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ABSTRACT

The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of
astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These
stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in
association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and
so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions
can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather
than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov–Maxwell
description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical
gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the
species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian
functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of
off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions
when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid
fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here
with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize
the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.
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1. INTRODUCTION

This paper concerns the Vlasov–Maxwell description of col-
lisionless magnetized plasmas (Galeev & Sudan 1983; Eliezer
& Eliezer 1989; Kulsrud 2005; Swanson 2008) related to ax-
isymmetric disks arising in the combined gravitational and elec-
tromagnetic (EM) fields of astrophysical compact objects. In
particular, in this work an application of the kinetic theory de-
veloped by Cremaschini et al. (2010, 2011), Cremaschini &
Tessarotto (2011, 2012, 2013a), and Cremaschini & Stuchlı́k
(2013) is considered, to the treatment of equilibrium and possi-
bly non-neutral equatorial as well as off-equatorial plasma tori.
Remarkably, the existence of equilibrium levitating (i.e., off-
equatorial) structures has been recently pointed out by Slaný
et al. (2013), based on a fluid non-ideal magnetohydrodynamics
(MHD) description. Indication of the existence of structures of
this type occurring in collisionless plasmas is also supported by
other recent works based on the test-particle approach (Kovář
et al. 2008, 2010; Kopáček et al. 2010). In addition, in the context
of charge-separated pulsar magnetospheres, Neukirch (1993)
found an indication of the possible development of stable off-
equatorial tori, which can be revealed in his early numerical sim-
ulations of magnetized collisionless plasmas. Indeed, from the
physical point of view, off-equatorial plasma configurations are
intrinsically different from the case of equatorial disk systems.
The astrophysical relevance of these structures lies in the possi-
bility of modeling coronal plasmas characterized by low-density
and high-temperature conditions (Uzdensky & Goodman 2008;
Goodman & Uzdensky 2008). In this regard, two different is-
sues arise that deserve a detailed investigation. First, under these
conditions fluid descriptions may become inappropriate, requir-
ing in principle the adoption of a kinetic treatment. However, it
still remains to be ascertained whether the levitating structures

can be recovered as equilibrium solutions in the framework of a
kinetic description. Second, a priori it is not obvious whether the
kinetic theory developed previously for equatorial plasmas can
be extended to the description of off-equatorial tori, how this
can be achieved in practice, and what the physical implications
are as far as their occurrence in real systems is concerned.

The statistical description of plasma dynamics can be carried
out in terms of either fluid or kinetic treatments, with the
choice of the appropriate framework depending on the plasma
phenomenology to be addressed and the relevant features of
the phenomena to be studied (Swanson 2008; Ichimaru 1973).
The majority of fluid approaches are based on hydrodynamic
or MHD treatments (Goedbloed & Poedts 2004). In the case of
collisionless plasmas, when these are formulated independently
of an underlying kinetic theory, some limitations can arise. First,
it is well known that the set of fluid equations may not be
closed, requiring in principle the prescription of arbitrary higher-
order fluid fields and closure conditions, including in particular
the equation of state (EoS) or the pressure tensor (Swanson
2008). Second, in these approaches typically no account is
given of microscopic phase-space particle dynamics, together
with phase-space plasma collective phenomena. On the other
hand, only in the context of kinetic theory can these difficulties
be consistently overcome, as this treatment permits obtaining
well-defined constitutive equations for the relevant fluid fields
describing the plasma state and solving at the same time the
closure problem (Cremaschini et al. 2011). These issues become
relevant in the case of collisionless or weakly collisional, multi-
species plasmas subject to EM and gravitational fields where
phase-space particle dynamics is expected to play a dominant
role. In particular, kinetic theory is essential for studying
both stationary configurations and the dynamical evolution
of plasmas when kinetic effects are relevant, such as ones
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associated with conservation of particle adiabatic invariants
(Cremaschini & Tessarotto 2013a), temperature and pressure
anisotropies, and diamagnetic and finite Larmor-radius (FLR)
effects, as well as energy-correction contributions (Cremaschini
et al. 2010, 2011; Cremaschini & Tessarotto 2011, 2013a).

The problem of formulating a kinetic theory appropriate
for the description of collisionless plasmas in quasi-stationary
(i.e., equilibrium) configurations of astrophysical accreting sys-
tems and laboratory scenarios has been presented in series of
works, based on the non-relativistic Vlasov–Maxwell descrip-
tion. In our context, several issues have been treated, rang-
ing from laboratory plasmas occurring in Tokamak devices
(Cremaschini & Tessarotto 2011) to axisymmetric accretion
disk plasmas characterized by locally nested magnetic surfaces
(Cremaschini et al. 2010, 2011; Cremaschini & Tessarotto
2012) and current-carrying magnetic loops (Cremaschini &
Stuchlı́k 2013) around compact objects, as well as spatially
non-symmetric systems in astrophysical and laboratory contexts
(Cremaschini & Tessarotto 2013a). It was shown that consis-
tent solutions of the Vlasov equation can be determined for the
species kinetic distribution function (KDF) describing collision-
less plasmas, based on the identification of the relevant single-
particle invariants. The equilibrium KDFs were expressed in
terms of generalized bi-Maxwellian distributions, characterized
by temperature anisotropy, non-uniform fluid fields, and local
plasma flows. Chapman–Enskog representations of these equi-
libria were obtained by developing a suitable perturbative kinetic
theory, which in turn made possible the analytical calculation
of the fluid fields and the identification of the relevant kinetic
effects included in the corresponding MHD description. As a ba-
sic consequence, it was shown that these solutions can exhibit
non-vanishing current densities, which can also support a ki-
netic dynamo mechanism for the self-generation of EM fields in
which the plasma is immersed (Cremaschini et al. 2010, 2011).
Finally, more recently the kinetic theory has been extended to
describe axisymmetric plasmas characterized by strong shear-
flow and/or supersonic velocities (Cremaschini et al. 2013),
while Cremaschini et al. (2012) report a kinetic analysis of the
stability properties of particular equilibrium solutions with re-
spect to axisymmetric EM perturbations.

A notable feature of the kinetic equilibria mentioned here is
the unique prescription of the functional dependences of an ap-
propriate set of fluid fields, carried by the species KDFs, which
are related to physical observables of the system. These fields
are referred to as structure functions and are denoted as {Λs}
(see in particular Cremaschini et al. 2010, 2011; Cremaschini
& Tessarotto 2011, 2013a; and the definition below), with the
subscript “s” being the species index. Depending on the kinetic
regime being considered, according to the classification scheme
presented by Cremaschini & Tessarotto (2012), these depen-
dences are expressed in terms of the poloidal flux function ψ of
the magnetic field and/or the effective potential Φeff

s defined as

Φeff
s = Φ +

Ms

Zse
ΦG, (1)

where ΦG and Φ are the gravitational and electrostatic (ES)
potentials, respectively, with Ms and Zse denoting the species
particle mass and charge. Thus, in the general case kinetic
theory requires that Λs = Λs(ψ, Φeff

s ). It must be stressed
that, behind the apparent simplicity of the result, for practical
applications one ultimately needs to obtain a representation
of Λs in terms of spatial coordinates, e.g., cylindrical ones
(R, ϕ, z). Assuming an axisymmetric configuration where ψ

and Φeff
s are generic functions of both (R, z), the representation

Λs = Λs(ψ, Φeff
s ) = Λs(R, z) applies. Hence, the complete

solution of the problem actually requires determining the
explicit representation of the potentials (ψ, ΦG, Φ) in terms
of the spatial cylindrical coordinates. This can be a difficult
task, because in the general case the plasma itself contributes
to the generation of the gravitational field, through its non-
vanishing mass-density, and, more important, of the EM fields
by means of non-vanishing charge and current densities. In the
present discussion we ignore, however, the self-generation of
the gravitational field, focusing only on the generation of EM
fields. It follows that, in order to obtain explicitly the relationship
between the EM potentials and the coordinate system, one
has to solve (numerically) the coupled set of Vlasov–Maxwell
equations to determine ψ = ψ(R, z) and Φ = Φ(R, z),
where the source terms of the fields are prescribed functions
of the potentials. On the other hand, such a solution is also
demanded for the following additional reasons: (1) in order to
calculate explicitly the characteristic kinetic effects that enter the
equilibrium KDF and are associated with diamagnetic-FLR and
energy-correction effects (see Cremaschini et al. 2010, 2011;
Cremaschini & Tessarotto 2011, 2012, 2013a; and the discussion
in Section 7); (2) in order to establish the diffeomorphism
J : (R, z) ↔ (ψ,ϑ), which relates cylindrical (and similarly,
spherical coordinates) to local magnetic coordinates, where ϑ
is an angle-like coordinate defined on equipotential magnetic
surfaces ψ = const. The complexity of the theory, as far
as this issue is concerned, may represent a possible limit for
the practical realization of kinetic equilibria of this type for
configurations of astrophysical interest. This may be relevant
especially when demanding a comparison between kinetic and
fluid treatments based on analytical solutions. Therefore, the
question arises of whether such a difficulty can be encompassed
in some scenarios, possibly by invoking suitable asymptotic
kinetic orderings to be imposed on the system. In particular,
this concerns the existence of configurations that allow for
the construction of the diffeomorphism J based on analytical
solutions of the potentials (ψ, ΦG, Φ) in such a way to afford an
explicit treatment of the spatial dependences of the equilibrium
fluid fields carried by the KDF, according to the constraints
posed by the Vlasov equation.

A second point of crucial importance concerns the determi-
nation of the EoS that characterizes disk plasmas in the col-
lisionless state. As mentioned earlier, this is usually realized
by prescribing the form of the scalar pressure, or more gener-
ally the components of the pressure tensor, which represent the
closure condition for the Euler momentum equation in MHD
treatments. Because collisionless plasmas are intrinsically char-
acterized by the occurrence of phase-space anisotropies, which
cause the equilibrium KDF to generally deviate from a simple
isotropic Maxwellian distribution, the knowledge of the correct
form of the EoS is not a trivial task. In fact, one can only pre-
scribe the pressure tensor in a consistent way on the basis of
the kinetic theory (kinetic closure conditions). In this regard,
the problem consists in the identification of the kinetic effects,
which must be included in the pressure tensor, the understanding
of their physical origin, and the way they influence the macro-
scopic configuration of the plasma system. Among the relevant
contributions, those associated with ES corrections can play a
central role, as they arise from microscopic charge interactions
and carry information about local ES fields generated by the
validity of quasi-neutrality condition in rotating plasmas or de-
viations away from it in non-neutral systems.
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Figure 1. Schematic illustration of a poloidal section across the equilibrium axially symmetric distribution of electrically charged matter, subject to a dipolar magnetic
field and surrounding a gravitating body in the center. Directions of gravitational (Fg), magnetic (Fm), and centrifugal (Fc) forces acting on a generic fluid element
belonging to the levitating torus and moving along the circular orbit are displayed.

Finally, from the astrophysical point of view a further motiva-
tion is represented by Slaný et al. (2013), where the discovery of
the possible occurrence of stationary configurations of disk plas-
mas in off-equatorial tori is reported. In that work, a Newtonian
axisymmetric model of non-conductive, charged, and perfect
fluid tori orbiting in the combined gravitational and dipolar mag-
netic fields generated by a central compact object is presented.
The result is obtained in the framework of a non-ideal MHD
description and shows that the interplay between gravitational
and magnetic fields can effectively enhance vertically extended
structures in a plasma torus, which may correspond to local-
ized concentrations of matter above and under the equatorial
plane. The importance of this conclusion lies in the possibility
of interpreting these off-equatorial tori as forming the surround-
ing material usually invoked to explain the spectral emission/
absorption features in accretion-disk systems. Possible exam-
ples of this type are provided by coronal halos consisting of
non-neutral, ion-electron plasmas or by obscuring dusty-plasma
tori that are believed to be produced in galactic nuclei (Sargsyan
et al. 2012; Goulding et al. 2012; Dorodnitsyn et al. 2011; Mor
& Trakhtenbrot 2011; Kawaguchi & Mori 2011; Oyabu et al.
2011; Hatziminaoglou et al. 2009; Mor et al. 2009; Fabian et al.
2008; Hönig & Beckert 2007).

The complete understanding of the physical properties of
these structures is far from satisfactory and deserves further
investigations, both theoretical and observational. Here we con-
sider the possibility of a low-density and high-temperature coro-
nal plasma for which the collisionless state applies. Follow-
ing the arguments discussed earlier, under these conditions the
proper framework for the description of these plasmas is repre-
sented by the kinetic theory. In particular, the question is posed
of whether kinetic equilibria can be proved to exist for colli-
sionless magnetized plasmas that exhibit off-equatorial maxima
in the matter distribution and how these solutions can possi-
bly be related to fluid MHD ones. This amounts to identifying
the appropriate kinetic regimes that meet these conditions and
determining the spatial dependences of the corresponding fluid
fields, including the pressure tensor and the intrinsically kinetic
effects contained in the EoS. To be successful, a program of
this type must make possible an analytical approach in accor-
dance with the considerations presented above, to extend the
kinetic theory developed in Cremaschini et al. (2010, 2011),
Cremaschini & Tessarotto (2011, 2012, 2013a), and Cremas-
chini & Stuchlı́k (2013) and to permit its practical application
to gain insights into an astrophysical issue of notable importance
connected with accretion-disk phenomenology.

To conclude, we should comment on the fact that the
reference works cited above on kinetic theory and off-equatorial
tori, as well as the present investigation, are carried out in
the framework of a non-relativistic description (both with
respect to the treatment of the gravitational field and the
plasma velocities). However, the problem of general-relativistic
solutions could in principle be posed, because there is a number
of situations in which the formation of accretion disks is due
to strong gravitational fields (e.g., around black holes) and
general-relativistic corrections must be considered. Although
a complete theory of this type is still missing, non-relativistic
treatments can nevertheless provide the reference framework for
the inclusion of some relevant features characteristic of general-
relativistic theories. This can be achieved for example by the
adoption of pseudo-Newtonian potentials for the description of
spherically symmetric gravitational fields (Paczynsky & Wiita
1980; Stuchlı́k & Kovář 2008). It has been shown, in fact, that
the precision of the pseudo-Newtonian description of stationary
general-relativistic phenomena can be very high (Stuchlı́k et al.
2009). An alternative method consists of the inclusion of post-
Newtonian corrections. In this reference, a kinetic theory of
self-gravitating collisionless gases adopting such a technique
can be found in Agón et al. (2011) for spherical solutions, and
in Ramos-Caro et al. (2012) for the case of axially symmetric
solutions.

2. GOALS AND SCHEME OF THE PAPER

In view of the considerations presented above, the purpose of
this paper is the formulation of a kinetic theory appropriate for
the analytical treatment of collisionless disk plasmas in axisym-
metric off-equatorial tori (see Figure 1 for a schematic view of
the configuration geometry). The results of the investigation are
as follows:

1. The identification of a physically realizable astrophysical
configuration in which the spatial profiles of the poten-
tials (ψ, Φeff

s ) can be analytically prescribed, when suitable
plasma orderings apply. In the framework of an asymptotic
theory, this permits to decouple the Vlasov equation from
the Maxwell equations, at least to leading-order, with the
possibility of an explicit treatment of the spatial depen-
dences contained in the equilibrium plasma fluid fields.

2. The construction of species equilibrium KDFs, which
are consistent with the kinetic constraints imposed by
microscopic phase-space conservation laws for the single
particle dynamics. These are shown to be expressed in terms
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of generalized Maxwellian KDFs characterized by non-
uniform fluid fields and isotropic temperature, both to be
associated with a finite set of structure functions.

3. The identification of the relevant kinetic regimes that can in
principle arise in the configuration determined at point (1)
above and the prescription of the corresponding functional
dependences on the structure functions.

4. The development of a perturbative theory that makes
possible a representation of the equilibrium KDFs in terms
of a Chapman–Enskog series. As a result, this permits first
the analytical evaluation of the plasma fluid fields, and
second to distinguish the characteristic kinetic effects that
enter the solution and their main physical properties.

5. The proof that the gravitationally bound and magnetized
plasma regime provides the most general functional depen-
dences in the structure functions carried by the equilibrium
KDF, which are consistent both with the analytical treat-
ment of the fluid fields and the occurrence of off-equatorial
tori. As an illustration of the technique, explicit calculation
of the leading-order species number density and velocity
profiles is provided for two configurations of physical in-
terest.

6. The calculation of the EoS for the equilibrium plasma,
to be expressed in terms of the species pressure tensor
associated with the KDF. By making use of the perturbative
treatment, this includes also the identification of both the
kinetic effects and the ES corrections that can effectively
contribute to the EoS. In particular, the latter are shown
to determine non-trivial deviations from the assumption of
having thermal pressure for the collisionless plasma.

7. To determine the constraints to be imposed on the kinetic
solution for the validity of the theory and the physical con-
figuration realized, which arise from the Maxwell equations
for the self-generated equilibrium EM fields. These repre-
sent necessary conditions that must be verified a posteriori
for the complete solution of the Vlasov–Maxwell problem
and the explicit treatment of ES corrections in comparison
with fluid-based approaches.

The scheme of the paper is as follows. In Section 3 the model
assumptions and the fundamental EM orderings are presented.
Section 4 deals with the definition of plasma orderings and the
introduction of corresponding kinetic regimes that characterize
collisionless plasmas treated here. In Section 5 the equilibrium
species KDFs are explicitly determined and their realizations
are given for three different plasma regimes. In Section 6 a
suitable perturbative theory is developed, which allows for
the analytical treatment of the equilibrium KDFs and the
corresponding fluid fields. The conditions for the occurrence
of off-equatorial tori are then investigated in the case of
collisionless plasmas belonging to the gravitationally bound
and magnetized plasma regime. In Section 7 the expression
of the kinetic corrections that characterize the kinetic equilibria
is provided, while the corresponding contributions in the EoS
are computed in Section 8. Section 9 contains an analysis of
the Poisson and the Ampere equations and the constraints that
they pose on the kinetic solution. Finally, concluding remarks
are summarized in Section 10.

3. MODEL ASSUMPTIONS

For the construction of kinetic equilibria, we ignore the pos-
sible existence of weakly dissipative effects (Coulomb colli-
sions and turbulence) and EM radiation effects (Cremaschini &

Tessarotto 2013b, 2013c). It is assumed that the KDF and
the EM fields associated with the plasma obey the sys-
tem of Vlasov–Maxwell equations, with Maxwell’s equa-
tions being considered in the quasi-static approximation.
For definiteness, we shall consider here a plasma consist-
ing of s-species of charged particles, which are character-
ized by proper mass Ms and total charge Zse. In particu-
lar, given a generic species KDF fs = fs(r, v, t) defined
in the phase-space Γ = Γr × Γv, with Γr and Γv being
the configuration and velocity space, respectively, the Vlasov
equation determines the dynamical evolution of fs and is
given by

d

dt
fs (r, v, t) = 0. (2)

The plasma is taken to be: (1) non-relativistic, in the sense
that the flow velocities of all species are small compared to the
speed of light c, that the gravitational field can be treated within
the classical Newtonian theory, and that the non-relativistic
Vlasov kinetic equation is used as the dynamical equation for
the KDF; (2) collisionless, so that the mean free path of the
plasma particles is much longer than the largest characteristic
scale length of the plasma; (3) axisymmetric, so that the relevant
dynamical variables characterizing the plasma (e.g., the fluid
fields) are independent of the azimuthal angle ϕ, when referred
to a set of either cylindrical coordinates (R, ϕ, z) or spherical
coordinates (r, ϕ, θ ). Thanks to the axisymmetry assumption,
in the following we shall denote with x the configuration state
vector, where x denotes either x = (R, z) or x = (r, θ ).

We are concerned here with quasi-stationary configurations,
namely solutions that are slowly varying in time. This condition
is also referred to as equilibrium configuration. For a generic
physical quantity G that depends on spatial coordinates x
and time t, the quasi-stationarity is expressed by letting in
the following G = G(x, λkt), with λ � 1 being a small
dimensionless parameter to be suitably defined (see below)
and k � 1 an integer. Similar considerations apply for the
equilibrium KDF fs, which is denoted in the following as
fs = fs(x, v, λkt).

From the symmetry properties introduced here, one can
derive the fundamental quantities that are conserved for the
single-particle dynamics. In particular, under the assumptions
of axisymmetry the canonical momentum conjugate to the
azimuthal angle ϕ is an integral of motion. This is given by:

Pϕs = MsRv · eϕ +
Zse

c
ψ ≡ Zse

c
ψ∗s. (3)

Furthermore, from the condition of quasi-stationarity, the total
particle energy

Es = Ms

2
v2+Zse Φeff

s (x, λkt) ≡ ZseΦ∗s, (4)

represents an adiabatic invariant of prescribed order, with Φeff
s

being defined in Equation (1). Following the discussion in
Cremaschini et al. (2010, 2011), here we recall that a generic
quantity P = P (x, v, λnt) defined in the phase-space is an
adiabatic invariant of order n with respect to λ when it satisfies
the condition (1/Ωcs)(d/dt) ln P = 0 + O(λn+1), where n � 0
is a suitable integer and Ωcs ≡ (ZseB/Msc) is the cyclotron
frequency. This means that adiabatic invariants are conserved in
asymptotic sense, namely up to a prescribed order of accuracy
determined by the parameters λ and n.
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We consider solutions of the equilibrium magnetic field B,
which admit, at least locally, a family of nested axisymmetric
toroidal magnetic surfaces {ψ(x, λkt)} ≡ {ψ(x, λkt) = const.},
where ψ denotes the poloidal magnetic flux of B. The mag-
netic surfaces can be either locally closed (Cremaschini et al.
2010) or locally open (Cremaschini et al. 2011) in the con-
figuration domain occupied by the plasma. In both cases a
set of magnetic coordinates (ψ, ϕ, ϑ) can be defined locally,
where ϑ is a curvilinear angle-like coordinate on the magnetic
surfaces ψ(x, λkt) = const. By construction, magnetic coor-
dinates are related to cylindrical or spherical coordinates by
a diffeomorphism J, which must be consistently determined,
as discussed above. Each relevant physical quantity G(x, λkt)
can then be conveniently expressed either in terms of the
set x or as a function of the magnetic coordinates, that is,
G(x, λkt) = G(ψ,ϑ, λkt).

Consistent with these assumptions, we require the EM field
to be slowly varying in time, that is, of the form

E = E(x, λkt),

B = B(x, λkt). (5)

In particular, we assume the magnetic field to be represented as

B ≡ ∇ × A = Bself (x, λkt) + Bext(x, λkt), (6)

where Bself and Bext denote the self-generated magnetic field
produced by the plasma and a finite external axisymmetric
magnetic field (vacuum field), respectively. For definiteness,
in this treatment both contributions are assumed to exhibit
only non-vanishing poloidal components, to be denoted in
the following as BP. Note that, concerning the self-field, this
assumption must be verified a posteriori to be consistent with
the constraints placed on the kinetic solution from the Maxwell
equations. Hence, the two fields are represented as

Bext = ∇ψext(x, λkt) × ∇ϕ, (7)

Bself = ∇ψself (x, λkt) × ∇ϕ, (8)

so that the total poloidal magnetic field takes the form

B ≡ BP = ∇ψ(x, λkt) × ∇ϕ, (9)

with ψ ≡ ψext + ψself . In particular, for the purpose of the
present work, the external magnetic field is taken to coincide
with a dipolar field. In such a case, the flux function ψext is
written in terms of the spherical coordinates (r, θ ) as

ψext = M0
sin2 θ

r
, (10)

with M0 being the magnitude of the dipole magnetic moment.
Charged particles are also assumed to be subject to the

effective potential Φeff
s ≡ Φeff

s (x, λkt) defined by Equation (1).
In principle, both the ES potential Φ(x, λkt) and the gravitational
potential ΦG(x, λkt) can be produced by the plasma itself and
by external sources. However, in the following it is assumed that
Φ(x, λkt) is uniquely generated by the plasma charge density,
and we shall neglect the self contribution of the plasma to ΦG.
Hence, for an axisymmetric disk, the gravitational potential is
taken as being stationary and to coincide identically with the
potential generated by the central compact object. The latter is

expressed here in terms of the spherically symmetric Newtonian
potential as

ΦG(x) = −GNM+

r
, (11)

where GN is the Newton gravitational constant and M+ is the
mass of the compact object.

Given the validity of these assumptions, in order to address
the first issue posed in Section 2 we proceed introducing the
following fundamental orderings for the self EM fields: (1) The
self component of the equilibrium magnetic field Bself is ordered
with respect to the external field Bext as

|Bself |
|Bext| ∼ O(λj ), (12)

with j � 1, and in general j 	= k. (2) The equilibrium ES
potential Φ satisfies the ordering assumption∣∣∣∣ ZseΦ

MsΦG

∣∣∣∣ ∼ O(λj ), (13)

with j � 1. This means that the ES potential energy is small
with respect to the gravitational potential energy, where λ will
be properly defined below. In the following the case j = 1 in
Equations (12) and (13) will be considered.

It is important to note that the two conditions (12) and (13)
pose strong constraints from the physical point of view on the
realizability of the equilibrium configuration for the collision-
less disk plasma. In particular, they must be verified a posteriori
in order to warrant the consistency of the kinetic equilibrium
solution for the species KDF with the validity of the Maxwell
equations.

Equations (12) and (13) are the fundamental EM orderings,
which permit the analytical treatment of the spatial dependences
of the equilibrium fluid fields as prescribed by the kinetic solu-
tion to be determined below. In fact, when these orderings hold,
to leading-order the magnetic flux function ψ and the effec-
tive potential Φeff

s coincide respectively with the vacuum fields,
namely the external dipolar flux function ψext in Equation (10)
and with the gravitational potential ΦG given by Equation (11).
Hence, at this order it is possible to construct explicitly the dif-
feomorphism that relates the spherical coordinates (r, θ ) with
the potentials (ψ, Φeff

s ) ∼= (ψext, ΦG). This is expressed by let-
ting

r =
∣∣∣∣GNM+

ΦG

∣∣∣∣ , (14)

sin2 θ =
∣∣∣∣GNM+

M0

ψext

ΦG

∣∣∣∣ . (15)

The corresponding relationship holding for cylindrical coordi-
nates can then be obtained from the spherical ones, giving in
particular

R = r sin θ =
∣∣∣∣GNM+

ΦG

∣∣∣∣
√∣∣∣∣GNM+

M0

ψext

ΦG

∣∣∣∣. (16)

4. PLASMA ORDERINGS AND KINETIC REGIMES

In this section we introduce the relevant orderings for colli-
sionless plasmas, which permit to identify corresponding kinetic
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regimes characterized by different equilibrium solutions and to
verify their consistency with the existence of off-equatorial tori.
To this aim we determine a classification scheme based on the
method outlined in Cremaschini & Tessarotto (2012) and suit-
able for the treatment of the physical setting indicated in the
previous section.

The first step is the definition of the dimensionless species-
dependent parameters εM,s, εs, and σs. These are prescribed in
such a way to be all independent of single-particle velocity and at
the same time to be related to the characteristic species thermal
velocities. Both perpendicular and parallel thermal velocities
(defined with respect to the magnetic field local direction)
must be considered. These are defined, respectively, by v⊥ths =
{T⊥s/Ms}1/2 and v‖ths = {T‖s/Ms}1/2, with T⊥s and T‖s denoting
here the species perpendicular and parallel temperatures. In
detail, the first parameter is defined as εM,s ≡ (rLs/L), where
rLs = v⊥ths/Ωcs is the species Larmor radius, with L being
the characteristic scale-length of the spatial variations of all
of the fluid fields associated with the KDF and of the EM
fields. The second parameter εs is related to the particle
canonical momentum Pϕs. By denoting vths ≡ sup{v‖ths, v⊥ths},
εs is identified with εs ≡ |MsRvths/((Zse/c)ψ)|. Hence, εs
effectively measures the ratio between the toroidal angular
momentum Lϕs ≡ MsRvϕ and the magnetic contribution to
the toroidal canonical momentum, for all particles in which vϕ

is of the order vϕ ∼ vths while ψ is assumed as being non-
vanishing. In particular, here the magnetic flux can be estimated
as ψ ∼ BpRL1, with L1 denoting the characteristic length-scale
of flux variations and Bp the magnitude of the poloidal magnetic
field. Note that, by definition, L � L1, but, in principle, we can
also have L � L1 locally.

We also note that the present definition of εs is not the
only possibility, as one could also define the parameter εs such
that it is related to the azimuthal flow velocity, namely letting
vϕ ∼ Vϕs = ΩsR, with Ωs being the corresponding angular
frequency. Finally, σs is related to the particle total energy Es and
is prescribed in this work as σs ≡ |((Ms/2)v2

ths + ZseΦ)/MsΦG|.
It follows that σs measures the ratio between particle kinetic and
ES potential energy with respect to the gravitational potential
energy, for all particles having velocity v of the order v ∼ vths,
with ΦG being assumed as non-vanishing. We note that the
definition of σs differs from that used in previous works
(Cremaschini & Tessarotto 2011, 2012; Cremaschini et al.
2011), while it is consistent with the ordering assumption (13).
In the following we shall denote, as a thermal subset of
velocity space, the subset of the Euclidean velocity space in
which the asymptotic conditions (v/vths) ∼ (vϕ/vths) ∼ O(1)
hold.

A comment is in order regarding the role of the magnetic field
in the two parameters εs and εM,s. In the first case, the magnetic
field is represented by means of the poloidal flux ψ , which
contributes to the toroidal canonical momentum Pϕs, while εM,s
depends on the magnitude of the total magnetic field. Invoking
the definitions for εs and εM,s given above, it follows that
εs ∼ εM,s(L/L1)(B/Bp), where L and L1 are, respectively, the
characteristic scale-lengths of equilibrium fluid and EM fields
and of the poloidal flux. In general, the two quantities should be
considered as independent, with L � L1 and Bp � B (note that
for the physical configuration treated in the present work one has
identically Bp = B from Equation (9)). Indeed, the parameter
εs determines the particle spatial excursions from a magnetic
flux surface, while εM,s measures the amplitude of the Larmor
radius with respect to the inhomogeneities of the background

fluid fields. These two effects correspond to different physical
magnetic-related processes, due, respectively, to the Larmor-
radius and magnetic-flux surface confinement mechanisms.

In this work we assume that the ordering condition

εM,s � 1 (17)

holds for the collisionless plasma considered here. This amounts
at requiring that the Larmor radius remains small with respect
to the scale-length L, which, as shown in Cremaschini &
Tessarotto (2012), represents a condition that is expected to
be easily verified in accretion-disk systems. Hence, one can
consistently identify the small parameter λ introduced above,
with λ = sup{εM,s}.

The classification that is introduced in this work is based on
the magnitude of the two parameters εs and σs. In detail, plasma
species will be distinguished as belonging to the following
regimes: (1) Gravitationally bound if σs � 1 and εs � 1. (2)
Magnetized if εs � 1 and σs � 1. (3) Gravitationally bound
and magnetized if both σs � 1 and εs � 1.

In the case of regimes 1 and 3 the following asymptotic
expansion holds for the total particle energy ZseΦ∗s:

Φ∗s= Ms

Zse
ΦG[1 + O(σs)]. (18)

Similarly, for regimes 2 and 3 the particle canonical momentum
(Zse/c)ψ∗s admits the expansion

ψ∗s = ψ[1 + O(εs)]. (19)

It is instructive to analyze the main features of these regimes
and the physical conditions for their occurrence. The action of
some energy non-conserving mechanisms is required for the
establishment of the case of gravitationally bound plasmas. In
particular, plausible physical mechanisms that can be responsi-
ble for the decrease of the single-particle kinetic energy, in both
collisionless and collisional accretion disk plasmas, are EM in-
teractions (e.g., binary Coulomb collisions among particles and
particle-wave interactions, such as Landau damping) and/or ra-
diation emission (radiation-reaction). These can in principle be
ascribed also to the occurrence of EM instabilities and EM turbu-
lence. For single particles these processes can be dissipative. As
a consequence, these particles tend to move toward regions with
higher gravitational potential (in absolute value). After multiple
interactions of this type, the process can ultimately reach an
equilibrium state that corresponds to the gravitationally bound
regimes. As far as the magnetic-field based classification, we
note that the requirement εs � 1 (regimes 2 and 3) means that
a particle trajectory remains close to the same magnetic surface
ψ = const., while satisfying the ordering (17).

Finally, for greater generality, in the rest of the treatment
we shall assume that, in the regimes in which σs � 1 and/or
εs � 1, the orderings σs ∼ εM,s and εs ∼ εM,s apply.

5. EQUILIBRIUM SPECIES KDF

In this section we proceed with the construction of the species
equilibrium KDF and its characterization to the plasma regimes
identified above. We consider both exact as well as asymptotic
representations for the solution, the latter being expressed in
terms of a Chapman–Enskog series. To reach the goal, here
we adopt the solution technique developed in Cremaschini &
Tessarotto (2011, 2013a), Cremaschini et al. (2010, 2011),
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and Cremaschini & Stuchlı́k (2013), which consists in the
construction of solutions of the Vlasov equation of the form fs =
f∗s, where f∗s is a suitable adiabatic invariant. This amounts to
requiring that f∗s is necessarily a function of particle adiabatic
invariants. In view of the model assumptions introduced above,
it follows that the general form of the equilibrium KDF in the
present context is given by

f∗s = f∗s(Es, Pϕs, Λ∗s, λ
kt), (20)

with k � 1 and where slow-time dependences are assumed
to be uniquely associated with the particle energy. Here Λ∗s
denotes the so-called structure functions, that is, functions that
depend implicitly on the particle state (x, v). In order for f∗s
to be an adiabatic invariant, Λ∗s must also be a function of
the adiabatic invariants. This restriction is referred to here
as a kinetic constraint. The precise form of the functional
dependences of Λ∗s is characteristic of each plasma regime,
as discussed below.

In order to determine an explicit representation of f∗s accord-
ing to Equation (20), we impose the following requirements:

1. The KDF must be characterized by species-dependent non-
uniform fluid fields, azimuthal flow velocity, and isotropic
temperature, to be suitably prescribed in terms of the
structure functions.

2. Open, locally nested magnetic flux surfaces: the magnetic
field is taken to allow quasi-stationary solutions with mag-
netic flux lines belonging to locally nested and generally
open magnetic surfaces.

3. Kinetic constraints: suitable functional dependences are
imposed on the structure functions Λ∗s, which depend on
the regime being considered and such to warrant f∗s to be
an adiabatic invariant.

4. In all regimes, f∗s is required to be asymptotically “close”
(in a suitable sense to be defined below) to a local
Maxwellian KDF. This requires the possibility of deter-
mining a posteriori a perturbative representation of the
KDF equivalent to the Chapman–Enskog expansion for the
analytical treatment of implicit phase-space dependences
contained in the structure functions, with the consistent in-
clusion of ES corrections, FLR-diamagnetic and/or energy-
corrections contributions.

5. The KDF f∗s must be a strictly positive real function and it
must be summable, in the sense that the velocity moments
of the form

Ξs(x, λkt) =
∫

Γv

dvKs(x, vλkt)f∗s (21)

must exist for a suitable ensemble of weight functions
{Ks(x, vλkt)}, to be prescribed in terms of polynomials of
arbitrary degree defined with respect to components of the
velocity vector field v.

Then, following Cremaschini et al. (2010, 2011), Cremaschini
& Tessarotto (2011, 2013a), and Cremaschini & Stuchlı́k
(2013), we express the equilibrium KDF f∗s as

f∗s = η∗s

(2π/Ms)3/2 T
3/2
∗s

exp

{
−Es − Ω∗sPϕs

T∗s

}
, (22)

which is referred to as the Generalized Maxwellian KDF.
Here the structure functions are identified with the set Λ∗s ≡
(η∗s, T∗s, Ω∗s), where η∗s, T∗s, and Ω∗s are related to the species

number density, isotropic temperature, and azimuthal angular
velocity, respectively. Invoking the definitions (3) and (4),
Equation (22) can also be written as

f∗s =
η∗s exp

[
X∗s
T∗s

]
(2π/Ms)3/2 T

3/2
∗s

exp

{
−Ms (v − V∗s)2

2T∗s

}
, (23)

where V∗s = RΩ∗seϕ and

X∗s ≡ Ms
|V∗s|2

2
+

Zse

c
ψΩ∗s − Zse Φeff

s . (24)

It is worth pointing out that the form of solution (22) holds for
all the plasma kinetic regimes identified in the previous section.
The difference in the three cases concerns the prescription of
the kinetic constraints to be imposed on Λ∗s. In particular,
consistent with the requirements listed above, these constraints
are assigned as follows:

1. For gravitationally bound plasmas it is required that the
functional dependence of Λ∗s is of the type

Λ∗s ≡ Λ∗s(Φ∗s), (25)

for which Equation (18) applies, while implicit depen-
dences with respect to ψ∗s are excluded.

2. For magnetized plasmas, the kinetic constraint is realized
by imposing

Λ∗s ≡ Λ∗s(ψ∗s), (26)

for which Equation (19) applies, while implicit depen-
dences with respect to Φ∗s are excluded.

3. For gravitationally bound and magnetized plasmas both
Equations (18) and (19) hold, so that the general form of
the kinetic constraint is given by

Λ∗s ≡ Λ∗s(ψ∗s, Φ∗s). (27)

The connection between the realization of these regimes and
the occurrence of off-equatorial tori will be investigated in
the next section. Here it must be noted that, because of the
constraints (25) to (27), at this stage the structure functions
cannot be regarded as fluid fields because they are defined in the
phase-space, namely, they depend on the single particle velocity
via the particle energy Es and the canonical momentum Pϕs.
Instead, the fluid fields associated with f∗s must be properly
computed as velocity moments according to Equation (21) and
they are unique once the precise form of the structure functions
is explicitly prescribed in f∗s.

6. OFF-EQUATORIAL TORI: DENSITY
AND VELOCITY PROFILES

In this section we first proceed determining a Chapman–
Enskog representation for f∗s, which makes possible the treat-
ment of the implicit phase-space functional dependences carried
by the structure functions, as well as the analytical evaluation
of the equilibrium fluid fields and the associated kinetic con-
tributions. We then apply the result to prove the validity of
the kinetic theory developed here as far as the description of
off-equatorial toroidal structures is concerned. This task can be
achieved by implementing an appropriate perturbative theory
for f∗s, which was first developed in Cremaschini et al. (2010,
2011) and is based on a Taylor expansion of Λ∗s with respect to
the dimensionless parameters σs and εs.
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It is understood that the basic feature of such a kinetic per-
turbative technique is that it is strictly applicable only in lo-
calized subsets of velocity space (thermal subsets), namely to
particles whose velocity satisfies the asymptotic ordering (18)
and/or (19). A notable consequence of such an approach is that,
for each kinetic regime, quasi-stationary, self-consistent, asymp-
totic solutions of the Vlasov–Maxwell equations (kinetic equi-
libria) can be explicitly determined by means of suitable Taylor
expansions of f∗s. In particular, it is found that Maxwellian-like
KDFs can be obtained locally in phase-space, where the appro-
priate convergence conditions hold. This procedure also pro-
vides the correct constitutive equations of the leading-order fluid
fields, as well as the precise form of the ES, FLR-diamagnetic,
and/or energy-correction contributions to the KDF.

In detail, invoking Equations (18) and (19), a linear asymp-
totic expansion for the structure functions can be obtained. In
the general case, neglecting corrections of O(εsσs), as well as
of O(εk

s ) and O(σ k
s ), with k � 2, this is given by

Λ∗s
∼= Λs + (ψ∗s − ψ)

[
∂Λ∗s

∂ψ∗s

]
ψ∗s=ψ,Φ∗s= Ms

Zse
ΦG

+

(
Φ∗s − Ms

Zse
ΦG

) [
∂Λ∗s

∂Φ∗s

]
ψ∗s=ψ,Φ∗s= Ms

Zse
ΦG

, (28)

where Λs is the leading-order term that uniquely follows for
each regime (see below). When Equation (28) is applied to the
equilibrium KDF f∗s and the ordering (13) is also invoked, the
following Chapman–Enskog representation is found:

f∗s = fM,s
[
1 + εsh

(1)
s + σsh

(2)
s + λh(3)

s

]
, (29)

where the leading-order contribution fM,s coincides with a
drifted isotropic Maxwellian KDF carrying non-uniform num-
ber density, azimuthal differential flow velocity, and isotropic
temperature. In detail:

fM,s = ns

(2π/Ms)3/2 T
3/2

s

exp

{
−Ms (v − Vs)2

2Ts

}
, (30)

where Vs = RΩseϕ is the leading-order drift velocity carried
by fM,s. Here ns represents the leading-order species number
density and is given by

ns ≡ ηs exp

[
Ms
2 R2Ω2

s + Zse

c
ψΩs − MsΦG

Ts

]
, (31)

with ηs being referred to as the pseudo-density. The leading-
order structure functions Λs coincide now with the set of func-
tions Λs ≡ (ηs, Ts, Ωs), which are defined in the configuration
space, with Ts and Ωs being, respectively, the leading-order
species temperature and azimuthal rotation angular frequency.
In addition, the quantities h(1)

s , h(2)
s , and h(3)

s represent first-order
kinetic corrections. In particular, h(1)

s is referred to as FLR-
diamagnetic contribution, h(2)

s carries energy-correction contri-
butions (with respect to both kinetic and ES potential energies),
while h(3)

s represents a purely ES term.
The precise expression of these functions will be given

below in a separate section, where we discuss the relevance
of these kinetic effects and their physical meaning in the
framework of the present perturbative theory. For the moment,
it is sufficient to say that all the first-order corrections are
part of the kinetic equilibrium, and cannot be neglected for

the consistent formulation of the solution. It must be also
stressed here that Equation (29) is very general: while h(3)

s is
non-vanishing for all the kinetic regimes considered above, the
existence of h(1)

s and h(2)
s depends instead on the type of kinetic

constraints. In particular, we distinguish the following features:

1. For gravitationally bound plasmas (regime 1) h(1)
s = 0 and

Λs is subject to the constraint

Λs = Λs(ΦG). (32)

2. For magnetized plasmas (regime 2) h(2)
s = 0 and the

functional dependence of Λs becomes

Λs = Λs(ψ). (33)

3. For gravitationally bound and magnetized plasmas
(regime 3) in general, both h(1)

s 	= 0 and h(2)
s 	= 0, while for

Λs one has in this case

Λs = Λs (ψ, ΦG) . (34)

We note that, to the leading-order, the equilibrium solution
determined here does not depend on the ES potential, but
only on the gravitational potential ΦG and the magnetic flux
ψ ∼= ψext, which are assigned and known functions of the spatial
coordinates.

The perturbative theory developed here represents the starting
point for the application of the kinetic theory to the modeling
of off-equatorial plasma tori in axisymmetric disk systems.
This is based on the analysis of the spatial dependences that
characterize the leading-order kinetic solution and can be
dealt with analytically, thanks to the fundamental EM ordering
assumptions introduced in Section 3. In particular, for each of
the three regimes considered here, the proof that the kinetic
equilibria admit off-equatorial solutions follows by analyzing
the spatial profile of the leading-order number density defined
by Equation (31) under the requirement of having maxima
out of the equatorial plane, namely for θ 	= (π/2). This
requires the preliminary assignment of the functional form of
the structure functions Λs characterizing Equation (31) in terms
of the potentials ψ and/or ΦG. A detailed discussion of this type
for all of the three plasma regimes is beyond the scope of this
work and will be addressed separately in future studies. For the
purpose of the present investigation, it is sufficient to consider
here the case of regime 3. In fact, this regime provides the most
general conditions for the occurrence of levitating structures,
while regimes 1 and 2 can be viewed as special realizations
of regime 3. In particular, we note that the latter is expected
to represent the most plausible realization in real systems, in
which both the gravitational and magnetic fields contribute to
determine the profiles of the fluid fields.

Let us then discuss the case of plasmas belonging to
regime 3. The number density profile is prescribed according to
Equations (31) and (34). We note that, thanks to the analyti-
cal relationships (14) and (15) and the orderings (12) and (13),
any function of (ψ, ΦG) can be equivalently expressed in terms
of (r, θ ). Because of this, the rhs of Equation (31) becomes a
generic function of (r, θ ), namely of the form ns = ns(r, θ ). This
represents the most general kind of spatial dependence that is
admitted by the kinetic equilibrium. Hence, in the general case
and in the absence of other particular restrictions, suitable pre-
scriptions of ns(r, θ ) can be determined for regime 3 plasmas,
according to the real system to be studied, which admit max-
ima out of the equatorial plane. This conclusion has a general
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character of validity and assures the consistency of the kinetic
theory, presented here for collisionless axisymmetric plasmas
with the possible occurrence of levitating tori in the external
gravitational and magnetic fields of the type prescribed above.

We can now explore in more detail the present conclusion by
considering explicitly two possible physical realizations of this
type of solution:

Case A. In this first example we assume that both ηs and Ts
in Equation (31) are constant. From the physical point of view,
the requirement ηs = const. means that the spatial variations of
the number density are uniquely determined by the exponential
term (Maxwellian factor), which in turn depends on the leading-
order plasma temperature, as well as on the rotational frequency,
gravitational potential, and magnetic flux ψ . This choice is
consistent with previous literature (see for example Schartmann
et al. 2005; Szuszkiewicz & Miller 1997, 2001).

Concerning the condition Ts = const., this corresponds to
a leading-order plasma isothermal profile that is consistent
with the kinetic constraints that characterize the solution (see
Section 7). We note that in the present framework, the isothermal
condition can only be satisfied to the leading-order, while for
non-uniform plasmas, the full temperature profile is generally
non-constant because of higher-order kinetic effects. These
issues will be discussed in detail in Sections 7 and 8. In validity
of the prescription of constant ηs and Ts, the only freedom left
concerns the functional dependence of Ωs, which is considered
of the form (34).

Under this assumption, the number density still remains of
the type ns(r, θ ). In this situation, it is convenient to prescribe
ns(r, θ ) consistent with the requirement of exhibiting maxima
out of the equatorial plane, independently of its actual represen-
tation given by Equation (31). The prescription of a physically
acceptable profile of ns(r, θ ) must be done in such a way to re-
produce observational or experimental data. Once the profile of
ns(r, θ ) is set, because ηs and Ts are also constant in this exam-
ple, Equation (31) can be inverted and used to uniquely derive
the expression of the corresponding species angular frequency
Ωs = Ωs(r, θ ), which determines the levitating structure. In par-
ticular, the latter is obtained by solving the quadratic algebraic
equation,

Ms

2
R2Ω2

s +
Zse

c
ψΩs − MsΦG − Ts ln

ns

ηs
= 0. (35)

Hence, under these conditions, it is possible to introduce a
density profile that is in agreement with physical configura-
tions and the existence of off-equatorial tori. For leading-order
isothermal systems this also prescribes the form of the corre-
sponding plasma rotation frequency according to Equation (35).
The extension of this solution method to the case of a non-
isothermal plasma species requires the additional prescription
of the temperature profile, namely Ts = Ts(r, θ ), while the fre-
quency Ωs can still be obtained from Equation (35). In both
cases we note that the kinetic equilibrium thus determined gen-
erally allows for the existence of two separate roots for Ωs. If
both are real, they should correspond to two different admissi-
ble equilibria with opposite directions of plasma rotation with
respect to the external dipolar magnetic field orientation.

Case B. As a second example, we assume the validity of the
kinetic constraint Equation (34) for all three structure functions.
In particular, we treat the situation in which the condition

ns (r, θ ) ≡ ηs (r, θ ) (36)

is identically satisfied in the configuration domain occupied by
the collisionless plasma species. From the physical point of view,
Equation (36) means that the number density profile ns is not
modified by the Maxwellian exponential factor and coincides
with the pseudo-density ηs(r, θ ). This requirement is satisfied
when the exponential factor in Equation (31) is one. Hence, this
condition is met for the species angular frequency satisfying the
algebraic quadratic equation

Ms

2
R2Ω2

s +
Zse

c
ψΩs − MsΦG = 0. (37)

We note that again Equation (37) generates two roots for the
frequency Ωs, as for case A discussed above. In addition, Equa-
tion (37) holds for both isothermal and non-isothermal plasmas.
Finally, in validity of the σs-ordering and the ordering (13),
when ln (ns/ηs) ∼ O(1), one can infer that the solutions of
Ωs from Equation (37) are asymptotically close to those from
Equation (35), although the number density and the temperature
are not necessarily so.

To conclude this section, it is useful to make a qualitative
comparison of the results obtained here with those presented
in Slaný et al. (2013), where the existence of off-equatorial
structures has been proved on the basis of a fluid non-ideal
MHD description. This involves in particular the inspection of
Equation (41) for the pressure profile given in Slaný et al. (2013),
which can give rise to off-equatorial maxima for suitable choices
of the coefficients entering the same equation (see discussions
in Sections 3 and 4 in the same reference). Indeed, pressure and
density profiles are proportional (at least to the leading-order)
when the condition Ts = const. applies (see also Equation (46)
below). In such a case, it is immediate to verify that the rhs
of Equation (41) in Slaný et al. (2013) can be effectively
expressed as a function of ψ and ΦG only, in agreement with
the prescription holding for regime 3 plasmas. Although the two
treatments (i.e., the present one and Slaný et al. 2013) consider
different physical conditions for the levitating plasma, the
consistency pointed out here establishes a notable result. In fact,
first, it shows that, as anticipated in the Introduction, the kinetic
theory developed in this paper and its analytical formulation
allow for direct comparisons with previous literature works
based on fluid approaches. Second, it proves that fluid results
can in principle be reproduced consistently on the basis of a
kinetic treatment, thus extending their validity to a wider class
of plasma regimes. Third, it, in turn, reinforces the statement
given above concerning the general character of the present
kinetic theory for regime 3 plasmas in providing a suitable
mathematical and physical framework for the investigation of
off-equatorial structures.

7. KINETIC CORRECTIONS

In this section we provide the explicit representation of
the kinetic corrections h(1)

s , h(2)
s , and h(3)

s introduced in the
Chapman–Enskog representation of the equilibrium KDF given
by Equation (29). The inclusion of these contributions is neces-
sary for the complete solution of the equilibrium problem in the
framework of the Vlasov–Maxwell description of collisionless
plasmas. In particular, these terms represent the deviations of
the KDF from a Maxwellian distribution and arise because of
the constraints imposed by single-particle phase-space conser-
vation laws on the solution itself. The precise definition of the
first-order terms h(1)

s , h(2)
s , and h(3)

s is also required to distin-
guish the solution among the three kinetic regimes pointed out
above.
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In detail, the first-order corrections h(1)
s and h(2)

s originate
from the perturbative treatment of the implicit phase-space
dependences carried by the structure-functions Λ∗s entering the
equilibrium KDF f∗s. They are found to be given by:

h(1)
s ≡ cMs

Zse
R

[
A1s +

PϕsΩs

Ts
A2s

]
vϕ

+
cMs

Zse
R

[
Es − ΩsPϕs

Ts
− 3

2

]
A3svϕ, (38)

h(2)
s ≡

[
Es − ΩsPϕs

Ts
− 3

2

]
C3s

(
1

2
v2 +

Zse

Ms
Φ

)

+

[
C1s +

PϕsΩs

Ts
C2s

] (
1

2
v2 +

Zse

Ms
Φ

)
, (39)

where the following definitions have been introduced:

A1s ≡ ∂ ln ηs

∂ψ
,A2s ≡ ∂ ln Ωs

∂ψ
,A3s ≡ ∂ ln Ts

∂ψ
, (40)

C1s ≡ ∂ ln ηs

∂ΦG
, C2s ≡ ∂ ln Ωs

∂ΦG
, C3s ≡ ∂ ln Ts

∂ΦG
. (41)

Hence, h(1)
s and h(2)

s are polynomial functions of the particle
velocity, which contain diamagnetic and energy-correction con-
tributions and depend on the so-called thermodynamic forces
∂Λs/∂ψ and ∂Λs/∂ΦG. The latter represent the gradients of the
structure functions across equipotential magnetic and gravita-
tional surfaces and arise in collisionless plasmas characterized
by non-uniform fluid fields. Consistency of these expressions
with the εs and σs ordering assumptions requires that

cMs

Zse
R

[(
Es − ΩsPϕs

Ts
− 3

2

)
A3s

]
vϕ � O (εs) , (42)

[
Es − ΩsPϕs

Ts
− 3

2

]
C3s

(
1

2
v2 +

Zse

Ms
Φ

)
� O (σs) , (43)

which implies that Ts must actually be of the form Ts =
Ts(εk

s ψ, σ k
s ΦG), with k � 1 (i.e. at most slowly dependent on ψ

and ΦG). This conclusion motivates the choice made in Section 6
to treat isothermal plasmas (to leading-order). As pointed out
above, the contribution h(1)

s is null for gravitationally bound
plasmas, while h(2)

s vanishes for magnetized plasmas. Instead,
both terms are present in the equilibrium solution for plasmas
belonging to regime 3. We also note that the σs-expansion
generates contributions in h(2)

s that are proportional to both
particle kinetic energy and ES potential. In particular, terms
that depend on Φ contribute to the occurrence of ES corrections
to the kinetic solution and the corresponding fluid fields.

Finally, the last contribution, h(3)
s , originates from the validity

of the λ-ordering (13), when this is taken into account in the
expression for the leading-order number density, and results in
the following term

h(3)
s ≡ ZseΦ

MsΦG
. (44)

It must be stressed that the ES contributions arising in h(2)
s and

h(3)
s originate from different perturbative treatments. In fact, h(3)

s
follows from the λ-ordering and is common to all the regimes

considered here when Equation (13) applies. The terms in h(2)
s ,

however, can only be included when the σs-ordering applies
(regimes 1 and 3).

To conclude the section, it is worth pointing out that the
treatment of the first-order kinetic corrections displayed here
requires the following preliminary steps. (1) The precise identi-
fication of the appropriate plasma collisionless kinetic regime.
(2) The prescription of the leading-order spatial profiles of the
structure functions, consistent with the kinetic constraints for
each regime. (3) The evaluation of the thermodynamic forces
and the explicit calculation of the ES potential. In particular,
the existence of the equilibria determined here is subject to the
validity of the Maxwell equations, that is, the Poisson equation
for the ES potential Φ and Ampere’s equation (see Section 9).

8. EQUATION OF STATE

In this section we proceed with the calculation of the EoS
corresponding to the kinetic equilibrium determined here. This
requires us to compute the species pressure tensor Π

s
, carried

by the KDF f∗s and defined as

Π
s
≡ Ms

∫
Γv

d3v (v − Vs) (v − Vs) f∗s, (45)

where Γv denotes the velocity domain of integration. Since
f∗s is isotropic with respect to quadratic particle velocity
dependences, one can infer that each species pressure tensor
is isotropic and of the form Π

s
= ptot

s I, where ptot
s = ntot

s T tot
s

denotes the thermal scalar pressure, with ntot
s and T tot

s being,
respectively, the species total number density and temperature
associated with f∗s. The calculation of ptot

s can be carried out
analytically for thermal particles when the Chapman–Enskog
representation (29) applies. In the following we consider this
case. Furthermore, consistent with the εs and σs orderings, in
the first-order terms h(1)

s and h(2)
s we approximate the canonical

momentum Pϕs and the energy Es, respectively, with (Zse/c)ψ
and MsΦG. Hence, under these assumptions, one can prove that
the scalar pressure can be represented as

ptot
s = nsTs

[
1 + σsΔp(2)

s + λh(3)
s

]
, (46)

where ps ≡ nsTs is the leading-order term, with ns being
defined by Equation (31). In addition we note that the term
h(1)

s associated with the εs-expansion does not contribute to the
EoS because it is odd in the azimuthal component of particle
velocity. Instead, h(3)

s does not depend explicitly on particle
velocity and therefore it is not affected when the integral (45)
is computed on Γv. Hence, its contribution in Equation (46)
is simply proportional to ps and represents part of the ES
corrections that enter the definition of the total pressure ptot

s .
Finally, invoking Equation (39), the explicit calculation gives,
for Δp(2)

s , the following result:

Δp(2)
s =

(
2
Zse

Ms
Φ + 4

Ts

Ms

)
Ys, (47)

where

Ys ≡ C1s +
Zse

c
ψΩs

Ts
C2s +

(
MsΦG − Ωs

Zse

c
ψ

Ts
− 3

2

)
C3s. (48)

10
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From this result it is interesting to point out that, although to
the leading-order the species pressure coincides with the thermal
pressure, the first-order corrections introduce deviations in the
EoS that are distinctive for collisionless plasmas. In particular,
the energy-correction contributions that enter through Δp(2)

s
are associated with the gradients of structure functions across
gravitational equipotential surfaces and include ES corrections
proportional to Φ. These terms however vanish in uniform
collisionless plasmas. On the other hand, the ES correction to
the EoS carried by h(3)

s is independent and follows uniquely from
the λ-ordering introduced above between ES and gravitational
potential energy. Clearly, all the first-order contributions in the
EoS arise as specifically kinetic effects, which characterize the
kinetic treatment of collisionless plasmas.

9. THE MAXWELL EQUATIONS

In this section we analyze the constraints that are posed by the
Maxwell equations on the kinetic equilibria. These concern in
particular the validity of the orderings (12) and (13) and for this
reason they apply to all the plasma regimes identified above.

We consider first the Poisson equation for the ES potential,
which is written as

∇2Φ = −4π
∑

s

Zsen
tot
s . (49)

In the general case the solution is non-trivial, because the total
number density ntot

s depends both implicitly and explicitly on the
ES potential itself (see for example Cremaschini & Tessarotto
2011; Cremaschini et al. 2011). However, the solution simplifies
in validity of the sub-ordering expansion (13) introduced above.
In fact, in this case the ES potential enters the kinetic solution
only through the first-order corrections to the equilibrium KDF.
Therefore, consistent with the orderings introduced in the
present work and the perturbative theory developed here, one
can obtain an asymptotic solution for Φ by considering only
the leading-order contribution to the species number density.
Thus, when the said sub-ordering applies, neglecting corrections
of O(σs) and O(εs) and invoking Equation (31), the Poisson
equation becomes to this accuracy:

∇2Φ = S(x, λkt), (50)

where the source term S(x, λkt) is defined as

S(x, λkt) ≡ − 4π
∑

s

Zseηs

× exp

[
Ms
2 R2Ω2

s + Zse

c
ψΩs − MsΦG

Ts

]
. (51)

Here S(x, λkt) does not depend on Φ, and therefore the ES
potential can be readily obtained by integrating Equation (50)
yielding

Φ(x, λkt) =
∫

dx ′G(x − x′)S(x′, λkt), (52)

with G(x − x′) being the corresponding Green function. For
the consistency of the theory, the solution for Φ given by the
previous equation must be checked a posteriori to satisfy the
initial ordering (13). In particular, this can represent a constraint
condition for the magnitude of the species number densities

that contribute to the ES potential through the system charge
density (51). Manifestly, the validity of the ordering (13) is
necessary for the present theory to apply, and for this reason the
calculation of Φ represents the ultimate step to be done in order
to warrant the consistency of the treatment.

Similar considerations apply to the Ampere equation, which
determines the self-generation of magnetic field by the equilib-
rium collisionless plasma. The Ampere equation is written as

∇ × Bself = 4π

c
Jtot, (53)

where Bself is defined in Equation (8) and Jtot is the total current
density, which is given by

Jtot ≡
∑

s

Jtot
s =

∑
s

Zsen
tot
s Vtot

s , (54)

with Vtot
s being the species flow velocity. It is immediate to

show that, in the present formulation, Vtot
s is purely azimuthal

at equilibrium; in fact additional components of the velocity
can only arise in the presence of temperature anisotropy, see
for example Cremaschini et al. (2010, 2011) and Cremaschini
& Tessarotto (2011). Again, consistent with the perturbative
treatment presented here, one can retain only the leading-order
contributions to Jtot in Equation (53). Under this assumption
Equation (53) becomes

∇ × Bself = 4π

c

∑
s

ZsensVs, (55)

where ns is given by Equation (31) and Vs = RΩseϕ

(see Equation (30)). Equation (55) represents a generalized
Grad–Shafranov equation for the poloidal magnetic flux ψself
in which the source term on the rhs depends only on explic-
itly known quantities. The solution for Bself , which results from
Equation (55) must then be checked a posteriori to verify the
ordering condition (12) introduced above, which is necessary in
order to warrant the validity of the theory and its analytical de-
velopment. In this case Equation (12) can represent a constraint
for the magnitude of the species rotation angular frequencies,
which contribute to the system charge current.

10. CONCLUSIONS

In this paper, a theoretical investigation of equilibrium con-
figurations for collisionless non-relativistic and axisymmetric
plasmas has been presented, taking into account the role of
a central spherically symmetric gravitational field. The for-
mulation is based on a multi-species kinetic approach devel-
oped in the framework of the Vlasov–Maxwell description.
The case of astrophysical plasmas arising in the gravitational
field of compact objects and in the presence of both an ex-
ternal dipolar magnetic field and self EM fields has been
treated.

Three different plasma regimes have been identified that
are characterized by distinctive kinetic orderings. It has been
proved that in all cases consistent kinetic equilibria can be de-
termined, with the KDF being expressed in terms of generalized
Maxwellian functions. It has also been shown that the three
regimes differ by the form of the kinetic constraints that are
imposed on the equilibrium solutions and uniquely follow from
phase-space, single-particle conservation laws.

11
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By imposing appropriate orderings on the self EM fields
and by developing a suitable perturbative theory, an analytical
treatment of the equilibria has been proposed. In terms of
this, several issues have been addressed. First, the conditions
of existence of equilibrium structures corresponding to off-
equatorial tori have been investigated. It has been shown that
these systems can generally arise for the regime that has
been referred to here as magnetized and gravitationally bound
plasmas. This analysis can be important from the astrophysical
point of view, because off-equatorial tori may represent a
physically realizable model of magnetized coronal plasmas,
which are believed to characterize accretion disks. In addition,
the treatment based on kinetic theory can pose the basis for
comparison with analogous fluid results carried out in terms of
MHD theory.

As a second application, the plasma EoS has been determined
analytically and expressed in terms of the pressure tensor. It
has been shown that the latter exhibits deviations from the
thermal pressure characteristic of collisional plasmas because
of the existence of specifically kinetic effects. These have
been identified with diamagnetic, energy-correction and ES
contributions that apply in combination with the occurrence
of non-uniform fluid fields.

Finally, the validity of the Poisson and Ampere equations
have been addressed, showing that they can introduce non-trivial
constraints on the magnitude of the plasma number density and
flow velocity for the consistency with the orderings introduced
in the theory developed here.

The conclusions established in this work can be relevant for
future investigations of astrophysical plasmas in equilibrium
configurations, with particular focus on collisionless plasmas in
accretion disks and off-equatorial tori associated with compact
objects.
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