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Recent experimental developments in diverse areas — ranging from cold atomic gases to light-driven semi-
conductors to microcavity arrays — move systems into the focus which are located on the interface of quantum
optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative
quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate
counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states,
as well as their many-body time evolution. It is a challenge to theory to identify novel instances of universal
emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic
drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a sys-
tematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool
to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum
field theory to driven open quantum systems.
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I. INTRODUCTION

Understanding the quantum many-particle problem is one of
the grand challenges of modern physics. In thermodynamic
equilibrium, the combined effort of experimental and theoretical
research has made tremendous progress over the last decades,
revealing the key concepts of emergent phenomena and uni-
versality. This refers to the observation, that the relevant de-
grees of freedom governing the macrophysics may be vastly dif-
ferent from those of the microscopic physics, but on the other
hand are constrained by basic symmetries on the short distance
scale, restoring predictive power. Regarding the role and power
of these concepts in out-of-equilibrium situations, there is a
large body of work in the context of classical near equilibrium
and non-equilibrium many-body physics and statistical mechan-
ics [1–5]. However, analogous scenarios and theoretical tools
for non-equilibrium quantum systems are much less developed.

This review addresses recent theoretical progress in an im-
portant and uprising class of dynamical non-equilibrium phases
of quantum matter, which emerge in driven open quantum sys-
tems, where a Hamiltonian is not the only resource of dynamics.
This concerns both non-equilibrium stationary states, but also
the dynamics of such ensembles. Strong motivation for the ex-
ploration of non-thermal stationary states comes from a recent
surge of experiments in diverse areas: in cold atomic gases [6–
8], hybrid light-matter systems of Bose-Einstein condensates
placed in optical cavities are created [9, 10], or driven Ryd-
berg ensembles are prepared [11]; light-driven semiconductor
heterostructures realize Bose-Einstein condensation of exciton-
polaritons [12, 13]; coupled microcavity arrays are pushed to
a regime demonstrating both strong coupling of light and mat-
ter [14] and scalability [15]; large ensembles of trapped ions
implement varieties of driven spin models [16, 17]. All those
systems are genuinely made of quantum ingredients, and share
in common that coherent and driven-dissipative dynamics oc-
cur on equal footing. This creates close ties to typical setups in
quantum optics. But on the other hand, they exhibit a continuum
of degrees of freedom, characteristic for many-body physics 1.

1 This includes the cases of extended spatial continuum and lattice systems. In

both cases, a continuum of momentum modes obtains, underlying the charac-

teristics of many-body problems at long wavelength.

Systems located at this new interface are not guaranteed to ther-
malize, due to the absence of energy conservation and the re-
sulting breaking of detailed balance by the external drive at the
microscale. They rather converge to non-equilibrium stationary
states of matter, creating scenarios without counterpart in con-
densed, equilibrium matter. This rules out conventional theoreti-
cal equilibrium concepts and techniques to be used, and calls for
the development of new theoretical tools. The physical frame-
work sparks broader theoretical questions on the existence of
new phases of bosonic [18, 19] and fermionic [20–22] matter,
the nature of phase transitions in such driven systems [10, 23–
26], and the observable consequences of quantum mechanics at
the largest scales [27, 28]. Beyond stationary states [29], a fun-
damental challenge is set by the time evolution of interacting
quantum systems, which is currently explored theoretically [30–
36] and experimentally in cold atomic [37–41] and photonic sys-
tems [42]. A key goal is to identify universal dynamical regimes
that hold beyond specific realizations or precise initial condi-
tions. Combining idealized closed system evolution with the in-
trinsic open system character of any real world experiment takes
this setting to the next stage, and exhibits emergent dynamics
markedly different from closed systems both for short [43, 44]
and long evolution times [45–51].

The interplay of coherent and driven-dissipative dynamics can
be a natural consequence of the driving necessary to maintain
a certain many-body state. Going one step further, it is possi-
ble to exploit and further develop the toolbox of quantum optics
for the driven-dissipative manipulation of many-body systems.
Recently, it has been recognized that the concept of dissipative
state preparation in quantum optics [52, 53] can be developed
into a many-body context, both theoretically [54–57] and exper-
imentally [58–60]. Suitably tailored dissipation then does not
necessarily act as an adversary to subtle quantum mechanical
correlations such as phase coherence or entanglement [61–66].
In contrast, it can even create these correlations, and dissipa-
tion then represents the dominant resource of many-body dy-
namics. In particular, even topologically ordered states in spin
systems [67] or of fermionic matter [68, 69] can be induced dis-
sipatively ([56] and [70–72], respectively). These developments
open up a new arena for many-body physics, where the quan-
tum mechanical microscopic origin is of key importance despite
a dominantly dissipative dynamics.

Summarizing, this is a fledging topical area, where first results
underpin the promise of these systems to exhibit genuinely new
physics. In the remainder of the introduction, we will discuss
in some more detail the three major challenges which emerge in
these systems. The first one concerns the identification of novel
macroscopic many-body phenomena, which witness the micro-
scopic driven open nature of such quantum systems. Second, we
anticipate the theoretical machinery, which allows us to perform
the transition from micro- to macrophysics in a non-equilibrium
context in practice. Third, we describe some representative ex-
perimental platforms, which motivate the theoretical efforts, and
in which the predictions can be further explored.
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A. New phenomena

As pointed out above, one of the key goals of the research re-
viewed here is the identification of new macroscopic many-body
phenomena, which can be uniquely traced back to the micro-
scopic driven open nature of such systems, and do not have an
immediate counterpart in equilibrium systems.

The driven nature common to the systems considered here can
always be associated to the fact that the underlying microscopic
Hamiltonian is time dependent, with a time dependence relating
to external driving fields such as lasers. When such an ensemble
(i) in addition has a natural partition into a “system” and a “bath”
— a continuum of modes well approximated by harmonic oscil-
lators with short memory —, (ii) the system-bath coupling is
weak compared to a typical energy scale of the “system” Hamil-
tonian and (iii) linear in the bath creation and annihilation oper-
ators (so that they can be integrated out straightforwardly), then
an effective (still microscopic) description in terms of combined
Hamiltonian and driven-dissipative Markovian quantum dynam-
ics of the “system” ensues. The “system” dynamics obtains by
tracing out the bath variables.

The resulting effective microdynamics is “non-equilibrium,”
in a sense sharpened in Sec. II D 1. This not only concerns the
time evolution, but also holds for the non-equilibrium stationary
states. More precisely, the above situation implies an explicit
breaking of detailed balance, since the “system” energy is not
conserved due to the explicitly time-dependent drive.

What do we actually mean by “detailed balance” and “ther-
mal equilibrium?” In an operational sense, the principle of de-
tailed balance states that there is a partition invariance for the
temperature (or, more generally, the noise level) present in the
system: an arbitrary bipartition of the system can be chosen, one
part can be traced out, and the resulting subsystem will be at the
same temperature (noise level) as the total system. This parti-
tion invariance is the condition for a globally well-defined tem-
perature characteristic for systems in thermal equilibrium. More
formally, thermal equilibrium can be detected by means of so-
called fluctuation-dissipation relations (FDRs). These connect
the two fundamental observables in physical systems — correla-
tion and response functions (see Sec. II B). In the case of thermal
equilibrium, the connection is dictated by the particle statistics
alone. It is then given by the Bose- and Fermi-distributions, re-
spectively. Deviations from this universal form, which has only
two free parameters (temperature and chemical potential, relat-
ing to the typical conserved quantities energy and particle num-
ber), provide a necessary requirement for non-equilibrium con-
ditions.

In non-equilibrium stationary states, no such general form ex-
ists. We will encounter a concrete and simple example in the
context of the driven Dicke model (a cavity photon coupled to
a collective spin) in Sec. III A, where the form of the FDR de-
pends on the observable we are choosing (e.g., the position or
momentum correlations and responses).

On the other hand, thermal FDRs can emerge at long
wavelength, even though the microscopic dynamics manifestly

breaks detailed balance [26]. In particular, in three dimen-
sions and close to the critical point of driven-dissipative Bose-
condensation, a degeneracy of critical exponents indicates a uni-
versal asymptotic thermalization, in the sense of an emergent
thermal FDR. A similar phenomenology is observed in a disor-
dered multimode extension of the Dicke model, see Sec. III B.
This underlines the strongly attractive nature of the thermal equi-
librium fixed point at low frequencies. Still in these systems,
non-equilibrium conditions leave their traces in the dynamical
response of the system, in terms of information that does not
enter the FDR at leading order. For example, the critical behav-
ior is characterized by a fine structure in a new and indepen-
dent critical exponent, which measures decoherence, and whose
value distinguishes equilibrium and non-equilibrium dynamics,
see Sec. IV B.

Instead of emergent thermal behavior indicating the fadeout of
non-equilibrium conditions upon coarse graining, also the oppo-
site behavior is possible. For example, low dimensional (d ≤ 2)
bosonic systems at low noise level, such as exciton-polaritons
well above threshold, are not attracted to the equilibrium fixed
point as their three dimensional counterparts, but rather flow to
the non-equilibrium fixed point of the Kardar-Parisi-Zhang [73]
universality class, see Sec. IV C. This can be interpreted as a
universal and indefinite increase of the non-equilibrium strength,
which is triggered even if the violation of detailed balance at the
microscopic level is very small.

Universal non-equilibrium phenomena can also occur in the
time evolution of driven open systems. For example, intriguing
scaling laws describing algebraic decoherence [46], anomalous
diffusion [74], or glass-like behavior [45, 75–77] have been iden-
tified in the long time asymptotics of driven spin systems close
to the stationary states. Conversely, the short time behavior of
driven open lattice bosons shows universal scaling laws directly
witnessing the non-equilibrium drive, see Sec. V. This scaling
can be related to a strongly pronounced non-equilibrium shape
of the time-dependent distribution function in the early stages of
evolution, and be traced back to conservation laws of the driven-
dissipative generator of dynamics.

The above discussion mainly focuses on the difference be-
tween equilibrium and non-equilibrium systems on the macro-
scopic level of observation. Another direction, still much less
developed, concerns the distinction between classical and quan-
tum effects. Again, although the quantum mechanical descrip-
tion is necessary at a microscopic level, the persistence of quan-
tum effects at the macroscale is not guaranteed. This is mainly
due to the Markovian noise level inherent to such quantum sys-
tems. Nevertheless, systems with suitably engineered driven-
dissipative dynamics show typical quantum mechanical phe-
nomena such as phase coherence [54, 55, 61, 63, 64, 78], en-
tanglement [58–60, 62], or topological order [56, 66, 70–72].
Especially fermionic systems, which do not possess a classical
limit, are promising in this direction.
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B. Theoretical concepts and techniques

The development of theoretical tools needed to perform the
transition from micro- to macro-physics in driven open quantum
systems is still in progress, as a topic of current research. A rea-
son for the preliminary status of the theory lies in the fact that
two previously rather independent disciplines — quantum op-
tics and many-body physics — need to be unified on a technical
level.

Quantum optical systems are well described microscopically
in terms of Markovian quantum master equations, which treat
coherent Hamiltonian and driven-dissipative dynamics on equal
footing. To solve such equations both for their dynamics
and their stationary states, powerful techniques have been de-
vised. This comprises efficient exact numerical techniques for
small enough systems, such as the quantum trajectories ap-
proach [48, 79, 80]. But it also includes analytical approaches
such as perturbation theory for quantum master equations, e.g.,
in the frame of the Nakajima-Zwanzig projection operator tech-
nique [81, 82], or mappings to P, W, or Q representations [83],
casting the problem from a second quantized formulation into
partial differential equations.

A characteristic feature of traditional quantum optical sys-
tems is the finite spacing of the few energy levels which play
a role. When considering systems with a spatial continuum of
degrees of freedom instead, the energy levels become continu-
ous. This does not mean that the microscopic modelling in terms
of a quantum master equation is inappropriate: for the driven-
dissipative terms in such an equation, the assumption of spa-
tially independent dissipative processes (such as atomic loss or
spontaneous emission) is still valid as long as the emitted wave-
length of radiation is well below the spatial resolution at the
scale where the microscopic model is defined. Indeed, in this
situation, destructive interference of radiation justifies the de-
scription of driven dissipation in terms of incoherent processes.
However, under these circumstances the smallness of a micro-
scopic expansion parameter no longer guarantees the smallness
of the associated perturbative correction. Here the reason is that
in perturbation theory, one is summing over intermediate states
with propagation amplitudes down to the longest wavelengths.
This can lead to infrared divergences in naive perturbation the-
ory — a circumstance that found its physical interpretation and
technical remedy in equilibrium in terms of the renormalization
group [84, 85]. We emphasize that it is precisely this situation of
long wavelength dominance which underlies much of the univer-
sality, i.e., insensitivity to microscopic details, which is encoun-
tered when moving from the microscale to macroscopic observ-
ables in many-particle systems.

The modern framework to understand many-particle prob-
lems in thermodynamic equilibrium is in terms of the functional
integral formulation of quantum field theory. The spectrum of
its application covers a remarkable range of energy scales, from
ultracold atomic gases to condensed matter systems with strong
correlations to quantum chromodynamics and the quantum the-
ory of gravity. It provides us with a well-developed toolbox of

techniques, such as diagrammatic perturbation theory including
sophisticated resummation schemes. But it also encompasses
non-perturbative approaches, which often capitalize on the flex-
ibility of the functional integral when it comes to picking the
relevant degrees of freedom for a given problem. This is the
challenge of emergent phenomena, whose solution typically is
strongly scale dependent [86]. Familiar examples include an
efficient description of emergent Cooper pair or molecular de-
grees of freedom in interacting fermion systems, or vortices
which conveniently parameterize the long-wavelength physics
of interacting bosons in two dimensions. The description of the
change of physics with scale was given its mathematical foun-
dation in terms of the renormalization group already mentioned
above, yet another tool developed and most clearly formulated in
a functional language. Finally, the functional integral based on
a single scalar quantity — the system’s action, which encodes
all the dynamics on the microscopic scale — is a convenient
framework when it comes to the classification of symmetries and
associated conservation laws, and their use in devising approxi-
mation schemes respecting them.

To put it short, while the driven open many-body systems
are well described by microscopic master equations, the tradi-
tional techniques of quantum optics cannot be used efficiently
– at least not in the case where the generic complications of
many-body systems start to play a role. Conversely, their driven
open character makes it impossible to approach these problems
in the framework of equilibrium many-body physics. This sit-
uation calls for a merger of the disciplines of quantum optics
and many-body physics on a technical level. On the numerical
side, progress has been made in one spatial dimension recently
by combining the method of quantum trajectories with power-
ful density matrix renormalization group algorithms [87–90],
see [48] for an excellent review on the topic. For more analyti-
cal approaches, the Keldysh functional or path integral [91–96]
is ideally suited (but see [97] for a recent systematic perturbative
approach to lattice Lindblad equations with extensions to sophis-
ticated resummation schemes [98], and [99–101] for advanced
variational techniques). Conceptually, the latter captures the
most general situation in many-body physics — the dynamics
of a density matrix under an arbitrary temporally local generator
of dynamics. We refer to [102, 103] for an introduction to the
Keldysh functional integral. In our context, it can be derived by
a direct functional integral quantization of the Markovian quan-
tum master equation. This procedure results in a simple transla-
tion table from the master equation to the key player in the as-
sociated Keldysh functional integral, the Markovian action. At
first sight, the complexity of the non-equilibrium Keldysh func-
tional integral is increased by the characteristic “doubling” of
degrees of freedom compared to thermal equilibrium. However,
it should be noted that it is precisely this feature which relates
the Keldysh functional integral much closer to real time (von
Neumann) evolution familiar from quantum mechanics. We will
demonstrate this in Sec. II A, making the Markovian action a
rather intuitive object to work with. Furthermore, when prop-
erly harnessing symmetries, the complexity of calculations can
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often be made comparable to thermodynamic equilibrium. Most
importantly however, the powerful toolbox of quantum field the-
ory is opened in this way. It is thus possible to leverage the full
power of sophisticated techniques from equilibrium field theory
to driven open many-body systems.

Relation to classical dynamical field theories — The quan-
tum mechanical Keldysh formulation reduces to the so-called
Martin-Siggia-Rose (MSR) functional integral in the (semi-)
classical limit, in turn equivalent to a stochastic Langevin equa-
tion formulation [102]. This statement will be made precise and
discussed in Sec. II C. A large amount of work has been dedi-
cated to this limit in the past. On the one hand, this concerns
dynamical aspects of equilibrium statistical mechanics, and we
refer to the classic work by Hohenberg and Halperin [1] for an
overview. This work shows that, while the static universal crit-
ical behavior is determined by the symmetries and the dimen-
sionality of the problem, the dynamical critical behavior is sen-
sitive to additional dynamical conservation laws. This leads to
a fine structure, defining dynamical universality classes which
are denoted by models A–J [1]. These models also provide a
convenient framework to describe the statistics of work, sum-
marized in Jarzynski’s work theorem [104, 105] and Crooks’ re-
lation [106]. On the other hand, non-equilibrium situations are
captured as well. Here, we highlight in particular genuine non-
equilibrium universality classes, which are not smoothly con-
nected to the equilibrium models. Among them is the problem
of reaction-diffusion models [107] including directed percola-
tion [4], which is relevant to certain chemical processes (for an
implementation of this universality class with driven Rydberg
gases, see [50]). Another key example is surface growth, de-
scribed by the Kardar-Parisi-Zhang equation [73], giving rise
to a non-equilibrium universality class which is at the heart of
driven phenomena such as the growth of bacterial colonies or
the spreading of fire.

In the same class of approaches ranges the so-called Doi-Peliti
functional integral [108, 109], which is a functional representa-
tion of classical master equations, and may be viewed as an MSR
theory with a specific, highly non-linear appearance of the field
variables. It reduces to the conventional MSR form in a leading
order Taylor expansion of the field non-linearities. A compre-
hensive overview of models, methods, and physical phenomena
in the (semi-)classical limit is provided in [5].

We also note that the usual mean field theory, where corre-
lation functions are factorized into products of field amplitudes
and which is often used as an approximation to the quantum
master equation in the literature, corresponds to a further for-
mal simplification of the semi-classical limit. Here the effects of
noise are neglected completely. Conversely, the semi-classical
limit represents a systematic extension of mean field theory,
which includes the Markovian noise fluctuations. This level of
approximation is referred to as optimal path approximation in
the literature on MSR functional integrals [5, 102].

In many cases, even though the microscopic description is
in terms of a quantum master equation, at long distances the
Keldysh field theory reduces to a semi-classical MSR field the-

ory. The reason is the finite Markovian noise level that such
systems exhibit generically, as explained in Sec. II C. The prefix
“semi” refers to the fact that phase coherence may still persist
in such circumstances — the situation is comparable to a Bose-
Einstein condensate at finite temperature. Recently however, sit-
uations have been identified where the drastic simplifications of
the semi-classical limit do not apply. In particular, this occurs
in systems with dark states — pure quantum states which are
dynamical fixed points of driven-dissipative evolution [54, 110].
In these cases, classical dynamical field theories are inappropri-
ate, which calls for the development of quantum dynamical field
theories [28]. These developments are just in their beginnings.

In this review, we concentrate on systems composed of
bosonic degrees of freedom. However, it is also possible to ad-
dress spin systems in terms of functional integrals [111], and
simple models systems have been analyzed in this way, see [112]
and Sec. III A. More sophisticated approaches to spin systems
were elaborated in the context of multimode optical cavities
in [113], and systematically for various symmetries for lattice
systems in [114]. Fermi statistics is also conveniently imple-
mented in the functional integral formulation. This is relevant,
e.g., for driven open Fermi gases in optical cavities [21, 22, 115]
or lattices [116], or dissipatively stabilized topological fermion
matter [70–72].

C. Experimental platforms

The progress in controlling, manipulating, detecting and scal-
ing up driven open quantum systems to many-body scenarios has
been impressive over the last decade. Here we sketch the basic
physics of three representative platforms, and indicate the rele-
vant microscopic theoretical models in the frame of the Marko-
vian quantum master equation. In later sections, we will trans-
late this physics into the language of the Keldysh functional inte-
gral. For each of these platforms, excellent reviews exist, which
we refer to at the end of Sec. I D together with further litera-
ture on open systems. The purpose of this section is to give
an overview only, and to put the respective platforms into their
overarching context as driven open quantum systems with many
degrees of freedom.

1. Cold atoms in an optical cavity, and microcavity arrays:
driven-dissipative spin-boson models

Cavity quantum electrodynamics (cavity QED), with its fo-
cus on strong light-matter interactions, is a growing field of re-
search, which has experienced several groundbreaking advances
in the past few years. Historically, these systems were devel-
oped as few or single atom experiments, detecting the radiation
properties of atoms, which are strongly coupled to a quantized
light field. The focus has recently been shifted towards loading
more and more atoms inside a cavity. Thereby, not only single
particle dynamics in strong radiation fields can be probed, but
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also collective, macroscopic phenomena, which are driven by
light-matter interactions. For an excellent review on this topic,
covering important experimental and theoretical developments,
see [10]. In the experiments, cold atoms are loaded inside an
optical or microwave cavity, for which the coherent interaction
between the atomic internal states and a single cavity mode dom-
inates over dissipative processes [117]. The atoms absorb and
emit cavity photons, thereby changing their internal states. Due
to this process, the spatial modulation of the intra-cavity light
field induces a coupling of the cavity photons to the atomic in-
ternal state as well as their motional degree of freedom [118].
In this way, cavity photons mediate an effective atom-atom in-
teraction, which leads to a back-action of a single atom on the
motion of other atoms inside the cavity. This cavity mediated
interaction is long-ranged in space and represents the source of
collective effects in cold atomic clouds within cavity QED ex-
periments. One hallmark of collective dynamics in cavity QED
has been the observation of self-organization of a Bose-Einstein
condensate in an optical cavity. This is accompanied by a Dicke
phase transition via breaking of a discrete Z2-symmetry of the
underlying model [9, 119–121].

Although the dominant dynamics in these systems is coherent,
there are dissipative effects which cannot be discarded. These
are the loss of cavity photons due to imperfections in the cav-
ity mirrors, or spontaneous emission processes of atoms, which
emit photons into transverse modes. These effects modify the
dynamics of the system on the longest time scales. Therefore,
they become relevant for macroscopic phenomena, such as phase
transitions and collective dynamics. For instance, dissipative ef-
fects have been shown theoretically [122, 123] and experimen-
tally [124] to modify the critical exponent of the Dicke transi-
tion compared to its zero temperature value. This illustrates that
for the analysis of collective phenomena in cavity QED experi-
ments, the dissipative nature of the system has to be taken into
account properly [112, 125].

Typically, for a cavity field which has a very narrow spectrum,
the atomic internal degrees of freedom can be reduced to two
internal states, whose transitions are nearly resonant to the pho-
ton frequency. The operators acting on these two internal states
can be represented by Pauli matrices, making them equivalent
to a spin-1/2 degree of freedom. A very important model in the
framework of cavity QED is the Dicke model [126–128], which
describes N atoms (i.e., two-level systems) coupled to a single
quantized photon mode. This is expressed by the Hamiltonian
(here and in the following we set � = 1)

HD = ω0a†a +
ωz

2

N∑
i=1

σz
i +

g
√

N

N∑
i=1

σx
i

(
a† + a

)
. (1)

Here, ω0 is the photon frequency, σz = |1〉〈1| − |0〉〈0| repre-
sents the splitting of the two atomic levels with energy differ-
ence ωz. σ

x = |0〉〈1| + |1〉〈0| describes the coherent excitation
and de-excitation of the atomic state proportional to the atom-
photon coupling strength g. The Dicke model features a dis-
crete Z2 Ising symmetry: it is invariant under the transforma-
tion (a†, a, σx

i ) �→ (−a†,−a,−σx
i ). In the thermodynamic limit,

for N → ∞, it features a phase transition, which spontaneously
breaks the Ising symmetry. Crossing the transition, the system
enters a superradiant phase, characterized by finite expectation
values 〈a〉 � 0, 〈σx

i 〉 � 0. This describes condensation of the
cavity photons, i.e., the formation of a macroscopically occu-
pied, coherent intra-cavity field, and a “ferromagnetic” ordering
of the atoms in the x-direction.

Although the Dicke model is a standard model for cavity QED

experiments in the ultra-strong coupling limit
√

Ng > ωzω0, it
has been realized only very recently in cold atom experiments,
where an entire BEC was placed inside an optical cavity [9]. It
has been shown that this setup maps to a Dicke model, with a
“collective” spin degree of freedom [120]. Here, the detuning
of the pump laser was chosen such that the atoms effectively re-
main in the internal ground state, but acquire a characteristic re-
coil momentum when scattering with a cavity photon. This scat-
tering creates a collective, motionally excited state, which re-
places the role of an individual, internally excited atom. The ex-
perimental realization of a superradiance transition in the Dicke
model is usually inhibited, since the required coupling strength
by far exceeds the available value of the atomic dipole coupling.
However, for the BEC in the cavity, the energy scales of the ex-
cited modes are much lower than the optical scale of the atomic
modes. In this way, the superradiance transition indeed became
experimentally accessible. This was inspired by a theoretical
proposal using two balanced Raman channels between different
internal atomic states inside an optical cavity, which reduced the
effective level splitting of the internal states to much lower en-
ergy scales [129].

In addition to the unitary dynamics represented by the Dicke
model, the cavity is subject to permanent photon loss due to im-
perfections in the cavity mirrors. For high finesse cavities, the
coupling of the intra cavity photons to the surrounding vacuum
radiation field is very weak, and the latter can be eliminated in a
Born-Markov approximation [81]. This results in a Markovian
quantum master equation for the system’s density matrix

∂tρ = −i[HD, ρ] +Ldρ, (2)

where ρ is the density matrix for the intra cavity system and Ld
adds dissipative dynamics to the coherent evolution of the Dicke
model. For a vacuum radiation field, it is given by

Ldρ = κ
(
LρL† − 1

2
{L†L, ρ}

)
. (3)

The Lindblad operator L acting on the density matrix describes
pure photon loss (L = a) with an effective loss rate κ; the lat-
ter depends on system specific parameters, but is typically the
smallest scale in the master equation (2) [10].

In generic cavity experiments, there are also atomic sponta-
neous emission processes. The atoms scatter a laser or cavity
photon out of the cavity, and this represents a source of deco-
herence. This process has been considered in Ref. [112], and
leads to an effective decay rate of the atomic excited state and
therefore to a dephasing of the atoms, described by additional
Lindblad operators Li = σ

z
i [130]. However, these losses are
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7

at least three orders of magnitude smaller than the cavity de-
cay rate and typically not considered [9, 125]. The basic model
for cavity QED with cold atoms is therefore represented by the
Dicke model with dissipation, formulated in terms of the master
equation (2). Its dynamics is discussed in Sec. III, including the
Dicke superradiance transition.

The Dicke model Hamiltonian takes the form HD = Hc+Hs+

Hcs, where Hc,s,cs represent the bosonic cavity, spin, and spin-
boson sectors, respectively. There are many directions to go be-
yond the Dicke model with single collective spin, still keeping
the basic feature of coupling spin to boson (cavity photon) de-
grees of freedom. One direction – relevant to future cold atom
experiments – is to consider multimode cavities instead of a sin-
gle one. In particular, in conjunction with quenched disorder,
intriguing analogies to the physics of quantum glasses can be
established in this way [113, 131]. Here, the global coupling of
all spins to a single mode gi ≡ g is replaced by random couplings
gi,�, where the index � now refers to a collection of cavity modes.
The many-body physics of such an open system is discussed in
Sec. III.

The basic building block of the Dicke model is the spin-boson
term of the form Hsc ∼ (a + a†)σx, i.e. a Rabi type non-
linearity that preserves the Z2 symmetry of Hc,s. In the con-
text of circuit quantum electrodynamics, a natural many-body
generalization of Hamiltonians with a spin-boson interaction is
to consider entire arrays of microcavities (instead of consider-
ing many modes within a single cavity). These cavities can
be coupled to each other by single photon tunnelling processes
between adjacent cavities, giving rise to Hubbard-type hopping

terms ∼ Ja†i a j + h. c., where i, j now label the spatial index of
the cavities. In cirquit QED, strong non-linearities can be gen-
erated, e.g., by coupling to adjacent qubits made of Cooper pair
boxes [132, 133]. This gives rise to many-body variants of the
Rabi model [134], whose phase diagrams have been studied re-
cently [135–137]. Furthermore, for the implementation of lat-
tice Dicke models with large collective spins, the use of hybrid
quantum systems consisting of superconducting cavity arrays
coupled to solid-state spin ensembles have been proposed [138].
Spontaneous collective coherence in driven-dissipative cavity ar-
rays has been studied in [139].

In many physical situations (away from the ultra-strong cou-
pling limit), a form of the spin-cavity interaction alternative
to the Rabi term is more appropriate, with non-linear building
block Hcs ∼ aσ+ + a†σ−. In fact, this form results naturally
from the weak coupling rotating wave approximation of a driven
spin-cavity problem. For a single cavity mode and spin, the re-
sulting model is the Jaynes-Cummings model, which in contrast
to the Dicke model possesses a continuous U(1) phase rotation
symmetry under a→ eiθa, σ− → eiθσ−.

Clearly, when such systems are driven coherently via a Hamil-
tonian Hd = Ω(a + a†) or suitable multimode generalizations
thereof, both the U(1) and even the Z2 symmetries of the above
models are broken explicitly. Coherent drive is usually the sim-
plest way to compensate for unavoidable losses due to cavity
leakage, although incoherent pumping schemes are conceivable

using multiple qubits [140]. An advantage of such schemes is
that the symmetries of the underlying dynamics are preserved
or less severely corrupted in this way (cf. the discussion in
Sec. II D). In other platforms, such as exciton-polariton systems
(cf. the subsequent section), incoherent pumping is more natural
from the outset.

All the systems discussed here represent genuine instances of
driven open many-body systems. Besides the coherent drive,
they undergo dissipative processes, which have to be taken into
account for a proper understanding of their time evolution and
stationary states. A generic feature of these processes is their
locality. For the effective spin degrees of freedom, the typical
processes are qubit decay (local Lindblad operators Li = σ

−
i ) and

dephasing (Li = σ
z
i ). For the bosonic component, local single-

photon loss is dominant, Li = ai.

Under various circumstances, such as a low population of
the excited spin states, the latter degrees of freedom can be
integrated out. In this limit, their physical effect is to gen-
erate Kerr-type bosonic non-linearities, giving rise to driven
open variants of the celebrated Bose-Hubbard model. These
models can even be brought into the correlation dominated
regime [24, 132, 133, 141]. Oftentimes, these approximations on
the spin sector actually apply, and it is both useful and interesting
to study these effective low frequency bosonic theories instead
of the full many-body spin-boson problems, see Refs. [142–146]
for recent work in this direction.

2. Exciton-polariton systems: driven open interacting bosons

Exciton-polaritons are an extremely versatile experimental
platform, which is documented by the richness of physical phe-
nomena that have been studied in these systems both in the-
ory and experiment. For a comprehensive account of the sub-
ject, we refer to a number of excellent review articles [13, 147,
148]. A Keldysh functional integral approach is discussed in
Refs. [149, 150], which provides both a microscopic deriva-
tion of an exciton-polariton model and a mean field analysis
including Gaussian fluctuations. At this point, we content our-
selves with a short introduction, with the aim of showing that
in a suitable parameter regime, exciton-polaritons very natu-
rally provide a test-bed to study Bose condensation phenom-
ena out of thermal equilibrium. Similar physics can also arise
in a variety of other systems, including condensates of pho-
tons [151], magnons [152], and potentially excitons [153]. Re-
markably, even cold atoms could be brought to condense in a
non-equilibrium regime, where continuous loading of atoms bal-
ances three-body losses [154], or in atom laser setups [155–157].

A basic experimental setup for exciton-polaritons consists of
a planar semiconductor microcavity embedding a quantum well
(see Fig. 1 (a)). This setting allows for a strong coupling of cav-
ity light and matter in the quantum well, as originally proposed
in [158]. The free dynamics of the elementary excitations of this
system — i.e., of cavity photons and Wannier-Mott excitons —
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8

is described by the quadratic Hamiltonian [13]

H0 = HC + HX + HC−X , (4)

where the parts of the Hamiltonian involving only photons and
excitons, respectively, take the same form, which is given by
(here the index α labels cavity photons, α = C, and excitons,
α = X, respectively)2

Hα =
∫

dq
(2π)2

∑
σ

ωα(q)a†α,σ(q)aα,σ(q). (5)

Field operators a†α,σ(q) and aα,σ(q) create or destroy a photon
or exciton (note that both are bosonic excitations) with in-plane
momentum q and polarization σ (there are two polarization
states of the exciton which are coupled to the cavity mode [13]).
For simplicity, we neglect polarization effects leading to an ef-
fective spin-orbit coupling [13]. Due to the confinement in the
transverse (z) direction, i.e., along the cavity axis, the motion of
photons in this direction is quantized as qz,n = πn/lz, where n is
a positive integer, and lz is the length of the cavity. In writing
the Hamiltonian (5), we are assuming that only the lowest trans-
verse mode is populated, which leads to a quadratic dispersion

as a function of the in-plane momentum q = |q| =
√

q2
x + q2

y :

ωC(q) = c
√

q2
z,1 + q2 = ω0

C +
q2

2mC
+ O(q4). (6)

Here, c is the speed of sound, ω0
C = cqz,1, and the effective mass

of the photon is given by mC = qz,1/c. Typically, the value of the
photon mass is orders of magnitude smaller than the mass of the
exciton, so that the dispersion of the latter appears to be flat on
the scale of Fig. 1 (b).

Upon absorption of a photon by the semiconductor, an exciton
is generated. This process (and the reverse process of the emis-
sion of a photon upon radiative decay of an exciton) is described
by

HC−X = ΩR

∫
dq

(2π)2

∑
σ

(
a†X,σ(q)aC,σ(q) + H.c.

)
, (7)

where ΩR is the rate of the coherent interconversion of photons
into excitons and vice versa. The quadratic Hamiltonian (4) can
be diagonalized by introducing new modes — the lower and
upper exciton-polaritons, ψLP,σ(q) and ψUP,σ(q) respectively,
which are linear combinations of photon and exciton modes. The
dispersion of lower and upper polaritons is depicted in Fig. 1
(b). In the regime of strong light-matter coupling, which is
reached when ΩR is larger than both the rate at which pho-
tons are lost from the cavity due to mirror imperfections and the

2 In Ref. [149, 150], a different model for excitons is used: they are assumed

to be localized by disorder, and interactions are included by imposing a hard-

core constraint.
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Figure 1. (a) Schematic of two Bragg mirrors forming a microcavity,
in which a quantum well (QW) is embedded. In the regime of strong
light-matter interaction, the cavity photon and the exciton hybridize and
form new eigenmodes, which are called exciton-polaritons. (b) Energy
dispersion of the upper and lower polariton branches as a function of in-
plane momentum q. In the experimental scheme illustrated in this figure
(cf. Ref. [12]), the incident laser is tuned to highly excited states of the
quantum well. These undergo relaxation via emission of phonons and
scattering from polaritons, and accumulate at the bottom of the lower
polariton branch. In the course of the relaxation process, coherence is
quickly lost, and the effective pumping of lower polaritons is incoher-
ent.

non-radiative decay rate of excitons, it is appropriate to think of
exciton-polaritons as the elementary excitations of the system.

In experiments, it is often sufficient to consider only lower
polaritons in a specific spin state, and to approximate the disper-
sion as parabolic [13]. Interactions between exciton-polaritons
originate from various physical mechanisms, with a dominant
contribution stemming from the screened Coulomb interactions
between electrons and holes forming the excitons. Again, in the
low-energy scattering regime, this leads to an effective contact
interaction between lower polaritons. As a result, the low-energy
description of lower polaritons takes the form (in the following
we drop the subscript indices in ψLP,σ) [13]

HLP =

∫
dx
[
ψ†(x)

(
ω0

LP −
∇2

2mLP

)
ψ(x) + ucψ

†(x)2ψ(x)2

]
. (8)

While this Hamiltonian is quite generic and arises also, e.g., in
cold bosonic atoms in the absence of an external potential, the
peculiarity of exciton-polaritons is that they are excitations with
relatively short lifetime. In turn, this necessitates continuous re-
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plenishment of energy in the form of laser driving in order to
maintain a steady population. In Fig. 1 (b), we consider the
case in which the excitation laser is tuned to energies well above
the lower polariton band. The thus created high-energy excita-
tions are deprived of their excess energy via phonon-polariton
and stimulated polariton-polariton scattering. Eventually, they
accumulate at the bottom of the lower polariton band. As a con-
sequence of multiple scattering processes, the coherence of the
incident laser field is quickly lost, and the effective pumping of
lower polaritons is incoherent.

A phenomenological model for the dynamics of the lower po-
lariton field, which accounts for both the coherent dynamics gen-
erated by the Hamiltonian (8) and the driven-dissipative one de-
scribed above, was introduced in Ref. [159]. It involves a dissi-
pative Gross-Pitaevskii equation for the lower polariton field that
is coupled to a rate equation for the reservoir of high-energy ex-
citations. However, for the study of universal long-wavelength
behavior in Sec. IV, this degree of microscopic modeling is ac-
tually not required: indeed, any (possibly simpler) model that
possesses the relevant symmetries (see the discussion at the be-
ginning of Sec. IV) will yield the same universal physics. Such
a model can be obtained by describing incoherent pumping and
losses of lower polaritons by means of a Markovian master equa-
tion:3

∂tρ = −i[HLP, ρ] +Ldρ, (9)

where Ldρ encodes incoherent single-particle pumping and
losses, as well as two-body losses:

Ldρ =

∫
dx
(
γpD[ψ(x)†]ρ + γlD[ψ(x)]ρ + 2udD[ψ(x)2]ρ

)
,

(10)
where

D[L]ρ = LρL† − 1

2
{L†L, ρ} (11)

reflects the Lindblad form, and γp, γl, 2ud are the rates of single-
particle pumping, single-particle loss, and two-body loss, re-
spectively. The inclusion of the non-linear loss term ensures
saturation of the pumping. An analogous mechanism is im-
plemented in the above-mentioned Gross-Pitaevskii description.
More precisely, in the spirit of universality, the above quantum
master equation (9) and the above mentioned phenomenologi-
cal model reduce to precisely the same low frequency model for
bosonic degrees of freedom upon taking the semiclassical limit
in the Keldysh path integral associated to Eq. (9) (see Sec. II C
for its implementation), and integrating out the upper polariton
reservoir in the phenomenological model.

3 While this approach captures the universal behavior, we note that non-

Markovian effects can be of key importance for other properties [160–162].

3. Cold atoms in optical lattices: heating dynamics

In recent years, experiments with cold atoms in optical lat-
tices have shown remarkable progress in the simulation of many-
body model systems both in and out of equilibrium. A par-
ticular strength of cold atom experiments is the unprecedented
tuneability of model parameters, such as the local interaction
strength and the lattice hopping amplitude. This becomes possi-
ble by, e.g., manipulation of the lattice laser and external mag-
netic fields. It comes along with a very weak coupling of the
system to the environment, such that the dynamics can often be
seen as isolated on relevant time scales for typical measurements
of static, equilibrium correlations. However, more and more ex-
periments start to investigate the realm of non-equilibrium phe-
nomena with cold atoms, e.g., by letting systems prepared in a
non-equilibrium initial condition relax in time towards a steady
state [37, 39, 163–165]. With these experiments, time scales are
reached, for which the dissipative coupling to the environment
becomes visible in experimental observables. Such dissipation
may even hinder the system from relaxation towards a well de-
fined steady state.

A relevant example of a dissipative coupling is decoherence
of an atomic cloud induced by spontaneous emission of atoms
in the lattice [166, 167]. In this way, the many-body system
is heated up, and therefore driven away from the low entropy
state in which it was prepared initially. A detailed discussion
of the microscopic physics and its long time dynamics can be
found in [45–47], see also the review article [48]. For bosonic
atoms in optical lattices, the coherent dynamics is described by
the Bose-Hubbard Hamiltonian [168, 169]

HBH = −J
∑
〈l,m〉

b†l bm +
U
2

∑
l

nl(nl − 1), (12)

which models bosonic atoms in terms of the creation and annihi-
lation operators [bl , b

†
m] = δlm in the lowest band of a lattice with

site indices l,m. The atoms hop between neighboring lattice sites
with an amplitude J, and experience an on-site repulsion U. The
lattice potential V(x), which leads to the second quantized form
of the Bose-Hubbard model, is created by the superposition of
counter-propagating laser beams in each spatial dimension. The
coherent laser field couples two internal atomic states via stimu-
lated absorption and emission, which leads to the single particle
Hamiltonian

Hatom =
p̂2

2m
− Δ

2
σz − σxΩ(x̂)

2
, (13)

where p̂ is the atomic momentum operator, Δ is the detuning of
the laser from the atomic transition frequency, and Ω(x̂) is the
laser field at the atomic position. For large detuning, the excited
state of the atom can be traced out, which leads to the lattice
Hamiltonian

Heff
atom =

p̂2

2m
+
|Ω(x̂)|2

4Δ
. (14)

This describes a lattice potential for the ground state atoms
generated by the spatially modulated AC Stark shift. Adding
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Figure 2. Illustration of the coherent (a) and the incoherent (b) con-
tribution to the dynamics stemming from the coupling of the atoms to
a laser with amplitude |Ω| and large detuning Δ. (a) Via the AC Stark
effect, stimulated absorption and emission lead to a coherent periodic

potential with amplitude |Ω|
2

4Δ
. (b) Stimulated absorption and subsequent

spontaneous emission lead to effective decoherence of the atomic state

with rate Γ |Ω|
2

4Δ
, where Γ is the microscopic spontaneous emission rate.

an atomic interaction potential and expanding both the single
particle Hamiltonian (14) and the interaction in terms of Wan-
nier states, the leading order Hamiltonian is the Bose-Hubbard
model (12) [169].

In the semi-classical treatment of the atom-laser interaction,
spontaneous emission events are neglected, as their probabil-
ity is typically very small (see below for a more precise state-
ment). They can be taken into account on the basis of optical
Bloch equations [166], which leads, after elimination of the ex-
cited atomic state, to an additional, driven-dissipative term in
the atomic dynamics. It describes the decoherence of the atomic
state due to spontaneous emission, i.e., position dependent ran-
dom light scattering. The leading order contribution to the dy-
namics in the basis of lowest band Wannier states is captured by
the master equation

∂tρ = −i[HBH, ρ] − γ
∑

l

[nl, [nl, ρ]], (15)

where nl = b†l bl is the local atomic density, and ρ is the many-

body density matrix. For a red detuned laser the rate γ = Γ |Ω|
2

4Δ2 is
proportional to the microscopic spontaneous emission rate Γ and
the laser amplitude |Ω|. Note the suppression of the scale γ by
a factor Γ/Δ � 1 for large detuning, compared to the strength
of Heff

atom. The coherent and incoherent contribution of the atom-
laser coupling to the dynamics is illustrated in Fig. 2.

The dissipative term in the master equation (15) leads to an
energy increase 〈HBH〉(t) ∼ t linear in time, and thus to heat-
ing. Furthermore, it introduces decoherence in the number state
basis, i.e., it projects the local density matrix on its diagonal in
Fock space and leads to a decrease of the coherences in time [45–
48]. Starting from a low entropy state at t = 0, the heating leads
to a crossover from coherence dominated dynamics at short and
intermediate times [43] to a decoherence dominated dynamics at
long times [45–47]. In one dimension, both regimes have been
analyzed extensively both numerically (with a focus on deco-
herence dominated dynamics) as well as analytically, and dis-
play several aspects of non-equilibrium universality, see Sec. V.
Therefore, heating in interacting lattice systems represents a cru-

cial example for universality in out-of-equilibrium dynamics,
which can be probed by cold atom experiments.

D. Outline and scope of this review

The remainder of this review is split into two parts.

Part 1 develops the theoretical framework for the efficient de-
scription of driven open many-body quantum systems. In Sec. II,
we begin with a direct derivation of the open system Keldysh
functional integral from the many-body quantum master equa-
tion (Sec. II A). We then discuss in Sec. II B 1 in detail a simple
example: the damped and driven optical cavity. This allows the
reader to familiarize with the functional formalism. In particu-
lar, the key players in terms of observables — correlation and re-
sponse functions — are described. We also point out a number of
exact structural properties of Keldysh field theories, which hold
beyond the specific example. Another example is introduced in
Sec. II B 2: there we discuss the mean field theory of conden-
sation in a bosonic many-body system with particle losses and
pumping. The semi-classical limit of this model and its valid-
ity are the content of Sec. II C. This is followed by a discussion
of symmetries and conservation laws in the Keldysh formalism
in Sec. II D. In particular, we point out a symmetry that allows
one to distinguish equilibrium from non-equilibrium conditions.
Finally, an advanced field theoretical tool — the open system
functional renormalization group — is introduced in Sec. II E.

Part 2 harnesses this formalism to generate an understand-
ing of the physics in different experimental platforms. We be-
gin in Sec. III with simple but paradigmatic spin models with
discrete Ising Z2 symmetry in driven non-equilibrium station-
ary states. In particular, we discuss the physics of the driven
open Dicke model in Sec. III A. This is followed by an extended
variant of the latter in the presence of disorder and a multi-
mode cavity, which hosts an interesting spin and photon glass
phase in Sec. III B. Sec. IV is devoted to the non-equilibrium
stationary states of bosons with a characteristic U(1) phase ro-
tation symmetry: the driven-dissipative condensates introduced
in Sec. II B 2. After some additional technical developments re-
lating to U(1) symmetry in Sec. IV A, we discuss critical be-
havior at the Bose condensation transition in three dimensions.
In particular, we show the decrease of a parameter quantifying
non-equilibrium strength in this case (Sec. IV B). The opposite
behavior is observed in two (Sec. IV C) and one (Sec. IV D)
dimensions. Finally, leaving the realm of stationary states, in
Sec. V we discuss an application of the Keldysh formalism to
the time evolution of open bosonic systems in one dimension,
which undergo number conserving heating processes. We set up
the model in Sec. V A, derive the kinetic equation for the dis-
tribution function in Sec. V B, and discuss the relevant approxi-
mations and physical results in Secs. V C and V D, respectively.
Conclusions are drawn in Sec. VI. Finally, brief introductions
to functional differentiation and Gaussian functional integration
are given in Appendices A and B.

Reflecting the bipartition of this review, the scope of it is
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twofold. On the one hand, it develops the Keldysh functional in-
tegral approach to driven open quantum systems “from scratch”,
in a systematic and coherent way. It starts from the Marko-
vian quantum master equation representation of driven dissipa-
tive quantum dynamics [81, 82, 170], and introduces an equiv-
alent Keldysh functional integral representation. Direct contact
is made to the language and typical observables of quantum op-
tics. It does not require prior knowledge of quantum field the-
ory, and we hope that it will find the interest of — and be use-
ful for — researchers working on quantum optical systems with
many degrees of freedom. On the other hand, this review doc-
uments some recent theoretical progresses made in this concep-
tual framework in a more pedagogical way than the original lit-
erature. We believe that this not only exposes some interesting
physics, but also demonstrates the power and flexibility of the
Keldysh approach to open quantum systems.

This work is complemetary to excellent reviews putting more
emphasis on the specific experimental platforms partially men-
tioned above: The physics of driven Bose-Einstein condensates
in optical cavities is reviewed in [10]. A general overview of
driven ultracold atomic systems, specifically in optical lattices,
is provided in [48], and systems with engineered dissipation are
described in [57]. Detailed accounts for exciton-polariton sys-
tems are given in [13, 147, 148]; specifically, we refer to the
review [149] working in the Keldysh formalism. The physics of
microcavity arrays is discussed in [14, 24, 134, 141], and trapped
ions are treated in [17, 171]. We also refer to recent reviews
on additional upcoming platforms of driven open quantum sys-
tems, such as Rydberg atoms [172] and opto-nanomechanical
settings [173]. For a recent exposition of the physics of quan-
tum master equations and to efficient numerical techniques for
their solution, see [48].

Part 1

Theoretical background
II. KELDYSH FUNCTIONAL INTEGRAL FOR DRIVEN

OPEN SYSTEMS

In this part, we will be mainly concerned with a Keldysh field
theoretical reformulation of the stationary state of Markovian
many-body quantum master equations. As we also demonstrate,
this opens up the powerful toolbox of modern quantum field the-
ory for the understanding of such systems.

The quantum master equation, examples of which we have
already encountered in Sec. I C, describes the time evolution of
a reduced system density matrix ρ and reads [81, 82]

∂tρ = Lρ = −i[H, ρ] +
∑
α

γα

(
LαρL†α −

1

2
{L†αLα, ρ}

)
, (16)

where the operator L acts on the density matrix ρ “from both
sides” and is often referred to as Liouville superoperator or Li-

ouvillian (sometimes this term is reserved for the second con-
tribution on the RHS of Eq. (16) alone). There are two contri-
butions to the Liouvillian: first, the commutator term, which is
familiar from the von Neumann equation, describes the coher-
ent dynamics generated by a system Hamiltonian H; the second
part, which we will refer to as the dissipator D 4, describes the
dissipative dynamics resulting from the interaction of the sys-
tem with an environment, or “bath.” It is defined in terms of a
set of so-called Lindblad operators (or quantum jump operators)
Lα, which model the coupling to that bath. The dissipator has a
characteristic Lindblad form [174, 175]: it contains an anticom-
mutator term which describes dissipation; in order to conserve
the norm tr(ρ) of the system density matrix, this term must be ac-
companied by fluctuations. The corresponding term, where the
Lindblad operators act from both sides onto the density matrix,
is referred to as recycling or quantum jump term. Dissipation
occurs at rates γα which are non-negative, so that the density
matrix evolution is completely positive, i.e., the eigenvalues of
ρ remain positive under the combined dynamics generated by H
and D [176]. If the index α is the site index in an optical lattice
or in a microcavity array, or even a continuous position label (in
which case the sum is replaced by an integral), in a translation
invariant situation there is just a single scale γα = γ for all α
associated to the dissipator.

The quantum master equation (16) provides an accurate de-
scription of a system-bath setting with a strong separation of
scales. This is generically the case in quantum optical systems,
which are strongly driven by external classical fields. More pre-
cisely, there must be a large energy scale in the bath (as com-
pared to the system-bath coupling), which justifies to integrate
out the bath in second-order time-dependent perturbation the-
ory. If in addition the bath has a broad bandwidth, the combined
Born-Markov and rotating-wave approximations are appropri-
ate, resulting in Eq. (16). A concrete example for such a set-
ting is provided by a laser-driven atom undergoing spontaneous
emission. Generic condensed matter systems do not display such
a scale separation, and a description in terms of a master equa-
tion of the type (16) is not justified.5 However, the systems dis-
cussed in the introduction, belong to the class of systems which
permit a description by Eq. (16). We refer to them as driven
open many-body quantum systems.

Due to the external drive these systems are out of thermody-
namic equilibrium. This statement will be made more precise
in Sec. II D 1 in terms of the absence of a dynamical symme-
try which characterizes any system evolving in thermodynamic
equilibrium, and which is manifestly violated in dynamics de-
scribed by Eq. (16). Its absence reflects the lack of energy con-
servation and the epxlicit breaking of detailed balance. As stated

4 We use the term “dissipation” here for all kinds of environmental influences

on the system which can be captured in Lindblad form, including effects of

decay and of dephasing/decoherence.
5 Davies’ prescription [177] allows one to also describe equilibrium systems

in terms of operatorial master equations, however with collective Lindblad

operators ensuring detailed balance conditions (cf. also [82]).
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in the introduction, the main goal of this review is to point out
the macroscopic, observable consequences of this microscopic
violation of equilibrium conditions.

A. From the quantum master equation to the Keldysh functional
integral

In this section, starting from a many-body quantum master
equation Eq. (16) in the operator language of second quantiza-
tion, we derive an equivalent Keldysh functional integral. We
focus on stationary states, and we discuss how to extract dynam-
ics from this framework in Sec. V. Our derivation of the Keldysh
functional integral applies to a theory of bosonic degrees of free-
dom. If spin systems are to be considered, it is useful to first per-
form the typical approximations mapping them to bosonic fields,
and then proceed along the construction below (see Sec. III and
Refs. [112, 114]). Clearly, this amounts to an approximate treat-
ment of the spin degrees of freedom; for an exact (equilibrium)
functional integral representation for spin dynamics, taking into
account the full non-linear structure of their commutation rela-
tions, we refer to Ref. [178]. For fermionic problems, the con-
struction is analogous to the bosonic case presented here. How-
ever, a few signs have to be adjusted to account for the fermionic
anticommutation relations [102, 178].

The basic idea of the Keldysh functional integral can be de-
veloped in simple terms by considering the Schrödinger vs. the
von Neumann equation,

i∂t |ψ(t)〉 = H|ψ(t)〉 ⇒ |ψ(t)〉 = U(t, t0)|ψ(t0)〉,
∂tρ(t) = −i[H, ρ(t)] ⇒ ρ(t) = U(t, t0)ρ(t0)U†(t, t0),

(17)

where U(t, t0) = e−iH(t−t0) is the unitary time evolution opera-
tor. In the first case, a real time path integral can be constructed
along the lines of Feynman’s original path integral formulation
of quantum mechanics [179]. To this end, a Trotter decomposi-
tion of the evolution operator

e−iH(t−t0) = lim
N→∞

(� − iδtH)N , (18)

with δt =
t−t0
N , is performed. Subsequently, in between the

factors of the Trotter decomposition, completeness relations in
terms of coherent states are inserted in order to make the (nor-
mal ordered) Hamilton operator a functional of classical field
variables. This is illustrated in Fig. 3 a), and we will perform
these steps explicitly and in more detail below in the context
of open many-body systems. Crucially, we only need one set
of field variables representing coherent Hamiltonian dynamics,
which corresponds to the forward evolution of the Schrödinger
state vector. It is also clear that — noting the formal analogy of
the operators e−iH(t−t0) and e−βH — this construction can be lever-
aged over to the case of thermal equilibrium, where the “Trotter-
ization” is done in imaginary instead of real time.

In contrast to these special cases, the von Neumann equation
for general mixed state density matrices cannot be rewritten in

terms of a state vector evolution, even in the case of purely co-
herent Hamiltonian dynamics.6 Instead, it is necessary to study
the evolution of a state matrix, which transforms according to
the integral form of the von Neumann equation in the second
line of Eq. (17). Therefore, we have to apply the Trotter formula
and coherent state insertions on both sides of the density matrix.
This leads to the doubling of degrees of freedom, characteris-
tic of the Keldysh functional integral. Moreover, time evolution
can now be interpreted as occurring along two branches, which
we denote as the forward and a backward branches, respectively
(cf. Fig. 3 b)). Indeed, this is an intuitive and natural feature of
evolving matrices instead of vectors.

So far, we have concentrated on closed systems which evolve
according to purely Hamiltonian dynamics. However, we can
allow for a more general generator of dynamics and still proceed
along the two-branch strategy. The most general (time local)
evolution of a density matrix is given by the quantum master
equation (16). Its formal solution reads

ρ(t) = e(t−t0)Lρ(t0) ≡ lim
N→∞

(� + δtL)N ρ(t0). (19)

The last equality gives a meaning to the formal solution in terms
of the Trotter decomposition: at each infinitesimal time step, the
exponential can be expanded to first order, such that the action
of the Liouvillian superoperator is just given by the RHS of the
quantum master equation (16); At finite times, the evolved state
is given by the concatenation of the infinitesimal Trotter steps.

If we restrict ourselves to the stationary state of the system,7

but want to evaluate correlations at arbitrary time differences,
we should extend the time branch from an initial time in the dis-
tant past t0 → −∞ to the distant future, t f → +∞. In analogy to
thermodynamics, we are then interested in the so-called Keldysh
partition function Z = tr ρ(t) = 1. The trace operation contracts
the indices of the time evolution operator as depicted in Fig. 3
c), giving rise to the closed time path or Keldysh contour. Con-
servation of probability in the quantum mechanical system is
reflected in the time-independent normalization of the partition
function. In order to extract physical information, again in anal-
ogy to statistical mechanics, below we introduce sources in the
partition function. This allows us to compute the correlation and
response functions of the system by taking suitable variational
derivatives with respect to the sources.

After this qualitative discussion, let us now proceed with the
explicit construction of the Keldysh functional integral for open
systems, starting from the master equation (16). As mentioned
above, the Keldysh functional integral is an unraveling of Li-
ouvillian dynamics in the basis of coherent states, and we first

6 Of course, the evolution of an M×M matrix, where M is the dimension of the

Hilbert space, can be formally recast into the evolution of a vector of length

M × M. While such a strategy is often pursued in numerical approaches [48],

it does in general not allow for a physical interpretation.
7 We assume that it exists. We thus exclude scenarios with dynamical limit

cycles, for simplicity.
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δt t0t

t
ρ(t0)

tU U †

U

δt

tf = +∞

+ contour

- contour t0 = −∞
ρ(t0)ρ(tf )

a)

b)

c)

|ψ(t0)〉

Figure 3. Idea of the Keldysh functional integral. a) According to the
Schrödinger equation, the time evolution of a pure state vector is de-

scribed by the unitary operator U(t, t0) = e−iH(t−t0). In the Feynman
functional integral construction, the time evolution is chopped into in-
finitesimal steps of length δt, and completeness relations in terms of
coherent states are inserted in between consecutive time steps. This
insertion is signalled by the red arrows. b) In contrast, if the state is
mixed, a density matrix must be evolved, and thus two time branches
are needed. As explained in the text, the dynamics need not necessarily
be restricted to unitary evolution. The most general time-local (Marko-
vian) dynamics is generated by a Liouville operator in Lindblad form.
c) For the analysis of the stationary state, we are interested in the real
time analog of a partition function Z = tr ρ(t f ), starting from t0 = −∞
and running until t f = +∞. The trace operation connects the two time
branches, giving rise to the closed Keldysh contour.

collect a few important properties of those. Coherent states are
defined as (for simplicity, in the present discussion we restrict
ourselves to a single bosonic mode b) |ψ〉 = exp(ψb†) |Ω〉, where

|Ω〉 represents the vacuum in Fock space. (Note that accord-
ing to this definition, which is usually adopted in the discus-
sion of field integrals [180], the state |ψ〉 is not normalized.)
A key property of coherent states is that they are eigenstates
of the annihilation operator, i.e., b |ψ〉 = ψ |ψ〉, with the com-
plex eigenvalue ψ. Clearly, this implies the conjugate relation
〈ψ| b† = 〈ψ|ψ∗.8 The overlap of two non-normalized coherent
states is given by 〈ψ|φ〉 = eψ

∗φ, and the completeness relation

reads � =
∫ dψdψ∗

π
e−ψ

∗ψ |ψ〉 〈ψ|.
The starting point of the derivation is Eq. (19), and we focus

first on a single time step, as in the usual derivation of the co-
herent state functional integral [180]. That is, we decompose the
time evolution from t0 to t f into a sequence of small steps of du-
ration δt = (t f − t0)/N, and denote the density matrix after the
n-th step, i.e., at the time tn = t0 + δtn, by ρn = ρ(tn). We then
have

ρn+1 = eδtLρn = (� + δtL) ρn + O(δ2t ). (20)
As anticipated above, we proceed to represent the density matrix
in the basis of coherent states. For instance, ρn at the time tn can
be written as

ρn =

∫ dψ+,ndψ∗+,n
π

dψ−,ndψ∗−,n
π

e−ψ
∗
+,nψ+,n−ψ∗−,nψ−,n

× 〈ψ+,n|ρn|ψ−,n〉 |ψ+,n〉 〈ψ−,n| . (21)

As a next step, we would like to express the matrix element
〈ψ+,n+1|ρn+1|ψ−,n+1〉, which appears in the coherent state repre-
sentation of ρn+1, in terms of the corresponding matrix element
at the previous time step tn. Inserting Eq. (21) in Eq. (20), we
find that this requires us to evaluate the “supermatrixelement”

〈ψ+,n+1|L(|ψ+,n〉 〈ψ−,n|)|ψ−,n+1〉 = −i
(〈ψ+,n+1|H|ψ+,n〉 〈ψ−,n|ψ−,n+1〉 − 〈ψ+,n+1|ψ+,n〉 〈ψ−,n|H|ψ−,n+1〉

)
+
∑
α

γα

[
〈ψ+,n+1|Lα|ψ+,n〉 〈ψ−,n|L†α|ψ−,n+1〉 −

1

2

(
〈ψ+,n+1|L†αLα|ψ+,n〉 〈ψ−,n|ψ−,n+1〉 + 〈ψ+,n+1|ψ+,n〉 〈ψ−,n|L†αLα|ψ−,n+1〉

)]
. (22)

Without loss of generality, we assume that the Hamiltonian is normal ordered. Then, a matrix element 〈ψ|H|φ〉 of the Hamiltonian
between coherent states can be obtained simply by replacing the creation operators by ψ∗ and the annihilation operators by φ. The
same is true for matrix elements of L, L†, and L†L, after performing the commutations which are necessary to bring these operators
to the form of sums of normal ordered expressions (see Ref. [181] for a detailed discussion of subtleties related to normal ordering).
Then we obtain by re-exponentiation

〈ψ+,n+1|ρn+1|ψ−,n+1〉 =
∫ dψ+,ndψ∗+,n

π

dψ−,ndψ∗−,n
π

eiδt
(
−ψ+,ni∂tψ

∗
+,n−ψ∗−,ni∂tψ−,n−iL(ψ∗

+,n+1
,ψ+,n,ψ

∗
−,n+1
,ψ−,n)

)
〈ψ+,n|ρn|ψ−,n〉 + O(δ2t ), (23)

8 Note that the creation operator cannot have eigenstates due to the fact that there is a minimal occupation number of a bosonic state. In particular, the
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where we are using the shorthand suggestive notation ∂tψ±,n =
(ψ±,n+1 − ψ±,n)/δt. The time derivative terms emerge from the
overlap of neighboring coherent states at time steps n and n + 1,
combined with the weight factor in the completeness relation for
step n; the quantity L(ψ∗

+,n+1, ψ+,n, ψ
∗
−,n+1, ψ−,n) is the superma-

trixelement in Eq. (22), divided by the above-mentioned over-
laps:

L(ψ∗+,n+1, ψ+,n, ψ
∗
−,n+1, ψ−,n) =

〈ψ+,n+1|L(|ψ+,n〉 〈ψ−,n|)|ψ−,n+1〉
〈ψ+,n+1|ψ+,n〉 〈ψ−,n|ψ−,n+1〉

.

(24)
By iteration of Eq. (23), the density matrix can be evolved from
ρ(t0) at t0 to ρ(t f ) at t f = tN . This leads in the limit N → ∞ (and
hence δt → 0) to

Zt f ,t0 = tr ρ(t f ) = tr e(t f−t0)Lρ(t0)

=

∫
D[ψ+, ψ

∗
+, ψ−, ψ

∗
−] eiS 〈ψ+(t0)|ρ(t0)|ψ−(t0)〉 ,

(25)

where the integration measure is given by

D[ψ+, ψ
∗
+, ψ−, ψ

∗
−] = lim

N→∞

N∏
n=0

dψ+,ndψ∗+,n
π

dψ−,ndψ∗−,n
π

, (26)

and the Keldysh action reads

S =
∫ t f

t0
dt
(
ψ∗+i∂tψ+ − ψ∗−i∂tψ− − iL(ψ∗+, ψ+, ψ

∗
−, ψ−)

)
. (27)

The coherent state representation of L in the exponent in
Eq. (23) comes with a prefactor δt, so that to leading order for
δt → 0 it is consistent to ignore the difference stemming from
the bra vector at n + 1 and the ket vector at n in Eq. (24). As-
suming all operators are normally ordered in the sense discussed
above, we obtain

L(ψ∗+, ψ+, ψ
∗
−, ψ−) = −i (H+ − H−)

+
∑
α

γα

[
Lα,+L∗α,− −

1

2

(
L∗α,+Lα,+ + L∗α,−Lα,−

)]
, (28)

where H± = H(ψ∗±, ψ±) contains fields on the ± contour only,
and the same is true for Lα,±. We clearly recognize the Lindblad
superoperator structure of Eq. (16): operators acting on the den-
sity matrix from the left (right) reside on the forward, + (back-
ward, -) contour. This gives a simple and direct translation ta-
ble from the bosonic quantum master equation to the Markovian
Keldysh action (28), with the crucial caveat of normal ordering
to be taken into account before performing the translation.

coherent states are not eigenstates. We rather have the relations b† |ψ〉 =
(∂/∂ψ) |ψ〉 , 〈ψ| b = (∂/∂ψ∗) 〈ψ|.

Keldysh partition function for stationary states — When we
are interested in a stationary state, but would like to obtain infor-
mation on temporal correlation functions at arbitrarily long time
differences, it is useful to perform the limit t0 → −∞, t f → +∞
in Eq. (25). In an open system coupled to several external baths,
it is typically a useful assumption that the initial state in the in-
finite past does not affect the stationary state — in other words,
there is a complete loss of memory of the initial state. Under this
physical assumption, we can ignore the boundary term, i.e., the
matrix element 〈ψ+(t0)|ρ(t0)|ψ−(t0)〉 of the initial density matrix
in Eq. (25), and obtain for the final expression of the Keldysh
partition function

Z =
∫

D[ψ+, ψ
∗
+, ψ−, ψ

∗
−] eiS = 1, (29)

S =
∫ ∞

−∞
dt
(
ψ∗+i∂tψ+ − ψ∗−i∂tψ− − iL(ψ∗+, ψ+, ψ

∗
−, ψ−)

)
. (30)

This setup allows us to study stationary states far away from
thermodynamic equilibrium as realized in the systems intro-
duced in Sec. I, using the advanced toolbox of quantum field
theory. For the discussion of the time evolution of the system’s
initial state, the typical strategy in practice is not to start directly
from Eq. (25) — strictly speaking, this would necessitate knowl-
edge of the entire density matrix of the system, which in a gen-
uine many-body context is not available. Rather, the Keldysh
functional integral is used to derive equations of motion for a
given set of correlation functions. The initial values of the cor-
relation functions have to be taken from the physical situation
under consideration. For interacting theories, the set of corre-
lations functions typically corresponds to an infinite hierarchy.
The possibility of truncating this hierarchy to a closed subset
usually involves approximations, which have to be justified from
case to case.

The Keldysh partition function is normalized to 1 by con-
struction. As anticipated above, correlation functions can be ob-
tained by introducing source terms J± =

(
j±, j∗±

)
that couple to

the fields Ψ± =
(
ψ±, ψ

∗
±
)

(here and in the following we denote
spinors of a field and its complex conjugate by capital letters),

Z[J+, J−] =

∫
D[Ψ+,Ψ−] eiS+i

∫
t,x

(
J†+Ψ+−J†−Ψ−

)

=

〈
ei
∫

t,x

(
J†+Ψ+−J†−Ψ−

)〉
,

(31)

where we abbreviate (switching now to a spatial continuum of
fields)

∫
t,x =

∫
dt
∫

ddx, the average is taken with respect to the

action S , and we have the normalization Z[J+ = 0, J− = 0] = 1
in the absence of sources. Physically, sources can be realized,
e.g., by coherent external fields such as lasers; this will be made
more concrete in the following section. The source terms can be
thought of as shifts of the original Hamiltonian operator, justify-
ing the von Neumann structure indicated above.

Keldysh rotation — With these preparations, arbitrary correla-
tion functions can be computed by taking variational derivatives
with respect to the sources. However, while the representation in

Page 14 of 73CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  ROPP-100575.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

terms of fields residing on the forward and backward branches
allows for a direct contact to the second quantized operator for-
malism, it is not ideally suited for practical calculations. In fact,
the above description contains a redundancy which is related to
the conservation of probability (this statement and the origin of
the redundancy is detailed below in Sec. II B 1). This can be
avoided by performing the so-called Keldysh rotation, a unitary
transformation in the contour index or Keldysh space according
to

φc =
1
√

2
(ψ+ + ψ−) , φq =

1
√

2
(ψ+ − ψ−) , (32)

and analogously for the source terms. The index c (q) stands for
“classical” (“quantum”) fields, respectively. This terminology
signals that the symmetric combination of fields can acquire a
(classical) field expectation value, while the antisymmetric one
cannot. In terms of classical and quantum fields, the Keldysh
partition function takes the form

Z[Jc, Jq] =

∫
D[Φc,Φq]eiS+i

∫
t,x

(
J†qΦc+J†cΦq

)

=

〈
ei
∫

t,x

(
J†qΦc+J†cΦq

)〉
;

(33)

note in particular the coupling of the classical field Φc =
(
φc, φ

∗
c
)

to the quantum source Jq =
(

jq, j∗q
)
, and vice versa. Apart from

removing the redundancy mentioned above, a further key ad-
vantage of this choice of basis is that taking variational deriva-
tives with respect to the sources produces the two basic types
of observables in many-body systems: correlation and response
functions. Of particular importance is the single particle Green’s
function, which has the following matrix structure in Keldysh
space (for a brief introduction to functional differentiation see
Appendix A; note that here we are talking functional deriva-
tives with respect to the components of the spinors of sources
Jν =

(
jν, j∗ν

)
where ν = c, q),(

〈φc(t, x)φ∗c(t′, x′)〉d 〈φc(t, x)φ∗q(t′, x′)〉d
〈φq(t, x)φ∗c(t′, x′)〉d 〈φq(t, x)φ∗q(t′, x′)〉d

)

= −
⎛⎜⎜⎜⎜⎜⎜⎝ δ2Z
δ j∗q(t,x)δ jq(t′,x′)

δ2Z
δ j∗q(t,x)δ jc(t′,x′)

δ2Z
δ j∗c(t,x)δ jq(t′,x′)

δ2Z
δ j∗c(t,x)δ jc(t′,x′)

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣
Jc=Jq=0

= i
(
GK

d (t − t′, x − x′) GR
d (t − t′, x − x′)

GA
d (t − t′, x − x′) 0

)
.

(34)

In the last equality, in addition to stationarity (time translation in-
variance) we have assumed spatial translation invariance. GR/A/K

are called retarded, advanced, and Keldysh Green’s function,
and — in the terminology of statistical mechanics — the index
d stands for disconnected averages obtained from differentiating
the partition function Z; the zero component is an exact prop-
erty and reflects the elimination of redundant information (see
Sec. II B 1 below). We anticipate that the retarded and advanced
components describe responses, and the Keldysh component the
correlations. The physical meaning of the Green’s function is

discussed in the subsequent subsection by means of a concrete
example.

Keldysh effective action — At this point we need one last
technical ingredient: the effective action, which is an alternative
way of encoding the correlation and response information of a
non-equilibrium field theory [182, 183]. We first introduce the
new generating functional

W[Jc, Jq] = −i ln Z[Jc, Jq]. (35)

Differentiation of the functional W generates the hierarchy
of so-called connected field averages, in which expectation
values of lower order averages are subtracted; for example,
〈φc(t, x)φ∗c(t′, x′)〉 = 〈φc(t, x)φ∗c(t′, x′)〉d − 〈φc(t, x)〉d〈φ∗c(t′, x′)〉d
describes the density of particles which are not condensed. In a
compact notation, where W (2) denotes the second variation as in
Eq. (34),

W (2)(t − t′, x − x′)
∣∣∣
Jc=Jq=0

= −
(
GK(t − t′, x − x′) GR(t − t′, x − x′)
GA(t − t′, x − x′) 0

)
. (36)

The effective action Γ is obtained from the generating functional
W by a change of active variables. More precisely, the active
variables of the functional W, which are the external sources Jc,q,
i.e., W = W[Jc, Jq], are replaced by the field expectation values
Φ̄ν =

(
φ̄ν, φ

∗
ν

)
where ν = c, q, i.e., Γ = Γ[Φ̄c, Φ̄q]. (We remind

the reader that capital letters denote spinors of fields and their
complex conjugates.) The field expectation values are defined
as (the notation indicates that these expectation values are taken
in the presence of the sources taking non-zero values)

Φ̄ν = 〈Φν〉|Jc,Jq = δW/δJ
∗
ν′ =

(
δW/δ j∗ν′ , δW/δ jν′

)
, (37)

where ν′ = q for ν = c and vice versa. Switching to these new
variables is accomplished by means of a Legendre transform fa-
miliar from classical mechanics,

Γ[Φ̄c, Φ̄q] = W[Jc, Jq] −
∫

t,x

(
J†c Φ̄q + J†qΦ̄c

)
. (38)

We now proceed to show that the difference between the action
S and the effective action Γ lies in the inclusion of both statis-
tical and quantum fluctuations in the latter. To this end, instead
of working with Eq. (38), we represent Γ as a functional inte-
gral [182], with the result

eiΓ[Φ̄c,Φ̄q] =

∫
D[δΦc, δΦq] e

iS [Φ̄c+δΦc,Φ̄q+δΦq]−i δΓ
δΦ̄T

c
δΦq−i δΓ

δΦ̄T
q
δΦc
.

(39)
On the right hand side, we have used the property of the Legen-
dre transformation

δΓ/δΦ̄c = −J∗q , δΓ/δΦ̄q = −J∗c . (40)

Equation (39) is obtained by exponentiating (i times) Eq. (38),
and using the explicit functional integral representation of the
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Keldysh partition function in W = −i ln Z, Eq. (33). We have in-
troduced the notationΦν = Φ̄ν+δΦν. This implies 〈δΦν〉|Jc,Jq = 0
by construction (the average is taken in the presence of non-
vanishing sources), and moreover allows us to use D[Φc,Φq] =
D[δΦc, δΦq] in the functional measure. Note the appearance of
the field fluctuation δΦν in the last term in the functional inte-
gral (39). This is due to the explicit subtraction of the source
term in Eq. (38).

Equation (39) simplifies when we consider vanishing exter-
nal sources Jc = Jq = 0. This case is particularly intuitive, as
it shows that the effective action Γ[Φ̄c, Φ̄q] corresponds to sup-
plementing the action S [Φ̄c, Φ̄q] by all possible fluctuation con-
tributions, expressed by the functional integration over δΦ̄c and
δΦ̄q.

The variational condition on Γ, Eq. (40) (technically reflect-
ing the change of active variables via Eq. (38)), precisely takes
the form of the equation of motion derived from the principle of
least action (in the presence of an external source or force term)
familiar form classical mechanics. Here, however, it governs the
dynamics of the full effective action. In light of the above in-
terpretation of the effective action, Eq. (40) thus promotes the
conventional classical action principle to full quantum and sta-
tistical status.

Conversely, neglecting the quantum and statistical fluctua-
tions in Eq. (39), we directly arrive at Γ[Φ̄c, Φ̄q] = S [Φ̄c, Φ̄q].
This approximation is appropriate at intermediate distances9 in
the case where there is a macroscopically occupied conden-

sate: we may then count Φ̄c = O(
√

N), with N the exten-
sive number of particles in the condensate, while fluctuations
δΦc, δΦq = O(1), as well as Φ̄q = O(1) for the noise field, which
cannot acquire a non-vanishing expectation value. This crude
approximation of the full effective action reproduces the stan-
dard Gross-Pitaevski mean-field theory, if we consider a generic
Hamiltonian with kinetic energy and local two-body collisions,
and drop the dissipative contributions to the action.

The functions generated by the effective action functional (via
taking variational derivatives with respect to its variables Φ̄c, Φ̄q)
are called the one-particle irreducible (1PI) or amputated vertex
functions [182]. A crucial and useful relation between the 1PI
vertex functions and connected correlation functions (generated
by W) is

−
∫

t′′,x′′

⎛⎜⎜⎜⎜⎜⎜⎝ 0 δ2Γ
δφ̄∗c(t,x)δφ̄q(t′′,x′′)

δ2Γ
δφ̄∗q(t,x)δφ̄c(t′′,x′′)

δ2Γ
δφ̄∗q(t,x)δφ̄q(t′′,x′′)

⎞⎟⎟⎟⎟⎟⎟⎠
×
⎛⎜⎜⎜⎜⎜⎜⎝ δ2W
δ j∗q(t′′,x′′)δ jq(t′,x′)

δ2W
δ j∗q(t′′,x′′)δ jc(t′,x′)

δ2W
δ j∗c(t′′,x′′)δ jq(t′,x′) 0

⎞⎟⎟⎟⎟⎟⎟⎠ = δ(t − t′)δ(x − x′)�. (41)

This relation follows directly from Eqs. (37) and (40), using the
chain rule. Combined with Eq. (36), it states that the second vari-

9 At very long wavelengths, gapless fluctuations of the Goldstone mode lead to

infrared divergences in perturbation theory and invalidate this power counting

argument [184, 185].

ation of the effective action is precisely the full inverse Green’s
function.

Typically, an exact evaluation of the effective action is not
possible — it would constitute the full solution of the interacting
non-equilibrium many-body problem. However, powerful ana-
lytical tools have been developed for the analysis of such prob-
lems, ranging from systematic diagrammatic perturbation the-
ory over the efficient introduction of emergent degrees of free-
dom to genuine non-perturbative approaches such as the func-
tional renormalization group. The latter technique is discussed
in Sec. II E. Examples in which such strategies were put into
practice are discussed in Part 2 of this review.

B. Examples

In this section, we bring the rather formal considerations of
the previous one to life by considering explicit examples for
driven-dissipative systems. To be specific, in Sec. II B 1 we
consider the decay of a single-mode cavity. This is arguably
one of the simplest examples that combines coherent and dissi-
pative dynamics: the system itself consists of a single bosonic
mode (the cavity photon), has a quadratic Hamiltonian and lin-
ear Lindblad operators. Hence, the Keldysh action is quadratic
and the functional integral can be solved exactly. Hence, we
are able to obtain an explicit expression for the generating func-
tional defined in Eq. (33), which allows us to conveniently study
several properties of the Keldysh formalism: what is known as
the causality structure, the analyticity properties of the Green’s
functions, and the intuitive and transparent way in which spectral
and statistical properties are encoded in the formalism. More-
over, we compare these findings with the case of a bosonic mode
in equilibrium. The presence of the properties discussed in this
section is not restricted to the non-interacting case. Much rather,
they prevail also in the presence of interactions, and are thus ex-
act properties of non-equilibrium field theories. We point this
out alongside the examples.

In Sec. II B 2, we consider an example for an interacting
bosonic many-body system, which contains non-linearities not
only due to particle-particle interactions, but also in the dissi-
pative contribution to the dynamics. These features are realized
experimentally in exciton-polariton systems. In the present sec-
tion, we restrict ourselves to a mean-field analysis of this system
and defer a discussion of the role of fluctuations to Sec. IV.

1. Single-mode cavity, and some exact properties

The master equation describing the decay of photons in a
single-mode cavity takes the general form of Eq. (16), with
H = ω0a†a, where a† and a are creation and annihilation op-
erators of photons, and ω0 is the frequency of the cavity mode.
Assuming the external electromagnetic field to be in the vacuum
state, there is only a single term in the sum over α with L = a,
describing the decay of the cavity field at a rate 2κ (the factor of
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2 is chosen for convenience). The corresponding Keldysh action
is given by [112]

S =
∫

t

{
a∗+ (i∂t − ω0) a+ − a∗− (i∂t − ω0) a−

−iκ
[
2a+a∗− −

(
a∗+a+ + a∗−a−

)]}
, (42)

where a±, a∗± represent the complex photon field. Performing
the basis rotation to classical and quantum fields as in Eq. (32)
in Sec. II A, and going to Fourier space, the action becomes

S =
∫
ω

(
a∗c(ω), a∗q(ω)

) ( 0 PA(ω)
PR(ω) PK

) (
ac(ω)
aq(ω)

)
, (43)

where we used the shorthand
∫
ω
≡
∫ ∞
−∞

dω
2π

. Furthermore, we
have

PR(ω) = PA(ω)∗ = ω − ω0 + iκ, PK = 2iκ. (44)

PR/A are the inverse retarded and advanced Green’s functions,
and PK is the Keldysh component of the inverse Green’s func-
tion. To see this, we evaluate the generating functional (33)
by Gaussian integration (cf. Appendix B). Then, the generating
functional (35) for connected correlation functions is given by

W[Jc, Jq] = −
∫
ω

(
j∗q(ω), j∗c(ω)

) (GK(ω) GR(ω)
GA(ω) 0

) (
jq(ω)
jc(ω)

)
. (45)

According to Eq. (36), the second variation (i.e., the matrix in
the above equation, see Appendix A) represents the Green’s
function. It is obtained by inversion of the matrix in the action
in Eq. (43),

GR(ω) = GA(ω)∗ =
1

PR(ω)
=

1

ω − ω0 + iκ
, (46)

GK(ω) = −GR(ω)PKGA(ω) = − i2κ
(ω − ω0)2 + κ2

, (47)

i.e., the matrix in the action indeed represents the inverse Green’s
function. We now summarize a few key structural properties that
can be gleaned from this explicit discussion. Indeed, as we argue
below, these properties are valid in general.

Conservation of probability — There is a zero matrix entry
in Eq. (43), or, equivalently, in Eq. (45). Technically, as antic-
ipated above, this property reflects a redundancy in the ± basis
and eliminates it. This simplifies practical calculations in the
Keldysh basis. Physically, this property ensures the normaliza-
tion of the partition function (Z = tr ρ(t) = 1), and can thus be
interpreted as manifestation of the conservation of probability
(∂t tr ρ(t) = 0), which is an exact property of physical problems.
This can be seen as follows: consider the more general property,
which implies the vanishing matrix element in the quadratic sec-
tor, S [ac, a∗c, aq = 0, a∗q = 0] = 0. Any Keldysh action associated
to the Liouville operator Eq. (16), has this property, as can be
seen by setting ψ+ = ψ− (i.e., φq = 0) in Eq. (28). Indeed, this
operation on the Keldysh action may be interpreted as taking the

trace in the operator based master equation Eq. (16): in this way,
using the cyclic property of the trace allows us to shift all opera-
tors to one side of the density matrix, leading to the cancellation
of terms such that ∂t tr ρ(t) = 0.

We still need to argue that the above property of the classical
action also holds for the full theory, i.e., the effective action,

Γ[āc, ā∗c, āq = 0, ā∗q = 0] = 0, (48)

or, more schematically in the notation of Sec. II A, Γ[Φ̄c, Φ̄q =

0] = 0. To this end, we note that W[Jc, Jq = 0] = 0
(Z[Jc, Jq = 0] = 1) holds actually for arbitratry classical sources
Jc (whereas in Sec. II A we worked additionally with Jc = 0
for conceptual clarity): any term ∼ Jc can be absorbed into the
underlying Hamiltonian, describing nothing but a Hamiltonian
contribution in the presence of a classical external potential, and
thus it cannot affect the normalization property of the theory.
The above properties are equivalent:

Γ[Φ̄c, Φ̄q = 0] = 0⇔ W[Jc, Jq = 0] = 0. (49)

This is seen using the definition of the Legendre transform
Eq. (38) and the definition of the quantum field in terms of
Eq. (37) for one direction of the mutual implication. The other
direction results from the involutory property of the Legendre
transform 10.

Sometimes, the property of conservation of probability – ex-
pressed in the effective action formalism as Γ[Φ̄c, Φ̄q = 0] = 0 –
is referred to as “causality structure” in the literature.

Hermeticity properties of the Green’s functions — As can be
read off from Eqs. (46) and (47), GR(ω) and GA(ω) are Hermi-
tian conjugates, and GK(ω) is anti-Hermitian. These properties
are exact, as can be read off from the definition of the Green’s
function in terms of functional derivatives in Eq. (34). Equiva-
lently, these properties hold for the corresponding components
of the inverse Green’s function (cf. Eq. (41)).

Analytic structure — The poles of GR(ω) are located at ω =
ω0 − iκ, i.e., in the lower half of the complex plane (accordingly,
the poles of GA(ω) are in the upper half). In the real time domain,
this implies that GR describes the retarded response (and ac-
cordingly, GA the advanced): indeed, taking the inverse Fourier
transform, we obtain

GR(t) = −iθ(t)e−(iω0+κ)t, (50)

where θ(t) is the Heaviside step function. Hence, the response of
the system, if it is perturbed at t = 0, is retarded (non-zero only
for t > 0) and decays.

The analytic structure of retarded and advanced Green’s func-
tions is a general property of Keldysh actions, too; one may then
think of these Green’s functions as renormalized, full single par-
ticle Green’s functions connected to the bare, microscopic ones

10 We thank F. Tonielli for pointing out this compact argument.
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via renormalization, and thus preserving the analyticity proper-
ties. We note, however, that the pole of the retarded bosonic
Green’s function can approach the real axis from below via tun-
ing of microscopic parameters. The touching point typically sig-
nals a physical instability: beyond that point, the description of
the system must be modified qualitatively. Such a scenario is
discussed in the next subsection.

Connection to the operator formalism — It is sometimes use-
ful to restore the precise relation between the operator formalism
and the functional integral description at the level of the Green’s
functions. At the single particle level, they read

GR(t, t′) = −iθ(t − t′)〈[a(t), a†(t′)]〉, (51)

GK(t, t′) = −i〈{a(t), a†(t′)}〉, (52)

and we note again that in stationary state GR/A/K(t, t′) =
GR/A/K(t − t′). These relations are exact and can be obtained
from going back to the ± basis: the retarded Green’s function is

GR(t, t′) = −i〈ac(t)a∗q(t′)〉

= − i
2
〈(a+(t) + a−(t)) (a∗+(t′) − a∗−(t′))〉

= − i
2

(
〈Ta(t)a†(t′)〉 + 〈[a(t), a†(t′)]〉 − 〈T̃ a(t)a†(t′)〉

)
= −iθ(t − t′)〈[a(t), a†(t′)]〉,

(53)

where T, T̃ are the time-ordering, anti-time-ordering operators,
which lead to a cancellation of the commutator for t′ > t (see
Ref. [102] for a more detailed discussion of time ordering on the
Keldysh contour). The Keldysh Green’s function in the operator
formalism is obtained the same way,

GK(t, t′) = −i〈ac(t)a∗c(t′)〉

= − i
2
〈(a+(t) + a−(t)) (a∗+(t′) + a∗−(t′))〉

= − i
2

(
〈Ta(t)a†(t′)〉 + 〈{a(t), a†(t′)}〉 + 〈T̃ a(t)a†(t′)〉

)
= −i〈{a(t), a†(t′)}〉.

(54)

Response vs. correlation functions — In order to generate re-
sponse and correlation functions directly from the partition func-
tion, it is convenient to introduce source fields j+, j− and express
the partition function as the average (cf. Eq. (31))

Z[ j+, j−] = 〈e−iS j〉 =
∫
D[a∗+, a

∗
−, a+, a−]eiS−iS j , (55)

where the source action is defined as

S j =

∫
t

(
j∗+a+ − j∗−a− + c.c.

)
=

∫
t

(
j∗caq + j∗qac + c.c.

)
. (56)

In the second step, we have performed a Keldysh rotation. Due
to the normalization of the Keldysh path integral Z[ jc = 0, jq =

0] = 1, and as a consequence, expectation values of n-point func-
tions of the fields a∗, a can be expressed via n-th order functional
derivatives of the partition function with respect to the source
fields (see Appendix A). For example

〈ac(t)〉 = i
δZ( jc, jq)

δ j∗q(t)

∣∣∣∣∣∣
jc= jq=0

,

GK(t, t′) = −i〈ac(t)a∗c(t′)〉 = i
δ2Z( jc, jq)

δ j∗q(t)δ jq(t′)

∣∣∣∣∣∣
jc= jq=0

,

GR(t, t′) = −i〈ac(t)a∗q(t′)〉 = i
δ2Z( jc, jq)

δ j∗q(t)δ jc(t′)

∣∣∣∣∣∣
jc= jq=0

.

(57)

Due to causality, the field jq has to be zero in any physical setup
and the introduction of this field only serves as a technical tool to
compute expectation values via derivatives. On the other hand,
the field jc can, in principle, be different from zero and we will
see in the following what the physical meaning of this classical
source field is, and in which respect it generates the response
function.

Responses: The retarded Green’s function, often called syn-
onymously response function, describes the linear response of a
system which is perturbed by a weak external source field. As an
illustrative example, consider a driven cavity system consisting
of atoms and photons, which is considered to be in a stationary
state. Due to imperfections in the cavity mirrors, there is a finite
rate with which a photon is escaping the cavity, or an external
photon is entering the cavity. This process is expressed by the
Hamiltonian

Hp =
√

2κ
(
b†a + a†b

)
, (58)

where the operators b, b† represent photons outside the cavity.
Shining a laser through the cavity mirror, the operators b, b† can
be replaced by the coherent laser field j(t), j∗(t), which oscillates
with the laser frequency ω j. The corresponding Hamiltonian,
describing the complete system is (for the present purposes we
can leave the Hamiltonian H of photons and atoms in the cavity
unspecified)

Hj = H +
√

2κ
(

j∗(t)a + j(t)a†
)
. (59)

Since the fields j, j∗ are classical external fields, they are equal
on the plus and minus contour and the Keldysh action in the
presence of the laser is

S j = S −
∫

t

(
j∗(t)aq(t) + j(t)a∗q(t)

)
. (60)

This action is very similar to the action in Eq. (56), with a lin-
ear source term, which is however j+ = j− = j. In the present
example, the meaning of the source term is physically very trans-
parent: it is nothing but the coherent laser field that is coupled to
the cavity photons. For a weak source field, one is interested in
the first order correction of observables induced by the coupling
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Figure 4. Illustration of a homodyne detection measurement which
determines the response function GR(t, t′) of the cavity photons, see
Ref. [113]. The system of atoms and photons inside the cavity is per-
turbed by the laser field η(t), entering the cavity through the left mirror.
The response of the system is encoded in the light field which is leaking
out of the cavity on the right mirror with a rate κ. It can be measured
by a standard homodyne detection measurement in which the reference
laser β(t) and a beam splitter are used in order to obtain information on
the system’s coherence 〈ac(t)〉. Figure copied from Ref. [113]. (Copy-
right (2013) by The American Physical Society.)

to the source. In the present case, this is the coherent light field
inside the cavity 〈ac(t)〉. Up to first order in j(t) it is given by

〈ac(t)〉 j = 〈ac(t)〉 j=0 − i
√
κ

∫
t′
〈ac(t)a∗q(t′)〉 j=0 j(t′)

= 〈ac(t)〉 j=0 +
√
κ

∫
t′

GR(t − t′) j(t′).

The retarded Green’s function is therefore a measure of the sys-
tem’s response to an external perturbation. An experimental
setup, with which one can measure the coherent light field and
therefore the response function of the cavity via so-called homo-
dyne detection, is illustrated in Fig. 4. A closely related function
of interest is the spectral function

A(ω) = −2 Im GR(ω). (61)

It is the distribution of excitation levels of the system, i.e., when
adding a single photon with frequency ω to the system, A(ω) is
the probability to hit the system at resonance. Indeed, it can be
shown [178] that the spectral function is positive, A(ω) > 0, and
fulfills the sum rule ∫

ω

A(ω) = 〈[a, a†]〉 = 1. (62)

For our example of a single-mode cavity, the spectral function is
given by

A(ω) =
2κ

(ω − ω0)2 + κ2
, (63)

i.e., it is a Lorentzian, which is centered at the cavity frequency
ω0 and has a half-width at half-maximum given by κ. Note that
for κ → 0, the photon number states become exact eigenstates
and the spectral density reduces to a δ-function peaked at ω0,

A(ω) = 2πδ(ω − ω0). As these considerations illustrate, the re-
tarded Green’s function contains essential information on the
system’s response towards an external perturbation, and on the
spectral properties.

Correlations: The Keldysh Green’s function contains elemen-
tary information on the system’s correlations and the occupation
of the individual quantum mechanical modes. A prominent ex-
ample of a correlation function in quantum optics is the photonic
g(2) correlation function. It is defined as the four-point correlator

g(2)(t, τ) =
〈a†(t)a†(t + τ)a(t + τ)a(t)〉

|〈a†(t)a(t)〉|2 , (64)

and it is proportional to the intensity fluctuations of the intracav-
ity radiation field g(2)(t, τ) ∝ 〈I(t)I(t + τ)〉. In the limit of τ→ 0,
the g(2) correlation function reveals the statistics of the cavity
photons, i.e., it demonstrates super-Poissonian (g(2)(0) > 1) or
sub-Poissonian statistics (g(2)(0) < 1) as an effect of the light-
matter interactions. In the absence of interactions (as in our ex-
ample), it is straightforward to show that

g(2)(t, τ) = 1 +
|GK(t, τ + t) +GR(t, τ + t) −GA(t, τ + t)|2

|iGK(t, t) − 1|2 . (65)

For equal times, the retarded and advanced Green’s functions
satisfy GR(t, t) − GA(t, t) = −i, indicating the expected photon-
bunching at τ → 0. On the other hand, in the presence of in-
teractions, Eq. (64) is modified and contains additional higher
order terms, as well as off-diagonal contributions. However, it
remains a measure of the photonic statistics in the cavity due to
the physical relation to the intensity fluctuations.

A particularly relevant and instructive limit of the two-time
Keldysh Green’s function Eq. (52) concerns equal times t = t′,
which in general describes static correlation functions, or covari-
ances in the quantum optics language. In the cavity example, it
yields the mode occupation number,

iGK(t, t) = 2〈a†a〉 + 1. (66)

The appearance of the combination 2〈a†a〉 + 1 is rather intuitive
when taking into account the relation to the operatorial formal-
ism. Indeed, in operator language, 2a†a + 1 = {a, a†} = {a†, a}
is invariant under permutation of the operators a, a†, and there-
fore lends itself to a direct functional integral representation,
which in fact carries no information on operator ordering.11 At
the same time, the anticommutator carries all the physical infor-
mation on state occupation, while the commutator carries none,
[a, a†] = 1 (note a†a = 1

2
({a, a†} − [a, a†])).

Then, the explicit form of the Keldysh Green’s function stated
in Eq. (47) leads to the result

〈a†a〉 = 1

2

(
i
∫
ω

GK(ω) − 1

)
= 0, (67)

11 The same structural argument based on operator ordering insensitivity of the

functional representation demonstrates why an ordinary Euclidean functional

integral yields the time ordered Green’s functions, cf., e.g., Ref. [180].
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showing that the cavity is empty in the steady state—which is
not surprising in the absence of external pumping.

We note that in the master equation formalism, information on
the static or spatial correlations is most easily accessible — only
the state (density matrix) has to be known, but not the dynamics
acting on it. Temporal correlation functions can be extracted
using the quantum regression theorem [186]. In the Keldysh
formalism, spatial and temporal correlation functions are treated
on an equal footing.

We can concisely summarize the above discussion of the re-
sponse and Keldysh Green’s functions of the system, at the risk
of oversimplifying:

Responses GR/A ↔ spectral information on excitations:
which excitations are there?
Correlations GK ↔ statistical information on excitations:
how are the excitations occupied?

Relation to thermodynamic equilibrium — Before we move
on, let us briefly discuss how we have to modify the formal-
ism in order to describe a cavity in thermodynamic equilibrium.
In general, a system is in thermodynamic equilibrium at a tem-
perature T = 1/β, if it is in a Gibbs state ρ = e−βH/Z where
Z = tr e−βH , and its dynamics is coherent and generated by the
Hamiltonian H. (In particular, dissipative dynamics described
by a term in the Lindblad form in Eq. (16) is not compatible
with equilibrium conditions: see Refs. [187–189], and the dis-
cussion in Sec. II D 1.) Specifying the thermal density matrix
at t0 in the Keldysh functional integral in Eq. (25) explicitly in
terms of its matrix elements is rather inconvenient, especially if
one is interested in steady state properties and wants to take the
limit t0 → −∞. An alternative is suggested by the observation
that thermodynamic equilibrium can be established in the system
if it is weakly coupled to a thermal bath. Then, the finite decay
rate κ in the retarded Green’s function in Eq. (46) should be re-
placed by an infinitesimally weak system-bath coupling δ → 0.
Additionally, the Keldysh Green’s function has to be modified in
such a way that the integral in Eq. (67) yields the Bose distribu-
tion function n(ω0) implying thermal occupations of the cavity
mode,

〈a†a〉 = n(ω0) =
1

eβω0 − 1
. (68)

This can be achieved by replacing the Keldysh component of the
inverse Green’s function in Eq. (43) by PK(ω) = i2δ (2n(ω) + 1).
We emphasize the key structural difference of the thermal
Keldysh component, which is strongly frequency dependent, to
the Markovian case discussed previously, where this entry is fre-
quency independent — this gives a strong hint that Markovian
systems can behave quite differently from systems in thermal
equilibrium. With PR(ω) = PA(ω)∗ = ω − ω0 − iδ we obtain the

equilibrium Green’s functions

GR(ω) = GA(ω)∗ =
1

ω − ω0 + iδ
, (69)

GK(ω) = −i2πδ(ω − ω0) (2n(ω) + 1) . (70)

Note that the Green’s functions obey a thermal fluctuation-
dissipation relation (FDR), which for the present example of a
single bosonic mode reads

GK(ω) = (2n(ω) + 1)
(
GR(ω) −GA(ω)

)
. (71)

This is discussed in more detail in Sec. II D 1. For the time being,
let us mention that this construction to describe thermodynamic
equilibrium by adding infinitesimal dissipative terms does not
only work in the present case of a quadratic action but can also
be applied in the interacting case. Then, the construction ensures
that the free Green’s functions (i.e., the ones obtained by ignor-
ing the interactions) obey an FDR. If the non-linear terms in the
action obey the equilibrium symmetry discussed in Sec. II D 1
(which is the case for generic interaction terms), this property is
shared by the full Green’s functions of the non-linear system.

General Fluctuation-Dissipation Relations — While Eq. (71)
is valid only in thermodynamic equilibrium, it is always possible
to parameterize the (anti-Hermitian) Keldysh Green’s function
in terms of the retarded and advanced Green’s functions (which,
as discussed above, are Hermitian conjugates of each other) and
a Hermitian matrix F = F† in the form [102, 178]

GK = GR ◦ F − F ◦GA, (72)

where ◦ denotes convolution. In this parametrization, F is the
distribution function, which describes the distribution of (quasi-
) particles over the modes of the system. For a non-equilibrium
steady state, F is time-translational invariant and its Fourier
transform in frequency space F(ω) represents the energy re-
solved occupation of (quasi-) particle modes. On the other hand,
as we discuss in detail in Sec. V B, for the case of a time-
evolving system, for which time translation invariance is absent,
the Wigner transform of F corresponds to the instantaneous local
distribution function. For the important case of thermodynamic
equilibrium (of a bosonic system), it is F(ω) = coth(βω/2) =
2n(ω) + 1, and Eq. (72) reduces to (71). For the case where the
bosonic Green’s function has a matrix structure in Nambu space,
a subtlety concering the preservation of the symplectic structure
of that space arises, cf. Sec. V B. There, also a time-dependent
variant of the non-equilibrium fluctuation-dissipation relations
is discussed.

2. Driven-dissipative condensate

In the previous section, we discussed the simple case of
a quadratic Keldysh action, which allowed us to perform the
Keldysh functional integral explicitly. An additional simplifi-
cation resulted from the fact that we were considering only a
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single bosonic mode. Let us now consider a genuine many-body
problem, which is non-linear and in which the system consists
of a continuum of modes. To be specific, in this section we dis-
cuss the model introduced in Sec. I C 2 for a bosonic many-body
system with interactions and non-linear loss processes (i.e., with
a loss rate that is proportional to the density) in addition to the
linear dissipative terms which were already present in the exam-
ple of the single-mode cavity. Then, for a specific value of the
mean-field density ρ0, non-linear loss and linear pump exactly
balance each other and the system reaches a stationary state. If
ρ0 is different from zero, this signals the presence of a conden-
sate, which is accompanied by the breaking of a specific phase
rotation symmetry as will be discussed in detail in Sec. II D, and
the establishment of long-range order. In Sec. IV, we give a
detailed account of the influence of fluctuations on this driven-
dissipative condensation transition. Here, we content ourselves
with a mean-field analysis, which serves to illustrate some of the
field theoretical concepts introduced in Sec. II A — in particular,
the effective action and field equations — in a simple setting.

In the basis of classical and quantum fields, the Keldysh action
associated with the quantum master equation (9) reads

S =
∫

t,x

{
φ∗q
(
i∂t + Kc∇2 − rc + ird

)
φc + c.c.

−
[
(uc − iud)

(
φ∗qφ

∗
cφ

2
c + φ

∗
qφ
∗
cφ

2
q

)
+ c.c.

]
+i2

(
γ + 2udφ

∗
cφc
)
φ∗qφq

}
, (73)

where Kc = 1/(2mLP) and rc = ω
0
LP

; as additional parameters,
we introduced the noise level γ = (γl + γp)/2 and the spec-
tral mass or gap rd = (γl − γp)/2. Hence, the rates of losses
and pumping add up to the total noise level; in contrast, the dif-
ference of these rates enters in the spectral gap rd, which be-
comes negative when the rate of incoherent pumping exceeds the
single-particle loss rate, signaling the physical instability against
condensation. In a mean-field analysis of the condensation tran-
sition, we perform a saddle-point approximation of the func-
tional integral in Eq. (39). To leading order, fluctuations around
the field expectation values are completely neglected. The ex-
pectation values are then obtained as spatially homogenous and
stationary solutions to the classical field equations (here, “classi-
cal” refers to the fact that these field equations are derived from
the classical (or: bare, microscopic) action S discarding fluctua-
tions, in contrast to the field equations in Eq. (40), which involve
the effective action)

δS
δφ∗c
= 0,

δS
δφ∗q
= 0. (74)

As already mentioned above in Sec. II B 1, there are no terms
in the action Eq. (38) with zero power of both φ∗q and φq, and
the same is clearly true for δS/δφ∗c. Therefore, the first equation
in (74) is solved by φq = 0. Inserting this condition into the
second equation, we have[

−rc + ird − (uc − iud) |φ0|2
]
φ0 = 0. (75)

The solution φc = φ0 is determined by the imaginary part of
Eq. (75): for rd ≥ 0, in the so-called symmetric phase, the clas-
sical field expectation value is zero, ρ0 = |φ0|2 = 0, whereas for
rd < 0 we have a finite condensate density ρ0 = −rd/ud. Tak-
ing the real part of Eq. (75), we obtain for the parameter rc the
relation rc = ucrd/ud. This condition can always be satisfied by
proper choice of a rotating frame, i.e., by performing a gauge
transformation φc �→ φce−iωt such that rc �→ rc − ω. In the orig-
inal (laboratory) frame this simply means that the condensate
amplitude oscillates at a finite frequency.

In a first step beyond mean field theory, quadratic fluctu-
ations around the mean-field order parameter can be investi-
gated within a Bogoliubov or tree-level expansion: we set φc =

φ0+δφc, φq = δφq in the action Eq. (73) and expand the resulting
expression to second order in the fluctuations δφc,q. The inverse
retarded, advanced and Keldysh Green’s functions now become
2 × 2 matrices in the space of Nambu spinors δΦν =

(
δφν, δφ

∗
ν

)
.

In particular, we have in the frequency and momentum domain

PR(ω,q) =

(
ω − Kcq2 − (uc − iud) ρ0 − (uc − iud) ρ0

− (uc + iud) ρ0 −ω − Kcq2 − (uc + iud)

)
,

PA(ω,q)) = PR(ω,q)†,

PK = iγ�.
(76)

The excitation spectrum is obtained from the condition
det PR(ω,q) = 0. Indeed, this is the condition for the field equa-
tion of the fluctuations PR(ω,q)δΦc(ω,q) = 0 to have nontrivial
solutions. This yields [159]

ωR
1,2 = −iudρ0 ±

√
Kcq2

(
Kcq2 + 2ucρ0

) − (udρ0)2. (77)

We note that due to the tree-level shifts ∝ ρ0 the above described
instability for rd < 0 is lifted: both poles are consistently lo-
cated in the lower complex half-plane, indicating a physically
stable situation with decaying single-particle excitations. For
ud = 0, Eq. (77) reduces to the standard Bogoliubov result [190],
where for q → 0 the dispersion is phononic, ωR

1,2 = ±cq
(c =

√
2Kcucρ0 the speed of sound), whereas particle-like be-

havior ωR
1,2 ∼ Kcq2 is obtained at high momenta. Here, due to

the presence of two-body loss ud � 0, the dispersion is qualita-
tively modified: while at high momenta the dominant behav-
ior is still ωR

1,2 ∼ Kcq2, at low momenta we find purely in-

coherent diffusive, non-propagating modes ωR
1 ∼ −i Kcuc

ud
q2 and

ωR
2 ∼ −i2udρ0. In particular, for q = 0 we have ωR

1 = 0: this
is a dissipative Goldstone mode [159, 191, 192], associated with
the spontaneous breaking of the global U(1) symmetry in the or-
dered phase. The existence of such a mode is not bound to the
mean-field approximation, but rather is an exact property guar-
anteed by the U(1) invariance of the effective action, even in the
present case of a driven-dissipative condensate. We will come
back to this point in Sec. II D 6.
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C. Semiclassical limit of the Keldysh action

The theoretical description of a many-body system depends
crucially on the scale (this could be a length, time, or energy
scale — in practice these scales can be expressed in terms of
each other) on which it is observed and, in particular, on the re-
lation between this observation scale and the intrinsic scales of
the system. For example, at finite temperature T above a quan-
tum critical point, non-trivial quantum critical behavior can be
observed at moderate energy scales which are larger than T but
smaller than the Ginzburg scale where fluctuations start to dom-
inate over the mean field effects [111]. On the other hand, clas-
sical thermal critical behavior, which is perfectly described by
taking the semiclassical limit of the underlying quantum theory,
sets in at energy scales below T . Out of thermodynamic equilib-
rium, the analogue of a finite temperature is Markovian noise.
In the Keldysh action, this corresponds to a constant term in
the Keldysh sector of the inverse Green’s function, i.e., a con-
stant noise vertex. Such a term is present in the action given in
Eq. (73) and, therefore, we expect that in the long-wavelength
limit this action can actually be simplified by taking the semi-
classical limit [102, 178]. We refer to it as the semiclassical
limit, as, e.g., effects of quantum mechanical phase coherence
are not necessarily suppressed in this limit, as we will see. A
useful equilibrium analogy is the physics of Bose-Einstein con-
densates at finite but low temperatures, where phase coherence
still persists.

Formally, the suitability of the semiclassical limit can be un-
derstood in terms of ideas that lie at the basis of the renormal-
ization group (RG). The latter provides a recipe for finding an
effective description that is valid on large length scales, starting
from a microscopic theory. Various RG schemes exist, which al-
low to systematically eliminate fluctuations on short scales and
infer their influence on the effective description of the system on
large scales; cf. Sec. II E. The most basic but still informative
RG approach however consists in simply ignoring the effect of
short-scale fluctuations: one subdivides momentum space into a
slow and a fast region, with qs ∈ [0,Λ/b] and q f ∈ [Λ/b,Λ]
where Λ is the UV cutoff (given by the inverse of some mi-
croscopic length scale below which the theoretical description
is not valid any more, e.g., a lattice spacing) and b > 1, and
omits all contributions to the action which involve fluctuations
with fast momenta. In a second step, one rescales all momenta
with b to restore the original range of momenta q ∈ [0,Λ], and
the thus obtained effective long-wavelength description can be
compared to the original one. As a result, due to this simple RG
transformation couplings in the action are rescaled as g �→ gbdg ,
where dg is known as the canonical scaling dimension of g. Ev-
idently, for dg > 0, g grows under renormalization and hence
g is a relevant coupling, while it shrinks under renormalization
and, hence, is irrelevant at long wavelength for dg < 0. For the
case of a marginal coupling with dg = 0, this level of approx-
imation is not conclusive as to whether the coupling becomes
larger or smaller under renormalization. Classifying the cou-
pling parameters of an action according to this scheme is known

as canonical scaling analysis, or power counting. A useful ap-
proximation consists in neglecting all irrelevant couplings. On
the other hand, relevant couplings which are compatible with the
symmetries of the model – even those, which are not present in
the microscopic description — should be included in the long-
wavelength effective action.

Let us perform such an analysis for the Keldysh action in
Eq. (73). We can anticipate the canonical scaling dimensions
by noting that they are just the physical dimensions, measured
in powers of the momentum. We first focus on the vicinity of
the threshold for condensation, i.e., when rd ∼ γl − γp → 0.
Then the retarded and advanced inverse Green’s functions scale
as PR/A ∼ q2 (note that ω ∼ q2 for low-momentum excitations).
The canonical dimension is thus positive, dPR/A = 2. On the
other hand, as anticipated above, Markovian noise analogous to
a finite temperature corresponds to a momentum-independent
noise vertex, i.e., the term ∝ φ∗qφq in the Keldysh action. In
other words, the Keldysh component of the inverse Green’s func-
tion has vanishing canonical scaling dimension and classifies as
marginal, PK = i2γ ∼ q0. We furthermore use the natural scal-
ing ddx ∼ q−d and dt ∼ 1/ω ∼ q−2, and the condition of scale
invariance of the action, S ∼ q0 — this is a requirement stem-
ming from the fact that the action appears in the exponent of the
functional integral (25), and thus must be dimensionless. We
then find the scaling dimensions of the fields from the Gaussian,
quadratic part of the action to be

φc ∼ q(d−2)/2, φq ∼ q(d+2)/2. (78)

This in turn allows us to derive the scaling dimensions of the
quartic terms, and to classify their degree of relevance as pointed
out above. In particular, we find that in three spatial dimensions,
any quartic term that includes more than a single quantum field
is irrelevant; the only non-irrelevant term of higher order in the
noise field is the quadratic noise vertex discussed above. There-
fore, omitting irrelevant terms amounts to keeping only the clas-
sical vertex in the action Eq. (73), i.e., to taking the semiclassical
limit [102, 178]. Then, the Keldysh action takes the form

S =
∫

t,x

{
φ∗q
[
i∂t + (Kc − iKd)∇2 − rc + ird

]
φc + c.c.

−
[
(uc − iud) φ∗qφ

∗
cφ

2
c + c.c.

]
+ i2γφ∗qφq

}
, (79)

where in addition to omitting irrelevant contributions we have
added an effective diffusion term ∝ iKd∇2. Such a term can
and will be generated upon integrating out short-scale fluctua-
tions [26, 181]. Moreover, a complex prefactor of the term in-
volving the derivative with respect to time, which also emerges
upon renormalization, can be absorbed into a redefinition of the
fields.

Strictly speaking, the above analysis is valid in the vicinity of
the critical point only, where the inverse retarded and advanced
Green’s function show scaling. However, as long as one is close
enough to threshold |γl − γp|/(γl + γp) � 1, the canonical power
counting is expected to give a useful orientation in the problem.

Page 22 of 73CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  ROPP-100575.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

scale

microscopic

mesoscopic

macroscopic

quantum 
Langevin equation

quantum 
master equation

Keldysh functional 
integral

Langevin 
equation

Fokker-Planck 
equation

MSR functional 
integral

semiclassical limit

renormalization group

long-wavelength 
effective action

quantum 
problem

Figure 5. Equivalent descriptions on varying length scales. The quantum and classical Langevin equations are stochastic equations of motions for the
field operators, or for classical field variables. In contrast, the descriptions in the middle column are deterministic equations of motion, where either
a density operator or a probability distribution (diagonals of a density matrix) are evolved. In the functional integral formulation, the basic object
in both quantum and classical cases is an action, which is averaged over all possible realizations of field configurations. The semiclassical limit is
valid at mesoscopic scales as dicsussed in Sec. II C. An effective description at macroscopic scales can be obtained by means of renormalization
group methods (see Sec. II E). Generically in Markovian systems, in order to reduce the complexity of the problem it is useful to first perform
the semiclassical limit before doing a renormalization group computation. However, in driven open quantum systems there are also circumstances
where this is inappropriate, and the full quantum problem has to be analyzed, cf. [28].

Apart from providing a significant simplification, taking the
semiclassical limit also allows us to establish the connec-
tion [193, 194] between the Keldysh functional integral for-
malism and the more traditional formulation of dynamics close
to a continuous phase transition in terms of Langevin equa-
tions [1, 5]. In fact, the action in Eq. (79) is fully equivalent
to the following Langevin equation:

i∂tφc =
[
− (Kc − iKd)∇2 + rc − ird + (uc − iud) |φc|2

]
φc + ξ,

(80)
where ξ is a Markovian Gaussian noise source with zero mean,
〈ξ(X)〉 = 0, and second moment 〈ξ(X)ξ(X′)〉 = 2γδ(X − X′).
This equivalence can be established by means of a Hubbard-
Stratonovich transformation of the noise vertex [102, 178], i.e.,
the term i2γφ∗qφq. To wit, in the Keldysh functional integral

Z =
∫

D[φc, φ
∗
c, φq, φ

∗
q] eiS [φc,φ

∗
c ,φq,φ

∗
q], (81)

where S is the semiclassical action in Eq. (79), we write the
noise vertex as a Gaussian integral over an auxiliary variable ξ
(cf. Appendix B),

e−2γ
∫

t,x φ
∗
qφq =

∫
D[ξ, ξ∗] e−

1
2γ

∫
t,x ξ

∗ξ−i
∫

t,x(φ
∗
qξ−ξ∗φq). (82)

As a result, the exponent in the functional integral (81) becomes
linear in the quantum field, and the corresponding integration

can be performed, resulting in a δ-functional,

Z =
∫

D[φc, φ
∗
c, ξ, ξ

∗] e−
1

2γ

∫
t,x ξ

∗ξ

× δ
([

i∂t + (Kc − iKd)∇2 − rc + ird − (uc − iud) |φc|2
]
φc − ξ

)
×δ
([
−i∂t + (Kc + iKd)∇2 − rc − ird − (uc + iud) |φc|2

]
φ∗c − ξ∗

)
.

(83)

This expression can be interpreted as follows: for a given
realization of the noise field ξ, the δ-functional restricts the
functional integral over φc to the manifold of solutions to the
Langevin equation (80). The statistics of the noise field is de-
termined by the Gaussian weight factor in Eq. (83). Correlation
functions of classical fields can then be calculated by picking a
random realization of ξ and calculating the corresponding φc that
solves the Langevin equation; evaluating the correlation function
for this solution and finally averaging the result according to the
Gaussian distribution of the noise field. Equation (80) is, there-
fore, equivalent to the functional integral (83) in that it allows
for the evaluation of arbitrary correlation functions.

Originally, Langevin equations like Eq. (80) have been intro-
duced as a phenomenological description of the coarse-grained
dynamics of the order parameter, and only later a functional in-
tegral approach — known as the MSR approach — has been
developed [195–198]. The action derived in these references is
formally equivalent to the one in Eq. (79), with φc taking the role
of the order parameter field, while the field that corresponds to
φq is known as the response field.

In addition to the descriptions of semiclassical dynamical
models in terms of a semiclassical Keldysh (or MSR) func-
tional integral or a Langevin equation, there exists yet another

Page 23 of 73 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  ROPP-100575.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24

equivalent approach, in which the stochastic Langevin equation
for the classical field or order parameter field is replaced by
a deterministic evolution equation for the probability distribu-
tion of the latter, known as the Fokker-Planck equation. The
derivation of the Fokker-Planck equation can be found, e.g., in
Refs. [5, 102, 178, 199]. Figure 5 illustrates the equivalence of
these approaches, which are valid on a (coarse-grained) meso-
scopic scale, and the relations to microscopic and macroscopic
descriptions.

D. Symmetries of the Keldysh action

Symmetries take center stage in field theories. Translating the
physics of the quantum master equation to the Keldysh func-
tional integral allows us to leverage the power of symmetry con-
siderations over to the context of open systems. In this section,
we discuss three different aspects of symmetries.

The presence of a first, discrete symmetry, considered in
Sec. II D 1, allows us to conclude whether or not a quantum or
classical system is situated in the realm of thermodynamic equi-
librium. This symmetry is equivalent to the validity of thermal
fluctuation-dissipation relations (cf. Sec. II B 1) for correlation
functions of any order and can be connected to energy conser-
vation. Thermal equilibrium can thus be diagnosed by means
a of simple symmetry test on the Keldysh action. In particular,
we argue that Markovian quantum master equations explicitly
violate this symmetry, indicating non-equilibrium conditions. In
the semiclassical limit, we obtain a simple and intuitive geomet-
ric interpretation of the symmetry and its absence under non-
equilibrium drive in terms of the location of the coupling con-
stants of the effective action in the complex plane.

A second fundamental consequence of the presence of sym-
metries — now, continous global symmetries — is the Noether
theorem, stating that such symmetries imply conserved charges.
In Sec. II D 3, we discuss the Noether theorem in the context
of the Keldysh formalism. Working on the Keldysh contour,
we have to distinguish between two symmetry transformations,
for each the forward and backward branches of the closed time
path. In the basis of classical and quantum fields, we can iden-
tify “classical” symmetry transformations, which act in the same
way on fields on the forward and backward branches, and “quan-
tum” transformations, for which the transformation of the fields
on the backward branch is the inverse of the transformation on
the forward branch. Non-trivial conservation laws follow only
from the symmetry of the Keldysh action under quantum trans-
formations. We illustrate this point with the example of the sym-
metry of the action of a closed system with respect to space-time
translations and phase rotations in Sec. II D 4, which entails con-
servation of energy and momentum and the number of particles,
respectively. On the other hand, in open systems, in which the
number of particles is not conserved, only classical phase rota-
tions are a symmetry of the action, and the continuity equation
that is implied by particle number conservation has to be ex-
tended as detailed in Sec. II D 5.

Finally, another consequence of a global continuous symme-
try is the existence of gapless modes in case that this symmetry
is broken spontaneously, as in a Bose condensation transition.
In a driven-dissipative condensate in which the number of parti-
cles is not conserved (cf. Sec. II B 2), we show that the symme-
try which is broken spontaneously at the condensation transition
is the classical phase rotation symmetry, and we work out the
Goldstone theorem, which guarantees the existence of a mass-
less mode, for this case in Sec. II D 6.

1. Thermodynamic equilibrium as a symmetry of the Keldysh action

A system is in thermodynamic equilibrium at a temperature
T = 1/β, if (i) the density matrix is given by ρ = e−βH/Z where
Z = tr e−βH , and (ii) the very same Hamiltonian operator H ap-
pearing in ρ generates the unitary time evolution of the system,
U = e−iHt. Condition (ii) implies that static correlations are in
general not sufficient to prove that a system is in thermal equi-
librium; however, dynamical correlations are: this can be in-
ferred from the fact that the static correlations of a physical sys-
tem can always be encoded in a density matrix ρ, and the latter
can always be parameterized formally as an equilibrium density
matrix, ρ = e−βH

′
/Z′, with a Hermitian operator H′. (In other

words, any state can be thought of as a thermal state with respect
to some Hamiltonian.) On the other hand, static (i.e., purely
momentum- or space-dependent) properties do not allow us to
discriminate whether the generator of dynamics coincides with
H′. In sharp contrast, any dynamical (i.e., frequency- or time-
dependent) observable is manifestly governed by this generator,
as is easily seen in the Heisenberg picture (or a suitable general-
ization to open systems). Response functions at finite frequency
are such dynamical observables, and the equilibrium conditions
formulated above are reflected in the fact that in thermodynamic
equilibrium the response of the system to an external perturba-
tion at a frequency ω is related to thermal fluctuations within the
system at the same frequency by what is known as a fluctuation-
dissipation relation [200] (FDR; for a discussion in the context
of non-equilibrium Bose-Einstein condensation see Ref. [201]).
Such a relation, which is equivalent to the combination of the
Kubo-Martin-Schwinger (KMS) condition [202, 203] with time
reversal [204], is valid for any pair of operators. In particular,
for the case that these are the basic field operators of a single-
component Bose system at the temperature T = 1/β, the FDR
reads (note that this is a generalization of Eq. (71) to the case of
a spatial continuum of degrees of freedom)

GK(ω,q) = coth
(
ω

2T

)
(GR(ω,q) −GA(ω,q)) (84)

(in the presence of a chemical potential μ, in the argument of the
trigonometric function we have to shift ω → ω − μ). In quan-
tum field theory, relations among Green’s functions often follow
as consequences of a symmetry of the action. Then, they are
known as Ward-Takahashi identities associated with the sym-
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metry [86, 205].12 This raises the question, whether FDRs and
hence the presence of thermodynamic equilibrium conditions
are also connected to a symmetry of the Keldysh action.

To make the point clear, let us rephrase the question: above we
made the observation, that the defining property of (canonical)
thermal equilibrium is the validity of FDRs. Importantly, these
FDRs hold for correlation functions of arbitrary order, i.e., not
just the two-point Keldysh Green’s function in Eq. (84) can be
expressed through response functions, but also any higher order
correlation function is determined by corresponding higher or-
der response functions. Then, the question — which we answer
in the affirmative below — is, whether this infinite hierarchy of
FDRs expressing thermal equilibrium is related to a structural
property of the theory. Indeed, this structural property is a sym-
metry of the Keldysh action, i.e., a transformation of the fields
Ψ �→ TβΨ such that

S [Ψ] = S̃ [TβΨ]. (85)

Here, we denote Ψ =
(
ψ+, ψ

∗
+, ψ−, ψ

∗
−
)
, and we specify the pre-

cise form of Tβ below in Eq. (88). The tilde on the RHS of
the equation indicates that all external fields appearing, S have
to be replaced by their corresponding time-reversed values. To
name an example, the signs of magnetic fields have to be in-
verted [189]. Evidently, discussing a single symmetry instead of
an infinite hierarchy of equations is much more elegant and prac-
tical: checking whether a given Keldysh action obeys Eq. (85) is
straightforward and can be accomplished in finite time, in con-
trast to verifying the full set of FDRs.

It is easily seen, how these FDRs can be deduced as a con-
sequence of the symmetry of the Keldysh action (85). To this
end, we note by a Keldysh rotation (32) and after Fourier trans-
formation, the Green’s functions appearing in Eq. (84) can be
expressed as a sum of averages of the form 〈ψσ(t, x)ψ∗σ′ (t

′, x′)〉.
Writing these explicitly as field integrals, and anticipating that a
change of integration variables Ψ → TβΨ leaves the functional
measure D[Ψ] invariant [189], we find

〈ψσ(t, x)ψ∗σ′ (t
′, x′)〉 =

∫
D[Ψ]ψσ(t, x)ψ∗σ′ (t

′, x′)eiS [Ψ]

=

∫
D[TβΨ]Tβψσ(t, x)Tβψ∗σ′ (t′, x′)eiS [TβΨ]

= 〈Tβψσ(t, x)Tβψ∗σ′ (t′, x′)〉.
(86)

In the last equality, we used the symmetry of the Keldysh ac-
tion (85) (assuming for simplicity that there are no external
fields). Inserting here the explicit form of the symmetry transfor-
mation specified in Eq. (88) below where β = 1/T is the inverse
temperature, it can be seen that Eq. (86) is in fact equivalent to
the FDR (84) [189].

12 Usually, the term “Ward-Takahashi identity” is reserved for relations that fol-

low from a continuous symmetry. Here, we use it also in the context of dis-

crete symmetry transformations.

By generalizing this argument to arbitrary field averages, one
can establish the full equivalence between the infinite hierar-
chy of FDRs and the symmetry property of the Keldysh ac-
tion (85) [189]. Thus, the symmetry of the Keldysh action under
this transformation is a direct proof of the presence of thermo-
dynamic equilibrium conditions. The existence of a symmetry
that is related to thermal equilibrium has first been realized in the
context of classical stochastic models [197, 198, 206–208], and
these considerations have been extended to the realm of quantum
systems in Refs. [189, 209].

What is the explicit form of the transformation Tβ? We can
guess its essential ingredients by reminding ourselves that, as
stated above Eq. (84), FDRs can be obtained from the KMS
condition [202, 203]. The latter reads, for operators A(t) =
eiHtA(0)e−iHt and B(t′) in the Heisenberg representation,

〈A(t)B(t′)〉 = 〈B(t′)A(t + iβ)〉. (87)

Comparing this with Eq. (86) indicates that Tβ involves a trans-
lation of t into the complex plane by an amount proportional to
the inverse temperature β. Moreover, the order of operators on
the RHS of the KMS condition is reversed as compared to the
LHS. The original time order can be restored by means of a time
reversal transformation [210] — this step is necessary in order
to obtain a time-ordered expression which can be expressed as a
Keldysh field integral (by construction, field integrals yield time-
ordered averages [180]). A careful analysis [189] leads to the
precise form of the thermal symmetry transformation (σ = +(−)
for fields on the forward (backward) branch):

Tβψσ(t, x) = ψ∗σ(−t + iσβ/2, x),

Tβψ∗σ(t, x) = ψσ(−t + iσβ/2, x)
(88)

(in the presence of a chemical potential μ, we have to multiply
the RHS of the first (second) line by eσβμ/2(e−σβμ/2)). The trans-
formation Tβ is a composition of complex conjugation of the
fields ψσ and inversion of the sign of the time t — both origi-
nating from the time reversal transformation —, and translation
of the value of t by an amount iσβ/2. The latter is induced by
the KMS condition Eq. (87). We note that the translation of t in
Eq. (88) takes opposite signs depending on whether a field on the
forward or on the backward branch is being transformed. As we
show in Sec. II D 4 below, a similar form of time translations is
connected to conservation of energy: indeed, if the Keldysh ac-
tion is invariant under time translations ψσ(t, x) �→ ψσ(t +σs, x)
with s ∈ R, the total energy in the system is conserved. A cru-
cial difference from the time translation that is part of Tβ is that
energy conservation requires invariance under shifts by an ar-
bitrary real value s, whereas Tβ involves a shift by the purely
imaginary value iβ/2, where β = 1/T is fixed and determined by
the temperature.

Under which conditions does the Keldysh action (30) with L
defined in Eq. (28) have the thermal symmetry, i.e., under which
conditions does it describe a system in thermal equilibrium? Let
us first consider the parts of the action corresponding to uni-
tary time evolution, i.e., the first two terms in Eq. (30) and the
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first line in Eq. (28). It is straightforward to check [189] that
these terms are symmetric if the Hamiltonian densities H± do
not explicitly depend on time. On the other hand, adding an
external classical driving field such as a laser, and thus break-
ing time translational invariance by making H± time dependent,
also the thermal symmetry is broken 13. The violation of the
thermal symmetry by classical driving fields on the level of
a microscopic Hamiltonian description indicates that quantum
master equations correspond to genuine non-equilibrium condi-
tions [187–189]. Physically, this is due to the fact that a system
for which such a description is appropriate is necessarily driven.

In an effective description of a driven-dissipative system in
terms of a Markovian master equation in a rotating frame, there
is often no explicit time dependence — indeed, our deriva-
tion of the dissipative Keldysh action in Sec. II A started from
Eq. (16) with time-independent Hamiltonian. Even then, the
thermal symmetry can be used to diagnose non-equilibrium con-
ditions [189]. Again, it is sufficient to study only the time-
translation part of Tβ: for time-independent H± and Lα,± in
Eq. (28), the Keldysh action is still invariant under time trans-
lations of the form ψσ(t, x) �→ ψσ(t + s, x). Importantly, this
differs from the time translation that occurs in Tβ by the absence
of a factor of σ, meaning that t is shifted by the same amount
on the forward and backward branches. Then, by means of a
simple shift of the integration variable t in Eq. (30) the origi-
nal form of the action can be restored. This strategy fails for
the dissipative contributions in Eq. (28) that couple forward and
backward branches, when the transformation involves the con-
tour index σ.14 Again we reach the conclusion that quantum
master equations describe genuine non-equilibrium conditions,
even though by a slightly different argument than in the driven
but purely Hamiltonian setting.

In some cases, the Markov and rotating-wave approximations
leading to a description in terms of a quantum master equation or
equivalent Keldysh action are applied in the absence of external
driving fields. Then, these approximations might still be justified
to study the behavior of specific observables, even though they
explicitly break the symmetry [189]. To give an example, if one
attempts to study thermalization of a system due to the coupling
with a heat bath, and one integrates out the bath using the above-
mentioned approximations, the resulting dynamics of the system
will still lead to a thermal stationary state. Correspondingly, all
static properties of the system will appear thermal. However, as
discussed at the beginning of the present section, to unambigu-
ously prove the presence of thermal equilibrium conditions, one
has to consider dynamical signatures such as FDRs. Then, as a
consequence of the explicit violation of the thermal symmetry by

13 The more precise statement is that there exists no rotating frame in which the

explicit time dependence fully disappears from the problem.
14 We note that also dissipative contributions corresponding to a system in ther-

mal equilibrium, as described below Eq. (68) in Sec. II B 1, couple the forward

and backward branches. However, the special form of these terms conspire

with the fact that the temporal shift in Tβ is determined by the inverse temper-

ature β = 1/T to make them invariant under Tβ.

the Markov and rotating-wave approximations, the description
of the system dynamics in terms of a quantum master equation
will lead to the wrong prediction that fluctuations in the system
do not obey an FDR.

A simple example that illustrates the above discussion is given
by a single bosonic mode a with energy ω0, driven coherently at
a frequency ωl, and coupled to a bath of harmonic oscillators
bμ in thermal equilibrium. The associated Keldysh action can
be decomposed as S = S s + S sb + S b, where the action for the
system consists of two parts, S s = S 0 + S l which read

S 0 =
∑
σ

σ

∫
ω

a∗σ(ω) (ω − ω0) aσ(ω), (89)

and

S l = Ω
∑
σ

σ

∫
dt
(
aσ(t)eiωl t + a∗σ(t)e−iωl t

)
= Ω

∑
σ

σ
(
aσ(ωl) + a∗σ(ωl)

)
.

(90)

Ω is the amplitude of the driving field, and due to the harmonic
time dependence of the drive it affects only the component a(ωl)
in frequency space. The action for the bath is expressed most
conveniently in the basis of classical and quantum fields (cf.
Eq. (32)). In addition to the coherent part stemming from the
oscillator frequencies, it involves infinitesimal dissipative regu-
larization terms specifying the thermal equilibrium state of the
bath at inverse temperature β = 1/T as discussed in Sec. II B 1,

S b =
∑
μ

∫
ω

(
b∗μ,c(ω), b∗μ,q(ω)

)

×
(

0 ω − ωμ − iδ
ω − ωμ + iδ i2δ coth(βω/2)

) (
bμ,c(ω)
bμ,q(ω)

)
. (91)

Finally, the system-bath interaction with coupling strength λ cor-
responds to the following contribution to the action:

S sb = λ
∑
σ

σ
∑
μ

∫
ω

(
a∗σ(ω)bμ,σ(ω) + aσ(ω)b∗μ,σ(ω)

)
. (92)

To check whether the transformation (88) is a symmetry of the
action even in the presence of the driving term in Eq. (90), it
is most convenient to rewrite the transformation in frequency
space. Moreover, for future reference, we give the form of the
transformation including a chemical potential:

Tβ,μaσ(ω) = e−σβ(ω−μ)/2a∗σ(ω),

Tβ,μa∗σ(ω) = eσβ(ω−μ)/2aσ(ω).
(93)

It is straightforward to check that both S b and S sb are invariant
under this transformation with μ = 0 [189]; the same holds true
for the contribution S 0 to the action of the system. However, the
driving part (90) becomes after the transformation

S l = Ω
∑
σ

σ
(
aσ(ωl)eσβωl/2 + a∗σ(ωl)e−σβωl/2

)
, (94)
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where the appearance of the exponentials shows that the sym-
metry is violated. One might wonder whether it is possible to
restore the symmetry in a rotating frame in which the explicit
time dependence of the action is eliminated, i.e., by introduc-
ing new variables ãσ(t) and b̃σ(t) rotating at the frequency of the
driving field, ãσ(t) = aσ(t)eiωl t and analogously for b̃σ(t). In
terms of these variables, the driving part of the action becomes

S l = Ω
∑
σ

σ

∫
dt
(
ãσ(t) + ã∗σ(t)

)
= Ω

∑
σ

σ
(
ãσ(0) + ã∗σ(0)

)
,

(95)

i.e., the drive couples to the zero-frequency component of ãσ(ω).
Clearly, applying again the same transformation Eq. (93) with
μ = 0 to the new variables, the driving term, as well as S 0 in
Eq. (89) and the system-bath coupling S sb in Eq. (92) are in-
variant. However, in the action for the bath (91), as a conse-
quence of the transformation to the rotating frame the distribu-
tion function acquires an effective chemical potential and be-
comes coth(β(ω − ωl)/2). Hence, to leave this part of the ac-
tion invariant, the transformation Eq. (93) has to be applied with
μ = ωl, and again the full action is not invariant under the equi-
librium transformation. No frame exists in which the reference
to the driving scale ωl were eliminated.

While this simple example demonstrates explicitly that gener-
ically external driving takes a system out of thermal equilib-
rium, and how this is manifest in the symmetry properties of
the Keldysh action, it is interesting to note that there are surpris-
ing exceptions to this rule, emerging as limiting cases. One of
them has been identified in Ref. [211]. Along the lines of this
reference, we discard the driving term S l and instead consider a
parametric system-bath coupling of the form15

S sb = λ
∑
σ

σ
∑
μ

∫
dt
(
a∗σ(t)bμ,σ(t)e−iωpt + aσ(t)b∗μ,σ(t)eiωpt

)

= λ
∑
μ

∑
σ

σ

∫
ω

(
a∗σ(ω + ωp)bμ,σ(ω) + aσ(ω + ωp)b∗μ,σ(ω)

)
,

(96)

in the limit λ → 0. Then, the full action S = S 0 + S sb + S b,
where S 0 and S b are as above (Eqs. (89) and (91)), is invariant if
the system fields are transformed with Tβ,μ=ωp and the bath oscil-
lators with Tβ,μ=0. In other words, the parametric coupling acts
to thermalize the system at the temperature of the bath while at
the same time shifting the chemical potential by ωp with respect
to the bath chemical potential. Concomitantly, the FDR for the
system variables takes the form of Eq. (84) with ω → ω − ωp,
while for the bath it is Eq. (84) without modification, and only

15 In realistic systems the system-bath coupling usually also contains terms of the

form aσ(t)bσ(t) that are neglected in the rotating-wave approximation [211].

FDRs for cross-correlations between system and bath observ-
ables would reveal that there is no true equilibrium in the sense
of a single global temperature and chemical potential. Such
cross-correlations, however, are suppressed in the limit λ → 0.
In this limit, both subsystems decouple, and each of them ex-
hibits thermal behavior.

2. Semiclassical limit of the thermal symmetry

For many applications, as discussed in Sec. II C, the Keldysh
action in the semiclassical limit (79) is appropriate. Correspond-
ingly we should consider the semiclassical limit of the transfor-
mation (88). In the limit of high temperatures β = 1/T → 0, we
can perform an expansion of the transformed fields, with their
arguments shifted by iσβ/2, in terms of derivatives. To leading
order,16 this yields

TβΦc(t, x) = σxΦc(−t, x),

TβΦq(t, x) = σx

(
Φq(−t, x) +

i
2T
∂tΦc(−t, x)

)
,

(97)

where σx is the usual Pauli matrix. “High temperatures” thus
means that the typical frequency scale of the field is much
smaller than temperature; indeed this recovers the intuition of
a semiclassical limit. If we replace the quantum field Φq by
the response field Φ̃ = −iσzΦq, Eq. (97) takes the form of the
classical symmetry introduced in Ref. [207]. The FDR in the
semiclassical limit, which may be derived as a Ward-Takahashi
of the symmetry Eq. (97), simplifies to the Raleigh-Jeans form

GK(ω,q) =
2T
ω

(
GR(ω,q) −GA(ω,q)

)
. (98)

The thermal FDR is just one consequence of the presence of
the symmetry Eq. (97). A second one concerns the possible val-
ues of the coupling constants defining the action in the semiclas-
sical limit. This allows us to state precisely in which sense the
driven-dissipative systems represent a genuine non-equilibrium
situation. To this end, it is most convenient to discuss the equiv-
alent Langevin equation Eq. (80). We rewrite it by splitting the
deterministic parts on the RHS into reversible (coherent) and ir-
reversible (dissipative) contributions according to (here we re-
place φc = ψ)

i∂tψ =
δHc

δψ∗
− i
δHd

δψ∗
+ ξ (99)

with effective coherent and dissipative Hamiltonians (α = c, d)

Hα =
∫

t,x

(
Kα |∇ψ|2 + rα |ψ|2 +

uα
2
|ψ|4
)
. (100)

16 Note that a contribution ∼ ∂tΦq in the first line is suppressed according to

canonical power counting, cf. Sec. II C, Eq. (78).
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It can be shown [181, 212] that the presence of the symme-
try (97), or, in physical terms, relaxation of a system to ther-
modynamic equilibrium (a state with global detailed balance,
where arbitrary subparts are in equilibrium with each other) re-
quires the condition

Hc = rHd ⇔ r =
Kc

Kd
=

uc

ud
. (101)

(Note that there is no condition on the ratio rc/rd since the ef-
fective chemical potential rc can always be adjusted by a gauge
transformation ψ �→ ψe−iωt such that rc �→ rc−ω without chang-
ing the physics.) In equilibrium dynamics, the ratio of real (re-
versible) and imaginary (dissipative) parts is thus locked to one
common value for all couplings. This is illustrated in Fig. 6 (a).
In the complex plane spanned by real and imaginary parts of the
couplings K = Kc + iKd and u = uc + iud, they lie on one single
ray. The intuition behind this seeming fine-tuning is the follow-
ing: a microscopically reversible dynamics starts from a Hamil-
tonian functional Hc alone, i.e., all couplings are located on the
real axis. Coarse graining the system from the microscopic to
the macroscopic scales introduces irreversible dynamics in the
form of finite imaginary parts, however preserving their loca-
tion on a single ray: the ray just rotates under coarse graining,
but does not spread out. The geometric constraint is thus not
due to fine tuning, but results from the microscopic “initial con-
dition” for the RG flow, in combination with the presence of a
symmetry. In stark contrast, in a driven non-equilibrium system,
the microscopic origins of reversible and irreversible dynamics
are independent, as illustrated in Fig. 6 (b). For example, in the
microscopic description of Eq. (73) the rates can be tuned fully
independently from the Hamiltonian parameters — they have
completely different physical origins.

(a) (b) (c)

K

K∗

u∗

u

equilibrium
Re

Im

non-equilibrium
Re

Im

fixed point
Re

Im

K

u

Figure 6. Location of the couplings in the Langevin equation (99) in the
complex plane. Real (imaginary) parts describe reversible (irreversible)
contributions to the dynamics. (a) An equilibrium system is charac-
terized by the location of couplings on a single ray, reflecting detailed
balance. The irreversible dynamics is not independent of the underlying
reversible Hamiltonian dynamics, but rather generated by it. (b) In con-
trast, in a driven non-equilibrium system, generically there is a spread
in the location of couplings, because the reversible and dissipative dy-
namics have different physical origins. (c) Near a critical point in three
dimensions, the couplings flow strongly with scale and approach the
imaginary axis (decoherence). The RG fixed point is purely dissipative.
(Figure adapted from [26].)

Finally, we note that, while an explicit violation of the sym-

metry is present on the microscopic scales on which the quantum
master equation (16) or the corresponding Keldysh action (27)
provide a suitable description of the system, in several cases it
has been found that driven-dissipative systems appear as approx-
imately thermal at low frequencies [25, 33, 54, 110, 112, 122,
191, 213, 214]. In driven-dissipative condensates in three spa-
tial dimensions, this thermalization at low frequencies is partic-
ularly sharply reflected via the emergence of the thermal sym-
metry in the RG flow in this regime [26, 181], cf. Fig. 6 (c); this
is discussed in more detail in Sec. IV. On the other hand, there
are also cases where the opposite behavior occurs, and the non-
equilibrium character becomes more pronounced as one coarse
grains to the macroscale. This occurs in driven two dimensional
systems, as explained in Sec. IV.

3. The Noether theorem in the Keldysh formalism

A global continuous symmetry of the Keldysh action is a
transformation Tα of the fields Ψ =

(
ψ+, ψ

∗
+, ψ−, ψ

∗
−
)T

that leaves
the value of the action invariant, i.e.,

S [TαΨ] = S [Ψ], (102)

where α is a real time- and space independent parameter, and for
α = 0 the transformation is the identity, T0 = �. The Noether
theorem states that any such global continuous symmetry entails
the existence of a current j with components jμ, which obeys a
continuity equation on average, i.e., 〈∂μ jμ〉 = 0 (here and in the
following summation over repeated indicies is implied), where
∂0 = ∂t, and ∂1,2,...d are derivatives with respect to spatial coor-
dinates. Then, the integral over space Q =

∫
x j0 — the Noether

charge — is an integral of motion, and we have 〈dQ/dt〉 = 0. In
the following, we prove this relation, which states that Q is con-
served on average, in the framework of the Keldysh formalism.
We note however, that a global continuous symmetry implies the
even stronger statement dQ/dt = 0 of conservation of Q on the
operator level [86].

In order to prove the Noether theorem, it is sufficient to con-
sider infinitesimal transformations. Then, for α � 1 we expand
the transformation as

TαΨ = Ψ + αGΨ + O(α2), (103)

whereG is called the generator of the transformation. In general,
G is a 4 × 4 matrix with derivative operators as entries. We
consider specific examples below in Sec. II D 4. In the following
we assume that as in Eq. (30) the action S can be written in
terms of a Lagrangian density L as S =

∫
t,x L , and that the

Lagrangian density is a local function of the fields and their first
derivatives with respect to time and space. This assumption is
appropriate for most practical purposes.

In an expansion of the LHS of Eq. (102) in powers of α, each
coefficient has to vanish individually. The first-order contribu-
tion yields the relation∫

t,x

(
∂L

∂ΨT GΨ +
∂L

∂∂μΨT ∂μGΨ

)
= 0, (104)
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where ∂L /∂Ψ ≡ (
∂L /∂ψ+, ∂L /∂ψ∗+, ∂L /∂ψ−, ∂L /∂ψ

∗
−
)T .

In the cases we consider, Eq. (104) holds true because the in-
tegrand can be written as the divergence of a vector field f μ, i.e.,
we have

∂μ f μ =
∂L

∂ΨT GΨ +
∂L

∂∂μΨT ∂μGΨ. (105)

To proceed we consider local transformations, i.e., we con-
sider Tα with α = α(t, x). We perform a change of integration
variables Ψ → TαΨ in the partition function. Then, assuming
that the functional measure is invariant with respect to the local
transformation, we have

Z =
∫

D[Ψ]eiS [Ψ] =

∫
D[Ψ]eiS [TαΨ]. (106)

As before, we expand the RHS of this equality in a power se-
ries in α. Since by assumption the latter is a function of (t, x),
Eq. (102) does not hold true any more. Instead, we find

S [TαΨ] = S [Ψ] +

∫
t,x
α∂μ

(
f μ − ∂L

∂∂μΨT GΨ

)
+ O(α2), (107)

where we used Eq. (105) and integration by parts to write the
RHS in a form that does not contain derivatives of α explicitly.
Inserting Eq. (107) in the exponential on the RHS of Eq. (106),
and expanding the latter to first order in α, we obtain the condi-
tion ∫

t,x
α∂μ

〈
f μ − ∂L

∂∂μΨT GΨ

〉
= 0. (108)

Since there are no restrictions on the choice of α, this equation
implies that the divergence of the expectation value vanishes.
The latter is just the quantum Noether current,

jμ =
∂L

∂∂μΨT GΨ − f μ. (109)

Note that jμ is not unique: for constant a, bμ, the combination
a jμ + bμ is also a conserved current. The associated Noether
charge Q corresponds to the integral over space of the zeroth
component of the Noether current,

Q =

∫
x

j0 =
∫

x

(
∂L

∂∂tΨT GΨ − f 0

)
. (110)

While this derivation is quite general, a more concrete expres-
sion for the Noether current can be obtained by restricting the
form of the generator G in Eq. (103). In particular, in the next
section we consider the specific cases of classical and quantum
transformations.

4. Closed systems: energy, momentum and particle number
conservation

Energy and momentum conservation – This property is ex-
pected for systems, whose classical action is determined by a

translationally invariant Hamiltonian alone. Indeed, the con-
struction of the Keldysh action for a Markovian master equation
in Sec. II A shows that terms which couple the forward and back-
ward branches are only contained in the dissipative parts of the
action (30). In other words, they arise upon coupling the system
to a bath and integrating out the latter. On the other hand, the
Keldysh action for a closed system with unitary dynamics does
not contain such terms and can be written as

S =
∑
σ

σ

∫
t,x

Lσ, (111)

where L+ and L− are the Lagrangian densities evaluated with
fields on the forward and backward branches, respectively.
Given this structure of the action, let us consider a transforma-
tion Tα which does not mix fields on the forward and backward
branches. Then, the generator G has the block-diagonal struc-
ture

G =

(
g+ 0
0 g−

)
. (112)

The cases of physical interest are the classical and quantum
transformations mentioned above, corresponding to the choices
g+ = g− and g+ = −g−, respectively. In both cases, the Noether
current can be represented as superposition of currents on the
forward and backward branches, which we define in terms of
g ≡ g+ as

jμσ =
∂Lσ
∂∂μΨT

σ

gΨσ − f μσ, (113)

where

∂μ f μσ =
∂Lσ
∂ΨT
σ

gΨσ +
∂Lσ
∂∂μΨT

σ

∂μgΨσ. (114)

With this definition, j− can be obtained from j+ simply by re-
placing all instances of Ψ+ appearing in j+ by Ψ−. Then, the
symmetry of the action under a quantum transformation yields
a classical Noether current and vice versa. These currents are
given by (as noted above we are free to choose a convenient
multiplicative normalization of the currents)

jc =
1

2
( j+ + j−) , jq = j+ − j−. (115)

As pointed out in Sec. II B 2, due to causality only the classi-
cal component of the field can acquire a finite expectation value.
The same is true for the currents defined in Eq. (115): in the
presence of an external field that induces a current, we have
〈 j+〉 = 〈 j−〉 = 〈 jc〉 � 0, whereas 〈 jq〉 = 0. Hence, as anticipated
above, the continuity equation 〈∂μ jμq〉 = 0, which follows from
the symmetry under a classical transformation, does not entail
a non-trivial Noether charge. In the next section, we show that
such a symmetry nevertheless does have physical consequences,
as it can be broken spontaneously in a condensation transition.
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Before, let us derive the Noether charge associated with
the symmetry of a Hamiltonian Keldysh action under contour-
dependent — i.e., quantum – translations in space-time. To
be specific, we consider the transformation Ψσ(X) �→ Ψσ(X +
σαeν), where X = (t, x), and eν is the basis vector in direc-
tion of the νth coordinate of d + 1-dimensional space-time. This
is a symmetry of the action (111): the shift of the coordinates
can be absorbed by performing a change of integration variables
X → X − σαeν in the integral over the Lagrangian density Lσ.
Clearly, the symmetry is violated in the presence of dissipative
terms that couple the forward and backward branches.

For space-time translations, the generators g± in Eq. (112) ac-
quire an additional index ν and are given by g±,ν = ±∂ν. It
follows that the vector field f μσ,ν in Eq. (114) takes the form
f μσ,ν = δ

μ
νLσ, and the classical Noether current, which we de-

note as Tc,ν, is given by

T μc,ν =
1

2

∑
σ

T μσ,ν, T μσ,ν =
∂Lσ
∂∂μΨT

σ

∂νΨσ − δμνLσ, (116)

where T μ±,ν are the components of the energy-momentum ten-
sor [86, 205] on the forward and backward branches. In particu-
lar, the component T 0

±,0 is the energy density, whereas T 0
±,i is the

density of momentum in the spatial direction i = 1, 2, . . . , d. The
spatial integrals over these densities yield the associated Noether
charges, e.g., if we express the Lagrangian density Lσ in terms
of a Hamiltonian density (as in Eq. (30), where L is given by
Eq. (28) with γα = 0) as

Lσ =
1

2
Ψ†σiσz∂tΨσ − Hσ, (117)

we obtain the conserved energy density E , which is as expected
given by the sum of the Hamiltonian densities on the forward
and backward branches,

E =
1

2

∑
σ

∫
x

T 0
σ,0 =

1

2

∫
x

(H+ + H−) . (118)

Along the same lines, conservation of angular momentum fol-
lows from the quantum symmetry of the Keldysh action with
respect to rotations of the spatial coordinates.

Number conservation – As another example, we consider
phase rotations and their relation to particle number conser-
vation. In this case the classical transformation reads ψ± �→
Ucψ± = eiαψ± and the quantum transformation is ψ± �→ Uqψ± =
e±iαψ±. Classical phase rotations are a symmetry of the Keldysh
action, if the fields appear only in the combinations ψ∗σψσ′ . The
quantum transformation is more restrictive: in this case only
products with σ = σ′ are allowed. Hence, the symmetry with
regard to quantum phase rotations implies the classical symme-
try. The generators of Uq are given by g± = ±iσz. Then, with
Eq. (10) and inserting the representation of the Lagrangian den-
sity in Eq. (117) in the expression for the Noether current (113),
we find that the latter can be written as jσ = (ρσ, jσ)T , where
ρσ = |ψσ|2 is the density on the contour with index σ and the

spatial components of the current are given by

jσ =
1

i2m
(
ψ∗σ∇ψσ − ψσ∇ψ∗σ

)
, (119)

which is just the ordinary quantum mechanical current for par-
ticles with quadratic dispersion relation, evaluated on the closed
time path. What is the physical meaning of the classical and
quantum components, which are defined in Eq. (115), of the cur-
rent given in Eq. (119)? If we introduce in the Hamiltonian an
externally imposed gauge field, in the Keldysh action it would
couple to the quantum current, in analogy to the source terms in
the generating functional Eq. (33). However, the observable ef-
fect of such a gauge field is that it can induce a classical current
〈 jc〉 � 0.

We close this section with a comment on the status of the
Uq(1) symmetry. It will be present on the microscopic level for
an action corresponding to a Hamiltonian which commutes with
the number operator. Since the symmetry considerations are
properly applied to the microscopic action (and the functional
measure), the conservation law ensues. However, this does not
imply that the effective action must manifestly preserve a Uq(1)
symmetry. In fact, classical models of number conserving dy-
namics [1] do not exhibit this symmetry. This leads to the pic-
ture that this symmetry is broken spontaneously under RG. The
precise workings of such a mechanism are, to the best of our
knowledge, not settled so far.

5. Extended continuity equation in open systems

The conservation of particle number in a closed system fol-
lows from the continuity equation for the classical Noether cur-
rent that is associated with the symmetry under quantum phase
rotations. In an open system, this symmetry is absent, and the
continuity equation has to be extended to account for the ex-
change of particles with the environment, as we discuss in the
following.

To be specific, we consider the Keldysh action (73) for a sys-
tem with single-particle pump as well as single-particle and two-
body loss. In order to derive the extended continuity equation,
as in Eq. (106) we perform a change of integration variables
Ψ → UqΨ, where Uq is a local quantum phase rotation, in the
Keldysh partition function. Since the partition function is invari-
ant under this transformation, the coefficients in an expansion of
the partition function in powers of the phase shift must vanish.
In linear order, we find the condition

〈∂μ jμc 〉 − γp〈ψ∗+ψ−〉 + γl〈ψ∗−ψ+〉 + 4ud〈
(
ψ∗−ψ+

)2〉 = 0. (120)

This should be compared to Eq. (108): if Uq were a symme-
try of the action, we would have found an ordinary continuity
equation. This would have been the case in the absence of the
pumping and loss terms proportional to γp, γl, and ud. The inter-
pretation of these terms is as follows: in a system that is perfectly
isolated from its environment, the temporal change of the den-
sity at a given point is due to the motion of particles towards to
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or away from this point, i.e., the rate of change of density is a
source or sink for the mass flow as measured by the divergence
of the current 〈∇ · jc〉. In an open system, on the other hand,
there is in addition a dissipative current [215, 216] due to the
exchange of particles between the system and its environment.
In particular, in Eq. (120) this dissipative current has contribu-
tions from the pumping and loss terms.

It is interesting to note that Eq. (120) can also be ob-
tained from the equation of motion of the local density n(x) =
ψ†(x)ψ(x) in the operator formalism. From the master equation
∂tρ = Lρ with Liouvillian L in Lindblad form given in Eq. (9),
it follows that the time evolution of n(t, x) in the Heisenberg rep-
resentation is given by ∂tn(t, x) = L∗n(t, x) with the adjoint Li-
ouvillian defined by tr(ALB) = tr(BL∗A). We find

∂tn(t, x) = −∇ · j(t, x) + γpψ(t, x)ψ†(t, x)

− γln(t, x) − 4udψ
†(t, x)2ψ(t, x)2, (121)

where first term encodes coherent dynamics and corresponds to
the Heisenberg commutator i[HLP, n(t, x)], whereas the remain-
ing contributions incorporate the dissipative parts. Taking the
average of this relation and expressing the expectation values as
Keldysh functional integrals yields Eq. (120).

Finally, we can obtain some intuition on the dissipative cor-
rection to the current expectation value in mean field theory,
where the correlators in Eq. (120) factorize into products of sin-
gle field expectation values 〈ψ+〉 = 〈ψ−〉 = ψ0. We then recog-
nize in the non-derivative terms (ψ∗0 times) the LHS of Eq. (75)

(note that due to the factor of 1/
√

2 in the Keldysh rotation (32)

the expectation values are related as 〈φc〉 = φ0 =
√

2 〈ψ±〉, and
that rd = (γl − γp)/2), which equals zero in a homogeneous sit-
uation within mean field theory. In this way, we see that there is
no particle number current on average in a homogeneous driven-
dissipative system in stationary state, as expected.

6. Spontaneous symmetry breaking and the Goldstone theorem

Even though the pumping and loss terms in the Keldysh ac-
tion in Eq. (73) break the symmetry with respect to quantum
phase rotations Uq, the action is still symmetric under Uc trans-
formations. As a result, even in the absence of particle num-
ber conservation there is a possibility of spontaneous symmetry
breaking. In particular, a finite average value 〈φc〉 � 0 breaks the
classical phase rotation symmetry in a non-equilibrium conden-
sation transition. Here we show that this spontaneous symmetry
breaking is accompanied by the appearance of a massless mode,
i.e., a mode with vanishing frequency and decay rate for zero
momentum, which is known as the Goldstone boson [217–219].
We obtain this result by carrying over the corresponding deriva-
tion from the equilibrium formalism (see, e.g., Ref. [182]) to the
Keldysh framework.

The single-particle excitation spectrum is encoded in the poles
of retarded and advanced Green’s functions, and such a pole at
ω = q = 0 is dubbed a massless mode. Poles of the Green’s
functions correspond to roots of the determinant of inverse prop-
agator (see Sec. II A). Hence, the presence of a massless mode

can be detected by checking whether the determinant of the mass
matrix M vanishes. The latter is determined by the inverse prop-
agator

P(ω,q) =

(
0 PA(ω,q)

PR(ω,q) PK(ω,q)

)
= G−1(ω,q), (122)

given exemplarily in Eq. (76), at ω = q = 0, i.e., M = −P(0, 0).
Therefore, it is sufficient to consider frequency- and momentum-
independent field configurations or, in other words, homoge-
neous field configurations, so that instead of the full effective
action Eq. (39) we only have to deal with the effective potential
U = − Γ|hom. /Ω, where Ω is the quantization volume in space-
time. Since the effective potential U inherits the symmetries of
the effective action, it is a function of precisely these combina-
tions of fields which are invariant under classical or quantum
phase rotations. In the basis of classical and quantum fields,
these Uc-symmetric combinations are ρνν′ = φ

∗
νφν′ , where the

indices ν and ν′ can take the values c and q. In the following, we
show that Uc invariance is sufficient to guarantee the existence
of a massless mode.

For convenience we switch to a basis of real fields χ =
(χc,1, χc,2, χq,1, χq,2) which correspond to the real and imagi-
nary parts of the complex classical and quantum fields, i.e.,
φν =

1√
2

(
χν,1 + iχν,2

)
for ν = c, q. In this basis, the mass ma-

trix reads

Mi j =
∂2U
∂χi∂χ j

∣∣∣∣∣∣
ss

=
∑

a

[
∂2ρa

∂χi∂χ j

∂U
∂ρa

]
ss

+
∑
a,b

[
∂ρa

∂χi

∂ρb

∂χi

∂2U
∂ρa∂ρb

]
ss

,

(123)
where the subscript ss indicates that the fields should be set to
their average values in the stationary state. The indices i and
j label the components of the four-vector χ defined above (i.e.,
χ1 = χc,1, χ2 = χc,2 etc.), and a and b are double indices, taking
the values cc, cq, qc, qq. Let us consider the first term on the
RHS of Eq. (123): in the ordered phase, the classical field has
a finite expectation value in the stationary state. Without loss
of generality we assume that this value is real. Then, the field
equations

∂U
∂χi

∣∣∣∣∣
ss

=
∑

a

[
∂ρa

∂χi

∂U
∂ρa

]
ss

= 0, (124)

which actually determine the average value of the fields χi in

stationary state, have the solution χi|ss =
√

2ρ0δi,1. Performing
the derivatives ∂ρa/∂χi in Eq. (124) explicitly and inserting χi|ss,
we obtain the following conditions:

∂U
∂ρcc

∣∣∣∣∣
ss

=
∂U
∂ρcq

∣∣∣∣∣∣
ss

=
∂U
∂ρqc

∣∣∣∣∣∣
ss

= 0. (125)

Therefore, only the derivative uqq = [∂U/∂ρqq]ss contributes
to the first term on the RHS of Eq. (123). Denoting mixed
second derivatives of the effective potential as uab = uba =

[∂2U/∂ρa∂ρb]ss, we find that the mass matrix can be written as
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M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 uqq 0
0 0 0 uqq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ρ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 ucc,cq + ucc,qc i

(
ucc,cq − ucc,qc

)
0 0 0 0

ucc,cq + ucc,qc 0 1
2

(
ucq,cq + 2ucq,qc + uqc,qc

)
i
2

(
ucq,cq − uqc,qc

)
i
(
ucc,cq − ucc,qc

)
0 i

2

(
ucq,cq − uqc,qc

)
− 1

2

(
ucq,cq − 2ucq,qc + uqc,qc

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (126)

An entry ucc,cc is not ruled out by symmetry, however, it must
vanish due to conservation of probability, cf. Sec. II B 1. Cru-
cially, the retarded and advanced sectors feature one zero eigen-
value. This proves the existence of a massless mode as a conse-
quence of spontaneous symmetry breaking for a theory with Uc
invariance.

While this analysis guarantees the existence of a zero mode
(i.e., the complex dispersion relation has the property ω(q =
0) = 0), it does not provide a statement on the functional de-
pendence ω(q). The latter could be inferred along the lines of
Refs. [220–224]. As we found in Sec. II B 2 in Bogoliubov ap-
proximation, in an open system without (i.e., broken) Uq sym-
metry and spontaneously broken Uc symmetry, the leading be-
havior at low momenta is diffusive, ω(q) ∼ −iDq2, with a real
diffusion coefficient D. This has to be contrasted to closed sys-
tems, in which microscopically both Uq and Uc symmetry are
present. There, the leading behavior in a phase with sponta-
neously broken Uc symmetry is that of coherent sound waves,
ω(q) ∼ cq, with real speed of sound c. A phenomenological
justification of this behavior is given in Ref. [1], where this can
be understood as a consequence of a coupling to additional slow
modes relating to particle number conservation. In these phe-
nomenological models, Uq symmetry is absent. This suggests a
scenario of an additional spontaneous breakdown of Uq symme-
try upon coarse graining, but this issue seems not to be settled to
date.

E. Open system functional renormalization group

In Sec. IV B, we investigate dynamical criticality of the
Bose condensation transition in driven open systems, moti-
vated by many-body ensembles such as exciton-polariton con-
densates [12, 13, 159, 192, 225]. There again, coherent dy-
namics naturally competes with dissipation in the form of in-
coherent particle losses and pumping. The situation parallels a
laser threshold [226, 227], however with a continuum of spa-
tial degrees of freedom. This ingredient, however, causes the
characteristic long-wavelength divergences of many-body prob-
lems in their symmetry broken phase, or at a critical point. It
implies that perturbation theory necessarily breaks down, even
when the interaction constants are small, due to a continuum of
modes without a gap, which form the intermediate states and
are summed over in many-body perturbation theory. This calls
for the development of efficient functional integral techniques
able to cope with these problems. Our method of choice is the
functional renormalization group based on the Wetterich equa-
tion [228], which we briefly introduce here in its Keldysh for-

mulation. This approach offers the particularly attractive feature
of not being restricted to the critical point.

The functional renormalization group equation (for reviews
see [229–233]) constitutes an exact reformulation of the func-
tional integral representation of a quantum many-body prob-
lem in terms of a functional differential equation. In this, it is
strongly distinct from, e.g., perturbative field theoretical renor-
malization group approaches, which concentrate exclusively on
the critical surface of a given problem. Instead, it may be viewed
as an alternative and potentially more tractable tool for the anal-
ysis of the complete many-body problem, also on length scales
well below the correlation length near criticality. Indeed, it has
proven a very versatile tool in many different physical context,
ranging from quantum dots [234–236], ultracold atoms [233],
strongly correlated electrons [237], classical stochastic mod-
els [238, 239], quantum chromodynamics [232, 240], to quan-
tum gravity [241]. Here we give a brief overview of the gen-
eral concept adapted to non-equilibrium systems [26, 181, 234–
236, 242–254]. It is used for the discussion of critical behavior
in driven open quantum systems in Sec. IV, with applications
to a broader non-equilibrium many-body context left for future
work.

The transition from the action S to the effective action Γ con-
sists in the inclusion of both statistical and quantum fluctuations
into the latter (cf. Eq. (39)). In the functional renormalization
group approach based on the Wetterich equation [228], the func-
tional integral over fluctuations is carried out stepwise. To this
end, an infrared regulator is introduced, which suppresses the
fluctuations with momenta less than an infrared cutoff scale Λ.
This is achieved by adding to the action in (33) a term

ΔSΛ =
∫

t,x

(
φ∗c, φ

∗
q

) ( 0 RΛ
R∗
Λ

0

) (
φc
φq

)
, (127)

with a cutoff or regulator function RΛ. Some key structural prop-
erties are indicated below, but apart from these properties the
choice of the cutoff is flexible and problem-specific. The re-
sulting cutoff-dependent generating functional and its logarithm
(cf. Eq. (35)) are denoted by, respectively, ZΛ and WΛ. Then, the
scaled-dependent effective action ΓΛ is defined by modifying the
Legendre transform in Eq. (38) according to

ΓΛ[Φ̄c, Φ̄q] = WΛ[Jc, Jq]

−
∫

t,x

(
J†c Φ̄q + J†qΦ̄c

)
− ΔSΛ[Φ̄c, Φ̄q]. (128)

The subtraction of the ΔSΛ on the RHS guarantees that the only
difference between the functional integral representations for Γ
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and ΓΛ is the inclusion of the cutoff term in the latter,

eiΓΛ[Φ̄c,Φ̄q] =

∫
D[δΦc, δΦq] eiS [Φ̄c+δΦc,Φ̄q+δΦq]

× e
−i δΓ
δΦ̄T

c
δΦq−i δΓ

δΦT
q
δΦc+iΔSΛ[δΦc,δΦq]

. (129)

Physically, ΓΛ can thus be viewed as the effective action for av-
erages of fields over a coarse-graining volume with a size ∼ Λ−d,
where d is the spatial dimension.

Note that we chose the form of the cutoff action ΔSΛ such
that it modifies the inverse retarded and advanced propagators
in Eq. (127) only. This is sufficient to regularize possible in-
frared divergences, which result from poles of the retarded and
advanced propagators being located at the origin of the complex
frequency plane. A typical choice in practical calculations is

RΛ(q2) ∼ Λ2, q/Λ→ 0, (130)

giving the inverse propagators a mass ∼ Λ2. In this way, fluctu-
ations with wavelength � Λ−1 are effectively cut off. Therefore,
for any finite Λ, the technical problem of infrared divergences is
under control.

The main usefulness of the so-modified effective action, how-
ever, lies in the fact that it smoothly interpolates between the
action S for Λ → Λ0, where Λ0 is the ultraviolet cutoff of the
problem (e.g., the inverse lattice spacing), and the full effective
action Γ for Λ → 0. This is ensured by the following require-
ments on the cutoff [244]:

RΛ(q2) ∼ Λ2
0, Λ→ Λ0,

RΛ(q2)→ 0, Λ→ 0.
(131)

Under the condition that Λ0 exceeds all energy scales in the ac-
tion, for Λ → Λ0 we may evaluate the functional integral (129)
in the stationary phase approximation. Then, we find to lead-
ing order ΓΛ0

∼ S — in the absence of fluctuations (suppressed
by the cutoff mass gap ∼ Λ2

0), the effective action approaches
the classical, or microscopic one. The evolution of ΓΛ from this
starting point in the ultraviolet to the full effective action in the
infrared for Λ→ 0 is described by an exact flow equation — the
Wetterich equation [228] — which was adapted to the Keldysh
framework in [234, 235, 244, 246]. It reads

∂ΛΓΛ =
i
2

Tr
[(
Γ

(2)
Λ
+ RΛ

)−1
∂ΛRΛ

]
, (132)

where Γ
(2)
Λ

and RΛ denote, respectively the second variations of
the effective action and the cutoff action ΔSΛ. As anticipated
above, the flow equation provides us with an alternative but fully
equivalent formulation of the functional integral (129) as a func-
tional differential equation. Like the functional integral, the flow
equation can not be solved exactly for most interesting prob-
lems. It is, however, amenable to numerous systematic approxi-
mation strategies. For example, in the vicinity of a critical point
it is possible to perform an expansion of the effective action ΓΛ

in terms canonical scaling dimensions, keeping only those cou-
plings which are — in the sense of the renormalization group —
relevant or marginal at the phase transition, cf. the discussion in
Sec. II C, and see Sec. IV B for applications.

Part 2

Applications
III. NON-EQUILIBRIUM STATIONARY STATES: SPIN

MODELS

In this section, we discuss the steady state properties of many-
body systems consisting of atoms, which are coupled to the radi-
ation field of a cavity, in turn subject to dissipation in the form of
permanent photon loss. The corresponding low frequency field
theory, a 0 + 1-dimensional path integral for real valued, Ising
type fields corresponds to the simplest, non-trivial field theoretic
models and is therefore particular useful to get used to applica-
tions of the Keldysh formalism for relevant physical setups. The
basic model describing the dynamics of atoms in a cavity is the
Dicke model (1) with dissipation, as described in Sec. I C 1, as
well as its extension to multiple cavity photon modes. Despite
the simplicity of the underlying field theory, it is a non-trivial
task to solve it for its rich many-body dynamics. This includes
the critical behavior of a single mode cavity at the superradi-
ance transition as well as universal dynamics in the formation of
spin glasses in multi-mode cavities. We discuss these and fur-
ther features of the Dicke model here by putting a focus on the
theoretical framework of solving the corresponding Ising model
on the Keldysh contour.

A. Ising spins in a single-mode cavity

As for the equilibrium path integral, the Keldysh field theory
for spin models which obey the standard Ising Z2 symmetry, is
formulated in terms of real fields, fluctuating in time and space.
These models have become rather important in the field of quan-
tum optics, where the typical situation consists of a set of atoms,
modeled as two-level systems, coupled to the radiation field of
a high finesse cavity. One important model in this context is the
Dicke model, which has been introduced in Eq. (1) as the generic
model for cavity QED experiments with strong light-matter cou-
pling. Its Hamiltonian is

H = ωpa†a +
ωz

2

N∑
i=1

σz
i +

g
√

N

N∑
i=1

σx
i

(
a† + a

)
. (133)

The Dicke Hamiltonian represents an effective model which de-
scribes the dynamics of a set of two-level atoms, labeled by the
index i, inside a cavity, which is pumped by a transverse laser.
In this scenario, the coupling constant g describes the scattering
of laser photons into the cavity, as well as the reverse process,
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and therefore rotates in time with the laser frequency ωl. In a ro-
tating frame, this time dependence is gauged away in the Hamil-
tonian, resulting in an effective shift ωp = ωc − ωl of the bare
cavity frequency ωc. In addition to this external drive, the cavity
is subject to permanent photon loss, due to imperfections in the
cavity mirrors. The photon loss is described by a weak coupling
of the intra-cavity photons to the environment, i.e., the vacuum
radiation field outside the cavity. For typical experimental pa-
rameters, this coupling, which represents the rate with which
the intra-cavity field and the environment exchange photons, is
much smaller than the typical relaxation time of the environment
and the latter can be traced out under the Born and Markov ap-
proximation. This results in a Markovian master equation for the
system’s density matrix, which reads (cf. Eqs. (2,16) repeated
for convenience)

∂tρ = −i[H, ρ] +Lρ. (134)

In this equation, ρ is the density matrix, H is the Dicke Hamilto-
nian (133) and L is the dissipative Liouvillian, acting as on the
density matrix as

Lρ = κ
(
aρa† − 1

2
{a†a, ρ}

)
(135)

with loss rate κ for the cavity photons.

Given the Markovian master equation (134), there are two
common ways to derive a corresponding path integral descrip-
tion for the dissipative Dicke model, which are based on different
representations of the atomic degree of freedom in terms of field
variables: the representation of the atomic degrees of freedom
as a collective spin and subsequent bosonization in terms of a
Holstein-Primakoff transformation [122, 123, 128], and the rep-
resentation of the atomic variables in terms of individual Ising
fields. We discuss both approaches in the following, putting a
focus on the more general Ising representation, which can also
be applied in the case of multiple cavity modes and individual
atomic loss processes, where a representation of the atoms in
terms of a single, collective spin is no longer possible. In the

regimes for which both approaches can be applied, they are com-
pletely equivalent, as we demonstrate.

1. Large-spin Holstein-Primakoff representation

The single-mode Dicke Hamiltonian (133) has the property
that all atomic variables couple to the cavity photon mode via
the same coupling constant g. Consequently, the coupling of
the photons to the sum of the individual Pauli matrices can be
replaced by the coupling of the cavity photon mode to a large
spin,

H = ωpa†a + ωzS z +
2g
√

N
S x
(
a† + a

)
, (136)

where S z, S x are spin operators in a spin-N/2 Hilbert space.
In order to find a path integral representation for the Hamilto-
nian (136), these spin operators can be transformed into bosonic
operators via the common Schwinger-boson or Holstein-
Primakoff transformations. For weak coupling g, the system re-
mains strongly polarized |〈S z〉| � 1 and the Holstein-Primakoff
transformation around the non-interacting ground state, which
has the eigenvalue S z = −N/2, is the most natural choice. It
reads

S z = b†b − N
2
, S x =

( √
N − b†b

)
b + b†

( √
N − b†b

)
,(137)

where b, b† are bosonic operators. In the thermodynamic limit
N → ∞, the square root in the S x operator is expanded in pow-
ers of 1/N, and the Hamiltonian is subsequently formulated on
the Keldysh contour. To zeroth order in 1/N, the corresponding
Keldysh action is

S =
∫
ω

Φ†(ω)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
(
GA

4×4

)−1(
GR

4×4

)−1
ΣK

4×4

⎞⎟⎟⎟⎟⎟⎟⎠Φ(ω), (138)

with the combined Nambu-Keldysh spinor

Φ(ω) =
(
ac(ω), a∗c(−ω), bc(ω), b∗c(−ω), aq(ω), a∗q(−ω), bq(ω), b∗q(−ω)

)T
, (139)

the inverse retarded Green’s function in Nambu space

(
GR

4×4

)−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω − ωp + iκ 0 −g −g

0 −ω − ωp − iκ −g −g
−g −g ω − ωz 0
−g −g 0 −ω − ωz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (140)

and the Keldysh self-energy

ΣK = 2iκ diag(1, 1, 0, 0). (141)

Due to the photon decay terms ∼ κ and the atom-photon cou-
pling g, the above theory is regularized even without infinites-
imal imaginary contributions in the atomic sector. When inte-
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grating out the photons, the latter infinitesimal contributions are
overwritten in any case by the finite imaginary part of the photon
Green’s function, and it is therefore reasonable to leave them out
from the start.

The excitation spectrum of the atom-photon system is en-
coded in the retarded Green’s function, and the poles, marking
the excitation energies, fulfill the requirement

0
!
= det

(
GR

4×4

)−1
= (ω2 − ω2

z )[(ω + iκ)2 − ω2
p] − 4g2ωpωz. (142)

In the absence of atom-photon coupling, i.e., for g = 0, these
are the non-interacting poles ω1,2 = ±ωz, corresponding to the
atomic transition frequencies andω3,4 = ±ωp+iκ, corresponding
to the energy of a photon ωp and its decay rate κ. For g > 0, the
modes begin to hybridize and the excitation energies are slightly
modified compared to their non-interacting values, see Fig. 7.
For small coupling strength, the elementary excitations can still
be seen as weakly dressed atoms and photons, with excitation
energies close to the non-interacting values, while they strongly
hybridized, inseparable degrees of freedom for strong coupling
strengths.

Above a critical coupling strength gc, the ground state of the
system breaks the Z2 symmetry and the atoms form a macro-
scopic spin aligned in the x-direction, 〈S x〉 = O(N), which is ac-
companied with a coherent macroscopic population of the intra-
cavity mode 〈a〉 � 0. This symmetry broken phase is called the
superradiant phase of the cavity system. In the case of a macro-
scopic expectation of S x, the orthogonal S z component can no
longer be macroscopically large, which renders any expansion
of the Holstein-Primakoff operators (137) in 1/N invalid. This
is expressed by an instability of the quadratic theory at the su-
perradiance transition, revealed by the presence of a zero energy
mode, i.e., a pole at ω = 0 in the excitation spectrum. According
to Eq. (142), this happens at

gc =

√
(κ2 + ω2

p)ωz

4ωp
. (143)

The mode structure in the vicinity of the transition has been ana-
lyzed in Ref. [112], where it has been found that in the presence
of photon decay, the critical mode becomes purely imaginary
before the transition happens, and the corresponding critical dy-
namics corresponds to a classical finite temperature transition,
see also Fig. 7. This is mirrored by the fact that the photons
effectively thermalize in the low energy regime and their corre-
lations can be described by a low energy effective temperature
Teff. The effective temperature can be obtained via a fluctua-
tion dissipation relation, as discussed in Eq. (72) but promoted
to Nambu space (see Sec. V B for a discussion of the FDR in
Nambu space). Solving this equation yields the photon distribu-
tion function in Nambu representation

Fph = σ
z + σx 2g2

ωzω

ω2
z

ω2 − ω2
z
. (144)

For large frequencies ω � g2

ωz
, this corresponds to the zero

temperature distribution of the non-interacting system F = σz,

Figure 7. Illustration of the pole structure of the system’s eigenmodes.
The poles represent the location of the mode frequencies ω in the com-
plex plane, the real part Re(ω) represents the energy of the mode, while
the imaginary part Im(ω) is the mode’s decay rate. Without interactions,
g = 0, the system is described by the bare atomic, ω = ±ωz, and pho-
tonic modesω = ±ωp−iκ. For finite interactions, the atoms and photons
hybridize and form polaritonic modes, two of which move closer to the
imaginary axis. At the critical point g = gc, one single mode becomes
critical at ω = 0 and the system undergoes a phase transition from a
disordered phase to the Z2 symmetry breaking superradiant phase. The
classical nature of the transition in the presence of dissipation is ex-
pressed by the fact that the two zero energy modes Re(ω) = 0 become
purely dissipative for couplings g < gc already (indicated with the red
arrows).

which is diagonal in the photon modes. The approach to this
limit is, however, algebraic ∼ ω−3, in contrast to an exponen-
tial approach according to large frequency behavior of the Bose-
distribution function in equilibrium. On the other hand, for small

frequencies ω � g2

ωz
, the occupation becomes essentially ther-

mal and purely off-diagonal F = 2Teff

ω
σx, with low energy effec-

tive temperature Teff =
g2

ωz
, cf. Eq. (84). In this low frequency

limit, the elementary excitations are strongly hybridized polari-
ton modes, which are diagonal in the photon quadratures x and
p. The absence of a global temperature scale in the present
system reflects the fact that due to the Markovian dissipation,
this interacting system with a discrete set of degrees of freedom
is not able to achieve detailed balance between the particular
modes, i.e. the x and p quadratures, for all energy scales.

One should note that Teff is not proportional to the decay rate
κ and consequently the zero temperature equilibrium limit is not
simply obtained by taking the limit κ → 0. The reason is that in
the present setting, the atom-photon coupling g leads to a com-
petition of unitary and dissipative dynamics, which is reflected
in the fact that for g = 0, the eigenstate of the Hamiltonian is a
steady state of the dynamics while this is no longer the case for
finite g. As a consequence, the low energy effective temperature
depends on g and vanishes in the limit g→ 0.

A further consequence of the dissipative nature of the tran-
sition is that the critical exponents correspond to the classical
finite temperature equilibrium transition. One such critical ex-
ponent of the superradiant transition is the so-called photon flux
exponent νx, which describes the divergence of the cavity pho-
ton number at the transition, i.e., n ∼ |g − gc|−νx . It is obtained
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by frequency integration over the photonic correlation function

2n =
(∫
ω

iGK
ph

(ω)

)
− 1 ∼ |g − gc|−1. (145)

The exponent νx = 1 found for the present non-equilibrium
transition coincides with the classical, finite temperature expo-
nent for the equilibrium Dicke model in line with the discussion
above. On the other hand, at zero temperature, the exponent
of the corresponding quantum phase transition is found to be
νx = 1/2.

The scaling behavior of the critical mode at the transition is
expressed in terms of the dynamical critical exponent νt. In the
presence of dissipation, the excitations in the system decay ex-
ponentially in time, which results in an asymptotic exponential
decay of real-time correlation functions

〈{a(t), a†(0)}〉 = GK
ph

(t) ∼ e−t/ξt . (146)

The characteristic decay time ξt is determined by the slowest
decaying mode in the system, i.e., by the mode with the smallest
imaginary part in the frequency spectrum. In the vicinity of the
phase transition, this is the critical mode , which shows scaling

ξt ∼
1

|g − gc|
, (147)

i.e., a dynamical critical exponent νt = 1. This behavior is in
stark contrast to a zero temperature quantum phase transition,
where correlation functions do not decay over time but oscillate
with characteristic frequencies ωc, the smallest of which indi-
cates the distance to the phase transition and encodes the critical
scaling behavior. The fact that in the present setting the critical
mode becomes purely imaginary is a generic feature of dissipa-
tive phase transitions, which is discussed further in Sec. IV.

All of the above discussed results are encoded in the quadratic
Keldysh action, described by Eqs. (138-141). The resulting crit-
ical behavior is then that of a non-interacting system, and is
associated accordingly to a Gaussian fixed point of the renor-
malization group flow. This is in contrast to critical behavior
in interacting systems, which are described by an interacting
Wilson-Fisher fixed point, not smoothly connected to the pre-
vious one (cf. the discussion in Sec. IV B). This action describes
the problem up to 1/N corrections resulting from the expansion
of the Holstein-Primakoff bosons in 1/N. It contains correctly
the physics in the thermodynamic limit N → ∞ and captures
the essential dynamics of the superradiance transition. For finite
systems, the higher order terms in 1/N can not be neglected and
have to be taken into account properly. Analytical approaches,
relying on an expansion of the Holstein-Primakoff operators up
to first order in the ratio 1/N, have shown that the first order cor-
rection term leads to a quartic contribution in the action, whose
self-consistently determined one-loop corrections are already in
very good agreement with numerical results [112]. The latter
have been obtained from a Monte-Carlo wave function (MCWF)
simulation of the master equation and agreed with the analytical
results even on the level of N = 10 atoms.

2. Effective Ising spin action for the single-mode cavity

The Dicke model defined by the master equation (134) obeys
the common Ising Z2 symmetry, which is spontaneously bro-
ken by the ground state of the superradiant phase. Another ap-
proach to express the Dicke model in a Keldysh path integral
approach is therefore to represent the spin operators in terms
of real Ising field variables, σx(t) → φ(t). In contrast to the
Holstein-Primakoff transformation applied in the previous sec-
tion, the Ising representation does not require a single, large spin
to have a well defined field theory representation, and is there-
fore also applicable in situations in which the atom-photon cou-
pling is spatially dependent g → g(x) and a large spin represen-
tation becomes impossible. Furthermore, we use this approach
to describe the symmetry broken phase of the problem.

The atomic sector of the Hamiltonian (133) describes Ising
spins in a transverse field and the corresponding universal low
energy description for frequencies below the level spacing ωz is
obtained by transforming the quantum spin operators to classical
real fields. According to the quantum to classical mapping [255]
this is possible in the scaling regime of the corresponding, i.e.,
for the present case in the vicinity of the 2nd order superradiance
and glass transitions. The present model represents a general-
ization of the zero-dimensional Ising model in a transverse field,
for which the quantum to classical mapping is known [255] and
consists of the replacements

σx
i (t)→ φi(t) (148)

and

σz
i (t)→ 1 − 2

ω2
z

(∂tφi(t))2 . (149)

The dynamic constraint (σx
i (t))2 = 1 is implemented via the non-

linear constraint

δ(φ2
i (t) − 1) =

∫
Dλl(t) eiλl(t)(φ2

i (t)−1), (150)

which introduces dynamical Lagrange parameters λi(t) for each
spin variable. In this framework, the purely atomic part of the
action on the (±)-contour is

S at =
1
ωz

∫
ω

∑
α=±

i=1,..,N

α
[
λαi

(
φ2
αi − 1

)
− (∂tφαi)

2
]
. (151)

The action for the atom-photon coupling and the bare photonic
part is straightforwardly derived according to the previous sec-
tions, and the corresponding Keldysh action is

S =
1

ωz

∫
t

∑
i

(φci, φqi)

(
λqi(t) λci(t) + ∂2

t
λci(t) + ∂2

t λqi(t)

) (
φci
φqi

)

+
g
√

N

∫
t

∑
i

(
φci(a∗q + aq) + φqi(a∗c + ac)

)
+

∫
t
(a∗c, a

∗
q)

(
0 i∂t − ωp − iκ

i∂t − ωp + iκ 2iκ

) (
ac
aq

)
. (152)
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It is quadratic in the fields φ, a, a∗ as it was the case for the
Holstein-Primakoff action in the large-N limit. However, the
non-linear constraint, i.e., the fact that λq,c is a dynamic vari-
able, introduces higher order terms in the Ising fields. The ap-
proach corresponding to the large-N expansion of the Holstein-
Primakoff fields in the present formalism (in the sense that the
action becomes quadratic) is to treat the Lagrange parameters as
static mean field variables, i.e., λci(t)→ λc and λqi(t)→ λq. Due
to causality, a static mean quantum field must be zero, λq = 0.
On the other hand, the value of λc has to be chosen such that the
non-linear constraint is preserved on average

〈(σx
i (t))2〉 = 〈φ2

c(t)〉 =
∫
ω

iGK
at

(ω)
!
= 1. (153)

This is equivalent to a vanishing variation of the action with re-
spect to the Lagrange parameters λc,q and is known as the “soft-
spin” approach to spin models (i.e. the constraint is treated on
the mean field level). It becomes exact in the thermodynamic
limit N → ∞ [256, 257].

Integrating out the N individual atoms leads to the effective
photon action

S =
1

2

∫
ω

A†(ω)

⎛⎜⎜⎜⎜⎜⎜⎝ 0
(
GA

2×2

)−1(
GR

2×2

)−1
2iκ diag(1, 1)

⎞⎟⎟⎟⎟⎟⎟⎠ A(ω), (154)

with the Nambu spinor

A(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ac(ω)

a∗c(−ω)
aq(ω)

a∗q(−ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (155)

and the inverse retarded Green’s function

(
GR

2×2

)−1
=

⎛⎜⎜⎜⎜⎜⎝ ω − ωp + iκ − 2g2ωz
ω2−λ − 2g2ωz

ω2−λ
− 2g2ωz
ω2−λ ω − ωp − iκ − 2g2ωz

ω2−λ

⎞⎟⎟⎟⎟⎟⎠ .
(156)

The poles of the Green’s function are again determined by the
zeros of the determinant of the inverse Green’s function, i.e., by
the roots of the equation

0
!
= (λc − ω2)

(
(ω + iκ)2 − ω2

p

)
+ 4ωpωzg2. (157)

For the non-interacting theory, i.e., for g = 0, this determines
the poles of the atomic sector to be ω = ±

√
λc and in turn fixes

λc = ω
2
z to be consistent with the microscopic theory. As long

as the system is not superradiant, the atom-photon interaction
does not modify the integral (153), and for the entire param-
eter range of the normal phase, we find λc = ω

2
z as for the

non-interacting case. This again yields the critical value of the
coupling strength (143) we obtained above from the Holstein-
Primakoff approach. Consequently, the results from the previous
section are recovered in the Ising representation of the Keldysh
path integral.

We now turn to the description of the ordered phase. Di-
rectly at the superradiant transition, the system becomes unsta-
ble, which is indicated by a critical mode with frequency ω = 0.

In order to stabilize the system, for coupling strengths g > gc
the steady state breaks the Z2 symmetry of the action, which is
expressed in terms of a finite, symmetry breaking order parame-
ter φc(ω)→ ψδ(ω)+ φc(ω), and equivalently in the photon basis
ac(ω) → aδ(ω) + ac(ω). These order parameters correspond to
finite expectation values 〈σx

i (t)〉 = ψ and 〈a(t)〉 = a in the sys-
tem’s ground state. They modify the soft-spin condition (153)
according to

〈(σx
i (t))2〉 = ψ2 +

∫
ω

iGK
at(ω)

!
= 1, (158)

where GK
at is the Keldysh Green’s function of the fluctuating vari-

able φ. As a consequence, in order to fulfill Eq. (158), the La-
grange multiplier λc becomes a continuous function of the order
parameter, and therefore an implicit function of the coupling g
in the superradiant phase. The dependence of λc can be deter-
mined from Eq. (157). At the superradiant transition at g = gc,
this equation has one critical solution, i.e., the propagator has a
pole at ω = 0, see Fig. 7. For larger coupling strengths, this pole
crosses the origin and obtains a positive imaginary part, thereby
rendering the system unstable. In order to compensate for this
mechanism, λc is modified such that the pole does not cross the
real axis, i.e., remains at its value ω = 0 in the superradiant

phase. Consequently λc =
4g2ωpωz

κ2+ω2
p

for g > gc. Via Eq. (158), this

reveals the scaling of ψ ∼
√
|g − gc| when the transition is ap-

proached from inside the superradiant phase, which is the same
critical behavior of the order parameter as for the equilibrium
transition.

The results on the critical properties of the Ising field theory at
the superradiance transition conclude the discussion of the single
mode Dicke model in the framework of the Keldysh path inte-
gral. We have shown that both the Holstein-Primakoff approach
in terms of complex bosonic variables as well as the Ising ap-
proach in terms of real Ising variables are equivalent on the level
of the quadratic, large-N limit of the theory. The critical point
of the transition, as well as the mode structure and the critical
scaling behavior have been directly derived from the quadratic
Keldysh action, which illustrates the strength of the present field
theory approach. In the following section, we discuss the exten-
sion of the Dicke model to multiple cavity modes, which con-
tains the possibility of frustrated atom-atom interactions and the
formation of a spin glass in the cavity system.

B. Ising spins in a random multi-mode cavity

In the previous section, we saw that dissipation renders the su-
perradiant transition essentially a classical phase transition with
critical exponent corresponding to a Z2 symmetry breaking, fi-
nite temperature transition. However, no signature of the non-
equilibrium nature of the steady state could be found in the long-
wavelength dynamics governing the transition since the phonon
distribution function shows a classical Rayleigh-Jeans diver-
gence F ∼ 1/ω at small frequencies. This changes drastically
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when the setup allows for multiple dissipative cavity modes,
which couple atoms and photons via a random interaction po-
tential. The random interaction potential is realized by freezing
the atoms on random positions inside the cavity and by exclud-
ing atomic self-organization with a large set of modes.

The effective, cavity mediated interactions in the case of mul-
tiple cavity modes are able to induce frustration in the effective
atom-atom interactions. At a critical frustration level, these will
drive the system into an Ising spin glass phase. Due to the pres-
ence of drive an dissipation in the quantum optical realization of
this spin glass phase, it features no analogue in condensed matter
physics and the corresponding spin glass transition does not cor-
respond to the classical finite temperature transition [113]. The
corresponding model is motivated by recent works on ultracold
atoms in cavities [113, 131, 258–260] and is described by the
master equation (134), where now the Hamiltonian

H =
ωz

2

N∑
s=1

σz
s +

M∑
l=1

ωl a†l al +
∑

s,l

gsl (a†l + al )σx
s (159)

describes the energy of M photon modes with frequency ωl and
N Ising spins with level spacingωz, interacting via coupling con-
stants gsl = g0 cos(klxs), which depend on the atomic position xs
and the photon mode function kl, such that −g0 ≤ gsl ≤ g0. The
dissipator describes the decay of each of the M photon modes
with a uniform decay rate κ,

Lρ = κ
M∑

l=1

(
alρa

†
l −

1

2
{a†l al, ρ}

)
. (160)

1. Keldysh action and saddle point equations

The corresponding Keldysh action is similar to Eq. (152) and
reads

S=
1

ωz

∫
t

∑
s

(φcs, φqs)

(
0 λc + ∂

2
t

λc + ∂
2
t 0

) (
φcs
φqs

)

+

∫
t

∑
sl

gsl

(
φcs(a∗ql + aql) + φqs(a∗cl + acl)

)
(161)

+

∫
t

∑
l

(a∗cl, a
∗
ql)

(
0 i∂t − ωl − iκ

i∂t − ωl + iκ 2iκ

) (
acl
aql

)
.

Here, the soft spin approximation has been performed and the
scaling of the coupling constants gsl in the thermodynamic limit

is implicit, i.e. gsl ∼ N−
1
2 . The thermodynamic limit is reached

by taking an extensive number of atoms N → ∞ but leaving the
number of photon modes M < ∞ finite since the consideration of
an extensive number of photon modes is physically unrealistic.
In order to obtain a large-N effective action, the photon degrees
of freedom are integrated out, leading to the atomic action in

frequency space

S=
1

ωz

∫
ω

∑
s

(φcs, φqs)

(
0 λc − ω2

λc − ω2 0

) (
φcs
φqs

)

+
∑

si

Jsi

∫
ω

(φcs, φqs)

(
0 ΛA(ω)

ΛR(ω) ΛK(ω)

) (
φci
φqi

)
. (162)

The frequency dependent terms are the symmetrized photon
Green’s functions

ΛR(ω) =
−ωp

(ω + iκ)2 − ω2
p
,

ΛK(ω) =
2iκ(ω2 + κ2 + ω2

p)∣∣∣(ω + iκ)2 − ω2
p

∣∣∣2
(163)

with an average photon frequency of the cavity ωp. The effective
coupling

Jsi =

M∑
l=1

gslgil

4
(164)

fluctuates between the values −Mg0

4
≤ Jsi ≤

Mg2
0

4
and can be ei-

ther ferromagnetic Jsi < 0 or antiferromagnetic Jsi > 0 depend-
ing on the s, i. Assuming gsl to be independently and equally
distributed for each atom, the couplings Jsi are for sufficiently
large M distributed according to a Gaussian distribution func-
tion. We set their average value J̄ ≡ 〈Jsi〉 = 0 as it lifts the frus-
tration in the system caused by fluctuating couplings but does not
modify the universal behavior of the system at the glass transi-
tion [113, 131].

The averaged partition function of the system, including the
probability distribution for the couplings Jsi is

Z =
∫

D[φs]D[Jsi]eiS+iS P , (165)

where

iS P = −
N
2

∑
s,i

J2
si

K
(166)

is the action of the random couplings Jsi, with correlations

〈JsiJlm〉 = (δs,lδi,m + δs,mδi,l)
K
N
. (167)

In this sense, the coupling of the atomic degrees of freedom to
the random variables Jsi has the same structure as the coupling of
the atoms to an external bath. However, the significant difference
to a Markovian bath, which would be δ-correlated in space and
time is that the quenched disorder, while correlated locally in
space, has infinite correlation time. The latter is expressed by
the fact that the variables Jsi are time-independent.

Averaging over all realizations of the couplings is done by a
Gaussian integration (cf. App. B), and transforms the disorder
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part, i.e., the second line of Eq. (162), to a time non-local quartic
contribution

S at-at =
iK
N

∫
ω,ν

∑
l,m

ΦΛl,m(ω)ΦΛm,l(ν), (168)

with

ΦΛl,m(ω) = (φcl, φql)

(
0 ΛA(ω)

ΛR(ω) ΛK(ω)

) (
φcm
φqm

)
. (169)

The double sum in (168) is decoupled via a Hubbard-
Stratonovich transformation, which introduces the macroscopic
fields Qαα′ , with α, α′ = c, q being Keldysh indices [113, 131].
This transformation is in general not unique but can be made
unique by requiring the equivalence

δ

δQαα′
Z = 0⇔ Qαα′ (ω, ν) = 1

N

∑
l

〈φαl(ω)φα′l(ν)〉. (170)

This identifies the Hubbard-Stratonovich field with the average
atomic correlation function. Since one is interested in the sta-
tionary, time translational invariant state,

Qαα′ (ω, ν) = 2πδ(ω + ν)Qαα′ (ω). (171)

After the Hubbard-Stratonovich decoupling, the resulting action
is quadratic in the atomic fields and they are integrated out, lead-
ing to the macroscopic action

S = iNTr

[
KΛQΛQ − 1

2
ln G̃

]
(ω). (172)

Here Λ and Q are matrices in Keldysh space and G̃ is defined as

G̃(ω) =
(
G−1

0 (ω) − 2KΛ(ω)Q(ω)Λ(ω)
)−1
. (173)

In the thermodynamic limit, the partition function is determined
by the saddle point value of the action, i.e. by the condition

δS
δQαα′

!
= 0 (174)

for all α, α′. This yields the values of the fields Qαα′ (ω) at the
saddle-point, which can be identified with the atomic response
and correlation functions. The saddle-point equations for the
atomic response and correlation functions are

QR(ω) =

(
2(λ − ω2)

ωz
− 4K

(
ΛR(ω)

)2
QR(ω)

)−1

(175)

and

QK(ω) = 4K|QR |2ΛK (QAΛA+QRΛR)

1−4K|QRΛR |2 . (176)

Additionally, due to Eq. (170), the soft-spin constraint maps to
the Q-fields according to

i
∫
ω

QK(ω) =
2

N

∑
l

〈φcl(−ω)φcl(ω)〉 = 2. (177)

In the glass phase, the spins attain temporally frozen configu-
rations, expressed by an infinite correlation time of the atomic
correlator, which is expressed by a non-zero Edwards-Anderson
parameter

qEA ≡ lim
t→∞

1
N

∑
l

〈σx
l (t)σx

l (0)〉. (178)

Consequently, the correlation function QK(ω) consists of a regu-
lar part, describing the short time dynamics and a non-vanishing
contribution at ω = 0. It can be expressed via the modified fluc-
tuation dissipation relation [261]

QK(ω) = 4iπqEAδ(ω) + QK
r (ω) (179)

in terms of the order parameter and a regular contribution
QK

r (ω). The soft-spin condition (177) together with Eq. (176)
fixes the value of the Lagrange parameter λ and therefore fully
determines the spectrum of the system. Similar to the superradi-
ant transition, the Edwards-Anderson parameter becomes non-
zero when the poles of the system become critical (approach the
real axis) and its emergence is a mechanism to stabilize the crit-
ical modes in the ordered phase.

2. Non-equilibrium glass transition

The variance of the effective, long-range atom-atom interac-
tion K is a measure of the frustration in the system and for suf-
ficiently strong frustration, the system enters a glass phase, de-
scribed by an infinite autocorrelation time of the spins and the
emergence of a non-zero Edwards-Anderson parameter qEA > 0.
This goes hand in hand with a critical continuum of modes
reaching zero, which is the characteristic feature of a critical
phase of matter. The phase diagram for the fully coherent model
has been analyzed in [131] and in [113] it was shown that the
glass phase persists in the presence of dissipation. However,
the dissipative model shows new universal features of the glass
phase, which correspond neither to a zero nor to a finite temper-
ature equilibrium transition. This is attributed to the fact that the
critical modes are described by poles in the complex plane which
are neither purely real as in the zero temperature (or quantum)
case nor purely imaginary as for the finite temperature transition.

In the presence of dissipation, a photon that is emitted from
an atom can either be absorbed by another atom, leading to an
effective atom-atom interaction, which is infinite range in space,
or decay from the cavity. The latter happens on a characteristic
time scale τp = 1/κ, which is as well the time scale for which
atoms can interact with each other by exchanging a photon be-
fore the photon decays. As a consequence, the photon decay
reduces the effective range of the atom-atom interaction in time
and reduces the strength of frustration in the system. Close to
the glass transition and in the glass phase, this leads to the emer-
gence of a crossover scale ωc = τ

−1
c , above which the spectral

properties of the system correspond exactly to a zero tempera-
ture spin glass. Below this frequency, the spectrum reveals the
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Figure 8. Spectral density A(ω) = i
(
QR(ω) − QA(ω)

)
of the atoms in

the glass phase for parameters K = 0.01, ωz = 2 and varying photon pa-
rameters ωp, κ. For frequencies below the crossover ω < ωc, A ∼

√
ω

is overdamped, corresponding to Eq. (182), while it recovers the typi-
cal thermal glass behavior A ∼ ω at intermediate frequencies ω > ωc.
Figure copied from Ref. [113]. (Copyright (2013) by The American
Physical Society)

breaking of time reversal symmetry by the dissipation and for-
mally corresponds to the dynamical universality class of dissipa-
tive quantum glasses, other examples of which are spin glasses
coupled to an ohmic bath [261–263] or a bath of metallic elec-
trons [257, 259]. The crossover frequency is

ωc = κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ω
2
p +

1
2
κ2

ω2
p + κ

2
+

(
ω2

p + κ
2
)2

2
√

Kω2
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

. (180)

and the modifications of the spectrum below this scale are due to
the damping introduced by the Markovian bath. On the normal
or disordered side of the phase diagram, the corresponding low
frequency propagator is

QR
n (ω) = Z

(
(ω + iγ)2 − α2

)−1
, (181)

describing the Ising spins as damped harmonic oscillators with
decay rate γ > 0 and frequency α, with the physical meaning
of an inverse lifetime and energy gap of the atomic excitations.
When the glass transition is approached, the gap, the inverse
lifetime and the residue Z scale to zero simultaneously and the
atomic response in the glass phase

QR
g = Z̄

(
ω2 + γ̄|ω|

)− 1
2

(182)

is non-analytic and can no longer be interpreted as a harmonic
oscillator. The broken time reversal invariance manifests itself
in both parameters γ, γ̄ � 0 being non-zero, which modifies the
low frequency dynamics in the entire glass phase towards a dis-
sipative quantum glass. This is for instance expressed by a spec-
tral density, which features an anomalous square root behavior
A(ω) = −2Im(QR(ω)) ∼

√
|ω| for small frequencies and there-

fore has a non-analytic response at zero frequency, see Fig. 8.

The latter leads to a characteristic algebraic decay of the photon
correlation function, as discussed below. The universality class
of the present dissipative quantum glass transition is determined
by the critical exponents at the transition, which describe the
scaling of the parameters α, γ,Z as a function of δ = |K − Kc|. It
is summarized in the equations

αδ =
√

2(ω2
p+κ

2)

8
√

K3κ

∣∣∣∣ δlog(δ)

∣∣∣∣ 3
2

γδ =
ω2

p+κ
2

16K2κ

∣∣∣∣ δlog(δ)

∣∣∣∣2
Zδ =

ωp(ω2
p+κ

2)

8
√

K5κ2

∣∣∣∣ δlog(δ)

∣∣∣∣3
, (183)

which show the typical logarithmic correction to scaling at a
quantum glass transition and identify the critical exponents. In-
dicated by the scaling behavior, dissipative and coherent dynam-
ics rival each other when approaching the transition, separating
this glass transition from equilibrium transitions and the previ-
ously discussed Dicke transition, which are either fully coherent
(quantum) with γ = 0 or fully dissipative (classical) with α = 0
sufficiently close to the transition. The present glass transition
has therefore no counterpart in static equilibrium physics and is
termed dissipative quantum glass transition. Similar behavior is
present in system bath settings in equilibrium, where the bath
however not only imprints a finite temperature to the system but
as well modifies its spectral properties [259, 261, 262]. What
these situations share in common is that the effective theory, after
elimination of the bath variables, obeys no time reversal symme-
try, which ensures the same asymptotic universal behavior as in
the case of the Markovian photon loss in the present system.

3. Thermalization of photons and atoms in the glass phase

As typical for many open quantum systems (for exceptions,
see the discussion in Sec. IV), the statistical properties of the
excitations are described by a low energy effective temperature
(LET) and a corresponding thermal distribution of the excita-
tions. However, as has been found for the single mode Dicke
model in the normal as well as in the superradiant phase, the
LET for the photonic and the atomic subsystem did not coincide,
i.e., the subsystems have not thermalized but are held at differ-
ent temperatures corresponding to their individual coupling to a
bath [112]. This dramatically changes in the present system with
multiple photon modes. As frustration is increased by driving
the variance K towards the critical value Kc, atoms and photons
begin to thermalize towards the same, shared LET. The distri-
bution function F of photonic or atomic modes is obtained by
solving the fluctuation dissipation relation

QK(ω) = QR(ω)Fat(ω) − Fat(ω)QA(ω) (184)

for the atomic Green’s functions. It leads to an atomic LET

Teff =
ω2

p + κ
2

4ωp
(185)
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0
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1.1

1.2

1 +
(τ0
τ
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τω0

2π

g(2)(τ)

1 + 2e−2κτ

τc =
2π

ωc

Figure 9. Algebraic decay of the photon four point correlation function
g(2)(τ) = 〈a†(0)a†(τ)a(τ)a(0)〉/n2 at long times, for parameters ωp =

1, κ = 0.4, ωz = 6,K = 0.16, see also Ref. [113]. The algebraic decay
sets in at the inverse crossover frequency ωc, given by Eq. (180). The
corresponding exponential decay of g(2) in the normal phase is plotted
for comparison. Figure copied from Ref. [113]. (Copyright (2013) by
The American Physical Society)

in the glass phase, which coincides with the photonic LET [113].
The thermalization of the two subsystems is a consequence of
the disorder induced effective long range interactions, which re-
distribute energy between the different modes and enable equili-
bration even in the presence of the Markovian dissipation in the
photon sector. In the paramagnetic phase, the distribution func-
tions of atoms and photons are identical for frequencies ω > α
larger than the gap, but deviate from each other for lower fre-
quencies. The elementary excitations above this frequency are
strongly correlated and can not be seen as weakly dressed pho-
tons or atoms. As a consequence, the observables in the critical
glass phase are dominated by the universal low energy behavior
of the glass propagator (182) and thermal statistics of the excita-
tions.

The strong light-matter interactions not only lead to thermal-
ization of the atomic and photonic subsystems, they also fea-
ture a complete imprint of the glass dynamics of the atoms onto
the cavity photons. This results in universal spectral proper-
ties of the photonic response, as has been shown in Ref. [113],
and concerns a complete locking of both subsystem’s low en-
ergy response properties. The photons form a photon glass state,
which features a large, incoherent population of photon modes,
signaled by a finite Edwards-Anderson parameter in the photon
correlation function

GK
ph

(ω) = 4πδ(ω)q̃EA +GK
reg

(ω), (186)

which shows the same scaling behavior as the atomic Edwards-
Anderson parameter close to the glass transition q̃EA ∼ qEA. A

finite q̃EA implies long temporal memory in photon autocorrela-
tion functions and an extensive number of photons permanently
occupying a continuum of high energy modes. The latter is re-
vealed by an algebraic decay of the system’s correlation func-
tions, as for instance for the four point (or g(2)) correlation func-
tion, which is shown in Fig. 9.

The photon response and correlation functions are easily ac-
cessible via cavity photon output measurements, and therefore
represent the natural observables for the detection of the glass
dynamics in cavity QED experiments. In fact, in Ref. [113], it
has been demonstrated that a complete characterization of the
glass phase can be performed by different but standard photon
output measurements, such as homodyne detection and inten-
sity correlation measurements. Formally, the photon Green’s
functions can be obtained from the Keldysh action formalism by
introducing source fields μαα′ in the microscopic action, which
couple to the photon variables. After integrating out the pho-
ton variables in the action, the photon Green’s functions are then
obtained via functional derivatives with respect to these source
fields. This standard field theory technique relates the photon
Green’s functions to the solution for the atomic response and
correlation functions [113].

4. Quenched and Markovian bath coupling in the Keldysh formalism

The Keldysh path integral formalism represents a theoretical
approach which incorporates in a very straightforward way the
coupling of the system to a non-thermal bath. Here we com-
pare quenched disorder and Markovian baths in more detail. As
shown above in the present section, the coupling of the system
variables to quenched disorder, realized by the variables Jlm, is
equivalent to the coupling to a bath with infinite correlation time,

〈Jlm(t)Jl′m′ (t′)〉 =
K
N

(δll′δmm′ + δlm′δml′ ). (187)

This represents the opposite limit of a Markovian bath, which
has a typical correlation time that is much shorter than the sys-
tem correlation time. As a consequence, at each single system-
bath interaction event, the Markovian bath immediately equi-
librates and looses all its memory on the interaction. On the
other hand, the quenched bath equilibrates infinitely slowly and
keeps memory on each single system-bath interaction. As a con-
sequence, it introduces effective temporally long range interac-
tions between the system variables. These tend to slow down the
system, pronouncing its ω = 0 correlations as expressed by the
Edwards-Anderson parameter.

In an equilibrium formalism, disordered systems have to be
dealt with a computationally demanding replica method [256,
257], which is furthermore physically far less transparent than
the Keldysh formalism, which thus represents a convenient ap-
proach to disordered systems. In open quantum systems, where
disorder, i.e., the coupling to a quenched bath, comes together
with the dissipation introduced by a Markovian bath, both types
of bath couplings compete with each other, leading in the present
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glassy system to strongly modified spectral properties, which
mirror the effect of the Markovian bath by a crossover from non-
equilibrium to equilibrium scaling behavior.

IV. NON-EQUILIBRIUM STATIONARY STATES: BOSONIC
MODELS

Recent years have seen tremendous progress in experiments
on exciton-polaritons in semiconductor microcavities (for re-
views see, e.g., Refs. [13, 148]), making these systems the
prime candidates for studying condensation phenomena under
non-equilibrium conditions. As we have already mentioned in
Sec. I C 2, the fundamental difference from conventional con-
densates is due to the finite life-time of exciton-polaritons, which
makes continuous driving necessary to maintain a steady popu-
lation.

What makes these systems genuinely driven-dissipative, is
that they are coupled to several baths, or to time-dependent driv-
ing fields, with which they exchange particles and energy. In
the case of exciton-polaritons, which are hybrid quasiparticles
composed of a Wannier-Mott exciton and a photon, the photonic
component can leak out through the mirrors forming the cav-
ity. Thus, the electromagnetic vacuum outside the cavity serves
as a reservoir into which particles are lost. These losses have
to be compensated by laser driving. In many experiments, the
driving laser is far blue-detuned from the bottom of the lower
polariton band, and thus coherently creates high-energy excita-
tions. During the relaxation of the latter, which is caused by
phonon-polariton and stimulated polariton-polariton scattering,
coherence is quickly lost. In other words, lower polaritons can
be regarded as being pumped not directly by the laser but rather
by a reservoir of high energy excitons. Several approaches have
been used to model this effectively incoherent pumping mecha-
nism [159, 192, 264]. In this context, the description of a driven-
dissipative condensate introduced in Sec. II B 2 might be con-
sidered as a toy model, which hides all the microscopic details
associated with coherent excitation and subsequent relaxation of
high energy excitons in the coupling of the system to several
independent baths.

In the following, we review recent investigations of the uni-
versal long-wavelength scaling properties of driven-dissipative
condensates [19, 26, 181, 265–267]. Then, the precise details
of the chosen model cease to matter: according to the power-
counting arguments given in Sec. II C, for any choice of a mi-
croscopic model the effective long-wavelength description is
given by the semiclassical Langevin equation for the conden-
sate field (80). In fact, the latter can be derived in the spirit of
Ginzburg-Landau theory for continuous phase transitions [190]
by writing down the most general equation that is compatible
with the symmetries of the problem. The reasoning behind such
an approach is that the universal properties are fully determined
by the spatial dimensionality and symmetries of a physical sys-
tem [84, 86, 182].

A comparison in terms of symmetries of systems exhibiting

driven-dissipative Bose-Einstein condensation with systems in
thermal equilibrium can be given most conveniently on the basis
of the semiclassical limit of Sec. II C: indeed, the equation of
motion (80) for the classical field takes the form of the Langevin
equations that are used to model universal dynamics in ther-
mal equilibrium phenomenologically [1]. Structurally, equa-
tion (80) is similar to model A for a non-conserved order pa-
rameter, with the additional inclusion of reversible mode cou-
plings [268]. However, the equilibrium symmetry discussed in
Sec. II D 1, which is present in all models of Ref. [1], is violated
in driven-dissipative systems. This violation is due to pumping
and loss terms, which moreover lead to the absence of parti-
cle number conservation. The latter typically is associated with
the symmetry under quantum phase rotations (see Sec. II D 4).
This is another crucial difference to Bose-Einstein condensation
in equilibrium: there, particle number conservation entails the
existence of a slow dynamical mode that modifies the universal
properties, and is taken into account in model F of Ref. [1]. To
summarize, driven-dissipative condensation differs from Bose-
Einstein condensation in equilibrium by the absence of the equi-
librium symmetry and the symmetry under quantum phase ro-
tations. This difference lies at the heart of the novel universal
behavior out of equilibrium discussed in the following.

In Sec. II B 2, we analyzed driven-dissipative condensates
within mean-field theory, disregarding fluctuations around the
homogeneous condensate mode. However, in order to access
universal aspects such as the behavior of correlations of the con-
densate field at large distances or dynamical critical phenomena
at the condensation transition, one has to carefully include the
effect of fluctuations. This can be done gradually — first inte-
grating out short-scale fluctuations and moving on to account for
fluctuations on larger and larger scales — by means of RG meth-
ods, such as the FRG discussed in Sec. II E. Then, an intrigu-
ing question is, whether the non-equilibrium nature of driven-
dissipative condensates at the microscopic scale becomes more
or less pronounced under renormalization. In the former case,
effective equilibrium is established at large scales, while in the
latter case, the universal physics is expected to be profoundly
different from its equilibrium counterpart. Which of these sce-
narios is realized depends crucially on the spatial dimensionality
of the system: in 3D the long-wavelength regime is effectively
thermal, whereas in one- and two-dimensional systems the devi-
ation from equilibrium is relevant in the RG sense, and these sys-
tems are governed by strongly non-equilibrium RG fixed points.

To see how this comes about, we require a quantitative mea-
sure for the deviation from equilibrium conditions in a driven-
dissipative condensate. In Sec. II D 1 we discussed that thermal
equilibrium requires the ratios of coherent to corresponding dis-
sipative couplings to take a common value. This is illustrated in
Fig. 6 and formalized in Eq. (101). In turn, it implies that any
deviation Kc/Kd � uc/ud in the values of these ratios directly
indicates a deviation from equilibrium conditions. Hence, the
quantity λ defined by [19]

λ = −2Kc

(
1 − Kduc

Kcud

)
(188)
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can serve as a quantitative measure for the departure from ther-
mal equilibrium. Note that λ = 0 in equilibrium, and that λ is
well-defined also for Kd = 0, which is the microscopic value
of the diffusion constant Kd in the model for driven-dissipative
condensates introduced in Sec. II B 2. It turns out to be most
convenient to combine λ with the quantities [19]

D = Kc

(
Kd

Kc
+

uc

ud

)
, Δ =

γ

2ρ0

⎛⎜⎜⎜⎜⎝1 + u2
c

u2
d

⎞⎟⎟⎟⎟⎠ (189)

(see Sec. II B 2 for the definition of the noise strength γ and the
mean-field condensate density ρ0) to define the dimensionless
non-equilibrium strength as [5]:

g = Λd−2
0

λ2Δ

D3
, (190)

where Λ0 is the UV momentum cutoff. Thus, the answer to
the question of whether equilibrium vs. non-equilibrium uni-
versal behavior is realized in driven-dissipative condensates, is
encoded in the RG flow of g.

In the condensed phase, the RG flow of g is driven domi-
nantly by fluctuations of the gapless Goldstone mode discussed
in Sec. II D 6, i.e., by fluctuations of the phase of the conden-
sate field. The latter were shown [269–272] to be governed by
the Kardar-Parisi-Zhang (KPZ) equation [73], in which λ de-
fined in Eq. (188) appears as the coefficient of the characteristic
non-linear term, see Eq. (199). Below in Sec. IV A, we present
an alternative mapping of the long-wavelength condensate dy-
namics to the KPZ equation, starting from the Keldysh action in
Eq. (73) and integrating out the gapped density mode within the
Keldysh functional integral. As a consequence of the mapping
to the KPZ equation, the RG flow of g in d spatial dimensions is
at the one-loop level given by [5]

∂�g = − (d − 2) g +
(2d − 3) Cd

2d
g2, (191)

where � = ln(Λ/Λ0), Λ is the running momentum cutoff, and
Cd = 21−dπ−d/2Γ(2 − d/2) is a geometric factor. The key role
that is played by spatial dimensionality becomes manifest in the
canonical scaling of g, which is encoded in the first term on the
RHS of the flow equation: to wit, g is relevant in 1D where
d−2 < 0, marginal in 2D, and irrelevant in 3D since then d−2 >
0. In 2D, the loop correction — the second term on the RHS of
Eq. (191) — is positive, making g marginally-relevant. This has
far-reaching consequences for a driven-dissipative condensate in
which the microscopic value of g is small, i.e., which is close to
equilibrium: upon increasing the scale at which the system is ob-
served, the non-equilibrium nature is more pronounced in one-
and two-dimensional systems, whereas effective equilibrium is
established on large scales in three-dimensional systems. In 1D
the canonical scaling towards strong coupling is balanced at an
attractive strong-coupling fixed point (SCFP) g∗ by the loop cor-
rection. This term vanishes at d = 3/2, and for d > 3/2 the one-
loop equation does not have a stable SCFP, which, however, is
recovered in a non-perturbative FRG approach [252–254]. The

d1 2 3

g

1

Figure 10. Equilibrium vs. non-equilibrium phase diagram for driven-
dissipative condensates (cf. Ref. [252]). The line g = 1, where g is
defined in Eq. (190) and measures the deviation from equilibrium con-
ditions, separates the close-to-equilibrium regime for g < 1 from the
strong-coupling, far-from-equilibrium regime at g > 1. Red dots indi-
cate the fixed-point values of g that are reached if the RG flow is initial-
ized in the close-to-equilibrium regime. In dimensions one and two, the
equilibrium fixed point at g = 0 is unstable, and the RG flow along the
dashed lines is directed towards the blue line of strong-coupling fixed
points. Thus, a system that is microscopically close to equilibrium will
exhibit strongly non-equilibrium behavior at large scales. On the other
hand, in three spatial dimensions, an initially small value of g is dimin-
ished under renormalization, and the universal large-scale behavior is
governed by the effective equilibrium fixed point at g = 0. The green
line indicates the existence of a critical value gc in d > 2, corresponding
to a transition between the effective equilibrium phase and a true non-
equilibrium phase that is realized for large microscopic values g > gc.

RG flow of g that is found within this approach is illustrated
qualitatively in Fig. 10, which shows that also in 2D the flow is
out of the shaded close-to-equilibrium regime with g < 1, and
towards a strong-coupling, non-equilibrium fixed point. The sit-
uation is quite different in 3D: in this case, if the microscopic
value of g is small, at large scales an effective equilibrium with a
renormalized value g→ 0 is reached. However, for d > 2, there
exists a critical line of unstable fixed points gc, separating the
basins of attraction of the equilibrium and non-equilibrium fixed
points, for g < gc and g > gc respectively. Thus, in addition
to the effective equilibrium phase, a true non-equilibrium phase
may be reached in systems that are far from equilibrium even at
the microscopic level also in 3D [273]. The properties of this
phase have not been explored so far.

The rest of this section is organized as follows: in Sec. IV B,
we review the dynamical critical behavior at the driven-
dissipative condensation transition in 3D [26, 181, 274], which,
according to the above discussion, is governed by an effective
equilibrium fixed point. Signatures of the non-equilibrium na-
ture of the microscopic model are present in the asymptotic fade-
out of the deviation from equilibrium at large scales. In contrast,
the universal scaling behavior of driven-dissipative condensates
in both 2D [19] and 1D [265–267] is quite distinct from the equi-
librium case and governed by the SCFP of the KPZ equation.
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We review the resultant physical picture in Secs. IV C and IV D,
respectively.

A. Density-phase representation of the Keldysh action

Especially in reduced dimensions, at large scales the proper-
ties of condensates are vitally influenced by fluctuations of the
Goldstone mode. To name an example, in 2D, both in [275]
and out of equilibrium [19] these fluctuations lead to a sup-
pression of long range correlations. In Ref. [19], an effective
long-wavelength description of a driven-dissipative condensate
with the condensate phase as the single dominant gapless de-
gree of freedom (cf. Sec. II D 6) has been formulated starting
from the Langevin equation (80) for the complex order parame-
ter. Here we present an alternative and direct derivation within
the Keldysh functional integral formalism [102, 178]. It is based
on the Keldysh action in terms of which the microscopic theory
of a bosonic many-body system with particle loss and gain is
formulated in Sec. II B 2. This differs from the derivation pre-
sented in [19], which was based on the detour over the Langevin
equation (80) that effectively captures the physics on a meso-
scopic scale (cf. Fig. 5 and the discussion in Sec. II C). On this
level, amplitude fluctuations can be eliminated leading to the
KPZ equation for the phase. In this sense, we establish here a
closer link between microscopic and mesoscopic theories, which
is both appealing from a theoretical point of view and brings
about a number of technical advantages. For example, physical
observables are usually represented by quantum mechanical op-
erators or equivalently in terms of fields in a Keldysh functional
integral description of the microscopic theory; here our approach
comes in handy as it yields the effective long-wavelength form
of generating functionals for expectation values and correlation
functions of these observables which can then be evaluated fur-
ther utilizing established approximation strategies.

Apart from specific applications, the derivation of the action
for the Goldstone mode presented here deepens our understand-
ing of general properties of the Keldysh formalism with regard
to phase rotation symmetries. The crucial point is, that classical
phase rotations introduced in Sec. II D 4 are a symmetry of the
Keldysh action both in a closed system and in the presence of
terms that describe incoherent pumping and losses, and as we
have seen in Sec. II D 6, the spontaneous breaking of this sym-
metry is sufficient to ensure the appearance of a Goldstone mode
that corresponds to fluctuations of the phase of the order param-
eter [159, 191, 192, 276]. In the basis of classical and quantum
fields φc,q such phase rotations become φc,q �→ φc,qeiα, showing
that the Goldstone mode corresponds to joint phase fluctuations
of both the classical and the quantum fields. Therefore, in order
to derive the action for the Goldstone boson we represent the
fields in the form

φc =
√
ρeiθ, φq = ζeiθ, (192)

where the density ρ is real whereas ζ is a complex variable.

The low-energy effective action for the Goldstone boson θ in a
driven-dissipative system can be derived by integrating out fluc-
tuations of the density ρ in Eq. (192) in the Keldysh partition
function with action S given by Eq. (73),

Z =
∫

D[φc, φ
∗
c, φq, φ

∗
q]eiS =

∫
D[ρ, θ, ζ, ζ∗]eiS . (193)

The equality of the integrals over complex classical and quan-
tum fields and the variables introduced in the transforma-
tion Eq. (192) follows from the fact that this transforma-
tion leaves the integration measure invariant, i.e., we have
D[φc, φ

∗
c, φq, φ

∗
q] = D[ρ, θ, ζ, ζ∗]. Note that this would not be the

case if instead of the density we introduced the amplitude of φc
as a degree of freedom. Our goal is then to treat the integrals over
ρ and ζ in Eq. (193) in a saddle-point approximation, which, as
we show below, is justified since fluctuations of the density are
gapped in the ordered phase with rd < 0 and hence expected to
be small. The first step is thus to find the saddle point, i.e., the
solutions to the classical field equations (cf. Eqs. (74))

δS
δρ
= 0,

δS
δζ
= 0. (194)

For rd < 0, we recover the mean-field solution of Sec. II B 2,
given by ρ = ρ0 = −rd/ud = −rc/uc (note that the last equality
can always be satisfied by performing a gauge transformation
to adjust the value of rc as described in Sec. II B 2) and ζ =
0. We proceed to expand the action Eq. (73) to second order
in fluctuations of ρ and ζ around the saddle point. Note that
the quantum vertex in the action Eq. (73) that is cubic in the
quantum fields does not contribute at this order. Denoting the
density fluctuations as π = ρ − ρ0 we find

S = 2

∫
t,x

(√
ρ0

{
−ζ1

[
∂tθ + Kc (∇θ)2

]
+ Kcζ2∇2θ

− (ucζ1 − udζ2) π
}
+ i (γ + 2udρ0) |ζ |2

)
, (195)

where ζ1 and ζ2 are, respectively, real and imaginary parts of
ζ. Here, of all terms involving the products of fluctuations ζ1π
and ζ2π we only keep the dominant ones in the long-wavelength
limit, i.e., we neglect contributions containing temporal deriva-
tives ζ2∂tπ, ζ1π∂tθ, and spatial derivatives ζ1∇2π, ζ2∇π · ∇θ, and
ζ1π (∇θ)2 which are both small as compared to the mass-like
contributions ucζ1π and udζ2π in Eq. (195) for the Goldstone
mode θ, in the regime ω → 0 for q → 0. Note that terms
of higher order in π and ζ are contained in the original action
Eq. (73) both in contributions involving derivatives and in the co-
herent and dissipative vertices. The validity of the saddle-point
approximation, therefore, is restricted to the low-frequency and
low-momentum sector in a weakly interacting system.

The action (195) resulting from this expansion is linear in π
and hence integration over this variable is trivial and yields a
δ-functional, which in turn facilitates integration over the imag-
inary part ζ2 of ζ,

Z =
∫

D[θ, ζ1, ζ2] δ[ucζ1 −udζ2]eiS ′ =

∫
D[θ, θ̃] eiS KPZ , (196)
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where at each step a normalization factor is implicitly included
in the integration measure, ensuring Z = 1 [102, 178]. In the last
equality we replaced ζ1 by the KPZ response field θ̃ = i2

√
ρ0ζ1,

and the KPZ action S KPZ is given by [5, 102]

S KPZ =

∫
t,x
θ̃
[
∂tθ − D∇2θ − λ

2
(∇θ)2 − Δθ̃

]
, (197)

where the diffusion constant, non-linear coupling, and noise
strength, respectively, are expressed in terms of the microscopic
parameters in the original action Eq. (73) as

D = Kc
uc

ud
, λ = −2Kc, Δ =

γ + 2udρ0

2ρ0

⎛⎜⎜⎜⎜⎝1 + u2
c

u2
d

⎞⎟⎟⎟⎟⎠ . (198)

Along the lines of the derivation of the Langevin equation (80)
from the action in the semiclassical limit in Eq. (79), the KPZ
action can be seen to be equivalent to the KPZ equation, which
reads

∂tθ = D∇2θ +
λ

2
(∇θ)2 + η, (199)

where the stochastic noise η has zero mean, 〈η(X)〉 = 0, and
is Gaussian with second moment 〈η(X)η(X′)〉 = 2Δδ(X − X′).
Originally [2, 73], Eq. (199) was suggested by Kardar, Parisi,
and Zhang as a model to describe the growth of a surface, e.g.,
due to the random deposition of atoms. In this context, h =
θ is the height of the surface, and the origin of the non-linear
term is purely geometric [73]: the growth is assumed to occur
in a direction that is locally normal to the surface and at a rate
ds/dt = λ; If an increment ds = λdt is added along the normal,
the corresponding change of the surface height is

dh =
√

(λdt)2 + (λdt∇h)2 ≈
[
λ +
λ

2
(∇h)2

]
dt. (200)

Removing from dh/dt the average deposition rate λ by a trans-
formation to a co-moving frame, h(t, x) �→ h(t, x) + λt, and
adding a term D∇2h that describes surface tension, we obtain
the (deterministic part of the) growth equation (199). Intuitively,
it seems clear that the growth of a surface represents a genuine
non-equilibrium process. More formally, this can be seen by not-
ing that the non-linear term in the KPZ equation does in general
not satisfy a potential condition [5].17

17 The most general Langevin equation describing (near-) equilibrium dynamics

contains both (i) relaxational and (ii) reversible contributions to the determin-

istic dynamics [5]. The linear diffusion term in Eq. (199) is of type (i): it can

be written as −δH/δθ, whereH = D
2

∫
x (∇θ)2, and this term alone would cor-

respond to relaxation to an equilibrium stationary distribution ∝ e−H/Δ. The

non-linear term, on the other hand, can not be represented as the derivative

of a Hamiltonian functional and is hence of type (ii). However, for reversible

contributions to be compatible with a thermal stationary state, they have to

satisfy a potential condition. This is not the case for the non-linear term in the

KPZ equation in dimensions d > 1.

As pointed out above, an alternative derivation of the KPZ
equation (199) as the effective long-wavelength description of
driven-dissipative condensates starts from the Langevin equa-
tion (80) [19]. Then, the coefficients in the KPZ equation are
slightly different, and they are given by Eqs. (188) and (189)
instead of Eq. (198). To be specific, the differences are (i) the
absence in Eq. (189) of the tree-level shift ∝ udρ0 of the noise
strength Δ in Eq. (198), and (ii) the absence in Eq. (198) of the
terms proportional to Kd in Eqs. (188) and (189). (i) is due to
the fact that in the Langevin equation (80), which is valid in
the semiclassical limit (see Sec. II C), the quantum vertex that is
proportional to φ∗cφcφ

∗
qφq in the action in Eq. (73) is neglected.

(ii) results from the absence of the diffusion term Kd in the mi-
croscopic model (73); on the other hand, in the Langevin equa-
tion (80) this term is included, as it is generated by integrating
out fluctuations with wavelengths below the mesoscopic scale
on which the Langevin equation is valid (cf. Fig. 5).

Starting from the effective long-wavelength description of the
condensate dynamics derived in this section, the universal scal-
ing properties can be obtained from an RG analysis. For the KPZ
equation, this procedure, which leads at lowest order in a pertur-
bative expansion in λ to the one-loop flow equation (191),18 is
described, e.g., in Refs. [5, 102].

For completeness, we note that in the absence of drive and
dissipation, i.e., for Kd = rd = ud = 0, an analogous derivation
for a weakly interacting Bose gas in thermal equilibrium leads
to an effective action for the phase alone that is given by

S =
∫

t,x
θ̃
(
∂2

t − c2∇2
)
θ, (201)

where c =
√

2Kcucρ0 is the speed of sound, and describes the
dissipationless propagation of sound waves with linear disper-
sion ω = cq. To actually describe thermal equilibrium, this
action has to be supplemented by infinitesimal regularization
terms, discussed at the end of Sec. II B 1.

Finally, let us comment on the relation of the approach pre-
sented here to a Bogoliubov expansion in fluctuations of the
complex fields around the mean field average values, δφc =

φc −
√
ρ0 and δφq = φq. The latter can be recovered formally

by expanding the transformation Eq. (192) around the arbitrarily
chosen value θ = 0, which yields

φc =
√
ρ0 +

π

2
√
ρ0

+ i
√
ρ0θ, φq = ζ, (202)

and interpreting π and θ as the real and imaginary parts of
δφc. In the KPZ action in Eq. (197), such an expansion in θ
would amount to neglecting the non-linearity. Without the non-
linearity, however, the KPZ action describes a free field cou-

18 Due to symmetries of the KPZ equation (for a comprehensive discussion see

Ref. [277]), the RG flow is described by the single parameter g defined in

Eq. (190).
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pled to a thermal bath. In other words, by performing a Bogoli-
ubov approximation the non-equilibrium character that is intrin-
sic to the microscopic model with action (73) is lost in the long-
wavelength limit. Formally, this failure is due to the fact that
the saddle-point approximation is not valid for low-momentum
modes in the Goldstone direction since they are not gapped.

B. Critical dynamics in 3D

In three spatial dimensions, the deviation from thermody-
namic equilibrium conditions, which is quantified by the value
of g defined in Eq. (190), is irrelevant in the RG sense (cf.
Eq. (191)). Hence, at large scales, effective equilibrium is es-
tablished. This immediately implies that the overall picture of
Bose-Einstein condensation in thermal equilibrium in 3D re-
mains valid also in the driven-dissipative context: in particu-
lar, the mean-field analysis of Sec. II B 2, which predicts a con-
tinuous phase transition beyond which the classical phase ro-
tation symmetry (cf. Sec. II D 4) is spontaneously broken and
off-diagonal long-range order is established, is modified quanti-
tatively but not qualitatively once fluctuations around the mean-
field condensate are taken into account. (Note, however, that in
equilibrium the condensation transition is induced by lowering
the temperature to a critical value, whereas driven-dissipative
condensation is established by tuning the single-particle pump
rate.) Yet, the non-equilibrium nature of the driven-dissipative
system leaves its mark on the approach to the long-wavelength
thermalized regime in a fully universal way.

An equilibrium system, fine-tuned to a critical point, beyond
which spontaneous symmetry breaking occurs via a second or-
der phase transition, exhibits universal behavior. This is wit-
nessed in non-analyticities in the free energy, and in the long-
range decay properties of correlation and response functions.
The decay properties are then governed by power laws, freed
from the generic exponential cutoff ∼ e−r/ξ at large distances
r due to the divergent correlation length ξ → ∞, defining the
critical point. While the concept of a free energy is not mean-
ingful in a non-equilibrium context, correlations and responses
can be considered also in the latter case. Then, universality en-
tails that the algebraic long-wavelength, long-time decay of any
correlation or response function can be characterized in terms
of a set of critical exponents, which do not depend on the mi-
croscopic details of the problem but rather on symmetries and
dimensionality. The critical point is fully characterized by this
set of critical exponents.

We emphasize a crucial difference between the critical be-
havior in strictly non-interacting theories described by quadratic
Hamiltonians or quantum master equations, and the more
generic — but also much more complex — case of interact-
ing problems (for an example where a Gaussian fixed point is
physically important, cf. Sec. III A). The non-interacting criti-
cal theories are described by a so-called Gaussian fixed point
of the RG flow, while the interacting ones are associated to a
so-called Wilson-Fisher fixed point. The structural difference

between these fixed points is reflected by the fact that the values
of the critical exponents differ; in particular, at a Gaussian fixed
point, all exponents are rational numbers, reflecting the valid-
ity of canonical power counting (cf. Sec. II C), while one ob-
tains non-trivial rational or non-rational numbers mirroring the
importance of strong long-wavelength fluctuation corrections at
a Wilson-Fisher fixed point. The latter is more stable than the
Gaussian one (where, in fact, all couplings are relevant in the
sense of the RG), and thus the physically relevant one even if
interactions are small on the microscopic scale. This is intuitive,
taking into account that critical behavior deals with the longest
distances and timescales in a physical system.

The impact of fluctuations on the values of the critical expo-
nents can be described quantitatively in the framework of the
renormalization group, which provides a systematic way to deal
with the intricate long-wavelength, low-momentum divergences
caused by the divergent correlation length. The critical behavior
of driven-dissipative systems in 3D was investigated in [26, 181]
based on the functional renormalization group approach dis-
cussed in Sec. II E, and in [274] using the field theoretic per-
turbative renormalization group [5]. These studies gave rise to
the following picture of driven criticality:

The RG fixed point is purely dissipative (see Fig. 6 (c)), i.e.,
all complex couplings rotate to the imaginary axis. However,
it is the approach to this fixed point that contains universal in-
formation, and this makes it possible to distinguish equilibrium
from non-equilibrium critical behavior. The following key prop-
erties are identified:

(i) Asymptotic thermalization of correlation functions. —
Both the static and dynamical critical exponents, governing, e.g.,
the asymptotic decay of the spatial and temporal first order co-
herence functions, are found to take the same values as in the
corresponding equilibrium problem. This can be made plausible
by the fact that the fixed point couplings indeed lie on a sin-
gle ray in the complex plane — the imaginary axis. More for-
mally, it is understood in terms of an emergent symmetry imply-
ing asymptotic emergence of detailed balance, or thermalization,
at large spatial or temporal distances.

(ii) Universal decoherence. — The approach to the purely
dissipative fixed point still hosts information on the underlying
quantum dynamics. The fadeout of this coherent dynamics is
described by a new critical exponent, which can be shown to
be independent of the static and dynamical exponents, i.e., it
does not relate to the latter by scaling relations. Moreover, it
can be seen that no more independent exponents could possi-
bly be found [26, 274]. This is because the maximum number
of independent exponents is determined by the maxium num-
ber of independent microscopic mass scales [84], which are, in
the quadratic part of the action (79), given by the real parameters
rc, rd, and γ. In addition, a coupling f to an external source field,

corresponding to a term
∫

t,x f
(

j∗cφq + j∗qφc + c.c.
)

in the action,

has to be taken into account, leading in total to four independent
parameters. No more independent scales can be added to the
quadratic part of the action without violating the conditions of
(Anti-)Hermiticity and conservation of probability as explained
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in Sec. II B 1. Correspondingly, the set of four independent crit-
ical exponents (the correlation length exponent ν, the anoma-
lous dimension η, the dynamical critical exponent z, and new
exponent) is maximal. Finally, the value of this exponent distin-
guishes equilibrium from non-equilibrium conditions. This can
be understood from Fig. 6: the exponent describes the fadeout
of coherent couplings, i.e., the approach to the imaginary axis,
governed by a power law ∼ Λ−ηr , where ηr is the new exponent.
In the equilibrium case, all couplings rotate uniformly, giving
rise to ηr ≈ −0.143 within the FRG approach of Refs. [26, 181].
In contrast, in the non-equilibrium case, the slowest approach to
the real axis is given by ηr ≈ −0.101. The value of the non-
equilibrium exponent can also be determined analytically from
the field theoretic perturbative renormalization group in a dimen-
sional expansion, yielding the result (to two-loop order) [274]19

ηr = −
2 (4 − d)2

25
ln

4

3
. (203)

Specifying to d = 3 dimensions, we obtain ηr ≈ −0.023. The
discrepancy between this value and the one obtained from the
FRG stated above (ηr ≈ −0.101) indicates that the two-loop
computation underestimates fluctuation corrections in three di-
mensions.20 Moreover, (possibly significant) quantitative cor-
rections to the values of critical exponents should also be ex-
pected from FRG calculations that go beyond the truncation used
in Refs. [26, 181].

(iii) Observability. — The drive exponent manifests itself, for
example, in the frequency and momentum resolved dynamical
single particle response as probed in homodyne detection, see
Ref. [181] for details. It thus corresponds to a direct experi-
mental observable, though its small value poses a challenge for
experimental observation.

In summary, it is found that the correlation functions (both
static and dynamic) thermalize, and show identical univer-
sal behavior to an equilibrium critical system with the same
symmetries. However, the dynamical response functions con-
tain universal information distinguishing equilibrium from non-
equilibrium systems. The microscopic drive conditions are thus
witnessed even at the largest macroscopic distances in a fully
universal way.

In the following, we review how the results summarized
above can be obtained from an open-system functional RG ap-
proach [26, 181]. The basic ingredients of this method are dis-
cussed in Sec. II E.

1. Effective action for driven-dissipative condensation

The Wetterich equation (132) describes how the scale-
dependent effective action ΓΛ evolves from the microscopic ac-

19 The exponent ηc calculated in Ref. [274] is related ηr via ηr = ηc − η.
20 We note that in Ref. [181] erroneously the value of ηc from the field theo-

retic RG was directly compared to ηr obtained from the FRG. Similarly, in

Ref. [274] the value of ηc was by mistake compared to ηA of Ref. [181].

tion S at Λ = Λ0 to the full effective action Γ at Λ → 0, as
fluctuations with momenta larger than the cutoff Λ are integrated
out, and the latter is gradually lowered. It is an exact non-linear
differential equation for the functional ΓΛ. In the absence of an
exact solution, suitable schemes to approximate the functional
differential equation have to be found. For the analysis of crit-
ical behavior, progress can be made by choosing an ansatz for
ΓΛ that has a similar structure as the microscopic action S in
Eq. (73). In this way, the effective action ΓΛ is parameterized
in terms of the coupling constants appearing in the ansatz, and
consequently, the functional differential equation for ΓΛ can be
cast in the form of a set of ordinary differential equations for the
couplings, as we describe in detail below.

Any such ansatz will contain only a finite number of cou-
plings, and will hence truncate the most general structure of ΓΛ.
In other words, by choosing an ansatz of a particular form, one
makes an approximation, and the question arises, which cou-
plings should be included in the ansatz or truncation in order to
obtain meaningful results. For the study of critical phenomena
at a second order phase transition, the power counting scheme
of Sec. II C provides a guideline: following the arguments given
there, we choose a truncation which includes all couplings that
are not irrelevant, and which therefore takes the form of the
semiclassical action in Eq. (79):

ΓΛ =

∫
t,x

{
φ̄∗q

[(
iZ∗∂t + K̄∗∇2

)
φ̄c −

∂Ū∗

∂φ̄∗c

]
+ c.c. + iγ̄φ̄∗qφ̄q

}
.

(204)
(Recall that the variables of the effective action are the field
expectation values Φ̄ν, ν = c, q defined in Eq. (37).) Here, in
addition to the complex prefactor K̄ = Ā + iD̄ of the Lapla-
cian, we are including a complex wave-function renormalization
Z = ZR + iZI . In the semiclassical limit, the homogeneous (i.e.,
not containing derivatives with respect to time or space) part of
the action can be written in terms of an effective potential Ū,
which is a function of ρ̄c = φ̄

∗
cφ̄c. Due to the invariance of the mi-

croscopic action under classical phase rotations (cf. Sec. II D 4),
which is inherited by the effective action, only this combination
of fields is allowed in the potential. The latter is given by

Ū(ρ̄c) =
1

2
ū2 (ρ̄c − ρ̄0)2 +

1

6
ū3 (ρ̄c − ρ̄0)3 . (205)

Here, both the two-body and three-body couplings, ū2 = λ̄ + iκ̄
and ū3 = λ̄3+iκ̄3, respectively, are complex. The three-body term
is marginal according to power counting, and therefore included
in the truncation. In the FRG, it is advantageous to approach the
transition from the ordered phase. Then, the form of the effective
potential in Eq. (205) corresponds to an expansion around the
stationary condensate density ρ̄0. Indeed, this choice implies,
that the field equations δΓΛ/δφ̄

∗
c = 0, δΓΛ/δφ̄

∗
q = 0 (Eqs. (40) in

the absence of sources and evaluated with the scale-dependent
effective action ΓΛ) are solved by ρ̄c = ρ̄0 and φ̄q = 0 on all
scales Λ.

In the truncation Eq. (204), all couplings — including the con-
densate density ρ̄0 — are scale dependent. As indicated above,
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by means of such an ansatz for the effective action ΓΛ, the func-
tional differential equation (132) can be rewritten as a set of or-
dinary differential equations for these running couplings, with
initial conditions given by the microscopic action Eq. (79). This
is achieved by applying projection prescriptions. In the follow-
ing, we summarize this method for the problem at hand. For
details we refer the reader to Ref. [181].

2. Non-equilibrium FRG flow equations

The main idea of a projection prescription on a specific cou-
pling is to extract this coupling from the effective action ΓΛ by
taking appropriate derivatives of the latter with respect to the
fields and coordinates, and subsequently setting the fields to
their stationary values φ̄c = φ̄0 =

√
ρ̄0 and φ̄q = 0 (as noted

in Sec. II D 6, choosing φ̄c to be real does not lead to a loss of
generality). Then, applying the very same projection descrip-
tion to the Wetterich equation (132) yields the flow equation
for the corresponding coupling. For the actual evaluation of the
resulting flow equations, it is convenient to introduce rescaled
fields, which are related to the bare ones by absorbing the wave-
function renormalization Z in the quantum field:

φc = φ̄c, φq = Zφ̄q. (206)

As a consequence of this transformation, and by rescaling all
couplings appropriately, it is possible to obtain a reduced set of
flow equations, from which Z is eliminated. In a second step,
the number of flow equations can be diminished further by in-
troducing dimensionless renormalized variables, as detailed in
Sec. IV B 3 below.

We start by deriving flow equations for the non-linear cou-
plings in the effective potential defined in Eq. (205). To see
how one can project the Wetterich equation onto flow equations
for these couplings, consider the effective action, evaluated for
homogeneous, i.e., space- and time-independent “background
fields:”

ΓΛ,cq = −Ω
(
Ū′ρ̄cq + Ū′∗ρ̄qc − iγ̄ρ̄q

)
. (207)

Here, the subscript cq in ΓΛ,cq indicates that both the classical
and the quantum fields are set to constant but non-zero values; Ω
denotes the quantization volume, and we introduced the follow-
ing products of fields, which are invariant under classical phase
rotations (see Sec. II D 4): ρ̄cq = φ̄

∗
cφ̄q = ρ̄

∗
qc and ρ̄q = φ̄

∗
qφ̄q.

From the representation Eq. (207) it becomes immediately clear
how to project the flow equation (132) for ΓΛ onto a flow equa-
tion for the derivative of the potential Ū in Eq. (205) with respect
to ρ̄c: one has to (i) evaluate Eq. (132) for homogeneous fields,
(ii) take the derivative with respect to ρ̄cq, and finally (iii) set the
quantum background fields to their stationary state value,

∂�Ū′ = −
1

Ω

[
∂ρ̄cq∂�ΓΛ,cq

]
φ̄q=φ̄

∗
q=0
. (208)

Here and in the following, we specify flow equations in terms of
the logarithmic cutoff scale � = ln(Λ/Λ0). From the potential Ū

in Eq. (205), the couplings ū2,3 can be obtained by taking further
derivatives with respect to ρ̄c. However, instead of projecting the
flow equation (208) in this way onto equations for ū2,3, it is more
convenient to introduce rescaled quantities as outlined above.
Inserting the representation Eq. (206) of the bare quantum field
in the effective action (207) leads to appearance of a factor 1/Z∗

in front of the term involving the effective potential. This factor
can be absorbed by introducing a rescaled potential via Ū = ZU.
The flow equations of the bare and rescaled effective potential
are related via

∂�Ū′ = Z
(−ηZU′ + ∂�U′

)
, (209)

where ηZ denotes the anomalous dimension associated with
the wave-function renormalization (∂�Z is specified below in
Eq. (222)),

ηZ = −∂�Z/Z. (210)

Then, with ∂ρ̄cq = Z∂ρcq and inserting Eq. (208) on the RHS
of Eq. (211), the flow equation for the renormalized potential
becomes (here, primes denote derivatives with respect to ρc =

φ∗cφc)

∂tU′ = ηZU′ + ζ′, ζ′ = − 1

Ω

[
∂ρcq∂tΓk,cq

]
φq=φ

∗
q=0
. (211)

In analogy to Eq. (205), the renormalized effective potential can
be written as

U(ρc) =
1

2
u2 (ρc − ρ0)2 +

1

6
u3 (ρc − ρ0)3 , (212)

with renormalized couplings defined as u2 = ū2/Z = λ + iκ and
u3 = ū/Z = λ3 + iκ3. To obtain flow equations for un, n = 2, 3,
one simply has to take derivatives of the relation un = U(n)(ρ0)
with respect to the cutoff scale �, taking into account that also ρ0

is a running coupling:

∂�un =
(
∂�U(n)

)
(ρ0) + U(n+1)(ρ0)∂�ρ0. (213)

Inserting Eq. (211) on the RHS of this relation leads us to

∂�u2 = βu2
= ηZu2 + u3∂�ρ0 + ∂ρcζ

′∣∣∣
ss
, (214)

∂�u3 = βu3
= ηZu3 + ∂

2
ρc
ζ′
∣∣∣
ss
, (215)

where we evaluate ζ′ with ρc set to its stationary value ρc|ss = ρ0.
Finally, flow equations for the real and imaginary parts of u2 and
u3 can be obtained by taking the real and imaginary parts of
Eq. (214) and (215), respectively.

The flow equation for the stationary density ρ0 cannot be
specified without formal ambiguity: as we have already seen
in Sec. II B 2, both real and imaginary parts of the field equa-
tion (75) yield conditions on ρ0. However, we have seen as well
that the condition stemming from the real part can always be
satisfied by choosing the proper rotating frame. Therefore, the
physically correct choice is to assume that ρ0 is actually deter-
mined by the imaginary part of the field equation, i.e., by the
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condition Im U′(ρ0) = 0. Taking the derivative of this condition
with respect to the cutoff �, we find

∂�ρ0 = −
(
Im ∂�U′

)
(ρ0)/ Im U′′(ρ0) = − Im ζ′

∣∣∣
ss
/κ, (216)

where ζ′ is the same as in Eq. (211).
Having illustrated the main idea, the flow equation for the

rescaled noise strength γ = γ̄/ |Z|2 can easily be obtained along
the lines of the derivation of Eqs. (214) and (215), with the result
(for details of the derivation see Ref. [181]; ηZR is the real part
of ηZ)

∂�γ = βγ = 2ηZRγ −
i
Ω

[
∂ρq∂�ΓΛ,cq

]
ss
. (217)

Thus far we have specified how to project the Wetterich equa-
tion onto flow equations for the couplings that parameterize the
homogeneous part of the effective action given in Eq. (207),
where the classical and quantum fields are set to constant val-
ues. In the following we review the derivation of flow equations
for the frequency- and momentum-dependent couplings, i.e., the
wave-function renormalization Z and the coefficient K̄ of the
Laplacian in Eq. (204). This requires us to consider non-constant
values of the fields. Moreover, we work in a basis of real fields
which we introduced already in Sec. II D 6, φ̄ν =

1√
2

(
χ̄ν,1 + iχ̄ν,2

)
for ν = c, q. Hence, the inverse propagator in this basis is given
by the second variational derivative of the effective action with
respect to the fields χ̄i (cf. Eq. (41); to ease the notation, we

collect these fields in a vector χ̄ =
(
χ̄c,1, χ̄c,2, χ̄q,1, χ̄q,2

)
; the com-

ponents of this vector are labeled by i = 1, . . . , 4), and the flow
equation of the inverse propagator reads accordingly:

∂�P̄i j(ω,q)δ(ω − ω′)δ(q − q′) =
[

δ2∂�ΓΛ
δχ̄i(−ω,−q)δχ̄ j(ω′,q′)

]
ss

.

(218)
In particular, the inverse retarded propagator is given by

P̄R(ω,q) =

(
−iZIω − Āq2 − 2λ̄ρ̄0 iZRω − D̄q2

−iZRω + D̄q2 + 2κ̄ρ̄0 −iZIω − Āq2

)
. (219)

Note that the Goldstone theorem (i.e., the existence of a zero
eigenvalue of P̄R(ω = 0,q = 0), see Sec. II D 6) is pre-
served during the flow. At the transition, where ρ̄0 → 0, both
branches of the excitation spectrum that is encoded in the ze-
ros of det P̄R(ω,q) (cf. Eq. (77)) become gapless. As pointed
out in Sec. II E, in the FRG, the resulting infrared divergences
are regularized by introducing an additional contribution ΔSΛ,
given in Eq. (127), in the functional integral. In fact, by choosing
the following optimized form of the cutoff function [278, 279]
(which obviously satisfies the requirements stated in Eqs. (130)
and (131)),

RΛ,K̄(q2) = −K̄
(
Λ2 − q2

)
θ(Λ2 − q2), (220)

in the regularized inverse propagator Γ
(2)
Λ
+ RΛ appearing in the

Wetterich equation (132), the terms Āq2 in Eq. (219) are replaced

by

Ā
[
q2 +

(
Λ2 − q2

)
θ(Λ2 − q2)

]
=

⎧⎪⎪⎨⎪⎪⎩ĀΛ2 for q2 < Λ2,

Āq2 for q2 ≥ Λ2,
(221)

(and there is an analogous replacement for the terms D̄q2).
Hence, fluctuations with momenta below the cutoff scale Λ ac-
quire a mass ∼ Λ2, and the infrared divergences are lifted.

It remains to specify the flow equations for Z and K̄. They can
be obtained by choosing specific values of the indices i and j in
the flow equation (218) for the inverse propagator, and by tak-
ing derivatives with respect to the frequency ω and the squared
momentum q2, respectively:

∂�Z = −
1

2
∂ω tr

[(
� + σy

)
∂�P̄R(ω,q)

]∣∣∣∣
ω=0,q=0

, (222)

∂�K̄ = −∂q2

(
∂�P̄R

22(ω,q) + i∂�P̄R
12(ω,q)

)∣∣∣∣
ω=0,q=0

. (223)

Comparison with Eq. (219) shows, that these are indeed correct
projection prescriptions. Note, however, that there is some ambi-
guity in choosing these projection prescriptions: for example, Ā
appears both in P̄R

11 and P̄R
22. Our choice extracts K̄ correspond-

ing to the Goldstone direction, and mixes Goldstone and gapped
directions symmetrically in the projection on Z (see Ref. [181]
for details). Finally, the flow equation for the renormalized co-
efficient K = K̄/Z is given by

∂�K = βK = ηZ K + ∂�K̄/Z. (224)

While Eqs. (214), (215), (216), (217), and (224) define a
closed system of flow equations for the couplings u2, u3, γ, ρ0,
and K (as indicated above, the wave-function renormalization Z
drops out of these equations), the explicit evaluation of the var-
ious projections is rather tedious. For details of this calculation
we refer the reader to Ref. [181].

3. Scaling solutions and critical behavior

At the critical point of a continuous phase transition, the cor-
relation length diverges, ξ → ∞. Then, instead of exponen-
tial decay according to ∼ e−r/ξ, correlation and response func-
tions depend on distance as power laws. This algebraic scaling
behavior is reflected in the RG flow: indeed, the critical point
corresponds to a scaling solution to the RG flow equations. In
practice, finding a scaling solution is facilitated by absorbing the
scaling factors ∼ Λθ (with some exponent θ for each coupling)
in new variables, which thus take constant values at the critical
point. Hence, the latter corresponds to a fixed point of the flow
equations for the rescaled couplings. Moreover, by means of a
suitable choice of rescaled variables it is often possible to further
reduce the number of flow equations, ending up with a minimal
set of independent equations. For the present case, the flow can
be specified in terms of just six real couplings.

At the beginning of this section, we introduced the quantity
λ in Eq. (188) as a quantitative measure of the deviations from
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thermal equilibrium conditions. In a similar spirit, the strength
of coherent relative to dissipative dynamics, which is encoded in
the real and imaginary parts of the couplings in the microscopic
Keldysh action (73), is measured by the ratios

r =
(
rK , ru2

, ru3

)
= (A/D, λ/κ, λ3/κ3) . (225)

The flow equations for these ratios can be obtained straightfor-
wardly by taking the RG scale derivatives, e.g., ∂�rK = ∂�A/D−
A∂�D/D2, and expressing ∂�A as the real part of Eq. (224) etc.
In addition to r, we define another three scaling variables as

s = (w, κ̃, κ̃3) =

(
2κρ0

Λ2D
,
γκ

2ΛD2
,
γ2κ3

4D3

)
. (226)

The flow equations for the six dimensionless running couplings
collected in r and s form a closed set. Besides the Gaussian
fixed point at which the non-linear couplings vanish, these equa-
tions have a non-trivial fixed point corresponding to the driven-
dissipative condensation transition at

r∗ = 0, s∗ ≈ (0.475, 5.308, 51.383) . (227)

This fixed point is reached in the RG flow, when the parame-
ters in the microscopic action are chosen such that the system
is tuned precisely to the transition point. (Note that this point
corresponds to the renormalized value of w ∝ ρ0 going to zero,
and not the bare one.) What are the physical implications of
this fixed point? First, the value r∗ indicates, that the effective
action at the fixed point is purely dissipative. As we have al-
ready mentioned at the beginning of Sec. IV, for vanishing co-
herent dynamics (or, in the terminology of equilibrium dynam-
ical models [1]: in the absence of reversible mode couplings),
the driven-dissipative model reduces to the equilibrium model
A. Thus, the values s∗ are the same as in model A, and there-
fore the fixed point itself does not allow to distinguish whether
the microscopic starting point of the RG flow was in or out of
equilibrium. However, the non-equilibrium nature of the driven-
dissipative condensate is witnessed in the RG flow towards this
effective equilibrium fixed point. In the following we consider
the universal regime of the RG flow, which is reached in the
deep IR (i.e., for Λ/Λ0 � 1). In this regime, when the cou-
plings are close to their values at the fixed point, the RG flow
can be obtained from a linearization of the flow equations in
δs = s − s∗, δr = r. The stability matrix governing the linearized
flow takes block diagonal form,

∂�

(
δr
δs

)
=

(
N 0
0 S

) (
δr
δs

)
, (228)

with 3 × 3 submatrices N and S . This block-diagonal structure
indicates, that the flow of r and s decouples in the IR. Therefore,
the flow of s close to the fixed point is the same as if we would
have set r = 0 from the very beginning. In other words, not
only the values of the couplings s at the fixed point, but also the
critical exponents encoded in the flow of s, which are the correla-
tion length exponent ν, the anomalous dimension η, and the dy-
namical exponent z, see Ref. [181], are the same for both model

A and driven-dissipative condensates. (Note, however, that in
model F [1], which describes condensation with particle num-
ber conservation in equilibrium, the dynamical exponent takes a
different value than in model A, where particle number conser-
vation is absent.) This confirms the asymptotic thermalization
of correlation functions mentioned in Sec. IV B (i). The values
of the critical exponents we obtain from the truncation (204) are

ν ≈ 0.716, η ≈ 0.039, z ≈ 2.121, (229)

and agree reasonably well with results from more sophisticated
calculations of ν to and η in the context of the static equilibrium
problem [280].

All the information on the universal properties of the driven-
dissipative transition, which are the same as in the equilibrium
model A, are encoded in s∗ and the block S of the stability ma-
trix in Eq. (228). The non-equilibrium nature of the microscopic
model, on the other hand, is betrayed by the block N, which de-
scribes the flow of δr. This block has three positive eigenvalues,

n1 ≈ 0.101, n2 ≈ 0.143, n3 ≈ 1.728, (230)

indicating that the ratios r are attracted to the fixed point value
r∗ = 0. The general solution to the linearized flow equation for
r reads

r =
3∑

i=1

uici, (231)

where ui are the eigenvectors of N associated with the eigenval-
ues ni in Eq. (230). The coefficients ci, which are referred to
as scaling fields [178], take the scaling form ci ∼ eni� ∼ Λni .
Hence, for Λ → 0, the dominant contribution to r is given by
r ∼ u1Λ

n1 = u1Λ
−ηr , where we identified the drive exponent

ηr = −n1 ≈ −0.101. (232)

As anticipated in Sec. IV B (ii), this exponent governs the univer-
sal fade-out of coherent dynamics ∝ r in the driven-dissipative
system. Note that the existence of three distinct eigenval-
ues (230) is due to the non-equilibrium character of the micro-
scopic model. Indeed, in model A with reversible mode cou-
plings, the equilibrium symmetry discussed in Sec. II D 1 allows
of only one ratio r = rK = ru2

= ru3
(cf. Eq. (101) and Fig. 6).

Then, the block N of the stability matrix in Eq. (228) has only
one single entry, which is given by the “middle” eigenvalue n2

in Eq. (230). This shows that also in the equilibrium setting the
dynamics becomes purely dissipative at the largest scales [268],
however, the value of the critical exponent that governs universal
decoherence is different. As pointed out above, this is due to the
absence of the equilibrium symmetry in the driven-dissipative
case. The fact that the different values can be traced back to
a difference in symmetry supports the strength of the result, as
different symmetries are known to give rise to quantitatively dif-
ferent critical behavior [86].

Decoherence at large scales has clear physical signatures
which facilitate probing the drive exponent in experiments; to
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wit, it implies that low-momentum excitations are diffusing
rather than propagating (note that this is also predicted by mean-
field theory, cf. the discussion below Eq. (77)). A careful analy-
sis in the scaling regime reveals that the effective dispersion re-
lation of single-particle excitations close to criticality takes the
form [181]

ω ∼ A0qz−ηr − iD0qz ∼ A0q2.223 − iD0q2.121, (233)

where the diffusive contribution is supplemented by a subdomi-
nant (by the small difference of ηr in the exponent) coherent part.
By definition, Eq. (233) is the location of the pole of the retarded
Green’s function, and hence the coherent and diffusive parts en-
code respectively the position and width of the peak of the spec-
tral function defined in Eq. (61). The latter is probed, e.g., in
angle-resolved spectroscopy in exciton-polariton systems [281]
or radio-frequency spectroscopy in ultracold atoms [282]. How-
ever, the small difference in the scaling of the position and width
of the peak predicted by Eq. (233) poses a challenge to its ex-
perimental observation.

C. Absence of algebraic order in 2D

Semiconductor microcavities hosting exciton-polaritons are
effectively two-dimensional, and therefore this case has the
greatest significance for current experiments. Even in thermal
equilibrium, two-dimensional condensates are markedly differ-
ent from their three-dimensional counterparts: first, according to
the Mermin-Wagner theorem [275], in a two-dimensional con-
densate there cannot be true off-diagonal long-range order at any
finite temperature. Instead, at low temperatures, spatial correla-
tions decay algebraically with distance. Nevertheless, the sys-
tem remains superfluid. Second, the algebraic or quasi-long-
range order is established in an unusual transition, in which vor-
tices, which proliferate at high temperatures, form bound pairs
as the temperature is tuned below the critical value. How is this
scenario modified under non-equilibrium conditions? As a first
step to answer this question, the issue of spatial correlations in
two-dimensional driven-dissipative condensates is addressed in
Ref. [19]. In this work, the results of which we describe in the
following, the influence of non-topological phase fluctuations
(spin waves) on the behavior of spatial correlations is analyzed,
which leads to the conclusion, that in driven-dissipative conden-
sates algebraic decay is possible only on intermediate scales, and
crosses over to stretched-exponential decay on the largest scales.
The decay of correlations might be found to be even faster (i.e.,
exponential), once topological excitations (vortices) are taken
into account.

In a weakly interacting Bose gas in thermal equilibrium, the
absence of true long-range order is caused by the vanishing en-
ergy cost of long-wavelength phase fluctuations. These are gov-
erned by the quadratic effective low-energy action (201), from
which the behavior of spatial correlations at long distances can
be obtained straightforwardly, e.g., by introducing sources as de-
scribed in Sec. II and using the formulas for Gaussian functional

integration collected in Appendix B. The result is〈
ψ(x)ψ∗(x′)

〉 ≈ ρ0〈ei(θ(x)−θ(x′))〉
= ρ0e−

1
2
〈(θ(x)−θ(x′))2〉

∼
∣∣∣x − x′

∣∣∣−α ,
(234)

where α = m2T/(2πρ0). One the other hand, the derivation in
Sec. IV A shows that in the case of a driven-dissipative conden-
sate the phase-only action is non-linear and given by the KPZ
action (197). Hence, while the second equality in Eq. (234) still
applies to leading order in a cumulant expansion, the expecta-
tion value 〈(θ(x) − θ(x′))2〉 cannot be calculated directly.21 In
the original context of the KPZ equation, where θ takes the role
of the height of a randomly growing surface [2, 73], the behav-
ior of this correlation function is parameterized in terms of the
roughness exponent χ as

〈(θ(x) − θ(x′))2〉 ∼ ∣∣∣x − x′
∣∣∣2χ . (235)

The term roughness exponent is due to the fact that its value
distinguishes smooth from rough phases: for χ < 0, fluctuations
of the surface height die out on large scales, and the surface is
smooth; on the other hand, if χ > 0, the interface is called rough.
For any finite value of χ, the scaling behavior of the correlation
function in Eq. (235) leads to stretched exponential decay of the
correlations of ψ, 〈

ψ(x)ψ∗(x′)
〉 ∼ e−c|x−x′ |2χ , (236)

where c is a non-universal constant. In the case that χ = 0 one
usually expects logarithmic growth of 〈(θ(x) − θ(x′))2〉, which
would lead to the equilibrium result in Eq. (234). However, as
discussed at the beginning of Sec. IV, in a 2D driven-dissipative
condensate we should expect universal behavior that is quite dif-
ferent from the equilibrium case. Indeed, the FRG analysis re-
ported in Refs. [252–254, 277] and numerical simulations [283–
297] find χ ≈ 0.4 for the value of the roughness exponent,
which implies that for |x − x′| → ∞ correlations in 2D driven-
dissipative condensates obey Eq. (236) and not Eq. (234)22, and
decay stretched-exponentially.

A notable difference between the KPZ equation for randomly
growing interfaces, and the present context of the effective long-
wavelength description of a driven-dissipative condensate is that

21 The non-linearity λ in the KPZ action (197) vanishes when the equilibrium

condition (101) is met, leading to algebraically decaying correlations also in

this case. This shows, that merely adding dissipation by coupling the system to

a bath in thermal equilibrium does not have an adverse effect on correlations.

(In the genuine case in which the condition (101) is met, the system is indeed

coupled to a single bath. Otherwise, realizing this condition when the system

is coupled to several baths would require a pathological fine-tuning of the

coupling parameters.) It is indeed the combination of independent drive and

dissipation, which leads to the loss of algebraic coherence out of equilibrium.
22 Note that as pointed out at the end of Sec. IV A, the KPZ non-linearity is

neglected in Bogoliubov theory. Therefore, in 2D, this approach yields power-

law decay of spatial correlations [192, 298].
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the analogue of the interface height in the latter case is a phase, θ,
and as such it is compact, i.e., defined up to multiples of 2π. This
means that topological defects — vortices — in this field are
possible.23 Proliferation of vortices would lead to an even faster,
simple exponential decay of spatial correlations. The present
analysis does not take the possible presence of vortices into ac-
count.

How do these findings compare to experimental results?
Both in experiments on incoherently pumped polariton conden-
sates [300, 301] and simulations of parametrically pumped sys-
tems [302], spatial correlations have been found to decay alge-
braically within the confines of the system. This, however, is
not in contradiction to the present analysis based on the KPZ
equation: indeed, if the microscopic value g0 of the rescaled
non-linearity (190) is small, which is actually the case in current
experiments [19], a renormalized value of g = 1 is reached in
the RG flow only at the exponentially large scale

L∗ = ξ0e8π/g0 , (237)

where ξ0 is a microscopic scale where the RG flow is initial-
ized, e.g., the healing length of the condensate. Indeed, to ob-
tain this result, we have solved Eq. (191) with initial condition
g0 at the scale ξ0. Then, in systems of a size L well below L∗,
an effective equilibrium description is applicable, leading to the
observed algebraic decay of correlations (below the equilibrium
KT transition). In other words, even in an infinite system we
should expect a smooth crossover from algebraic to exponential
decay at the scale L∗.

So far, our analysis has been based on the semiclassical
Langevin equation (80) for the condensate dynamics, which
according to the arguments given at the beginning of Sec. IV
correctly captures the universal scaling properties of driven-
dissipative condensates. However, in order to obtain an esti-
mate of L∗ for specific experimental parameters, a more micro-
scopic model of exciton-polariton condensates is required. Start-
ing from a widely used model, which has been introduced in
Ref. [159] and consists of a coupled system of equations for the
lower polariton field and the excitonic reservoir, the bare value
g0 and hence the scale L∗ can be seen to depend on the rate at
which the reservoir is replenished [19]. For high pump rates
the KPZ scale L∗ grows rapidly, so that by pumping the system
strongly enough, algebraic correlations can be made to extend
over the entire system for any finite system size L. When the
pump rate is reduced, the system can loose its algebraic order in
two ways: either through the effect of the KPZ non-linearity if
L∗ drops below the system size, or — if L∗ is still much larger
than the system size at the critical value of the pump strength for
the equilibrium KT transition to occur — through the prolifera-
tion of vortices. Note that as pointed out above, even when KPZ
physics becomes relevant, vortices might still modify Eq. (236).

23 This difference with the conventional KPZ equation also arises in “Active

Smectics” [299].

These considerations lead to the finite-size phase diagram re-
ported in Ref. [19].

The pump strengths at which the KT and KPZ crossovers oc-
cur can be estimated based on the parameters given in Ref. [303].
It is convenient to introduce dimensionless pumping and loss
rates as follows [19]:

x =
PR
γRγl

− 1, γ̄ =
Rγl

γRuc
. (238)

Here, P is the rate at which the excitonic reservoir is replen-
ished, while R is the amplification rate of the condensate due to
stimulated scattering of polaritons from the reservoir; γl and γR
are, respectively, the decay rates of lower polaritons and reser-
voir excitons, and uc is the coherent polariton-polariton interac-
tion [159]. For the parameters in [303], the KT transition should
be expected at [19] xKT ≈ 0.02. Denoting by x∗ the pumping
strength at which the KPZ scale L∗ in Eq. (237) drops below the
system size, we have [19]

x∗/xKT = γ̄
2 ln(L/ξ0) ≈ 0.04, (239)

where we took γ̄ ≈ 0.1, ξ0 ≈ 2 μm, and assumed a pump spot
size of L ≈ 100 μm. Thus, approaching the transition from
above by lowering the pump power, the critical value xKT is
reached first, and the system loses algebraic order through un-
binding of vortices [300–302]. On the other hand, the crossover
to the disordered regime will be controlled by KPZ physics once
x∗ ≥ xKT, which can be achieved by increasing the loss rate (i.e.,
reducing the cavity Q) to γ̄ ≈ 0.5.

While the above analysis shows that algebraic order in 2D
driven-dissipative condensates prevails only on intermediate
scales, remarkably it can be restored on all scales in strongly
anisotropic systems [19]: consider a generalization of Eq. (80),
where the gradient terms are replaced by

∑
i=x,y Ki

α∂
2
i φc for α =

c, d. Correspondingly, Eqs. (188) and (189) are replaced by

Di = Ki
c

⎛⎜⎜⎜⎜⎝Ki
d

Ki
c
+

uc

ud

⎞⎟⎟⎟⎟⎠ , λi = −2Ki
c

⎛⎜⎜⎜⎜⎝1 − Ki
duc

Ki
cud

⎞⎟⎟⎟⎟⎠ , (240)

which for i = x, y are the diffusion constants and non-linearities
appearing in the anisotropic KPZ equation. The RG flow of this
equation has been analyzed in Refs. [299, 304]. It can be de-
scribed in terms of the anisotropy parameter Γ = λyDx/λxDy
(the system is anisotropic for Γ � 1), and the non-linearity
g = λ2

xΔ/(D
2
x
√

DxDy). The flow equations are given by

dg
d�
= − g2

32π

(
Γ2 + 4Γ − 1

)
,

dΓ
d�
= − Γg

32π

(
1 − Γ2

)
.

(241)

(Note that these equations differ from the RG equations in
Ref. [19] by the sign on the RHS, which is due to the fact that
here we define the logarithmic scale as � = ln(Λ/Λ0) instead
of � = ln(L/ξ0).) The line Γ = 0 divides the flow into two re-
gions with distinct fixed-point structure: for Γ > 0, which we
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denote as the regime of weak anisotropy, at large scales isotropy
is restored, i.e., Γ → 1 for � → ∞, and all the results discussed
above apply.24 In the regime of strong anisotropy corresponding
to Γ < 0, on the other hand, the flow is attracted to an effective
equilibrium fixed point with g = 0 and Γ = −1. Then, algebraic
correlations of the condensate field can survive if the effective
temperature at the fixed point, which is given by the renormal-
ized value of the dimensionless noise strength κ = Δ/

√
DxDy,

is below the critical value κc = π for the equilibrium KT transi-
tion. Generalizing the microscopic model for exciton-polariton
condensates mentioned above to account for spatial anisotropy,
the dependence of the effective temperature on the strength of
laser pumping can be obtained [19]. Remarkably, the transition
to the algebraically ordered phase is found to be reentrant: upon
increasing the pump rate the ordered phase is first entered and
then left again at even higher values of the pump rate.

D. KPZ scaling in 1D

The marginality of g in two spatial dimensions is reflected in
the emergence of the exponentially large scale L∗ in Eq. (237)
beyond which KPZ scaling can be observed. In 1D, on the con-
trary, the KPZ non-linearity g is relevant (cf. the discussion at
the beginning of Sec. IV), which makes one-dimensional driven-
dissipative condensates even more promising candidates to ob-
serve KPZ universality in finite-size systems. This possibility
was explored numerically in Refs. [265–267], where the scaling
properties of 1D driven-dissipative condensates were studied by
simulations of the Langevin equation (80) for the condensate
field.

Experimentally, the most directly accessible signatures of
KPZ universality are contained in the correlation function of the
condensate field (i.e., the Keldysh Green’s function defined in
Eq. (34)),

C(t − t′, x − x′) = 〈ψ(t, x)ψ∗(t′, x′)〉. (242)

Indeed, in experiments with exciton-polaritons, both spatial cor-
relations C(0, x) and the autocorrelation function C(t, 0) can be
obtained by performing interferometric measurements on the
photoluminescence emitted from the semiconductor microcav-
ity [12, 303, 308]. Based on the mapping of the long-wavelength
condensate dynamics to the KPZ equation, one expects ex-
ponential decay of spatial correlations C(0, x) and stretched-
exponential decay of the autocorrelation function according to
C(t, 0) ∼ exp(−ct2β), where β = 1/3 (in the original con-
text of the KPZ equation, which is the stochastic growth of

24 Current experiments with exciton-polaritons are in fact slightly anisotropic

due to the interplay between polarization pinning to the crystal structure, and

the splitting of transverse electric and transverse magnetic cavity modes [13,

305]. On the other hand, in experiments using the optical parametric oscillator

regime pumping scheme [306, 307] (see also [83, 302]), strong anisotropy is

imprinted by the pump wavevector.

driven interfaces, β is called the growth exponent [2]) and c is
a non-universal constant. This behavior was confirmed numer-
ically [265–267]. In equilibrium, i.e., for g = λ = 0, the KPZ
equation (199) reduces to a noisy diffusion equation, which in
the surface growth context is known as the Edwards-Wilkinson
model [309]. Then, the behavior of spatial correlations is un-
changed, whereas the exponent β governing the decay of tem-
poral correlations takes the value β = 1/4. The distinction be-
tween one-dimensional condensates in equilibrium and driven-
dissipative condensates thus becomes manifest only in the dy-
namical properties.25 Moreover, in order to actually observe
KPZ scaling in the autocorrelation function, a large value of g,
corresponding to a system far from equilibrium, is favorable.
This can be achieved by making drive and dissipation the domi-
nant contributions to the dynamics, as is the case in cavities with
a reduced Q factor [265]. To be specific, for the parameters re-
ported in Ref. [310], the Q factor would have to be reduced by
a factor of ≈ 30 (corresponding to a polariton lifetime ≈ 1 ps
instead of ≈ 30 ps achieved in the experiment) in order to make
KPZ scaling observable in a system of size ≈ 100 μm.

Another observable, which conveniently encodes the scaling
properties of the phase θ of the condensate, is defined as

w(L, t) =
〈

1

L

∫ L

0

dx θ(t, x)2 −
(

1

L

∫ L

0

dx θ(t, x)

)2〉
. (243)

In the context of growing interfaces, were θ takes the role of
the surface height, the quantity w(L, t) is known as the rough-
ness function. It is a measure of the fluctuations of the sur-
face height over the linear extent of the system L. While the
roughness function might not be easily accessible in experi-
ments with driven-dissipative condensates, it allows a very com-
pact demonstration of both static and dynamic KPZ scaling ex-
ponents if it is obtained numerically for a range of different
system sizes [285]. Indeed, the finite-size scaling collapse of
w(L, t) in Fig. 11 shows, that after a period of growth during
which w(L, t) ∼ t2β, the roughness function saturates at the time
Ts ∼ Lz; the saturation value ws(L) scales with the system size
as ws(L) ∼ L2χ, where χ = 1/2 is the value of the roughness ex-
ponent in 1D [2, 5, 102]. From the growth and roughness expo-
nents, the usual dynamical exponent can be obtained as z = χ/β.

The numerical analysis reported in Ref. [265] was performed
in the regime of weak noise, which is characterized by the ab-
sence of phase slips in the spatiotemporal range covered by the
simulations. Indeed, the mapping of the condensate dynamics
to the KPZ equation (199), in which the phase is regarded as a
non-compact variable, does not take into account the possible
occurrence of such defects. However, their presence at higher
noise levels is expected to affect the scaling properties of driven-
dissipative condensates.

25 Concomitantly, also within Bogoliubov theory exponential decay of correla-

tions is found [191], cf. the discussion at the end of Sec. IV A and Footnote 22.
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Figure 11. Finite-size scaling collapse of the roughness function w(L, t)
defined in Eq. (243). The values of the roughness exponent α ≡ χ = 1/2
and the dynamical exponent z = 3/2 are in the 1D KPZ universality
class. Each curve corresponding to a specific system size L is an average
over 1000 noise realizations. The simulations were performed after
rescaling the Langevin equation (80) to bring it to dimensionless form.
For details of the rescaling and the values of the parameters used in
the simulations, see Ref. [265]. (Copyright (2014) by The American
Physical Society.)

V. UNIVERSAL HEATING DYNAMICS IN 1D

The notion of universality is not restricted to systems in ther-
mal equilibrium. As discussed in the previous sections, non-
thermal steady states of driven-dissipative systems can show
a large variety of universal features, such as scale invariance
and effective long-wavelength thermalization. However, in a
plethora of setups, aspects of universality can even be found in
the time evolution, which approaches a steady state only in the
limit τ → ∞ [45–47, 311–315]. An example which identifies
generic, universal features in the far from equilibrium dynamics
in a strongly interacting one-dimensional system is discussed in
the present section.

The setting we consider here differs from the one in the pre-
vious section not only in its focus on time evolution, but also in
terms of underlying symmetries. Above we have studied sys-
tems that are open in the sense that both energy and particle
number were not conserved, witnessed by the absence of the
thermal symmetry (cf. Sec. II D 1) and the quantum phase rota-
tion symmetry (cf. Sec. II D 4), and leading to a breaking of de-
tailed balance and a low momentum diffusive Goldstone mode
(cf. Sec. II D 6), respectively. Here we consider an open sys-
tem, where only energy is not conserved, but particle number
is. In fact, the absence of energy conservation here is reflected
by a permanent inflow of energy into the system. The Lindblad
operators are Hermitian in the present case, and this leads to
continuous heating and ultimately to an entirely classical, infi-
nite temperature stationary state, described by a density matrix
ρ ∼ 1, where the latter unit matrix is understood in the entire
Fock space of the problem. This motivates us to study the time

evolution of heating, with a focus on the short time dynamics
following initialization in a pure zero temperature ground state,
where quantum effects are still present. The presence of parti-
cle number conservation leads us to take a different strategy than
in the previous sections. Here, accomodating number conserva-
tion, which is at the heart of the strongly collective behavior of
one dimensional systems, we first map the quantum master equa-
tion in the operatorial formalism to an effective long-wavelength
description in terms of an open Luttinger liquid. In this way,
we can carefully account for the linear sound mode that is ex-
pected on the grounds of exact particle number conservation, cf.
Sec. II D 6. Only after this procedure, we perform the mapping
to the Keldysh functional integral, similar to our strategy for the
spins in Sec. III.

A. Heating an interacting Luttinger liquid

Consider a one-dimensional lattice of interacting bosons for
which the dynamics is described by the following master equa-
tion:

∂tρ = −i
[
H, ρ

]
+ γe

∑
i

[
2niρni −

{
n2

i , ρ
}]
. (244)

Here, H is a bosonic lattice Hamiltonian, whose long-
wavelength physics is described by an interacting Luttinger liq-
uid. For concreteness, one can consider a Bose-Hubbard model
in one dimension away from integer filling, with Hamiltonian

H = −J
∑

i

(
b†i bi+1 + b†i+1

bi

)
+ U

2

∑
i

ni(ni − 1), (245)

which describes nearest neighbor hopping of particles with hop-
ping amplitude J and local interactions with interaction energies
U. The dissipative contributions which drive the system out of

equilibrium, are the Hermitian jump operators ni = b†i bi, mea-
suring the local particle number in terms of bosonic creation and

annihilation operators b†i , bi. For cold bosonic atoms in optical
lattices, these jump operators represent the leading order contri-
bution of dissipation induced by spontaneous emission from the
lattice drive laser [166] (see also the discussion in Sec. I C 3),
but this kind of dissipation can as well be realized by coupling
the bosonic particles to a phonon reservoir with a large effective
temperature, which is equivalent to a locally fluctuating chemi-
cal potential

μ(x, t) = μ0 + δμ(x, t),
〈δμ(x, t)δμ(x′, t′)〉 = γeδ(t − t′)δ(x − x′).

It causes dephasing and leads to a linear increase of the energy
in the system, 〈H〉t ∝ Jγet [166, 167]. As a consequence of the
linear energy increase, the system will never thermalize and is
constantly driven away from equilibrium, approaching the T →
∞ state described by ρ ∝ 1 at infinite time t. We note that, for
hermitean Lindblad operators, ρ ∝ 1 is always a solution to the
quantum master equation.
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In order to analyze the heating dynamics for short and tran-
sient times, the master equation is transformed to the Luttinger
representation on the operatorial level, and only later on we per-
form the mapping to the Keldysh functional integral. The Lut-
tinger description is valid as long as the occupation of quasi-
particle modes does not exceed a critical value, which is deter-
mined by the Luttinger cutoff Λ [43]. Starting with a zero or
low temperature initial state to which this applies, there exists a
cutoff time tΛ, up to which the system can be described in terms
of Luttinger liquid variables. In this regime, one can take the
continuum limit bi → bx and express the bosonic operators in a
phase and amplitude representation:

bx =
√
ρxeiθx ,

ρx = ρ0 + ∂xφx/π,
(246)

in terms of the Luttinger variables ∂xφx and θx, which represent
smooth density and phase fluctuations and fulfill the commuta-
tion relation

[
∂xφx, θx′

]
= iπδ(x − x′). The long-wavelength de-

scription of the Bose-Hubbard model is expressed by the Hamil-
tonian

H =
1

2π

∫
x

[
uK (∂xθx)2 − u

K (∂xφx)2 + κ (∂xφx) (∂xθx)2
]
, (247)

which describes interacting Luttinger phonons on length scales
x ≥ (ρ0Um)−1/2, above which a continuum representation of the
Hamiltonian is appropriate. For weak interactions, the effective

parameters can be estimated to be u =
(
ρ0U

m

)1/2
, K = π

2

(
ρ0

Um

)1/2
.

The non-linearity in the Hamiltonian accounts for the leading
order quasi-particle scattering term in the low energy regime
(κ = 1/m), which is irrelevant in the sense of the renormaliza-
tion group and does not modify static, equilibrium correlations.
However, it is vital for the quantitative description of dynamic
correlation functions, and is non-negligible in a non-equilibrium
setting where the dynamics is affected by the non-linearity even
on a qualitative level. The dissipative part of the master equation
becomes quadratic in the Luttinger representation, such that the
equation of motion reads

∂tρ = −i
[
H, ρ

]
+
γ
π2

∫
x

[
2(∂xφx)ρ(∂xφx) −

{
(∂xφx)2, ρ

}]
. (248)

This decoherence term is the leading order contribution of a
U(1)-symmetric (i.e., particle number conserving) decoherence
mechanism in one-dimensional quantum wires, which features
a linear increase of the energy in time. Furthermore, the U(1)
symmetry guarantees the existence of a linear sound mode and
permits the transformation to the Luttinger framework in the co-
herence dominated regime. From a microscopic perspective, it
is evident that the Luttinger description has to break down for
sufficiently strong decoherence, i.e., after the system has been
heated up sufficiently. This breakdown can be estimated by the
usual Luttinger criterion nq < Λ/|q|, and leads to a good esti-
mate for the relevant time scales up to which the dynamics of
the system is dominated by coherent sound modes and therefore

properly expressed in the Luttinger framework [43]. The corre-
sponding time regime is set by the condition t < u2(κγ)−1.

The quadratic part of the equation of motion is diagonalized
by the canonical Bogoliubov transformation

θx = θ0 + i
∫

q
( π

2|q|K )1/2(a†q − a−q)e−iqx,

φx = φ0 − i
∫

q
( πK

2|q| )
1/2sgn(q)(a†q + a−q)e−iqx,

(249)

which leads to the master equation

∂tρ = −i
∫

q

[
u|q|a†qaq, ρ

]
+

∫
q

γ|q|
πK

[
AqρA

†
q − 1

2
{A†qAq, ρ}

]
−
∫

q
[H(3)

ph , ρ]. (250)

In this equation, the dissipative part is expressed via the opera-

tors A†q = a†q + a−q = A−q in terms of bosonic phonon operators

[aq, a
†
p] = δ(q−p). The cubic Hamiltonian incorporates resonant

phonon scattering processes

H(3)
ph = 3κ

√
π

2K

∫ ′

q,p

√
|qp(p + q)(a†p+qaqap + h.c.), (251)

which conserve momentum and the phonon energy. This is ex-

pressed by
∫ ′

qp, which signals to integrate only over configura-

tions {p, q} with |q| + |p| = |p + q|. The non-resonant processes
create only short-lived quantum states which do not contribute in
the long time dynamics due to dephasing, and which are there-
fore not relevant for the forward dynamics of the system.

In the Luttinger representation, the dissipative contribution is
quadratic and its effect is a constant population of the individual
phonon modes. This can be seen most easily by computing the
time evolution of the phonon densities in the quadratic frame-
work, which yields

∂t〈a†qaq〉t =
γ|q|
2πK , (252)

∂t〈a†qa†−q〉t = − γ|q|2πK − 2iu|q|〈a†qa†−q〉t. (253)

For a system prepared initially in the ground or finite temper-

ature state, the initial phonon densities are 〈a†qaq〉0 = nB(u|q|)
and ∂t〈a†qa†−q〉0 = 0, where nB(u|q|) = (eβu|q| − 1)−1 is the Bose-
Einstein distribution evaluated on-shell. In this case, the solution
of Eqs. (252), (253) is

〈a†qaq〉t = nB(u|q|) + γ|q|t
2πK , (254)

〈a†qa†−q〉t = γe
−iu|q|t

2πuK sin(u|q|t). (255)

The first term describes an increase of the phonon density lin-
ear in time and momentum and leads to a linear increase of the
system energy, i.e., heats up the system according to

ΔEt = 〈H(2)〉t − 〈H(2)〉0 = uγΛ2t
4πK . (256)
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Equation (256) relates the effective long-wavelength Luttinger
parameters u,K, γ of the heating setup to the macroscopic heat-
ing rate ∂tΔEt via the microscopic cutoff Λ. Since this heat-
ing rate is not model specific but depends on the individual
realization of the heating dynamics, it is not surprising that it
depends on macroscopic and microscopic parameters. In this
sense, Eq. (256) should be viewed as the definition of the effec-
tive heating parameter γ for a generic model in the presence of
heating [43].

The off-diagonal phonon density oscillates in the complex

plane, thereby taking absolute values |〈a†qa†−q〉t | ≤ γ
2πuK , which

are negligibly small in the weak heating regime γ � uK, i.e., in
the coherence dominated dynamics. It is therefore sufficient to
consider only the diagonal elements in the phonon basis when
extending the analysis to the interacting model.

The jump operators in the microscopic master equation (244)
are the Hermitian, local density operators ni, which preserve the
U(1) invariance of the dynamics even in the presence of dissi-
pation. This leads to a decay of the off-diagonal elements of
the density matrix, i.e., to decoherence in the local number state
representation, and an evolution of the density matrix towards
its diagonal ensemble. In the Luttinger representation, this de-
coherence expresses itself in a permanent production of photons
(254), i.e. a permanent heating of the Luttinger liquid, which
features no compensation mechanism in the quadratic sector and
the consequent lack of a well defined steady state. The energy
increases constantly, which will lead to an obvious breakdown
of the Luttinger description as soon as the energy stored in the
long-wavelength modes exceeds a critical value. At this point,
the dynamics is no longer dominated by the coherences of ρ but
by its diagonal elements, including the breakdown of superflu-
idity and quasi-long range order.

The way in which energy is distributed amongst the long-
wavelength modes by the heating (252) is not typical for an in-
teracting system at low energies, since it deviates strongly from a
Bose-Einstein distribution and the associated detailed balance of
energy. The phonon scattering terms in H(3)

ph favor detailed bal-
ance and strongly modify the actual distribution function com-
pared to (254), which makes them non-negligible in the present
non-equilibrium setting.

B. Kinetic equation

In order to determine the time evolution of the excitation den-
sities in interacting systems out of equilibrium, a common and
often successful strategy is the so-called kinetic equation ap-
proach [102] (for an application to periodically driven Floquet
systems, cf. Ref. [316]), which determines the time evolution
of the distribution function of the excitations in terms of the sys-
tem’s self-energies. For the present setup, this approach has to be
modified in order to take into account the driven-dissipative na-
ture of the system and the resonant character of the interactions.
The latter lead to a breakdown of perturbation theory and require
non-perturbative techniques beyond one-loop corrections. A de-

tailed derivation and discussion of the applicability and limita-
tions of such an approach can be found in [43, 44]. Other forms
of kinetic equations for interacting Luttinger liquids, which fo-
cus on a different set of non-equilibrium conditions, include a
perturbative treatment of phonon backscattering terms, resulting
from additional disordered or lattice potentials [317, 318], as
well as a treatment of cubic phonon interactions in the presence
of a smooth background potential and a curved phonon disper-
sion [319].

The quantity of interest in this section is the time-dependent

occupation of phonon modes nq,t = 〈a†qaq〉t in the presence
of heating and phonon scattering. For bosonic modes and in
the steady state, the occupation of the modes is related to the
Keldysh Green’s function via

i
∫
ω

GK
q,ω = 2nq + 1. (257)

For a system in thermal equilibrium, nq = nB(εq,T ) is the Bose
distribution function, see Sec. II D 1, while for a general non-
equilibrium steady state, nq is a positive function, which has to
be determined from the specific context. One can now introduce
the hermitian distribution function Fq,ω as in Eq. (72), but gen-
eralized to a system with a continuum of momentum modes. In
terms of the hermitian distribution function, the anti-hermitian
Keldysh Green’s function can be parameterized according to

GK
q,t,t′ =

(
GR

q ◦̃ Fq − Fq ◦̃ GA
q

)
t,t′
. (258)

Here, GR
q , GA

q =
(
GR

q

)†
and Fq are two-time functions eval-

uated at equal momentum q and ◦̃ represents the convolution
with respect to time and matrix multiplication according to the
Nambu structure of the Green’s functions. For a system, which
is diagonal in Nambu space, ◦̃ = ◦ reduces to a simple multi-
plication. In the presence of off-diagonal occupations, i.e. for

〈a†−qa†q〉 � 0, the operation ◦̃ has to respect the symplectic struc-
ture of bosonic Nambu space and is promoted to ◦̃ = σz◦, as
described in Ref. [44]. For a bosonic system in steady state, all
terms in (258) are time-translational invariant and Fourier trans-
formation yields

GK
q,ω = GR

q,ωσ
zFq,ω − Fq,ωσ

zGA
q,ω. (259)

In contrast, for a system out of equilibrium undergoing a non-
trivial time evolution, the mode occupations nq,t remain well de-
fined, but Eq. (258) is not time-translational invariant anymore.
One then has to find a representation for the Green’s functions
and F, which reveals the time-dependent occupations. This is
done in the following, leading to the Wigner representation of
the bosonic distribution function.

A convenient parameterization of non-equilibrium correlation
and response functions is the so-called Wigner representation in
time, which introduces a forward and a relative time coordinate
(t, δ) for the phonon Green’s functions, according to

GR
q,t,δ = −iθ(δ)〈[aq,t+δ/2, a

†
q,t−δ/2]〉, (260)

GK
q,t,δ = −i〈{aq,t+δ/2, a

†
q,t−δ/2}〉. (261)
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A two-time function C(t1, t2) can always be transformed to
Wigner coordinates, C(t1, t2) = C(t, δ), by defining t = t1+t2

2
and

δ = t1 − t2. Here, the explicit dependence on t expresses the for-
ward time evolution of non-equilibrium systems, while for equi-
librium systems in the presence of time-translational invariance,
the forward time dependence of generic two-time functions just
drops out, C(t, δ) ≡ C(0, δ), for all t. In Wigner coordinates, the
parametrization of the Keldysh correlation function is

GK
q,t,δ =

(
GR

q ◦ Fq − Fq ◦GA
q

)
t,δ
. (262)

Here, we choose to neglect the subleading off-diagonal contribu-
tions according to the above discussion, and consider only diag-
onal modes in Nambu space. Eq. (262) contains the full Green’s
functions of the system, which can be expressed via the Dyson
relation in terms of the self-energies ΣR/A/K ,(

GK GR

GA 0

)−1

=

(
0 GA

0 − ΣA

GR
0 − ΣR −ΣK

)
. (263)

The self-energies ΣR/A/K represent the correction to the bare

Green’s functions GR/A
0
= (i∂t − u|q|)−1 due to phonon scatter-

ing and heating events. Inserting the Dyson representation into
Eq. (262), it can be inverted and rearranged to read

∂tFq,t,δ = iΣK
q,t,δ − i

(
ΣR

q ◦ Fq − Fq ◦GA
q

)
t,δ
. (264)

Here, the notion (...)t,δ expresses the fact that the whole ex-
pression in brackets should be transformed to Wigner coordi-
nates after performing the convolution ΣR

q ◦ Fq ≡
∫

t′ Σ
R
q,t1,t′Fq,t′,t2

in ordinary time representation. The functionals ΣR/A/K are
the self-energies in the retarded, advanced, and Keldysh sec-
tors, which incorporate the effect of interactions and the heat-
ing on the quadratic sector. The temporal derivative on the LHS
of (264) is the Wigner representation of the bare, non-interacting
Green’s functions without heating. Taking the Fourier transform
of Eq. (264) with respect to the relative time coordinate δ yields
the Wigner representation of the distribution function

Fq,t,ω =

∫
δ

eiωδFq,t,δ, (265)

for which

∂tFq,t,ω = iΣK
q,t,ω − i

(
ΣR ◦ F − F ◦ ΣA

)
q,t,ω
. (266)

The corresponding transformation for the convolution inside the
parenthesis is

(
ΣR ◦ F

)
q,t,ω
= ΣR

q,t,ωe
i
2

(←
∂ t
→
∂ω−

←
∂ω
→
∂ t

)
Fq,t,ω. (267)

Its explicit evaluation is nontrivial and in most cases simply im-
possible. However, it is possible to approximate the complex
exponential by the leading order expansion for many typical re-
laxation dynamics [102]. In order to understand Eq. (267), one

should take a closer look at its expansion up to first order in
derivatives:(
ΣR ◦ F

)
q,t,ω
= ΣR

q,t,ωFq,t,ω

(
1 − i

2

∂t Fq,t,ω

Fq,t,ω

∂ωΣ
R
q,t,ω

ΣR
q,t,ω
+ (ω↔ t)

)
+ O(∂2).

(268)

The ratio κ
f
q ≡

∣∣∣∣ ∂t Fq,t,ω

Fq,t,ω

∣∣∣∣ is the rate with which the distribution

F is changing in forward time, i.e., the forward time evolu-
tion rate, which is determined by the interplay between heat-
ing and collective quasi-particle scattering. On the other hand,(
κrq
)−1 ≡

∣∣∣∣∣ ∂ωΣR
q,t,ω

ΣR
q,t,ω

∣∣∣∣∣ is identified with the inverse rate of the relative

time dynamics, which is dominated by fast single phonon prop-

agation. As a consequence κrq � κ
f
q and the correction terms

in (268) can be safely neglected. This is a typical situation for
many kinetic equation approaches and is termed the Wigner ap-
proximation. For the present setup, a more careful analysis has
shown that the Wigner approximation is indeed satisfied as long
as the Luttinger representation of the problem is valid [43].

In order to project Eq. (266) onto the quasi-particle densities,
it is multiplied by the spectral functionAq,t,ω = iGR

q,t,ω − iGA
q,t,ω,

followed by a subsequent integration over frequencies ω. The
spectral function fulfills the sum rules∫

ω

Aq,t,ω = 〈[aq,t,0, a
†
q,t,0]〉 = 1, (269)∫

ω

Aq,t,ωFq,t,ω
Wigner approx.
=

∫
ω

(A ◦ F)q,t,ω = GK
q,t,0 = 2nq,t + 1, (270)

with nq,t = 〈a†q,taq,t〉 being the phonon density. Applying this to
Eq. (266) in the Wigner approximation yields

∂tnq,t =
i
2

∫
ω

(
ΣK

q,t,ω − ΣR
q,t,ωFq,t,ω + Σ

A
q,t,ωFq,t,ω

)
Aq,t,ω.(271)

For well defined quasi-particles, i.e., excitations with a well
defined energy-momentum relation, the spectral function re-
flects the well-defined structure of the excitations and is sharply
peaked at the quasi-particle dispersion ω = u|q|, with a typical
width σR

q,t � u|q|, which is the imaginary part of the self-energy

evaluated on the mass shell σR
q,t = −Im(ΣR

q,t,u|q|). If this is the

case, the full self-energies in Eq. (271) multiplied with the spec-
tral function can be approximated by their on-shell values, as
they are expected to vary only smoothly in the region where A
is non-zero. The approximation ΣR/A/K

q,t,ω Aq,t,ω ≈ ΣR/A/K
q,t,u|q|Aq,t,ω is

called the quasi-particle approximation and in the present case,
similar to the Wigner approximation, it is applicable in the en-
tire Luttinger regime [43, 44]. The latter is a consequence of
the subleading, RG-irrelevant nature of the interactions, which
lead to self-energies σR

q,t � u|q|. Performing the quasi-particle
approximation, Eq. (271) obtains the simple form

∂tnq,t = σ̃
K
q,t − σR

q,t(2nq,t + 1). (272)

In this equation, the anti-Hermitian Keldysh self-energy ΣK
q,t,ω

has been replaced by its on-shell value ΣK
q,t,u|q| = −2iσ̃K

q,t, with

the real function σ̃K
q,t.
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The kinetic equation (272) describes the time evolution of the
phonon density nq,t in terms of the on-shell self-energies σR, σ̃K ,
which in turn are determined by both the interactions and the
heating term. In order to identify the contribution from the heat-
ing, one has to identify the impact of the dissipative contribution
in Eq. (250) on the action S . Following the steps in Sec. II A
carefully and setting the off-diagonal density contributions to
zero, according to Eq. (254), the dissipative contribution to the
microscopic action S is

S D = i
∫

p,t

γ|p|
πK a∗q,p,taq,p,t. (273)

Here, p is the momentum variable and q labels the quantum
component of the Keldysh field variable. The dissipation thus
enters the action only in the quantum-quantum sector and does
not modify the spectrum in the quantum-classical sector. This
is again a consequence of the Hermitian nature of the Lindblad
operators, which lead to a continuously increasing occupation of
phonons but do not introduce a compensating dissipative mecha-
nism in the retarded and advanced sector of the action 26. This is
drastically different from the situation in the models of Secs. III
(cf. Eqs. (141) and (140)) and IV (cf. Eqs. (204) and (205)),
where the interplay of dissipation in the retarded/advanced sec-
tors and fluctuation or noise in the Keldysh sector of the action
lead to non-equilibrium fluctuation-dissipation relations describ-
ing well-defined stationary states different from the trivial state
ρ ∝ 1.

With the form of (273), the Keldysh self-energy is σ̃K
q,t =

γ|p|
2πK + σ

K
q,t, where the bare σK

q,t in this form is determined by
the interactions alone. The resulting kinetic equation consists of
three contributions

∂tnq,t =
γ|q|
2πK︸︷︷︸

in-term heating

+ σK
q,t︸︷︷︸

in-term scattering

−σR
q,t(2nq,t + 1)︸�����������︷︷�����������︸

out-term scattering

. (274)

The first term represents the population of phonon modes due to
the constant heating term, while the second and the third term
are effects of the elastic collisions redistributing energy. The
second term, proportional to the Keldysh self-energy, describes
scattering of phonons into the mode q due to the interactions,
while the third term, proportional to the retarded self-energy,
describes scattering of phonons out of the mode q, and is there-
fore directly proportional to nq,t. Setting the interactions to zero,
both self-energies σR/K = 0 vanish and only the heating term
remains, rendering the time evolution of the phonon density in
the absence of interactions into Eq. (252).

26 The heating mechanism is operative for generic situations. For example,

mean-field Mott initial states, which are the exact ground states of the Bose-

Hubbard model for fine-tuned J = 0, are pure states which are not touched

by the dissipator considered in this section. One point of view on this phe-

nomenology is that the infinite temperature state is an attractive fixed point

of dynamics, but there are other unstable ones which need additional symme-

tries to be physically relevant (such as a spatially local gauge symmetry in the

J = 0 example).

The kinetic equation (274) represents the foundation of the
analysis of the non-equilibrium dynamics in the presence of
heating and phonon scattering. In order to solve for the time-
evolution of the phonon densities, one has to compute the self-

energies σR/K
q,t for each momentum mode and at each time step.

The self-energies have to be determined by a non-perturbative
approach, which we discuss in the following.

C. Self-consistent Born approximation

For an interacting model of resonantly scattering phonons, the
phonon self-energies are functionals of the phonon density, such
that the RHS of (274) contains an implicit, non-linear depen-
dence on nq,t. In order to make this implicit dependence ex-
plicit, the self-energies are typically evaluated perturbatively at
one loop order and higher order corrections to the time evolu-
tion are neglected [102]. However, for the present scenario, the
interactions are resonant, i.e., describe scattering events inside a
continuum of degenerate states, and therefore perturbative com-
putations diverge at any order. This defines the need for non-
perturbative approaches to compute the phonon self-energies,
the simplest of which is the so-called self-consistent Born ap-
proximation, which we discuss in the following.

The Keldysh action for interacting Luttinger liquids with heat-
ing is composed of a dissipative part S D, which has been dis-
cussed in Eq. (273), and a Hamiltonian part S H , which results
from the Hamiltonian dynamics in Eqs. (250), (251). In the
Keldysh representation, the action is

S =
∫

p,t
(a∗c,p,t, a

∗
q,p,t)

(
0 i∂t − u|p| − i0+

i∂t − u|p| + i0+ i γ|p|
πK

) (
ac,p,t
aq,p,t

)

+

∫ ′

p,k,t
v(p, k)

[
2a∗c,k+p,tac,k,taq,p,t

+ a∗q,k+p,t

(
ac,k,tac,p,t + aq,k,taq,p,t

)
+ h.c.

]
(275)

with the vertex function v(p, k) = 3κ
√
π

2K |pk(p + k). One way of
computing the one-loop self-energy is to determine the one-loop
correction to the effective action Γ[a∗α, aα] defined in Eq. (39) for
general bosonic fields Φ. The effective action in the absence of
an external source is defined as

eiΓ[a∗α,aα] =

∫
D[δa∗α, δaα] eiS [a∗α+δa

∗
α,aα+δaα], (276)

and fulfills the equation of motion
δΓ[a∗α,aα]

δa∗α
=
δΓ[a∗α,aα]

δaα
= 0. The

one-loop effective action is then obtained by expanding the ac-
tion S up to second order in the fluctuation fields and subse-
quently integration over the fluctuations

eiΓ(1-loop)[a∗α,aα]=eiS [a∗α,aα]

∫
D[δa∗α, δaα] e

i
2

(δa∗α,δaα)S (2)[a∗α,aα](δaα,δa∗α)T

=eiS [a∗α,aα]+ 1
2

Tr log(S (2)[a∗α,aα]). (277)
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This identifies the one-loop effective action

Γ(1-loop)[a∗α, aα] = S [a∗α, aα] − i
2
Tr log

(
S (2)[a∗α, aα]

)
(278)

in terms of the microscopic action S and its second variation
with respect to the fields

S (2)[a∗α, aα] =

⎛⎜⎜⎜⎜⎜⎜⎝ δ2S
δa∗αδaα′

δ2S
δa∗αδa∗α′

δ2S
δaαδaα′

δ2S
δaαδa∗α

⎞⎟⎟⎟⎟⎟⎟⎠ . (279)

In order to determine the correction to the bare action, the loga-
rithm in Eq. (278) is expanded in powers of the fields a∗α, aα. The
quadratic self-energy is the second order expansion of the loga-
rithm and its matrix elements are determined by the integrals

ΣR
Q = 2i

∫ ′

P
GK

P

(
v2(q,−p)GR

Q−P+ v2(p,−q)GA
P−Q+ v2(p, q)GR

P+Q

)
,

(280)

ΣK
Q = 2i

∫ ′

P

[
v2(q − p)

(
GK

PGK
Q−P +GR

PGR
Q−P +GA

PGA
Q−P

)
+2v2(p, q)

(
GK

P+QGK
P +GA

P+QGR
P +GR

P+QGR
P

)]
, (281)

where we used the collective indices Q = (q, ω), P = (p, ν) for
momentum and relative frequency. In Wigner approximation,
the Green’s functions are diagonal in forward time and therefore
evaluated at equal forward time t. The integrals in (280), (281)
are performed only over resonant momentum configurations, see
the discussion around Eq. (251). In perturbation theory, the
Green’s functions under the integral are the bare, non-interacting
Green’s functions GR

Q = (ω − u|q| + i0+)−1, which diverge on the
mass-shell ω = u|q| and lead to a summation of infinities for
the self-energy. On the other hand, in self-consistent Born ap-
proximation, the bare Green’s functions in Eqs. (280), (281) are

replaced by the full Green’s functions GR
Q =

(
ω − u|q| − ΣR

Q

)−1
.

As a consequence, the on-shell Green’s function is regularized
by the self-energy ΣR and takes the value

GR
q,u|q| = −

(
ΣR

q,u|q|
)−1
= −i

(
σR

q

)−1
. (282)

Inserting (282) in the definition for the retarded self-energy and
evaluating the self-energy on-shell, one obtains

σR
q,t = v2

0

∫
0<p

(
∂tnp,t

σR
q,t
+ 2np,t + 1

) ⎛⎜⎜⎜⎜⎜⎝ qp(q − p)

σR
p,t + σ

R
q−p,t
+

pq(p + q)

σR
p,t + σ

R
p+q,t

⎞⎟⎟⎟⎟⎟⎠
(283)

with the vertex prefactor v0 = v(1, 1), cf. the definition below
Eq. 275. A similar equation is obtained for the Keldysh on-
shell self-energy σK

q,t. Inserting Eq. (283) and the result for the
Keldysh self-energy, which we do not discuss here but can be
found in Ref. [44], into the kinetic equation (274), one finds

∂tnq =
γ|q|
2πK

+ 2v2
0

∫
0<p<q

pq(q − p)(npnq−p − nq(1 + np + nq−p))

σR
q + σ

R
p + σ

R
q−p

+ 4v2
0

∫
0<p

pq(q + p)(nq+p(nq + np + 1) − nqnp)

σR
q + σ

R
p + σ

R
q+p

. (284)

Figure 12. Illustration of the iterative process to compute the time evo-
lution of the phonon density nq,t. For a specific forward time t, the on-
shell self-energy σR

q,t is determined via Eq. (283) and subsequently the
result is inserted into the kinetic equation (284). In order to integrate
the phonon density, a Runge-Kutta solver for differential equations is
used, which determines nq,t numerically.

The kinetic equation (284) and the equation for the on-shell self-
energy (283) determine the forward time evolution of the sys-
tem’s phonon density nq,t and self-energyσR

q,t in a self-consistent
manner. For a general phonon density, both equations have to be
solved iteratively according to the scheme depicted in Fig. 12.
Before the numerical results for dynamics in the presence of
heating, i.e., the numerical solution of Eqs. (283), (284), are dis-
cussed, it is useful to study certain limiting cases. This facilitates
the understanding of the numerical results in the subsequent sec-
tion.

1. Kinetics for small momenta

For sufficiently small momenta q � 1, the kinetic equation
simplifies considerably. In this case, the second line of Eq. (284)
can be discarded completely, since the integral is performed over
a very small momentum interval 0 < p < q. On the other hand,
for the integral in the third line of Eq. (284), all terms (q+ p) ≈ p
for the dominant part of the integral. Therefore

∂tnq,t = |q|
(
γ

2πK
+Jt

)
, (285)

where the time-dependent integralJt is q-independent and reads

Jt = 2v2
0

∫
0<p

p2np(np + 1)

σR
p

. (286)

As a consequence, the resulting change of the phonon density
for small momenta |q| is linearly proportional to |q|, i.e.

nq,t = nq,0 + |q|
(
γt

2πK
+

∫
0<t′<t

Jt′

)
. (287)

The momentum regime 0 < |q| < q2, defined as the regime where
the non-linear contributions in |q| are negligible, depends on the
actual value of the phonon density nq,t, and has to be determined
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for each specific scenario individually. However, the existence
of q2 is guaranteed by the above general arguments, and the fact
that ∂tnq=0,t = 0 for all times t. The latter is a consequence of
the U(1) symmetry of the present setup and the global particle
number conservation, as discussed in [44].

2. Scaling of the self-energy

The fact that the present system is described by a U(1)-
invariant, massless field theory is reflected by the absence of
a scale in the self-energy equation (283). One important con-

sequence is that σR
q,t

q→0
→ 0 generically, i.e., the generation of a

mass gap is forbidden by symmetry. A further consequence of
Eq. (283) is that, whenever the term in brackets obeys a scaling
law,

∂tnp

σR
p
+ 2np + 1 ∼ γn|p|ηn , (288)

the solution for the self-energy will be a scaling function σR
q =

γR|p|ηR as well. Inserting this scaling ansatz in Eq. (283) yields

γR|p|ηR =
v2

0γn

γR
|p|4+ηn−ηRIηn,ηR (289)

and identifies

ηR = 2 +
ηn

2
and γR = v0

√
γnIηn,ηR . (290)

The dimensionless integral Iηn,ηR is defined as

Iηn,ηR =

∫
0<x

xηn

(
x(1 − x)

xηR + |1 − x|ηR
+

x(1 + x)

xηR + (1 + x)ηR

)
, (291)

and depends only on the exponents ηR, ηn. This self-energy inte-
gral is dominated by contributions around x = 1 and converges
for all physically reasonable phonon densities. In this sense, the
scaling behavior is universal, i.e. robust against the influence
from high energy modes [43, 44].

D. Heating and universality

With the preparations from the previous sections, one can sim-
ulate the heating dynamics of an interacting Luttinger liquid in
terms of the time dependent phonon population nq,t and self-
energy σR

q,t, as has been done in Refs. [43, 44]. Considering the
system initially to be in the ground state, the simulation is initial-
ized with a phonon density nq,t=0 = 0, which for t > 0 is continu-
ously increased due to heating. The central result of the analysis
is a scaling solution for the self-energies σR

q,t ∼ |q|ηR with a new
non-equilibrium exponent ηR = 5/3, which is observable in the
long-wavelength regime, i.e., on distances x > xth(t). Here, xth(t)
marks a thermal distance, below which the dynamics is domi-
nated by thermalized short distance modes and above which the
phonon density increases linearly in momentum nq,t ∼ |q|, as it

Figure 13. Time evolution of the phonon density nq,t in a sequence
(t1, t2, t3) = (2, 3, 4) · 10

v0Λ
2 in terms of q/Λ and for a heating rate γ =

0.06v0Λ. In the heating regime, for small momenta, the distribution
increases linearly in momentum nq,t ∼ |q|, while it decreases as nq,t ∼
1/|q| in the interaction dominated thermal regime. The crossover x−1

th
∼

t−4/5 approaches zero as time evolves. The dashed line represents a
Bose-Einstein distribution corresponding to the phonon density at t =
t3. The dash-dotted line indicates nB(T (tc)) at the time tc, for which the
Luttinger description breaks down, i.e., T (tc) = uΛ.

was the case for the bare heating (252). The thermal distance
increases sub-ballistically xth(t) ∼ t4/5 in time, with a charac-
teristic heating exponent ηh = 4/5, while at the same time, the
effective temperature describing the distribution of the short dis-
tance modes increases linearly in time T (t) ∼ t.

1. Phonon densities

The results of a numerical simulation of the phonon densities
are shown in Fig. 13. One can clearly identify the crossover

from an interaction dominated thermal regime with nq,t =
T (t)
u|q|

at large momenta to a heating dominated regime with nq,t ∼ |q|.
The crossover momentum between the two regimes represents
the inverse thermal length (xth(t))−1 ∼ t−4/5.

In the large momentum regime, the dominant contribution to
the kinetic equation is the collision term, which establishes an
approximate detailed balance between phonon absorption and
emission in the presence of the heating. This is expressed by the
evolution of the phonon density towards a Bose-Einstein distri-
bution, which is the fixed point of the collision term alone. In

this regime nq,t = nB(u|q|,T (t)) ≈ T (t)
u|q| with very good agreement

and the only indicator of the permanent heating is the continu-
ously increasing temperature T (t) ∼ t. This is contrasted by the
evolution of the phonon density in the low momentum regime,
which is dominated by strong phonon production. In this regime,
the scattering of high-momentum phonons into low-momentum
modes enhances the effect of the heating and leads, due to the
structure of the vertex, to an increase of the linear production rate
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according to Eq. (285). The pinning of the phonon occupation
of the q = 0 mode is an exact result for the underlying U(1)-
symmetric, i.e. particle number conserving dynamics. It can
be shown that the phonon number fluctuations in the zero mo-
mentum mode are proportional to the fluctuations of the global
particle number in the system, see Ref. [43], and consequently
they are integrals of motion for a U(1)-symmetry preserving dy-
namics. The pinning effect for the low momentum distribution
at nq=0,t = nq=0,0 leads to a very slow, sub-ballistic thermaliza-
tion of the low momentum regime, since the formation of the
typical, thermal Rayleigh-Jeans divergence nq,t ∼ 1/|q| is only
achieved by the scaling of the inverse thermal length (xth(t))−1

to zero, instead of a direct filling of these modes.

2. Non-equilibrium scaling

Away from the crossover scale q � x−1
th

, deep in the heating
or thermal regimes, the phonon density exhibits scaling behavior
and can be written as

nq,t =

{
c(t)|q| for |q| � x−1

th
T (t)
u|q| for |q| � x−1

th
, (292)

where the functions c(t), T (t) have to be determined numerically.
In these regimes, according to Sec. V C 2, one finds scaling be-
havior of the phonon self-energy as well. The corresponding
scaling exponent is determined by

fq,t ≡
∂tnq,t

σR
q,t
+ 2nq,t + 1 ∼ |q|ηn . (293)

In the heating dominated regime, nq,t = c(t)|q| and therefore

fq,t =
c′(t)
γR
|q|1−ηR + c(t)|q| + 1

ηR>1
→ c′(t)
γR
|q|1−ηR (294)

for small momenta, since ηR > 1 is guaranteed by the subleading
nature of the interactions. This directly implies ηn = 1−ηR and a
super-diffusive exponent ηR =

5
3

in this regime, which lacks any
equilibrium counterpart.

On the other hand, in the large momentum regime fq,t is ob-
viously dominated by the term proportional to nq,t and ηn = −1,
which leads to the known thermal equilibrium exponent ηR =
3
2

[320] and a thermal scaling behavior for large momenta not
only in the distribution function but also in the self-energy. The
crossover between the two scaling regimes can be estimated by
equating the two relevant terms, which tend to dominate fq,t in
the corresponding regimes. This yields

∂tnqth

2nqth
+ 1
= σR

qth
, (295)

for qth = x−1
th

and can be used to analytically estimate the scaling

of xth(t) in time [43], resulting in xth(t) ∼ t4/5, which agrees well
with the numerical findings.

3. Observability

The universal scaling of the phonon self-energies as well as
the scaling regimes of the phonon distribution function can be
observed in cold atom experiments via Bragg spectroscopy [43],
which gives direct access to the characteristic universal fea-
tures in the heating dynamics. In Bragg experiments, the de-
tected Bragg signal is directly proportional to the Fourier trans-
form of the two-point density-density correlation function [321–
324] or dynamical structure factor S q,t,ω =

∫
dδdxei(qx−ωδ)〈{n(t+

δ/2, x), n(t−δ/2, 0)}〉. In the Luttinger framework in the Keldysh
formalism this translates into S q,t,ω = −〈ρc(−q, t,−ω)ρc(q, t, ω)〉.
Explicit evaluation of the structure factor yields

S q,t,ω =
(2nq,t+1)|q|K
πσR

q,t

(
f̃
(
ω−εq
σR

q,t

)
+(ω→−ω)

)
. (296)

Here, f̃ (x) = 1/(1 + x2) is a dimensionless scaling function,
which is centered at x = 0 and has unit width. As a consequence,
the dynamic structure factor is peaked at the mass shell ω = u|q|
and has a typical width δω = σR

q,t, which reveals the scaling of
the self-energies.

The scaling of the distribution function and the time depen-
dent crossover xth(t) does not necessitate dynamical (frequency
resolved) information, and can be obtained from the static struc-
ture factor alone. The latter represents the equal time density-
density correlation function. It is determined as the frequency
integrated dynamic structure factor

S q,t =

∫
ω

S q,t,ω =
|q|K
π

(2nq,t + 1) (297)

and scales quadratically in the momentum in the heating regime
while approaching a constant in the thermalized regime, thereby
revealing the crossover between these two regimes.

VI. CONCLUSIONS AND OUTLOOK

We have reviewed here recent progress in the theory of driven
open quantum systems, which are at the interface of quantum op-
tics, many-body physics, and statistical mechanics. In particular,
we have developed a quantum field theoretical approach based
on the Keldysh functional integral for open systems, which un-
derlies these advances. The formalism developed here paves the
way for many future applications and discoveries. We may struc-
ture these into four groups of topics.

Semi-classical regime — A key challenge here is to sharpen
the contrast between equilibrium and genuine non-equilibrium
physics. One way of succeeding in this respect is to uncover
new links of driven open quantum systems to paradigmatic sit-
uations in non-equilibrium (classical) statistical mechanics. We
have discussed one such connection between the phase dynamics
of driven Bose condensates and surface growth in Sec. IV. Fur-
ther instances have been pointed out in the literature recently:
for example, driven Rydberg gases can be brought into regimes
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where they connect to the physics of glasses [49] or the univer-
sality class of directed percolation [50], and the late stages of
heating of atoms in optical lattices show slow decoherence dy-
namics described by non-linear diffusion, reminiscent of glasses
as well [45, 46, 325]. Connections of such settings to field theo-
retical non-linear reaction-diffusion models [107, 326] still await
their exploration. A new kind of equilibrium to non-equilibrium
phase transition may be expected in three dimensional driven
bosonic systems on the basis of the phase diagram for surface
roughening, and it is intriguing to investigate whether ultracold
atom setups could provide a physical platform to explore such
physics.

Even more ambitiously, such driven open quantum systems
hold the potential for truly new paradigms in non-equilibrium
statistical mechanics. One example is presented by the fun-
damental open question on the driven open analogue of the
Kosterlitz-Thouless scenario in two dimensions, directly rele-
vant for experiments with exciton-polariton systems. Techni-
cally, this requires to analyze a KPZ equation with a compact
variable, allowing for the presence of vortex defects. Keldysh
field theory offers the flexibility to address such questions.

Quantum regime — The quantum dynamical field theory
framework developed here also allows us to address prob-
lems where the limit of classical dynamical field theories (see
Sec. II C) is not applicable. Here one challenge is to identify
traces of non-equilibrium quantum effects at macroscopic dis-
tances. An instance of such a phenomenon has been established
recently in terms of a driven analogue of quantum critical behav-
ior in a system with a dark state, a state which is decoupled from
noise [28]. It remains to be seen whether a full classification of
driven Markovian (quantum) criticality can be achieved, com-
plementing the seminal analysis of equilibrium classical criti-
cality by Hohenberg and Halperin [1]. Beyond bosonic systems,
this also includes fermionic systems, which have been shown to
exhibit critical scaling [61, 63, 64], but so far were analyzed at a
Gaussian fixed point only.

Another challenge in this direction is to identify effects, which
unambiguously reveal the microscopic quantum mechanical ori-
gin of the underlying dynamics. Here an example was provided
recently in the context of driven Rydberg systems, where a short
distance constraint in the coherent Hamilton dynamics gives rise
to an additional relevant direction in parameter space, leading to
a new kind of absorbing state phase transition without immedi-
ate counterpart in models of classical origin [327].

Certainly, progress in this respect will necessitate a more com-
prehensive understanding of the structure of quantum dynamical
field theories. One relevant issue is to reveal universal aspects
of the low frequency dynamics tied to the presence of conser-
vation laws. A concrete goal is the systematic construction of
dynamical slow modes on the basis of the symmetries (and their
breaking patterns) of the Keldysh functional integral.

Topology in open quantum systems – Recently, experiments
with photonic lattices have started to address quantum Hall
physics in driven open quantum systems [328, 329]. Although
these systems can be idealized to some extent as closed systems,

it is a fundamental challenge to explore the fate of the quantum
Hall effect – or more generally, physical phenomena related to
topology – under general non-equilibrium conditions. Another
angle is provided by theoretical proposals, where drive and/or
dissipation do not occur as a small perturbation, but rather as the
dominant resource of many-body dynamics, guiding the system
density matrix into topologically nontrivial states, which some-
times even do not have a direct equilibrium counterpart. This
concerns topologically non-trivial dark states in driven open
atomic fermion systems [70, 330] and periodically driven (Flo-
quet) dynamics [331, 332] alike.

The density matrices describing such systems typically do
not correspond to pure, but rather to mixed states. While such
density matrices can still host non-trivial topological proper-
ties [216, 333, 334], the extent to which this translates into
physically observable consequences in the correlations and re-
sponses to (artificial) external gauge fields is at the moment
a wide open issue. This calls for the development of non-
equilibrium topological field theories in the framework of the
Keldysh functional integral: the established equilibrium coun-
terpart has proven to be able to efficiently describe both bulk
correlations and responses to external gauge potentials, as well
as to provide a proper notion of the bulk-boundary correspon-
dence (cf. e.g. [335]), giving access to the edge physics in both
non-interacting and interacting systems.

Dynamics — Addressing the time evolution of open sys-
tems adds a new twist to the question of thermalization [32,
37, 336, 337] or, more generally, equilibration of quantum sys-
tems. This is also a necessary step to achieve a realistic de-
scription of broad classes of experiments, in particular, with ul-
tracold atoms, as well as certain solid states systems in pump-
probe setups [338, 339]. While first instances of universal be-
havior have been identified in low dimension in the short [43]
and long [45, 47, 51] dynamics, it is certainly fair to say that
general principles so far remain elusive.

VII. ACKNOWLEDGEMENTS

The authors thank E. Altman, L. Chen, A. Chiocchetta, E.
G. Dalla Torre, A. Gambassi, L. He, S. D. Huber, S. E. Huber,
M. Lukin, J. Marino, S. Sachdev, P. Strack, U. Täuber, and J.
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Appendix A: Functional differentiation

In this appendix, we give a brief account of functional or vari-
ational differentiation, following the presentation in Ref. [233].
The most transparent way to introduce the basic relations of
functional differentiation is by drawing an analogy to the famil-
iar formulas of partial differentiation. Indeed, we can consider a
field φ(x) with x ∈ Rd to be the continuum limit of a function φi
defined on lattice points i ∈ Zd. With this identification, relations
involving partial derivatives can be translated into corresponding
ones for functional derivatives simply by replacing discrete in-
dices i by continuous ones x, sums

∑
i by integrals

∫
x =

∫
dd x,

and partial derivatives ∂/∂φi by functional derivatives δ/δφ(x).
Following this prescription, the basic formula ∂φi/∂φ j = δi j
leads to

δφ(x)

δφ(x′)
= δ(x − x′). (A1)

When we are working with complex fields, φ and φ∗ are usually
treated as independent variables. Then, the generalization of

∂

∂φ∗k

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

φ∗i Ai jφ j

⎞⎟⎟⎟⎟⎟⎟⎠ =∑
j

Ak jφ j (A2)

reads

δ

δφ∗(x)

∫
y,y′
φ∗(y)A(y, y′)φ(y′) =

∫
y′

A(x, y′)φ(y′). (A3)

The expression A(x, x′) is the continuum limit of a matrix Ai j.
In particular, it can be a differential operator. As an example,
we calculate the second functional derivative for the case that
A(x, x′) = ∇2δ(x− x′). By straightforward differentiation we find

δ2

δφ∗(x)δφ(x′)

∫
y
φ∗(y)∇2φ(y) =

δ

δφ∗(x)

∫
y
φ∗(y)∇2δ(y − x′)

=
δ

δφ∗(x)
∇2φ(x′)

= ∇2δ(x − x′).
(A4)

Finally, we note that the chain rule applies also in the case of
functional differentiation. This last ingredient is required to per-
form the second variational derivatives in Eq. (34) in order to
obtain the Green’s functions from the generating functional.

Appendix B: Gaussian functional integration

Here we summarize a number of useful formulas for Gaus-
sian functional integration, which can be found in any textbook
on field theory (see, e.g., Refs. [178, 180, 340]). The basic for-
mula for real fields χ(x) = (χ1(x), . . . , χn(x)), x ∈ Rd (in the ap-
plications discussed in the main text, the components of χ(x) are
fields on the closed time path or — after performing the Keldysh
rotation Eq. (32) — classical and quantum fields, and x collects
temporal and spatial coordinates, x = (t, x)), is given by∫

D[χ] e
i
2

∫
x,x′ χ(x)T D(x,x′)χ(x′)+i

∫
x j(x)Tχ(x)

= (det D)−1/2 e−
i
2

∫
x,x′ j(x)T D−1(x,x′) j(x′), (B1)

where
∫

x =
∫

dd x, j(x) = ( j1(x), . . . , jn(x)), and the inverse of
the integral kernel D(x, x′) is defined by means of the relation∫

ξ

D(x, ξ)D−1(ξ, x′) = δ(x − x′)�. (B2)

The above formula is valid for invertible symmetric kernels,
D(x, x′) = D(x′, x)T , with positive semi-definite imaginary part.
If D(x, x′) is not symmetric, on the LHS of Eq. (B1) it can be
replaced by the symmetrized kernel

D̃(x, x′) =
1

2

[
D(x, x′) + D(x′, x)T

]
, (B3)

leaving the value of the exponent invariant. Then, Eq. (B1) can
again be applied.

In case that the integral kernel is translaitionally invariant, i.e.,
it satisfies D(x, x′) = D(x − x′), it is advantageous to work in
Fourier space. Then, Eq. (B1) can be written as∫

D[χ] e
i
2

∫
q χ(−q)T D(q)χ(q)+i

∫
q j(−q)Tχ(q)

= (det D)−1/2 e−
i
2

∫
q j(−q)T D−1(q) j(q)

, (B4)

where we are using the shorthand notation
∫

q ≡
∫ dq

(2π)d . The

Fourier transformation turns the convolution in Eq. (B3) into a
multiplication, showing that D−1(q) can be obtained by inversion
of the matrix D(q),

D(q)D−1(q) = �. (B5)

As above, in Eq. (B4) we are assuming D(q) = D(−q)T . If this is
not the case, D(q) has to be replaced by the symmetrized version

D̃(q) =
1

2

[
D(q) + D(−q)T

]
, (B6)

before the formula can be applied.
For the case of complex fields ψ(x) = (ψ1(x), . . . , ψn(x)) (and

with corresponding definitions of φ(x) and χ(x)), Eq. (B1) is re-
placed by∫

D[ψ, ψ∗] ei
∫

x,x′ ψ
†(x)D(x,x′)ψ(x′)+i

∫
x(φ
†(x)ψ(x)+ψ†(x)χ(x))

= (det D)−1 e−i
∫

x,x′ φ
†(x)D−1(x,x′)χ(x), (B7)
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where we are assuming that −i
(
D − D†

)
is positive semi-

definite, but D(x, x′) does not have to be symmetric. The cor-
responding formula for the case of a translationally invariant in-
tegral kernel reads (note the different signs of q in comparison
to Eq. (B4))

∫
D[ψ, ψ∗] ei

∫
q ψ
†(q)D(q)ψ(q)+i

∫
q(φ

†(q)ψ(q)+ψ†(q)χ(q))

= (det D)−1 e−i
∫

q φ
†(q)D−1(q)χ(q)

. (B8)
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driven dynamics and phase transitions in fermionic systems,”
Phys. Rev. A 87, 012108 (2013).

[64] M. Höning, M. Moos, and M. Fleischhauer, “Critical exponents
of steady-state phase transitions in fermionic lattice models,”
Phys. Rev. A 86, 013606 (2012).

Page 65 of 73 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  ROPP-100575.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



66

[65] Eliot Kapit, Mohammad Hafezi, and Steven H. Simon, “Induced
self-stabilization in fractional quantum hall states of light,” Phys.
Rev. X 4, 031039 (2014).

[66] Nicolai Lang and Hans Peter Büchler, “Exploring quantum
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Hakan E. Türeci, “Excitations of optically driven atomic conden-
sate in a cavity: theory of photodetection measurements,” New J.
Phys. 14, 085011 (2012).
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[145] Alexandre Le Boité, Giuliano Orso, and Cristiano Ciuti, “Bose-

Hubbard model: Relation between driven-dissipative steady
states and equilibrium quantum phases,” Phys. Rev. A 90, 063821
(2014).

[146] Alberto Biella, Leonardo Mazza, Iacopo Carusotto, Davide
Rossini, and Rosario Fazio, “Photon transport in a dissipative
chain of nonlinear cavities,” Phys. Rev. A 91, 053815 (2015).

[147] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto, “Exciton-
polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82,
1489–1537 (2010).

[148] Tim Byrnes, Na Young Kim, and Yoshihisa Yamamoto,
“Exciton-polariton condensates,” Nat. Phys. 10, 803–813 (2014).

[149] Jonathan Keeling, Marzena H. Szymańska, and Peter B. Lit-
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[247] Léonie Canet, Bertrand Delamotte, Olivier Deloubrière, and
Nicolas Wschebor, “Nonperturbative Renormalization-Group
Study of Reaction-Diffusion Processes,” Phys. Rev. Lett. 92,
195703 (2004).
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[323] Ulf Bissbort, Sören Götze, Yongqiang Li, Jannes Heinze,
Jasper S. Krauser, Malte Weinberg, Christoph Becker, Klaus
Sengstock, and Walter Hofstetter, “Detecting the Amplitude
Mode of Strongly Interacting Lattice Bosons by Bragg Scatter-
ing,” Phys. Rev. Lett. 106, 205303 (2011).

[324] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux, and
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