, we sought to measure the y1 parameter in a
way that minimized human interaction. The portion of the φm–t
graph that corresponds to the region selected above (tstart to tend)
was fitted to a line using a least-squares method. The slope of
this line is used to compute y1, and the residuals of this fit are
then used to compute δy1 .
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momentum advection scheme, respectively, followed by the model number. All simulations were performed using five LORs. In each case the portion of the plot used
to measure S̄ is highlighted in bold, and a dashed line with the measured slope is also plotted.
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Figure 7. Comparison of the imaginary component (y2) of the eigenfrequency
of various unstable modes between this work and WTH and Kojima (1986).
The red, green, and blue dashed curves connect discreet points from Kojima’s
linear analysis for m = 1, 2, and 3, respectively. The points marked with red
boxes, green circles, and blue triangles show values measured in this work for
m = 1, 2, and 3, respectively; open symbols represent the Cartesian momentum
advection scheme and filled symbols represent the hybrid scheme. Red and green
diamonds represent m = 1 and 2 results published in WTH, respectively. Our
measured growth rates show good agreement with both previous studies. As
described in the text, error bars on data points from this work represent the
relative quality of measurements.

(A color version of this figure is available in the online journal.)

Table 3
Torus Mode Characteristics (Five LORs)

Model mkick Schemea S̄ y2 δy2 dφ/dt y1 δy1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1 C 0.760 0.121 0.007 2.294 0.365 0.0006
1 1 H 0.752 0.120 0.009 2.103 0.335 0.0005
2 1 C 0.792 0.126 0.005 1.885 0.300 0.0002
2 1 H 0.780 0.124 0.005 1.834 0.292 0.0004
3 1 C 1.031 0.164 0.006 1.578 0.251 0.0004
3 1 H 0.994 0.158 0.005 1.579 0.251 0.0003
4 1 C 1.047 0.167 0.008 1.064 0.169 0.0005
4 1 H 1.064 0.169 0.011 1.064 0.169 0.0002
5 2 C 1.253 0.199 0.020 1.251 0.199 0.0017
5 2 H 1.093 0.174 0.016 1.256 0.200 0.0027
6 2 C 1.313 0.209 0.027 0.594 0.095 0.0011
6 2 H 1.320 0.210 0.011 0.792 0.126 0.0007
7 3 C 1.220 0.194 0.037 0.468 0.074 0.0017
7 3 H 1.208 0.192 0.014 0.553 0.088 0.0005

Note. a H denotes hybrid advection scheme and C denotes Cartesian momentum
advection.

3. RESULTS

Figure 6 shows Dm–t plots resulting from 14 separate
simulations, all run at five LORs, with the selected linear portion
of the plot in bold and a dashed line representing the linear fit.
Table 3 contains a separate row of data corresponding to each
of these 14 simulations. Column 1 identifies the initial model
configuration as specified in Table 1, Column 2 identifies the
azimuthal mode perturbation that we introduced at the start of
each run, and Column 3 indicates whether the simulation was
carried out using a standard Cartesian (C) advection scheme or
our new hybrid (H) scheme. The measured slope, S̄, associated
value of y2, and error bar, δy2 |min, corresponding to the Figure 6
plots are tabulated in Columns 4, 5, and 6, respectively, of
Table 3. From the φm–t plot of each simulation (not shown),
we measured dφ/dt , y1, and δy1 and recorded the results in
Columns 7, 8, and 9, respectively, of Table 3.
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Figure 8. As in Figure 7, but showing the real component (y1) of the
eigenfrequency of various unstable modes. Our measured frequencies show
good agreement with both previous studies.

(A color version of this figure is available in the online journal.)

When we apply the post-processing algorithm to the results
of our simulations, we see a good match with the results of
both Kojima and WTH, although error bars were not provided
in either of these earlier works. In Figures 7 and 8 we plot,
respectively, the imaginary (y2) and real (y1) components of
the eigenfrequency as determined from our simulations, from
WTH, and from the linear analysis of Kojima. The three dashed
curves connect discreet points from the Kojima linear analysis.
Because the modes are completely uncoupled in his simulations,
Kojima is able to measure growth rates for all modes over most
of the range of R+/R− in which we are interested. Results from
WTH are marked by solid diamonds. Our current results, shown
as symbols with error bars, represent the m = 1 growth rate for
the four fattest tori (the points marked by red boxes), the m = 2
growth rate for the next two models (points marked by green
circles), and the m = 3 growth rate for the slimmest torus (points
marked by blue triangles). Results from simulations performed
with the traditional Cartesian advection scheme are indicated
by open symbols while results using our hybrid scheme are
indicated by filled symbols. For each model these symbols are
separated horizontally on the graph purely for visibility; both
runs were started from identical initial states.

While comparison to Kojima’s results provides a good sanity
check for our results, they do not really provide an ideal solution
to our problem. Kojima’s linear analysis problem has different
boundary conditions than the nonlinear simulations performed
here and by WTH. Kojima assumes that the surface of the torus
remains fixed in space whereas the hydrocodes allow the torus
surface to distort. In the linear analysis, the individual modes do
not couple whereas in the nonlinear hydrocode they do. Thus
we do not expect that our results will converge to Kojima’s no
matter how much resolution we use.

In addition to the information displayed in Figure 7 highlight-
ing the fastest growing modes, we observe in all simulations an
unphysical development of m = 4 distortions. This is undoubt-
edly due to the four-fold symmetry of the underlying Cartesian
grid. As is illustrated more fully below, in all simulations the
time-evolutionary development of m = 4 distortions is strongly
resolution dependent. The simulations using the hybrid scheme
show less unphysical m = 4 growth than do the simulations
advecting Cartesian momentum.

Figure 9 shows the global conservation of angular momentum
for a R−/R+ = 0.7 torus at three different LORs. These curves
show the difference between the initial total angular momentum,
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Figure 9. Accumulated change in Model 7’s total angular momentum (L−L0),
measured relative to its initial value, L0, is shown as a function of time,
t/torb, for six different simulations—three different LORs and using Cartesian
momentum advection (dashed curves) or the hybrid scheme (solid curves).
In the case of both schemes, the red, green, and blue curves show data from
simulations conducted with five, four, and three LORs, respectively. When using
the Cartesian momentum advection scheme, the level of angular momentum
conservation shows clear resolution dependence. The hybrid scheme conserves
angular momentum at a level set by machine truncation error.

(A color version of this figure is available in the online journal.)

L0, and the angular momentum, L, at time t, divided by the initial
total angular momentum. The red, green, and blue dashed curves
show data from the Cartesian momentum advection scheme at
five, four, and three LORs, respectively; the red, green, and
blue solid curves show data from the hybrid scheme at five,
four, and three LORs, respectively. The simulations run with
the hybrid scheme (solid curves) show non-conservation at
levels ΔL/L0 � 10−13 due only to machine truncation error.
The hybrid scheme simulation at three LORs (solid blue curve)
seems to display better conservation than the four- and five-
LOR simulations (overlapping solid green and red curves),
however, this is only because the three-LOR simulation takes
far fewer time steps than the higher resolution simulations and
thus accumulates less error due to truncation. The simulations
run with the Cartesian momentum advection scheme display
resolution-dependent global angular momentum conservation at
levels of ΔL/L0 ≈ 10−5, 10−4, and 10−3, for five, four, and three
LORs, respectively. Examining the resolution dependence of the
conservation of angular momentum by the Cartesian momentum
advection scheme can give us a measure of the convergence of
the hydro scheme. The difference between three and four LORs
means that dx is cut in half, and this corresponds to an order-
of-magnitude difference in the level of conservation, as shown
in Figure 9. The same is true again for the difference between
four and five LORs. This corresponds to an O(dx2.5) level of
convergence, consistent with the expectations of the scheme
used by Scorpio (see Appendix B).

The hybrid scheme is able to conserve angular momentum
to a very high precision and significantly outperform the
Cartesian advection scheme on this test problem largely because
the imposed gravitational field is purely radial. No source
terms due to gravity appear in the azimuthal component of
the momentum equation but source terms due to gravity do
appear in all three components of the Cartesian momentum
equation. One might ask which scheme performs better if the
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Figure 10. Data from Model 3 (R−/R+ = 0.3) simulations. Each of the six
panels shows the Dm–t plot for m = 1 (solid curve) and m = 4 (dashed curve)
obtained from, as labeled, either the hybrid scheme or the Cartesian advection
scheme for four, five, or six LORs. While the time-dependent growth of the
unstable m = 1 mode is very similar in all cases, the amplitude of m = 4
appears to be strongly resolution dependent, reflecting the four-fold symmetry
of the Cartesian grid structure.

primary concern is conservation of linear momentum. Our
chosen problem is not well suited for testing conservation of
linear momentum precisely because source terms due to gravity
appear in all three components of the Cartesian momentum
equation. We concede that the outcome would very likely have
been reversed—that is, the standard Cartesian advection scheme
would have significantly outperformed the hybrid scheme, as
described here—had we chosen a problem in which the gradient
in the gravitational potential was zero in one or more of the
directions defined by the Cartesian mesh. The beauty of the more
general hybrid scheme, as described by Call et al. (2010), is that
the grid geometry can be picked independently of the specific
problem while the components of the momentum vector that are
advected can be easily modified in response to the structure of
the underlying force field. This even facilitates switching back
and forth between, say, Cartesian and cylindrical momentum
components during a simulation.

Figures 10–15 present data from two initial models, each
evolved in six separate simulations (two schemes × 3 LORs).
Figures 10–12 present data from Model 3 (R−/R+ = 0.3);
Figures 13–15 present data from Model 7 (R−/R+ = 0.7). In
Figures 10 and 13, each of the six panels shows the Dm–t plot
for the fastest growing unstable mode (either m = 1 or m = 3,
solid curves) and for m = 4 (dashed curves) from that initial
model evolved in a separate simulation. The plots shown in the
left column were produced from simulations evolved with the
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Figure 11. Same information as shown in Figure 10, but grouped differently.
Each frame shows all three levels of refinement for either m = 1 (top row) or
m = 4 (bottom row), using either the hybrid scheme (left column) or Cartesian
momentum advection scheme (right column). The two upper panels (m = 1)
show that both the hybrid and Cartesian seem to converge, as the lower resolution
simulations display noisier Dm–t plots. The lower two panels show how the
amplitude of m = 4 fluctuations decreases dramatically with increasing grid
resolution.

hybrid scheme; plots in the right column were produced from
simulations evolved advecting Cartesian momentum. Figures 11
and 14 show the same data, but each frame combines all three
LORs and separates the plots of the two modes (m = 1 and
m = 4 for Figure 11, m = 3 and m = 4 for Figure 14).
Figures 12 and 15 combine the hybrid scheme and Cartesian
plots while separating out the different LORs.

In Figure 10 we see that all six evolutions show virtually
identical behavior of the growth of the m = 1 mode with
time. Hence the measured growth rate is quite independent
of the chosen advection scheme or selected LOR. However,
from Figure 10 we can also see that the time-dependent
behavior of the amplitude of the m = 4 distortion seems
to be strongly resolution dependent. As stated earlier, this
likely reflects the four-fold symmetry of the Cartesian grid
structure. In Figure 11 the two upper panels (m = 1) show
more clearly that results from both the hybrid scheme and the
Cartesian scheme are nearly identical, with the lower resolution
simulations displaying only slightly noisier Dm–t plots. The
lower two panels show how the amplitude of m = 4 fluctuations
decreases dramatically with increasing resolution. We can see
from the left column of Figure 12, showing m = 1, the difference
between the Cartesian and hybrid scheme plots differs less with
increasing resolution, suggesting that they are both converging
to the same answer. In the right column, showing m = 4, we
see that at each resolution the hybrid scheme has slightly lower
amplitude.

In contrast to the previous set of figures, Figures 13–15
(the slimmest torus evolutions) show a dramatic difference
between the hybrid scheme and Cartesian momentum advection
scheme. In Figure 13, the differences are quite apparent not
only between the left and right columns (hybrid scheme and

-10

-8

-6

-4

-2

           

ln
 D

m=1, 6 LOR

Hybrid
Cartesian  

 

 

 

 

           

m=4, 6 LOR

Hybrid
Cartesian

-10

-8

-6

-4

-2

       

ln
 D

m=1, 5 LOR

Hybrid
Cartesian  

 

 

 

 

       

m=4, 5 LOR

Hybrid
Cartesian

-10

-8

-6

-4

-2

0 1 2 3 4 5

ln
 D

t/torb

m=1, 4 LOR

Hybrid
Cartesian  

 

 

 

 

0 1 2 3 4 5
t/torb

m=4, 4 LOR

Hybrid
Cartesian

Figure 12. Same information as shown in Figure 10, but grouped differently.
Each frame compares hybrid (solid curve) to Cartesian (dashed curve) momen-
tum advection schemes, for either m = 1 (left column) or m = 4 (right column),
and at four, five, and six LORs (bottom, middle, and top rows, respectively).
The left column (m = 1) illustrates how the difference between the Cartesian
and hybrid scheme plots differs less with increasing resolution, suggesting that
they are both converging to the same answer. The right column (m = 4) shows
that, at each specified resolution, the hybrid scheme generally produces slightly
lower amplitude m = 4 distortions than the Cartesian advection scheme.

Cartesian, respectively) but also between each row (different
LOR). This is a model in which the most rapidly growing mode
should be m = 3, but development of unphysical m = 4
distortions can dominate. Note that for the hybrid scheme,
m = 4 dominates only at four LORs. For the Cartesian, m = 4
dominates at four and five LORs and is only matched by m = 3
at six LORs. The increasing amplitude of the m = 3 mode
compared to the m = 4 mode with resolution is indicative that
a dominant m = 3 is the true character of the most unstable
eigenmode for this model. This is also consistent with the
relative amplitudes measured by Kojima (1986), as shown in
Figure 7. Focusing on the top row of Figure 14, we see that
the m = 3 mode amplitude tracks the amplitude of the next
higher level of resolution until a certain point where it turns off
(for hybrid four LORs, Cartesian four and five LORs). Looking
below to the m = 4 plots, we can see that these turn-off points
correspond to a time where the m = 4 amplitude has risen to
ln D4 ≈ −3. Apparently, once a mode reaches this amplitude, it
is no longer sufficiently decoupled from other modes, and here,
in particular, the m = 3 cannot continue to grow exponentially
at the rate predicted by simulations that do not allow different
modes to couple. We also observe that the amplitude of the
m = 4 mode decreases with increasing resolution. In Figure 15
we again see dramatic differences between the hybrid scheme
and Cartesian momentum scheme, especially in m = 4.
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Figure 13. Data from Model 7 (R−/R+ = 0.7) simulations. Each of the six
panels shows the Dm–t plot for m = 3 (solid curve) and m = 4 (dashed curve)
obtained from, as labeled, either the hybrid scheme or the Cartesian advection
scheme for four, five, or six LORs.
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Figure 14. Same information as shown in Figure 13, but grouped differently.
Each frame shows all three LORs for either m = 3 (top row) or m = 4 (bottom
row), using either the hybrid scheme (left column) or Cartesian momentum
advection scheme (right column).
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Figure 15. Same information as shown in Figure 13, but grouped differently.
Each frame compares hybrid (solid curve) to Cartesian (dashed curve) momen-
tum advection schemes, for either m = 3 (left column) or m = 4 (right column),
and at four, five, and six LORs (bottom, middle, and top rows, respectively).

For the R−/R+ = 0.7 model, simulations that relied on Carte-
sian momentum advection failed to achieve qualitative conver-
gence even at six LORs. So, in order to show that both schemes
(the Cartesian momentum advection and the hybrid scheme)
ultimately converge to the same answer, the model was re-run
advecting Cartesian momentum at seven LORs. This is impos-
sible using the OpenMP version of the code, so the simulation
was run using Octopus, which employs computational fluid al-
gorithms identical to those used in Scorpio, but built within the
HPX parallel programming framework.3 The Octopus code ex-
poses a greater degree of parallelism than the OpenMP code,
making the simulation practical. Octopus parallelizes the invo-
cation of various “kernels” to every subgrid in the octree-based
grid structure. In contrast, the OpenMP code only parallelizes
local loops inside these kernels while the invocation of the ker-
nels is done serially. For example, in Octopus, the computation
of fluxes for all subgrids is done in parallel; in the OpenMP
code, the computation of the fluxes contained within each
subgrid are computed in parallel, but only one subgrid’s fluxes
are computed at a time.

The Dm–t plots presented in Figure 16 show the development
of the m = 3 mode from seven separate simulations of Model
7 (R−/R+ = 0.7). Combining the top two panels of Figure 14,
three different resolutions–four, five, and six LORs–are shown
for both the hybrid scheme and the Cartesian momentum
advection; additionally, seven LORs are shown for the Cartesian
simulation (red dashed curve). While the four, five, and six

3 http://stellar.cct.lsu.edu/
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Figure 16. Dm–t plots showing the development of the m = 3 mode from
seven different simulations of Model 7 (R−/R+ = 0.7). The hybrid scheme
simulations (solid curves) show qualitative convergence at five LORs, while the
Cartesian momentum advection scheme (dashed curves) does not converge until
seven LORs, requiring a factor of ∼30 more computational zones.

(A color version of this figure is available in the online journal.)
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Figure 17. Dm–t plots showing the development of the m = 4 distortion in
Model 7 (R−/R+ = 0.7). At each specified LOR, the hybrid scheme (solid
curves) shows much lower levels of development of this unphysical distortion
than the Cartesian advection scheme (dashed curves).

(A color version of this figure is available in the online journal.)

LOR curves for the Cartesian simulations do not agree with
the results of the converged hybrid scheme curves (at five and
six LORs), the seven LOR Cartesian does lie almost directly
on top of those curves. This demonstrates that both schemes
do ultimately converge to the same answer, but, in this case,
the hybrid scheme achieves qualitative convergence a full two
levels of refinement sooner, and with a factor of ∼30 fewer fine
zones. Figure 17 shows the behavior of the m = 4 distortion
for the same set of simulations. We see that the amplitude of
the m = 4 fluctuation is strongly resolution dependent and,
furthermore, that the hybrid scheme demonstrates much lower
levels of the unphysical m = 4 distortion than the Cartesian
advection scheme.

Figure 18 illustrates what the nonlinear amplitude structure
of these modes looks like physically. These equatorial (z = 0)
plane mass density plots drawn from the Cartesian momentum

Figure 18. Mass density plots from the Cartesian momentum advection
simulations of the Model 7 (R−/R+ = 0.7) torus, showing the progression
from m = 4 dominated evolutions at lower resolutions to m = 3 dominated
evolutions at the highest resolution. Each slice shows the mass density in the
z = 0 plane, and is labeled with the number of LORs used in the simulation.
Data for four, five, six, and seven LORs are taken from t = 1.8torb, 2.1torb,
3.0torb, and 2.5torb respectively. Note that the simulations are the same as shown
in Figure 2, although from different times in the evolutions.

(A color version of this figure is available in the online journal.)

advection simulations confirm what the Figure 16 and 17 Dm–t
plots tell us about the relative amplitudes of the m = 3 mode
and the m = 4 distortion. Specifically, at four and five LORs,
the m = 4 distortion is clearly dominant. At six LORs, the
m = 3 mode and m = 4 distortion are approximately the same
amplitude, and the mass density distribution shows this. At seven
LORs, the mass density distribution shows a dominant m = 3
mode.

4. CONCLUSION

Our ultimate goal is to model in as realistic a manner as
possible the dynamical evolution of mass-transferring binary
systems. This can only be accomplished if the hydrodynamic
code that is used to perform each simulation conserves angular
momentum extremely well. We also need to have the flexibility
of AMR to adequately resolve spatial features across many
orders of magnitude in length scales simultaneously. The hybrid
scheme described here allows us to conserve angular momentum
to high accuracy on a refined Cartesian mesh, facilitating the use
of AMR.

Our hybrid scheme is an implementation of the theoretical
formulation developed by Call et al. (2010), which shows that
we have the freedom to choose different coordinate bases for
the transport velocity relative to the grid and the advected
momentum quantities. In the past, these chosen basis sets
typically have been the same—resulting in the advection of
Cartesian momentum components on a Cartesian mesh or
cylindrical momentum components on a cylindrical mesh. In
the hybrid scheme implemented here, we have chosen to advect
cylindrical momentum components across a rotating Cartesian
mesh. This allows us to conserve angular momentum to machine
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precision while capitalizing on the advantages of a Cartesian
mesh such as mesh refinement.

In order to test this method, we followed the development of
nonaxisymmetric instabilities in massless PP tori having n = 3
and q = 2 (uniform specific angular momentum). This is a well-
defined, fully three-dimensional problem with a reproducible
solution. We evolved seven different initial tori with aspect
ratios ranging from R−/R+ = 0.1 to 0.7. We chose to evolve two
particular models, R−/R+ = 0.3 and 0.7, using several different
grid resolutions. We compared our results to the linear stability
analysis of Kojima (1986) and to the nonlinear hydrodynamics
results of WTH. Our code achieved good agreement with results
from these previous studies.

We also introduced a prescriptive method for measuring
the real and imaginary parts of the eigenfrequency of unsta-
ble modes, attaching an uncertainty to those measurements.
This was done in an effort to increase transparency, reduce the
influence of human judgment, and facilitate the reproducibility
of these simulations. Through this work we have illustrated the
utility of the PP tori as a new test problem, to be added to the
standard suite of hydrodynamic test problems, that provides a
means for measuring the ability of a particular code to correctly
transport and conserve angular momentum.

A comparison of the resolution dependence of the hybrid
scheme compared to the Cartesian momentum advection scheme
shows that the hybrid scheme achieves qualitative convergence
at grid resolutions that are equal to or lower than the Cartesian
scheme. Specifically, we observe that in the R−/R+ = 0.7 torus,
the hybrid scheme achieves qualitative convergence at only five
LORs, whereas the Cartesian advection scheme required seven
LORs to achieve the same convergence—requiring a factor of
∼30 more computation zones. The hybrid scheme also reduces
the level of unphysical m = 4 distortions that characteristi-
cally appear in simulations involving angular motion across a
Cartesian grid.

Here we have demonstrated the utility of the hybrid scheme,
which is only one very specific implementation of the formalism
presented by Call et al. (2010), which can be applied in a fully
relativistic generalized coordinate system.
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at HPC@LSU through the allocation hpc_dwd_amr, and across
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APPENDIX A

MOMENTUM EQUATION FORMULATION

This appendix is meant to more completely explain the origin
of the momentum equations used in this work, and their place
in the larger context of astrophysical hydrodynamics codes. The
theoretical justification for the equations we use comes from
Call et al. (2010), which describes a generalized version of
the hybrid advection scheme used in this work, expanded to
general relativity and to any curvilinear coordinate system. The
equations used in this work differ from those typically seen in

the community because they exploit two key advantages of the
formalism described by Call et al. (2010):

1. We are allowed to advect inertial-frame quantities on a
rotating grid.

2. We are allowed to choose different coordinate bases for the
advected momentum quantities and for the grid on which
we choose to advect these quantities.

Specifically, in the hybrid scheme as implemented here, we
choose to advect cylindrical momentum quantities (that is, radial
momentum, angular momentum, and z-direction momentum)
measured in the inertial frame on a Cartesian mesh rotating
with a fixed angular velocity. Below we will show how this
simplifies and in certain cases eliminates the source terms from
individual components of the momentum equation.

A.1. Statements of Conservation

We typically encounter hyperbolic partial differential
equations (PDEs) of the following form:

d

dt
Ψ + Ψ∇ · u = S, (A1)

where u is the velocity of the fluid as viewed from an iner-
tial frame of reference, and the total time derivative is the La-
grangian derivative, following an individual fluid element as it
moves through space. When the source term S is zero, then Ψ
represents the volume density of a conserved quantity. Mass
density, ρ, for example, is a conserved quantity, and the conti-
nuity equation does in fact have the form

d

dt
ρ + ρ∇ · u = 0. (A2)

We should then expect that in the case of an axisymmetric
distribution of fluid moving in an axisymmetric potential,
when the azimuthal component of the angular momentum is
conserved, that we will encounter an equation of the form

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u = 0, (A3)

where R is the cylindrical radius, and uϕ = Rϕ̇ is the azimuthal
component of the inertial velocity field u.

A.2. Rotating Frame of Reference

In order to reduce the motion of the fluid through the
computational grid (thereby reducing the effects of numerical
diffusion and numerical viscosity), we often wish to view the
fluid from a rotating reference frame. Mathematically, we will
accomplish this by changing the velocity in the divergence term
to account for the frame velocity field, that is, we will replace u
with

u′ = u − uframe. (A4)

If the velocity field, uframe, is divergence-free, then the transfor-
mation is trivial. For a frame rotating with angular velocity Ω0,

uframe = RΩ0êϕ, (A5)

and, utilizing cylindrical coordinates,

∇ · uframe = ∂

∂R
(0) +

1

R

∂

∂ϕ
(RΩ0) +

∂

∂z
(0) = 0. (A6)
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Hence,

d

dt
Ψ + Ψ∇ · u′ = d

dt
Ψ + Ψ∇ · [u − uframe] = d

dt
Ψ + Ψ∇ · u

(A7)

so the new hyperbolic PDE becomes

d

dt
Ψ + Ψ∇ · u′ = S, (A8)

and we are confident that this new PDE represents the physics
of the system as well as the original PDE.

A.3. Eulerian Representation

In order to follow the time-rate of change of a quantity with
respect to a point in space fixed with respect to the chosen frame
of reference, we must use the following transformation from the
Lagrangian to the Eulerian representation:

d

dt
Ψ → ∂

∂t
Ψ + u′ · ∇Ψ. (A9)

We can then rewrite the hyperbolic PDE as,

∂

∂t
Ψ + u′ · ∇Ψ + Ψ∇ · u′ = S (A10)

or, more succinctly,

∂

∂t
Ψ + ∇ · (Ψu′) = S. (A11)

We can recover the inertial-frame version of the equation simply
by setting Ω0 = 0, which is equivalent to setting u′ = u,

∂

∂t
Ψ + ∇ · (Ψu) = S. (A12)

While the underlying physics is identical, a distinction must
be made regarding how the two equations are interpreted.
Equation (A12) represents the time-rate of change of Ψ at a
fixed point in inertial space, while Equation (A11) provides
the time-rate of change of Ψ at a fixed point in the rotating
coordinate frame. Note that this is totally independent of what
quantity, Ψ, we choose to advect.

A.4. Angular Momentum Conservation

When the three vector components of the Euler equation of
motion are projected onto a non-rotating cylindrical coordinate
grid, the azimuthal component may be written as

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u = − ∂

∂ϕ
p − ρ

∂

∂ϕ
Φ. (A13)

For this equation, the source term is

S = − ∂

∂ϕ
p − ρ

∂

∂ϕ
Φ, (A14)

and Ψ = (ρRuϕ) is the inertial-frame angular momentum
density with respect to the z-coordinate axis. This corresponds to
“Case B (η = 3)” in Call et al. (2010). Angular momentum will
be conserved locally if the source term S = 0. This will happen
if the azimuthal derivative of the gravitational potential and the

azimuthal derivative in the pressure are both zero or if these two
terms balance one another (i.e., ∂p/∂ϕ = −ρ∂Φ/∂ϕ). Based
on the discussion above, it is perfectly valid to view the flow
from a rotating frame of reference, in which case the equation
is simply

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u′ = − ∂

∂ϕ
p − ρ

∂

∂ϕ
Φ. (A15)

We can also rewrite these two equations in their Eulerian form

∂

∂t
(ρRuϕ) + ∇ · [(ρRuϕ)u] = S, (A16)

and, when we want to follow the fluid on the rotating coordinate
grid,

∂

∂t
(ρRuϕ) + ∇ · [(ρRuϕ)u′] = S. (A17)

When comparing Equations (A16) and (A17), note that the
conserved quantity is the same—the z component of the angular
momentum measured in the inertial frame. The only difference
in the two equations is the “transport” velocity (u for the
nonrotating frame, u′ for the rotating reference frame).

Equation (A17) is different from the more familiar formula-
tion, where the angular momentum density as well as the trans-
port velocity is measured with respect to the rotating frame, i.e.,
where the angular momentum density is expressed in terms of
the azimuthal component of the transport velocity, u′

ϕ . But, as a
consequence, the source term in the more familiar formulation is
more complicated. We can derive the more familiar formulation
from Equation (A17) by recognizing that

uϕ = u′
ϕ + RΩ0. (A18)

So we can write

∂

∂t
[ρR(u′

ϕ + RΩ0)] + ∇ · {[ρR(u′
ϕ + RΩ0)]u′} = Sϕi, (A19)

where, as shorthand, we have used

Sϕi ≡ − ∂

∂ϕ
p − ρ

∂

∂ϕ
Φ. (A20)

This implies

∂

∂t
(ρRu′

ϕ) + ∇ · [(ρRu′
ϕ)u′] = Sϕi − ∂

∂t
[ρR(RΩ0)]

− ∇ · {[ρR(RΩ0)]u′} (A21)

= Sϕi − R2Ω0

{
∂

∂t
ρ + ∇ · (ρu′)

}
− ρu′ · ∇(R2Ω0)

(A22)

= Sϕi − 2ρRu′
RΩ0, (A23)

where the last step is accomplished by making use of the
continuity relation, ∂ρ/∂t+∇·(ρu′) = 0. Note that all velocities
now refer to u′, the velocity as measured in the rotating frame,
which is the more familiar formulation. The appearance of
a Coriolis term is the result of choosing to measure angular
momentum in the rotating frame rather than in the inertial frame.
This corresponds to “Case B (η = 3′)” in Call et al. (2010). In
our hybrid scheme we have chosen to use Equation (A17) instead
of (A23) primarily because Equation (A17) presents a simpler
source term.
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Algorithm 1 Scorpio Algorithm

U ← U (t = 0)
t ← 0
nstep ← 0
while t <= tmax do

Pass decomposition, AMR, and physical boundary values between grids
if Boundary is decomposition then

Take boundary values from neighboring sub-grid
else if Boundary is AMR then

Interpolate boundary values from parent sub-grid
else if Boundary is physical then

Copy outermost interior values to boundary values
end if

Compute primitives V :=
(
ρ, sr

ρ
,

�z

ρR
− RΩ0,

sz
ρ

, E − 1
2 ρu2

)
from U

V ← U

Reconstruct the values of V on cell faces using PPM

V
r|l
i± 1

2 ,j,k
, V

r|l
i,j± 1

2 ,k
, V

r|l
i,j,k± 1

2
← PPM reconstruction of V, where the r or l superscripts refer to the right or left cell faces, respectively.

Compute CFL condition using signal speeds at cell faces

dt ← αCFL

maxV

{
λ
r|l
i+ 1

2 ,j,k
,λ

r|l
i,j+ 1

2 ,k
,λ

r|l
i,j,k+ 1

2
dx

} , where the λ’s are the signal speeds computed from the reconstructed values of V at respective cell faces and

is a constant satisfying αCFL � 0.4.
Store the solution vector, U, in U0

U0 ← U

for β ← {
1, 1

4 , 2
3

}
do

Compute primitives V :=
(
ρ, sr

ρ
,

�z

ρR
− RΩ0,

sz
ρ

, E − 1
2 ρu2

)
from U

V ← U

Reconstruct the values of V on cell faces using PPM

V
r|l
i± 1

2 ,j,k
, V

r|l
i,j± 1

2 ,k
, V

r|l
i,j,k± 1

2
← PPM reconstruction of V.

Compute face values of U from the reconstructed face values of V

U
r|l
i± 1

2 jk
← V

r|l
i± 1

2 jk
, U

r|l
ij± 1

2 k
← V

r|l
ij± 1

2 k
, U

r|l
ijk± 1

2
← V

r|l
ijk± 1

2

Compute fluxes at cell faces using the PPM reconstructed values and the KT scheme

F
i+ 1

2 jk
, F

ij+ 1
2 k

, F
ijk+ 1

2
← KT fluxes

Match coarse fluxes to fine fluxes at AMR boundaries. For example, for x-fluxes,

F coarse
ic+ 1

2 jckc
← 1

4

(
F fine

if + 1
2 jf − 1

2 kf
+ F fine

if + 1
2 jf + 1

2 kf
+ F fine

if + 1
2 jf kf − 1

2
+ F fine

if + 1
2 jf kf + 1

2

)
,

where
(
ic + 1

2 , jc, kc

)
and

(
if + 1

2 , jf , kf

)
coincide with an AMR boundary

Compute the sources terms
Sijk ← gravitational and centrifugal source terms

Compute the time rate of change for U using the K-T fluxes and source terms

U̇ijk ← − 1
dx

((
F

i+ 1
2 jk

− F
i− 1

2 jk

)
+

(
F

ij+ 1
2 k

− F
ij− 1

2 k

)
+

(
F

ijk+ 1
2

− F
ijk− 1

2

))
+ Sijk

Update U using RK3 time integrator
U ← β

(
U + U̇dt

)
+ (1 − β) U0

Update parent states from children
if Uicjckc has children then

Uicjckc ← 1
8

∑
All(if jf kf )in(icjckc) Uif jf kf

end if
Floor density values

ρ ← max {ρ, ρfloor}
Pass decomposition, AMR, and physical boundary values between grids
if Boundary is decomposition then

Take boundary values from neighboring sub-grid
else if Boundary is AMR then

Interpolate bounty values from parent sub-grid
else if Boundary is physical then

Copy outermost interior values to boundary values
end if

end for
t ← t + dt

nstep ← nstep + 1
if nstep mod NRFfreq := 0, where NRFfreq determines how often refinement criteria are checked. then
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Algorithm 1 (Continued)

Check for refinement/derefinement
if Any ρijk � ρrefine in a given sub-grid octant AND l < lmaxthen (l is the refinement level and lmax is the maximum level allowed)

Mark sub-grid octant for refinement
end if
if All ρijk < ρrefine in a given sub-grid octant then

Mark sub-grid octant for derefinement
end if
if A given sub-grid octant must be refined to satisfy proper nesting requirements then

Mark sub-grid octant for refinement
end if
Create/Destroy sub-grids as needed and initialize new grids using

U coarse := Ufine

end if
end while

Figure 19. Example oct-tree grid structure. Depicted is a simple two level example mesh. The parent sub-grid (top) is refined in two of its eight child regions. The
bottom left is further refined in all eight of its child regions, while the sub-grid on the bottom right is not refined at all. Note that, for added clarity, sub-grids on the
bottom are shown at twice their actual size relative to the parent grid at the top.

(A color version of this figure is available in the online journal.)

APPENDIX B

CODE DETAILS

The Scorpio mesh structure is an adaptively refined oct-tree
of sub-grids. Each sub-grid is composed of an 8 × 8 × 8 three-
dimensional mesh. Each node contains its own sub-grid and up
to eight child sub-grids. Child sub-grids have one-half of the
grid spacing of their parents. The structure is similar to that
used by MacNeice et al. (2000) in PARAMESH, except that
a node may have any number of children between zero and
eight, instead of having either zero or eight children. Figure 19
depicts the structure of a simple example mesh with two levels
of refinement. In the case shown, the parent grid has two of its
possible eight child regions refined. One of these child regions
is itself refined entirely into eight children, while the other

is not refined at all. As with PARAMESH, Scorpio requires
“proper nesting”; that is, that there be no more than one jump
in refinement across a sub-grid boundary. Referring again to
the case depicted in Figure 19, the refinement of child regions
in the bottom left sub-grid that border the bottom right sub-
grid require, by proper nesting, the bottom right sub-grid to
exist, regardless of whether or not other refinement criteria are
met. Each sub-grid contains an “interior” region and a “ghost”
region (three cells on each side in this work). The interior cells
are updated by evolving the solution variables in time while the
ghost cells are copied or interpolated from other sub-grids or,
in the case of the physical boundaries of the AMR structure,
are computed by prescribing an outflow boundary condition. At
boundary interfaces between sub-grids of the same refinement
level, the ghost cells of a sub-grid are copied from the interior
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cells of its neighboring sub-grids. Where there is no neighboring
sub-grid of the same refinement level and the boundary is not
a physical boundary, the ghost cells are computed from the
corresponding parent cells.

The hydrodynamic equations are evolved using the method of
Kurganov & Tadmor (2000) (the “K-T method” hereafter). The
K-T method evolves cell centered quantities without the need for
a(n) (approximate) Riemann solver or dimensional splitting. The
K-T method requires reconstruction of the evolution variables
at left and right cell faces. Any number of reconstruction
schemes may be chosen. Scorpio uses the third-order piecewise
parabolic reconstruction of Colella & Woodward (1984) without
discontinuity detection. The use of a third-order reconstruction
allows for continuous reconstructions across cell faces in smooth
regions of the flow, eliminating the artificial viscosity applied
by the K-T method in these regions. The K-T method can be
cast in semi-discrete form—discrete in space, but continuous in
time. An appropriate time integrator is then used to advance the
semi-discrete equations in time. Scorpio uses the explicit third-
order total variation diminishing Runge Kutta (RK) integrator
of Shu & Osher (1988). Although both the spatial and temporal
discretizations are third order along individual dimensions,
because edge and vertex cells are not used in the reconstruction,
the overall accuracy reduces to second order.

In Algorithm 1, the algorithm used by Scorpio is presented in
a pseudo-code format. A more complete description of Scorpio,
along with results from a suite of test problems, is presented by
D. C. Marcello et al. (2014, in preparation). As has been pointed
out in Section 2.2, a couple of features of Scorpio that appear in
this pseudo-code have not been activated in our present work,
namely, AMR and evolving a total energy equation.
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