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Abstract
This article reviews how nuclear fission is described within nuclear density functional theory. 
A distinction should be made between spontaneous fission, where half-lives are the main 
observables and quantum tunnelling the essential concept, and induced fission, where the 
focus is on fragment properties and explicitly time-dependent approaches are often invoked. 
Overall, the cornerstone of the density functional theory approach to fission is the energy 
density functional formalism. The basic tenets of this method, including some well-known 
tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear 
potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond 
mean-field corrections, are presented succinctly. The energy density functional approach 
is often combined with the hypothesis that the time-scale of the large amplitude collective 
motion driving the system to fission is slow compared to typical time-scales of nucleons inside 
the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) 
collective variables and mapping out the many-body Schrödinger equation into a collective 
Schrödinger-like equation for the nuclear wave-packet. The region of the collective space 
where the system transitions from one nucleus to two (or more) fragments defines what are 
called the scission configurations. The inertia tensor that enters the kinetic energy term of the 
collective Schrödinger-like equation is one of the most essential ingredients of the theory, 
since it includes the response of the system to small changes in the collective variables. For 
this reason, the two main approximations used to compute this inertia tensor, the adiabatic 
time-dependent HFB and the generator coordinate method, are presented in detail, both in 
their general formulation and in their most common approximations. The collective inertia 
tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to extract spontaneous 
fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of 
completeness, other approaches to tunnelling based on functional integrals are also briefly 
discussed, although there are very few applications.) It is also an important component of 
some of the time-dependent methods that have been used in fission studies. Concerning the 
latter, both the semi-classical approaches to time-dependent nuclear dynamics and more 
microscopic theories involving explicit quantum-many-body methods are presented. One of 
the hallmarks of the microscopic theory of fission is the tremendous amount of computing 
needed for practical applications. In particular, the successful implementation of the theories 
presented in this article requires a very precise numerical resolution of the HFB equations for 
large values of the collective variables. This aspect is often overlooked, and several 
sections are devoted to discussing the resolution of the HFB equations, especially in the 
context of very deformed nuclear shapes. In particular, the numerical precision and iterative 
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methods employed to obtain the HFB solution are documented in detail. Finally, a selection of 
the most recent and representative results obtained for both spontaneous and induced fission 
is presented, with the goal of emphasizing the coherence of the microscopic approaches 
employed. Although impressive progress has been achieved over the last two decades to 
understand fission microscopically, much work remains to be done. Several possible lines of 
research are outlined in the conclusion.

Keywords: nuclear fission, collective inertia, density functional theory,  
self-consistent mean field, scission configurations, potential energy surfaces, fission fragments

(Some figures may appear in colour only in the online journal)

1.  Introduction

Experiments on the bombardment of Uranium atoms (charge 
number Z  =  92) with neutrons performed by Hahn and 
Strassmann in 1938–1939 and published in [1, 2] showed that 
lighter elements akin to Barium (Z  =  56) were formed in the 
reaction. In February 1939, this observation was explained 
qualitatively by Meitner and Frisch in [3] as caused by the 
disintegration of the heavy Uranium element into lighter 
fragments. This tentative explanation was based on the liq-
uid drop model of the nucleus that had been introduced a 
few years earlier in [4] by Bohr. A few months after these 
results N. Bohr himself, together with Wheeler, formalized 
and quantified Meitner’s arguments in their seminal paper [5]. 
They described fission as the process during which an atomic 
nucleus can deform itself up to the splitting point as a result 
of the competition between the nuclear surface tension that 
favours compact spherical shapes and the Coulomb repulsion 
among protons that favour very elongated shapes to decrease 
the repulsion energy. They introduced the concepts of com-
pound nucleus, saddle point (the critical deformation beyond 
which the nuclear liquid drop is unstable against fission) 
and fissility (which captures the ability of a given nucleus to 
undergo fission), provided estimates of the energy release dur-
ing the process, of the dependence of the fission cross-section 
on the energy of incident particles, etc. Although tremendous 
progress has been made since 1939 in our understanding of 
nuclear fission, many of the concepts introduced by Bohr and 
Wheeler remain very pertinent even today.

1.1.  Fission in science and applications

In simple terms, nuclear fission is the process during which an 
atomic nucleus made of Z protons and N neutrons (A  =  N + Z) 
may split into two or more lighter elements. The nuclear 
‘fissility’ parameter, given by x Z A I50.88 12 2/ ( )η≈ −  with 
I  =(N  −  Z)/A and 1.7826η = , is a convenient quantity to 
characterize the ability of a nucleus to fission as suggested 
in [6–8]. In the liquid drop model, the fissility is related to 
the ratio between the Coulomb and surface energy of the 
drop. For values of x  >  1, the drop is unstable against fission, 
and nuclear fission can then occur spontaneously. This is the 
case, for instance, in heavy nuclei with large Z values such as 
actinides or transactinides. The process is characterized by the 

spontaneous fission half-life 1 2
SF
/τ , which is the time it takes for 

half the population of a sample to undergo fission. Fission can 
also be induced through a nuclear reaction of a target nucleus 
with projectiles such as neutrons, protons, alpha particles or 
gamma rays (‘photofission’). There are four well known cases 
(239, 241Pu and 233, 235U) where the absorption of a neutron 
in thermal equilibrium with the environment—with kinetic 
energy of a few tens of meV—is sufficient to trigger fission 
(‘fissile elements’). Note that 235U is the only such fissile ele-
ment that is naturally occurring on earth.

Since the fissility parameter increases quadratically with 
Z, spontaneous fission is one of the most important limiting 
mechanisms to the existence of superheavy elements and is 
discussed in specialized review articles such as [9, 10], as 
well as in several textbooks [11, 12]. Theoretical studies of 
the location of the next island of stability beyond Lead are, 
therefore, largely focused on the accurate determination of 
spontaneous fission half-lives; see for instance the following 
papers [13–20].

Nuclear fission also plays an important role in the formation 
of elements in the rapid neutron capture process (r-process) of 
nucleosynthesis in stellar environments. Modern simulations 
of neutron star–neutron star or neutron star–black hole merg-
ers performed in [21–23] suggest a vigorous r-process with 
fission recycling. In a fission recycling scenario, the nucleo-
synthesis flow proceeds beyond the N  =  126 closed shell to 
the region where neutron-induced, β-delayed, or spontaneous 
fission becomes likely. The fission products rejoin the r-process 
flow at lower A, continuing to capture neutrons until again 
reaching the fission region. Fission recycling is thus expected 
to contribute to the abundance pattern between the second 
(A 130∼ ) and third r-process (A 190∼ ) peaks. This appears 
consistent with observations of the r-process-enhanced halo 
stars—unusual old, metal-poor stars at the edges of our gal-
axy that contain r-process elements in quantities measurable 
via high-resolution spectroscopy. Most of the relatively com-
plete 56  <  Z  <  82 patterns observed in these stars are strik-
ingly similar and a good match to the solar r-process residuals 
within this element range as reported in [24, 25].

Because of the strong nuclear binding, the energy released 
during fission is very large (compared to other energy produc-
tion sources), typically of the order of 200 MeV per fission 
event. Most of it is kinetic energy of the fission fragments 
while about 10–20% of it is excitation energy. In a typical 
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fission process, the formation of the fission fragments will 
thus be accompanied by neutron and gamma emission. In a 
nuclear reactor, these neutrons can be reabsorbed by the fis-
sile elements present in the core, thereby triggering new 
fission events. The magnitude of this chain reaction can be 
controlled by neutron absorbers. Clearly, all characteristics of 
the fission process are essential to understanding the physics 
behind the technology required for efficient, reliable and safe 
nuclear technology applications. For instance, understand-
ing the mechanism of induced fission at the level of making 
reliable prediction in regions where no experimental data is 
available will be of paramount importance in technological 
applications.

1.2.  Defining a microscopic theory of nuclear fission

In this review, the term ‘microscopic theory’ should be under-
stood as pertaining to the methods and concepts of nuclear 
density functional theory (DFT)—in its broadest sense. In 
particular, we will use interchangeably the expression of DFT 
and self-consistent mean field (SCMF) theory. Extensions 
beyond mean field theory—such as, for example, projection 
or configuration mixing techniques—will also be generously 
included under the DFT label. The choice of this loose defi-
nition stems from the need to clearly differentiate current 
microscopic approaches to fission from configuration inter-
action methods such as ab initio techniques or the nuclear 
shell model. It is also a reminder that the basic concepts and 
approximations essential in the theoretical description of fis-
sion are to a large extent independent of the formal differences 
between the SCMF and DFT.

The overall framework of the microscopic theory of fission 
based on DFT/SCMF is summarized in figure  1. The start-
ing point is to view the nucleus as a system of protons and 
neutrons, treated as point-like particles, in interaction. We fur-
ther assume that the ground-state of the system can be well 
approximated by a symmetry-breaking quasiparticle vacuum. 
As a result of this approximation, the two basic degrees of 
freedom of the theory are the one-body density matrix ρ and 
the pairing tensor κ. These objects are determined by solving 
the Hartree–Fock–Bogoliubov (HFB) equation, also known 
as Bogoliubov–de Gennes equation in condensed matter. The 
Wick theorem allows computing the expectation value of any 
operator based solely on the knowledge of the density matrix 
and pairing tensor. These concepts are briefly summarized in 
section 2.2.1.

At the HFB approximation, the energy of the nucleus is a 
functional of ρ and κ. In the particular case of the self-con-
sistent mean field, this functional is in fact derived from the 
expectation value of an effective nuclear Hamiltonian Ĥ on a 
quasiparticle vacuum; in the DFT picture, the energy density 
functional (EDF) is not necessarily related to any Hamiltonian. 
In both cases, the form of the EDF should in principle be 
constrained by our knowledge of nuclear forces. However, 
the various parameters that enter the definition of the EDF 
are typically readjusted to data in nuclear matter and finite 
nuclei to account for the HFB approximation. The Skyrme 

and Gogny forces are among the two most popular effective 
nuclear potentials that have been used, among others, in fis-
sion studies. The characteristics of the nuclear EDF, includ-
ing a short discussion of how their parameters are adjusted to 
data, are presented in section 2.2.3.

Allowing for spontaneous breaking of the symmetries of 
the nuclear force at the level of the quasiparticle vacuum is 
reminiscent of the historical picture of fission: if the one-
body density matrix is not rotationally invariant, its spatial 
distribution represents a deformed nuclear shape. Fission can 
then be viewed as a process during which the deformation 
becomes so large that two separate fragments appear. This 
viewpoint can be formalized by introducing a set of collec-
tive variables that represent the motion of the nucleus as a 
whole and control the fission process. The characteristics of 
the resulting potential energy surface (PES), i.e. the energy as 
a function of the chosen collective variables, determines fis-
sion properties. For example, differences in the characteris-
tics of potential energy barriers of nuclei qualitatively explain 
the range of spontaneous fission half-lives observed exper
imentally. In neutron-induced fission, the time ‘from saddle 
to scission’, which is the time it takes for the nucleus to go 
from the top of the highest barrier to a configuration with two 
separated fragments, is also strongly dependent on the char-
acteristics of the PES.

In the adiabatic approximation, it is further assumed that 
there is a perfect decoupling between the motion in collec-
tive space and the intrinsic motion of individual nucleons. 
This hypothesis originates from the observation that the time 
from saddle to scission is typically of the order of 10−19 s. 
This is about two orders of magnitude slower than the time 
scale that can be inferred from the average binding energy 
per nucleon (B 8≈  MeV). As a result, one can explore the 
collective space by seeking solutions to the HFB equa-
tions that yield specific values of the collective variables: this 
is how potential energy surfaces are computed in practice. 
Section 2.3 discusses the role of various collective variables 
in fission; see also section 2.1.1 for geometrical parametriza-
tions of the nuclear surface used in semi-phenomenological 
approaches.

For specific values of the collective variables, the den-
sity of nucleons r( )ρ  may exhibit two disconnected regions 
of space with a high density of particles. Such a configura-
tion corresponds to separated fragments. The frontier between 
configurations associated to the whole compound nucleus 
and those associated with the fission fragments is called 
the scission line; in N-dimensional collective spaces, it is in 
fact an N  −  1-dimensional hyper-surface. The actual defini-
tion of scission is ambiguous and is discussed in detail in 
section  2.4. In non-adiabatic approaches to fission such as 
time-dependent density functional theory (TDDFT), scission 
occurs ‘naturally’ from the competition between short-range 
nuclear forces and Coulomb repulsion as the system is being 
evolved in time from some initial state (usually some specific 
quasiparticle vacuum). In the adiabatic approximation, how-
ever, there is no such ‘dynamical’ mechanism to simulate the 
evolution of the system.

Rep. Prog. Phys. 79 (2016) 116301



Review

4

1.3.  Challenges for a predictive theory of fission

As briefly mentioned in the previous section, there are dif-
ferent forms of nuclear fission, and the relevant observables 
that theorists need to compute thus differ depending on the 
mechanism under study.

	 •	Spontaneous fission (SF) is mostly characterized by the 
fission half-lives 1 2

SF
/τ , which range from 4.2 μs in 250No 

to over 1.4 1010 years for 232Th, or a range of over 35 
orders of magnitude. The characteristics of the fission 
fragments are also important for astrophysical applica-
tions, or for establishing benchmark data for nuclear 
material counting techniques used, e.g. in international 
safeguards, see for instance [26].

	 •	In neutron-induced or photofission reactions, the focus is 
more on the fission fragments. The relevant observables 
are thus the charge and mass distributions of the frag-
ments; their total kinetic (TKE) and excitation energy 
(TXE) distributions, the average number of neutrons 
ν̄ emitted from each fragment and the average neutron 
energy; the average gamma multiplicity (i.e. number 
of gamma rays emitted) per fragment and the average 
gamma ray energy, etc. All these observables should 
be computed as a function of the energy of the incident 

particle (neutron or photon). Applications of induced 
fission in energy production typically require accuracy 
of less than a 1% on these quantities.

	 •	In β-delayed fission, the compound nucleus has been 
itself produced by β decay. The probability and charac-
teristics of the subsequent fission will be dependent on 
the excited spectrum of the compound nucleus, and of 
the β-decay process itself. Calculating β-decay rates is, 
in itself, particularly challenging for nuclear DFT, since 
it is dependent on detailed knowledge of the nuclear 
wave-function. Until now, there have been no attempt at 
computing β-delayed fission rates in a fully microscopic 
setting.

This variety of observables imposes various constraints on 
theory. For example, the description of neutron-induced fis-
sion with fast neutrons (E 14n≈  MeV) requires accurate mod-
elling of the compound nucleus up to excitation energies of 
20 MeV or so; predictions of spontaneous fission half-lives in 
superheavy nuclei are contingent on the predictive power of 
nuclear EDF far from stability; β-delayed fission rates depend 
on a quantitatively accurate description of weak processes in 
nuclei, etc.

Over the past decade, nuclear DFT has made great strides 
toward becoming a predictive tool for nuclear structure; see 

Figure 1.  Schematic workflow of the microscopic theory of fission based on nuclear density functional theory.
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[27] for a description of a comprehensive effort to build a 
universal energy functional. In particular, there is little doubt 
today that the theoretical framework outlined in the previous 
section and explained in greater detail in sections 2 and 3 is 
sufficient to explain, at the very least semi-quantitatively, mul-
tiple aspects of the fission process—from the trend of fission 
half-lives along isotopic lines via the shape of fission frag-
ment mass distributions to the overall properties of fission 
fragments; see section  5 for an overview of recent results. 
The main question, therefore, is whether this framework can 
deliver the accuracy and precision required in applications—
be it to answer fundamental science questions or provide 
parameter-free input for nuclear technology.

Reaching such a goal will require progress on at least three 
fronts:

	 •	At the most fundamental level, DFT predictions always 
depend on the intrinsic quality of the nuclear EDF. 
Currently, all EDFs used so far in fission studies have 
been based on phenomenological potentials such as 
the Skyrme and Gogny force. While these potentials 
have been essential in demonstrating the validity of the 
microscopic approach, there is a large consensus in the 
nuclear theory community that potentials with a much 
sounder connection to the theory of nuclear forces should 
be developed. How exactly to do this remains an open 
question.

	 •	On a more technical note, applications of DFT to fission 
are still limited by a number of approximations. In current 
adiabatic approaches, the solution to the nuclear many-
body problem is obtained only for the lowest energy state 
and the number of collective variables is rather small; 
in current non-adiabatic time-dependent approaches, 
tunnelling is not possible, important correlations such 
as pairing are often modelled approximately and only 
one-body dissipation is taken into account. In both cases, 
open channels (particle evaporation, gamma emission) 
are rarely taken into account at the same level of detail.

	 •	Finally, one should emphasize that the physics of scission 
remains poorly known. How fission fragments acquire 
their identity, and the connection of this process with the 
physics of quantum entanglement, has not been studied.

Although this article tries to provide as complete as pos-
sible a review of the current microscopic theory of fission, 
choices had to be made. First, we only mention topics where 
results were obtained with a DFT approach, and voluntarily 
leave out all the other areas where this is not the case. For 
example, we do not discuss the phenomenon of ternary fis-
sion observed in the spontaneous fission of actinides such as 
in [28]; the generation of angular momentum in the fission 
fragments discussed, e.g. in [29] and references therein; or the 
very complex problem of the fission spectrum (identifying the 
characteristics of the neutron, γ and β-decay emitted during 
fission); see [30] for a recent discussion of the state of the art. 
In view of these considerations, our most controversial choice 
is certainly to leave out results obtained with the relativistic 
formulation of DFT (called relativistic mean-field or covari-
ant density functional theory) reviewed in [31, 32]. This was 

motivated partly by the need to keep the length of this article 
reasonable, but also by the fact that most of the methods dis-
cussed in the non-relativistic framework can easily be ported 
to the relativistic one. There are excellent articles on fission 
within various versions of covariant density functional theory, 
and we refer, e.g. to [14, 18, 33–40] for a short sample of the 
existing literature.

2.  Potential energy surfaces

As mentioned in the introduction, the hypothesis of adiabatic-
ity has played a special role in the theory of fission since its 
introduction by Niels Bohr back in his 1939 paper [5]. The 
notion that a small set of collective degrees of freedom was 
sufficient to describe most of the physics of fission has proved 
extraordinarily fruitful in semi-phenomenological approaches 
[9, 41, 42]. It is no surprise, therefore, that the same concept 
has been adapted to a more microscopic theory based on 
nuclear density functional theory (DFT).

The cornerstone of the implementation of the adiabatic 
approximation in fission theory is the definition of a poten-
tial energy surface (PES) in an arbitrary collective space. This 
PES is the analogue of the classical phase space of Lagrangian 
and Hamiltonian mechanics. In all the current approaches to 
fission that rely on the adiabatic approximation, the first step 
is, therefore, to define the most relevant collective variables 
and compute the PES.

In section 2.1, we briefly recall how this is done in mac-
roscopic-microscopic methods, which are often an invaluable 
source of inspiration for density functional theory. In the lat-
ter, the PES is computed by solving the DFT equations, which 
take the form of the Hartree–Fock–Bogoliubov (HFB) equa-
tions. Section 2.2 gives a modern presentation of the energy 
density functional (EDF) implementation of DFT. This 
includes a reminder about the HFB theory in section  2.2.1 
and of its BCS approximation in section 2.2.2; an overview 
of the main components of standard energy functionals in sec-
tion 2.2.3; a foray into how to compute PES at high excitation 
energies in section 2.2.4; a list of the most important ‘dynami-
cal’ corrections to the PES in section 2.2.5. The large choice 
of possible collective variables, including either geometric or 
non-geometric quantities, is discussed in section 2.3. Finally, 
we review the various criteria that have been introduced in the 
literature to define the scission configurations in section 2.4.

2.1. The macroscopic-microscopic approach

Starting with the pioneering work of Bohr and Wheeler, many 
theoretical studies of fission have been performed with empir-
ical models derived from the liquid drop formula; see [9, 41] 
for comprehensive reviews. The introduction of the shell cor-
rection method by Strutinsky and collaborators in the nineteen 
sixties was essential to providing more microscopic insight to 
this approach and accounting for the role of nucleon degrees 
of freedom and of (some) features of nuclear forces. In the 
early nineteen seventies, the macroscopic-microscopic (MM) 
method was already well established and had been successfully 
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applied to the problem of nuclear fission as exemplified in 
[8, 9]. Since then, it has remained a popular and effective way 
to perform large scale studies of nuclear properties in general 
([43–46]) and fission in particular ([47–49]). Although this 
review is devoted to the microscopic theory of fission, it is not 
out of place to recall some of the most important features of 
the MM approach, since DFT has borrowed many of its most 
successful concepts.

In simple terms, the MM approach consists in viewing 
the nucleus as a finite chunk of nuclear matter, the energy of 
which is parametrized as a function of the charge, mass and 
deformations q of the nucleus. The total energy of the nucleus 
is decomposed as a sum of three terms: (i) a macroscopic 
energy Emac that is often approximated by a deformed liquid 
drop or droplet formula and represents bulk nuclear proper-
ties, see the work by Myers and Swiatecki in [50–52] for a 
complete description of this term. In the language of second 
quantization, this is essentially a zero-body term; (ii) a shell 
correction Eshell that accounts for the distribution of single 
particle levels in the average nuclear potential and thus has 
a one-body origin; (iii) a pairing correction Epair, which has a 
two-body origin. The total energy thus reads formally

q q q qE E E E ,mac shell pair( ) ( ) ( ) ( )= + +� (1)

where q represents the set of all deformations characterizing 
the nuclear surface. The formalism has also been extended 
to account for finite angular momentum, e.g. in [11, 44], and 
intrinsic excitation energy, for instance in [53, 54].

2.1.1.  Parametrization of the nuclear surface.  In the MM 
approach, the energy (1) is a function of all the parameters 
needed to describe the nuclear shape. In other words, the 
nuclear surface must be parametrized explicitly. Numerous 
parametrizations have been introduced over the years; see [55] 
for a comprehensive review. In this section, we wish to recall 
some of the most common parametrizations, especially those 
that have been introduced to describe extremely deformed 
nuclear shapes near scission.

The simplest and most common parametrization is based 
on the multipole expansion of the nuclear radius [56],

R R c Y, 1 , ,0
2

( ) ( ) ( )
⩾

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ∑θ ϕ α α θ ϕ= +

λ µ λ

λ

λµ λµ
=−

+

� (2)

where R r A0 0
1 3/=  is a parametrization of the nuclear radius 

for a spherical nucleus of mass A (r 1.20≈  fm); c( )α  is a factor 
accounting for the conservation of nuclear volume with defor-
mation; the αλµ are the deformation parameters; and Y ,( )θ ϕλµ  
are the usual spherical harmonics. This parametrization of the 
nuclear surface is ideal for small to moderate deformations. 
However, a well-known problem of this formulation discussed 
in [57, 58] is that it does not provide a unique representation 
of the nuclear surface. In addition, the number of active defor-
mation parameters needed to characterize very elongated 
shapes can become large. These difficulties also manifest 
themselves in the DFT framework since, as we will discuss in 
section 2.3.1, the collective variables most commonly used are 
the mass multipole moments of the nucleus, which are closely 
related to the spherical harmonics of (2). For illustration, we 
show in figure 2 a cross-section of the shapes obtained with 
the expansion (2) for the nucleus 240Pu with 2, 3, 4λ =  and 

0µ = .
Because of the limitations of expansion (2), alternative 

parametrizations of the nuclear surface have been advocated 
over the years. One of the most popular is the Funny Hills 
shapes of [9]. Assuming axial symmetry along the z-axis of 
the intrinsic reference frame, a point on the surface is char-
acterized by the usual cylindrical coordinates z, ,( )ρ ϕ . In this 
case, the distance ρ from the nuclear surface to the axis of 
symmetry is given by

R c A B B1 , 0,2
0
2 2 2 2( ) [ ] ⩾ρ ξ αξ ξ= − + +� (3)

R c A B1 e , 0,Bc2
0
2 2 2 3 2( ) [ ]ρ ξ αξ= − + <ξ� (4)

Figure 2.  Axial shapes obtained with the expansion (2) of the 
nuclear radius for 0.820α =  (plain curve), 0.430α =  (dashed curve) 
and 0.240α =  (dashed–dotted curve). For each curve, all other 
deformation parameters are 0. Figure 3.  Funny Hills parametrization of nuclear shapes for 

h, 0, 0( ) ( )α =  (top panel) and h, 0.2, 0.3( ) ( )α =  (bottom panel).  
c varies from 1.0 to 2.2 by step of 0.3.
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where A, B, and α are the parameters characterizing the shape; 
c is related to the elongation of the system, and defines the 
dimensionless variable z cR0ξ= /( ); in practice, A is obtained 
from the volume conservation condition, and the parameter B 

is substituted by another, h B c 11

2

1

4
( )= − − , which is related 

to the thickness of the neck. Therefore, the Funny Hills param-
etrization is most commonly characterized by the set c h, ,( )α . 
The figure 3 illustrates the shapes obtained for h, 0, 0( ) ( )α =  
(top panel) and h, 0.2, 0.3( ) ( )α =  (bottom panel), each case 
with c varying between 1.0 and 2.2 by step of 0.3.

An alternative to the Funny Hills parametrization is the 
one proposed by the Los Alamos group in [7]. It also applies 
to axially-symmetric shapes. In cylindrical coordinates, the 
nuclear surface is described by three quadratic surfaces of 
revolution
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The nine parameters a l c, ,i i i i 1,2,3( ) =  are not all independent: the 
condition of volume conservation eliminates one parameter; 
the condition of continuity and differentiability of the surface 
at the two interfaces z1 and z2 eliminate two more parameters; 
fixing the centre of mass of the shape can also eliminate an 
additional parameter, so that only five independent parameters 
are ultimately needed. They are denoted Q d, , , ,g f f2 1 2( )α ε ε  
and correspond respectively to the elongation of the whole 
nucleus, the mass asymmetry of the two nascent fragments, 
the axial quadrupole deformation of the left and right frag-
ment, and the thickness of the neck; see [49] for details and 
derivations.

The last category of nuclear shape parametrization origi-
nally introduced in [59] is based on Cassini ovals. The general 
expression for Cassini ovals is

a z a z b4 ,2 2 2 2 2 2 4( )ρ+ + = +� (6)

with a and b the only parameters. If a  =  0, then the shape 
reduces to a sphere of radius b; if a  >  b (6) represents two 
separate fragments. When using this parametrization to rep-
resent the nuclear shape, the volume conservation condition 
allows eliminating one of the two parameters. Therefore, 
Cassini ovals represent a single-parameter parametrization of 
the nucleus that can reproduce shapes from the spherical point 
to two distinct fragments separated by an arbitrary distance. 
To account for mass asymmetry, Cassini ovals can be distorted 
by substituting a a2

2
2→ − ε  in the left-hand side of (6). The 

figure 4 illustrates some of the typical shapes obtained in the 
symmetric case of (6).

Once a parametrization of the nuclear surface has been 
established, the macroscopic part of the energy qEmac( ) can 
be computed. In the most advanced parametrization of the 
macroscopic energy, the surface, surface-symmetry, Coulomb 

and Wigner terms depend on the deformation via geometri-
cal form factors that can be computed in a straightforward 
manner when the nuclear shape is known. The other terms 
are deformation-independent and adjusted to global nuclear 
properties [50–52].

2.1.2.  Quantum corrections.  In addition to the macroscopic 
energy, the MM approach relies on various quantum correc-
tions. Here, the adjective ‘quantum’ recalls the fact that these 
corrections can only be computed by solving the Schrödinger 
equation of quantum mechanics.

The shell correction is the most important correction. It 
was introduced in [60] in order to account for the single par-
ticle shell structure in the calculation of the total energy. The 
starting point of the method is a phenomenological nuclear 
potential rU( ) including a central part such as e.g. the Nilsson, 
Woods–Saxon or folded-Yukawa potential, a spin–orbit poten-
tial and the Coulomb potential for protons. The geometry of 
these potentials should be consistent with that of the nuclear 
surface: in the case of the Woods–Saxon or folded-Yukawa 
potential, this implies that the various terms depend on the dis-
tance of the current point to the nuclear surface, parametrized 
as discussed in the previous section. Given the potential and 
its deformation, one solves the one-body Schrödinger equa-
tion in order to obtain the (deformed) single particle energies 
en and wave functions rn( )ϕ . The last step is to approximate 
the discrete sequence of states en n{ }  by a continuous distribu-
tion g e˜( ) following the Strutinsky averaging procedure. The 
shell correction is then defined as

E e g e e ed .
n

nshell ˜( )∫∑= −� (7)

In the last expression, the shell correction should be computed 
for both protons and neutrons; the summation extends either 
over the Z and N lowest orbitals (ground-state) or over a sub-
set of orbitals (excited states). In addition to providing a more 
realistic estimate of binding energies, the introduction of a 
one-body potential has given birth to a very powerful phe-
nomenology based on single particle orbitals as basic degrees 
of freedom of nuclei; see [11] for a reference textbook on this 
topic.

Pairing correlations are incorporated into the MM approach 
in the form of an average pairing energy in the macroscopic 
energy Emac supplemented by a pairing energy correction. 

Figure 4.  Axial shapes obtained with the parametrization (6) for 
u  =  0.0, 0.4, 0.8, 1.0, 1.2. The case u  =  0 corresponds to the sphere, 
the case u  =  1.0 to the scission point and the case u  =  1.2 to the two 
separated fragments.

Rep. Prog. Phys. 79 (2016) 116301



Review

8

The average pairing energy does not contribute to fission (it is 
independent of the deformation), while the pairing energy cor-
rection is treated in a very similar manner to shell effects. The 
solution to the BCS equations define the pairing correlation 
energy Epair. Assuming again a continuous level distribution, 
one can define a smooth pairing energy Epair˜ . The difference 
E E Epair pair pair˜δ = −  defines the pairing correction energy. In 

most applications to fission, pairing is described within the 
BCS theory with schematic interactions such as a constant 
seniority pairing force. Particle number conservation can be 
accounted for exactly by projection techniques as described in 
[61] or approximately through the Lipkin–Nogami prescrip-
tion, see application in [8, 43]. Such a scheme was applied 
extensively in the fission studies by the LANL/LBNL and 
Warsaw groups, see, e.g. [48, 49, 62–66] and references 
therein for some recent work.

2.2. The energy density functional formalism

The energy density functional (EDF) formalism at the heart of 
the current microscopic theory of fission is the implementa-
tion of DFT in the particular context of atomic nuclei. Let us 
briefly recall that the DFT used in electronic structure theory 
relies on the rigorous existence theorems of Hohenberg and 
Kohn [67]. It begins with the expression of the energy of the 
system as a functional of the local electron density rn( ). The 
density is determined in practice by solving the Kohn–Sham 
equations—formally analogue to the Hartree equations [68]. 
Note that various extensions of the Hohenberg–Kohn theorem 
to handle exchange terms exactly, excited states, systems at 
finite temperature, and superfluid correlations are also avail-
able; see [69, 70] for a detailed presentation. In these exten-
sions, the Kohn–Sham scheme is reformulated starting, e.g. 
from the full one-body density matrix for the exact treatment 
of exchange terms [71].

In nuclear physics, the true Hamiltonian is not known, 
nuclei are self-bound, and, as emphasized in [72], correla-
tion effects are much stronger than in electron systems. Also, 
pairing correlations play a special role, which is reflected by 
the importance of the Bogoliubov transformation in nuclear 
structure. There have been various attempts to extend the 
Hohenberg–Kohn theorem to self-bound systems character-
ized by their intrinsic density (defined in the centre of mass 
reference frame), see discussions in [73–78]. However, the 
resulting Kohn–Sham scheme does not seem to be as simple 
as in electronic DFT as shown in [73, 74]. In addition, how 
to rigorously include symmetry-breaking effects (and subse-
quently restore these symmetries) in such schemes remains an 
open question.

Historically, most nuclear energy functionals have been 
explicitly derived from the expectation value of an effective 
nuclear Hamiltonian on a quasiparticle vacuum leading to 
the notion of self-consistent nuclear mean field reviewed in 
details in [79]. In the spirit of the Hohenberg–Kohn theorem, 
the SCMF is equivalent to expressing the energy as a func-
tional of the intrinsic, one-body, non-local density matrix ρ 
and non-local pairing tensor κ. In addition, these objects may 

break many of the symmetries of realistic nuclear forces such 
as translational or rotational invariance, parity, time-reversal 
invariance, and particle number. This spontaneous symme-
try breaking is essential for introducing long-range correla-
tions in the nuclear wave function as discussed in [61, 80]. 
In the coming sections, we recall some of the basic features 
of the nuclear EDF approach. We begin with the Hartree–
Fock–Bogoliubov (HFB) theory in section 2.2.1, followed by 
its BCS approximation in section 2.2.2; in section 2.2.3, we 
give a brief survey of standard energy functionals; we then 
introduce the finite temperature formalism in section  2.2.4 
as a method to describe excited states; finally, we list in sec-
tion  2.2.5 the various corrections to the energy that have a 
beyond mean-field origin.

2.2.1.  Self-consistent Hartree–Fock–Bogoliubov theory.  The 
HFB approximation to the energy is centred on the Bogoli-
ubov transformation defining quasiparticle creation and anni-
hilation operators in terms of a given single particle basis 
c c,i i( )†  of a (restricted) Fock space

U c V c ,
i

i i
i

i i
†∑ ∑β = +µ µ µ

∗ ∗
� (8)

U c V c .
i

i i
i

i i
† †∑ ∑β = +µ µ µ� (9)

While the Hilbert space of single particle wave functions is 
infinite, in practice summations are truncated up to a maxi-
mum basis state N. It is convenient to introduce a block matrix 
notation and matrices of double dimension by writing the 
equation above as

U V
V U

c
c

W
c
c

,
T T ( ) ( )† † †

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟β

β
= =

+ +
+� (10)

which defines the matrix W of the Bogoliubov transformation

W U V
V U

.⎜ ⎟
⎛
⎝

⎞
⎠=
∗

∗� (11)

The quasiparticle operators must satisfy canonical fermion 
commutation relations, which can be summarized by the 
condition

W W
I

I
,

0
0

,N

N
   

⎛
⎝
⎜

⎞
⎠
⎟σ σ σ= =+� (12)

with IN the N-dimensional identity matrix. The HFB wave 
function ⟩|Φ  is defined as the vacuum of the quasiparticle anni-
hilation operators, 0⟩β |Φ =µ  for all μ. This leads to writing 

0⟩ ⟩β|Φ = ∏ |µ µ  where 0⟩|  is the particle vacuum of Fock space 
and the product runs over all the μ indexes that render ⟩|Φ  non 
zero.

Densities.  If the ground-state wave function takes the form 
of a Bogoliubov vacuum, the Wick theorem guarantees that 
the basic degrees of freedom are the one-body density matrix 
ρ, the pairing tensor κ and its complex conjugate κ∗ [61, 81]. 
Each of these objects can be expressed as a function of the 
Bogoliubov transformation,
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c c V V c c V U, .ij j i
T

ij ij j i
T

ij( )      ( )†ρ κ= Φ Φ = = Φ Φ =∗ ∗

�
(13)

The notation can be further condensed by introducing the gen-
eralized density matrix,

R ⎜ ⎟
⎛
⎝

⎞
⎠

ρ κ
κ ρ= − −∗ ∗1 ,� (14)

which is given in terms of the W matrix of the Bogoliubov 
transformation and the matrix of quasiparticle contractions

I
0 0
0 N

⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩

†

† † †R ⎜ ⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝

⎞
⎠

β β β β

β β β β
= =

µ ν µ ν

µ ν µ ν
� (15)

as W W †R=R . The generalized density matrix encapsulates 
in a single matrix all degrees of freedom of the theory and 
simplifies the formal manipulations required in the applica-
tion of the variational least energy principle.

Variational principle.  Since ρ, κ and κ∗ are the only degrees 
of freedom, the energy can be expressed most generally as 
the functional E E, ,[ ] [ ]ρ κ κ ≡∗ R . In practice, one often dis-
tinguishes between the particle–hole and particle–particle 
channel,

E E E, , , ,ph pp[ ] [ ] [ ]ρ κ κ ρ ρ κ κ= +∗ ∗� (16)

although the distinction is a bit artificial since ρ and κ are 
related through 2 †ρ ρ κκ− = − . Please also note that pairing 
interactions depending on the density ρ are very popular in 
nuclear physics, which adds an extra dependence in Epp. The 
actual matrix R is obtained by minimizing the energy under 
the condition that the HFB solution remains a quasiparticle 
vacuum, which is equivalent to 2 =R R. We thus have to 
minimize

E tr ,2[ ( )]= − Λ −E R R� (17)

where Λ is a matrix of (undetermined) constraints. In this 
expression and the rest of this paper, ‘tr’ refers to the trace in 
the single particle basis (possibly doubled). The variations of 
the energy are given by

E
tr .

ab ab
ab

ab ab
ab

2[ ( )]∑ ∑δ δ δ=
∂
∂

−
∂
∂

Λ −E
R

R
R

R R R� (18)

Since dc ab da cb/ δ δ∂ ∂ =R R , we find after some simple algebra,

tr .
ab ab ab

ba
2[ ( )] ( )∑ ∑

∂
∂

Λ − = Λ+ Λ − Λ
R

R R R R� (19)

Let us denote Eba ab
1

2
/= ∂ ∂H R . In matrix form, the condition 

that the variations of the energy should be zero is expressed 
by the equation

1

2
0.( )− Λ+ Λ − Λ =H R R� (20)

Pre- and post-multiplying this equation by R and subtracting 
the results after noticing that 2 =R R, we find the final form 
of the HFB equation

, 0.[ ] =H R� (21)

Since Eba ab
1

2
/= ∂ ∂H R , we have by definition δ =E  

H R( )δtr1

2
. Considering the form (14) of the generalized den-

sity, we find that the matrix of H reads

h
h

,⎜ ⎟
⎛
⎝

⎞
⎠= ∆

−∆ −∗ ∗H� (22)

with the mean field h and pairing field ∆ defined by

h
E E

E
h

E

, ,

, .

ij
ji

ij
ij

ij
ij

ij
ji

ρ κ

κ ρ

=
∂
∂

∆ =
∂
∂

∆ =
∂
∂

=
∂
∂

∗

∗ ∗
∗

� (23)

The form of the HFB equation (21) is not well suited for its 
practical solution and, therefore, it is often reinterpreted by 
considering that , 0[ ] =H R  implies that H and R can be diag-
onalized by the same Bogoliubov transformation. Since the 
generalized density matrix is diagonalized by W as shown in 
(15), the same must hold for H,

W W .=H E� (24)

This represents a non-linear diagonalization problem (since H 
depends upon W through the densities) with eigenvalues E and 
eigenvectors W. It turns out that the matrix of eigenvalues can 
be written schematically

E

E

0

0
,

⎛

⎝
⎜

⎞

⎠
⎟=

−
µ

µ
E� (25)

that is, for each positive eigenvalue Eµ, there is another one 
of opposite sign E− µ. The eigenvalues of the HFB matrix are 
referred to as ‘quasiparticle energies’. In section  4.1 p 33, 
we discuss the technical aspects of solving such a non-linear 
eigenvalue problem. The quasiparticle energies Eµ defined 
above should not be confused with the single particle energies 
typical of the phenomenological mean field potentials of the 
MM method. The equivalent to the single particle energies in 
the HFB case are the eigenvalues of the Hartree–Fock (HF) 
Hamiltonian h of (23). The study of those quantities allows 
obtaining the same degree of insight that can be obtained by 
the study of the Nilsson orbitals.

Energy and fields.  In nuclear physics, the energy functional 
E , ,[ ]ρ κ κ∗  is typically composed of two parts: one is derived 
from an effective two-body Hamiltonian,

H t c c v c c c c
1

4
,

ij
ij i j

ijkl
ijkl i j l kˆ ¯† † †∑ ∑= +� (26)

where tij refers to the matrix elements of the one-body kinetic 
energy operator and vijkl¯  to the anti-symmetrized matrix ele-
ments of the two-body potential. The other part of the energy 
functional comes in the form of various phenomenological 
density dependent terms that have to be handled with some 
care as they introduce additional terms in the HF Hamiltonian 
and pairing fields that come in the form of rearrangement 
potentials (see below). In the case of such an effective 
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two-body Hamiltonian, the HFB energy is simply given by 
E H⟨ ˆ ⟩= Φ| |Φ , with 0⟩ ⟩β|Φ = ∏ |µ µ  the quasiparticle vacuum 
introduced earlier. Considering the definitions (13) for the 
density matrix and pairing tensor, the application of the Wick 
theorem gives

E ttr
1

2
tr

1

2
tr .( ) ( ) ( )ρ ρ κ= + Γ − ∆ ∗� (27)

In this particular case, the mean field potential and the pairing 
field are given as a function of the two-body matrix elements 
by

v v,
1

2
.ik

jl
ijkl lj ij

kl
ijkl kl       ∑ ∑ρ κΓ = ∆ =� (28)

and the HF Hamiltonian reads h t= + Γ. The notation can be 
further condensed by defining the generalized kinetic energy 
and mean field matrices by

t
t

0
0

, .       ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠=

−
= Γ ∆
−∆ −Γ∗ ∗ ∗T K� (29)

With these notations, we note that [ ] [ ]= +H R T K R . The 
total energy can then be written in the very compact form

= +E
1

4
tr ,H T S[( ) ]� (30)

with

I
0 0
0

.
N

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ρ κ
κ ρ= − − = −∗ ∗S R� (31)

Density-dependent interactions.  In the practical implemen-
tation of the HFB theory in nuclear structure, special attention 
should be paid to the very common case of two-body, density-
dependent effective ‘forces’ r r R r rv v,DD DDˆ ( ) ˆ [ ( )] ( )ρ δ= −′ ′  
with R r r 2( )/= + ′ . Note that in this case, the potential vDDˆ  
cannot be put into strict second quantized form—as empha-
sized in [82]. However, one can still define an energy func-
tional E , ,[ ]ρ κ κ∗  by taking the expectation value of vDDˆ  in 
coordinate space on a quasiparticle vacuum. Given the energy 
functional, the mean field and pairing field can then be defined 
from (23). When computing these derivatives with respect 
to the density matrix, additional contributions related to the 
matrix elements of vDDˆ / ρ∂ ∂  will arise (rearrangement terms). 
They have the generic form

∑ ρΓ Γ + ∂→ v ,ik ik
jl

ijkl lj
DD

� (32)

with

r r r r R r r r rv
v

d d .ijkl i j k l
DD 3 3

DD

∫ ∫ ϕ ϕ
ρ

δ ϕ ϕ∂ =
∂
∂

−′ ′ ′ ′∗ ∗( ) ( ) ˆ ( ) ( ) ( ) ( )�

(33)
Note that one could also consider pairing-tensor-dependent 
potentials in the same way. Recently, an extension of the 
above scheme so as to consider finite range density-dependent 
forces has been proposed [83]. In this case, the simple form
ulas above have to be adapted but the same conceptual proce-
dure remains valid.

Representation based on the Thouless theorem.  There is 
an alternative way to obtain and represent the HFB equation, 
which is based on the Thouless theorem of [84]. We recall that 
the Thouless theorem presented, e.g. in [61, 81], establishes 
that two non-orthogonal quasiparticle vacua 0⟩|Φ  and 1⟩|Φ  
(corresponding to two different Bogoliubov transformations 
W0 and W1) are related through

Zexp i ,1 0⟩ ( ˆ) ⟩|Φ = |Φ� (34)

where Ẑ is an hermitian one-body operator written in the 
quasiparticle basis corresponding to 0⟩|Φ  as

Z Z Z
1

2
h.c.11 20ˆ † † †∑ ∑β β β β= + +

µν
µν µ ν

µν
µν µ ν� (35)

The complex matrices Z11 (hermitian) and Z20 (skew-symmet-
ric) are determined by the requirement

W W Z Z
Z Z

W Zexp i exp i .1 0

11 20

20 11 0 [ ]
⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤
⎦
⎥=

− −
=

∗ ∗� (36)

The relation above can be used to generate a Bogoliubov trans-
formation W1 given an initial one W0 and a set of Z11 and Z20 
coefficients. Not surprisingly, the number of free parameters 
in Z11 and Z20 is the same as in a general Bogoliubov transfor-
mation W after taking into account the condition W Wσ σ=+ . 
Therefore, these matrices can be used as independent varia-
tional parameters. Starting from an initial Bogoliubov trans-
formation W and considering infinitesimal variations Wδ  
characterized by the matrix Z (that is, Z11 and Z20), we obtain 
to first order in Z an explicit expression for the variation of 
the Bogoliubov amplitude W as W WZiδ = . It follows that 
the variation δR of the generalized density W W †R=R  
under small variations Wδ  can be expressed in terms of the 
Z matrix as i( )δ = −R ZR RZ  with WZW †=Z . From 

E tr1

2
( )δ δ= H R  for the variation of the energy, we thus find 

E tr ,i

2
([ ] )δ = R H Z . The variational principle condition E 0δ =  

yields the HFB equation  , 0[ ] =R H . Finally, calculating the 
variation of the energy Eδ  to second order in Z tell us that, if 
Z is chosen as i ,[ ]†η R H , where η is a sufficiently small step 
size, then Eδ  is negative. This result represents the essence of 
the gradient method commonly used in numerical implemen-
tations of the HFB equation and discussed in more detail in 
section 4.1.3; see also [85] for a complete presentation.

Constraints.  By construction, the quasiparticle vacuum is not 
an eigenstate of the particle number operator. In practice, it is 
thus always necessary to impose a constraint on the average 
value of the particle number operator, both for protons and 
neutrons. Solving the HFB equation (21) subject to constraints 
is also particularly important in fission studies. It is required 
in the evaluation of the potential energy surface as a function 
of the collective coordinates used to characterize the fission 
process. The handling of constraints in the formalism outlined 
above is straightforward since it only requires replacing the 
HFB matrix by the auxiliary operator ij ij ij,→ λ−∑ α αH H O  
where ij,αO  are the matrix elements of the constraint opera-
tors Ôα in the doubled basis and λα are Lagrange multipliers. 
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One-body operators such as, e.g. the particle number operator 
or multipole moments, have the same generic structure as in 
(29). For example, solving the HFB equation with a constraint 
on particle number implies that the HFB matrix becomes

h
h

,⎜ ⎟
⎛
⎝

⎞
⎠

λ
λ

= − ∆
−∆ − +∗ ∗H� (37)

with λ the Fermi energy. In the previous equation, h λ−  is a 
shorthand notation for hij ijλδ− . Nearly all operators needed 
in fission are one-body operators, and their expectation value 
is thus given by O Otr⟨ ˆ ⟩ [ ˆ ]ρ=α α . The figure 5 shows an example 
of constrained HFB solutions in the particular case of a single 
collective variable. In the figure, the quadrupole deformation 

2β  is obtained from the axial quadrupole moment Q20
ˆ  used 

as a constraint through r A Q5 16 4 32 0
2 5 3

20/( ) /( )⟨ ˆ ⟩/β π π= . 
Section  2.3 discusses in more detail typical collective vari-
ables used in fission calculations.

To solve the non-linear HFB equation several approaches 
are used. A very popular one is the iterative method, where 
the density matrix of the nth iteration is used to compute the 
H matrix for the (n +1)th one. Diagonalization of this matrix 
produces a new density matrix and the process is repeated 
until the generalized density matrix remains stationary up to 
the desired precision. Another popular method is based on the 
direct minimization of the energy using any of the variants of 

the gradient method [86]. Finally, the imaginary time method 
is also popular in the particular case of the HF +BCS equa-
tion. The advantages and disadvantages of the three of them 
will be discussed in more details in section 4.1.3.

2.2.2.  BCS approximation to the HFB equation.  As imme-
diately visible from the form (37) of the HFB matrix, solv-
ing the HFB equations requires handling matrices twice larger 
than the simpler HF theory. In addition, the HFB spectrum is 
unbounded from below and from above, which leads to prac-
tical difficulties when trying to solve the HFB equation on a 
lattice—see section 4.1.2. These are some of the reasons why 
the BCS approximation to the HFB equation  is sometimes 
preferred in applications.

The idea is to first write the HFB matrix H in a special 
basis—the single particle basis where the HF Hamiltonian h 
is diagonal with eigenvalues eµ (the HF single particle ener-
gies). In other words, we find the transformation matrix D 
such that hD  =  De where e is the matrix of eigenvalues eµ. 
The BCS approximation then consists in imposing that the 
skew-symmetric tensor ∆µµ′ of (23) be in normal form in that 
basis. Specifically, we impose that it can only connect states 
with ¯µ µ=′ , where the single particle state µ̄ is the partner of 
state μ under the time-reversal operator: ¯ ¯δ∆ ∼∆µµ µµ µµ′ ′. If we 
denote by ∆ the diagonal matrix with elements ¯∆ ≡∆µ µµ, we 
find that the HFB matrix (37) becomes

Figure 5.  Illustration of a constrained HFB calculation in the particular case of two parametrizations of the Gogny force, see 2.2.3. Bottom 

panel: HFB energy (27) as a function of the quadrupole deformation. Top panel: pairing energy tr1

2
( )κ∆ ∗  as a function of the quadrupole 

deformation.
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This matrix can easily be rearranged and block-diagonalized 
by a BCS transformation, which is equivalent to solving the 
traditional ‘gap equation’ of the BCS theory,

e u v u v2 0.2 2( )( )λ− − + ∆ =µ µ µ µ µ µ� (39)

The size of the matrix to be diagonalized, h, is reduced by a 
factor of two as compared to HFB, which in turns lowers the 
computational cost by a factor of eight. Several test calcul
ations, for example [87, 88], have shown that the HF +BCS 
approach is a reasonable approximation to the full HFB treat-
ment for fission calculations. This conclusion does not hold 
any more for weakly-bound nuclei close to the neutron drip-
line, where the BCS approximation induces a coupling with a 
non-physical gas of neutrons as discussed in [89].

There is a relation between the quasiparticle energies Eµ 
of the HFB method and the single particle energies eµ, the 
Fermi energy λ and the matrix element of the pairing field ∆µ, 

E e 2 2( )λ= − +∆µ µ µ . It follows that the coefficients of the 

BCS transformation uµ and vµ acquire the very simple form
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� (40)

In the case of a pure pairing force with constant matrix 
elements  −G the ∆µµ′ matrix is already in normal form with 
constant ∆µ matrix elements G u v0∆ = ∆ = ∑µ ν ν ν> . The vν 
and uν are again the coefficients of the BCS transformation. In 
this case, however, the attractive pairing interaction can only 
be active within a restricted window of single particle levels, 
being zero elsewhere.

2.2.3.  Energy functionals.  As already emphasized, most 
nuclear energy functionals used in fission studies are explic-
itly derived from the expectation value of effective, density-
dependent, local two-body nuclear potentials at the HFB 
approximation. For the particle–hole channel, that is, the 
component Eph[ ]ρ  of the full functional (16), the two most 
popular functionals are based on the Skyrme and Gogny 
two-body effective potentials. Both EDFs are intended to be 
applicable throughout the nuclear chart using a limited set of 
parameters adjusted to global nuclear properties.

The Skyrme EDF is the energy functional E[ ]ρ  derived 
from the expectation value of the Skyrme potential introduced 
in [90] on a Slater determinant. The current standard form of 
the two-body Skyrme interaction is

δ
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where
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i
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,

i
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� (43)

are the relative momentum operator, R r r 212 1 2( )/= + , P̂σ is the 
spin exchange operator and S 1 2

ˆ σ σ= +  is the total spin. By 
convention, k̂′ acts on the left. The Skyrme potential contains 
a phenomenological density-dependent term (term propor-
tional to t3). Originally this term was introduced with 1α =  
and x3  =  1 in [91] to simulate the effect of three-body forces, 
in particular with respect to the saturation of nuclear forces. 
Following [92], both α and x3 are now usually taken as phe-
nomenological adjustable parameters. The expectation value 
of the potential (42) on a Slater determinant can be expressed 
as a functional of the local density r( )ρ  and various other local 
densities derived from r( )ρ . The potential energy is then given 
by

r r rE d ,
t

t tSkyrme
3

0,1

even odd[ ( ) ( )]∫ ∑= +
=

H H� (44)

where t  =  0 refers to isoscalar energy densities, and t  =  1 to 
isovector ones. The contribution rt

even( )H  to the total energy 
density depends only on time-even densities,

r JC C C C C ,t t t t t t t t t t
J

t t
J

t t
even 2 2J( ) ρ ρ ρ ρ τ ρ∇= + ∆ + + + ⋅ρ ρ τ∆ ∇H

�
(45)

while the contribution rt
odd( )H  depends only on time-odd 

densities,

∇= + ⋅ ∆ + ⋅ + + ⋅ ∧∆ ∇r s s s s T j s jC C C C C .t t
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t t
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(46)

The various densities involved in these expressions are: the 
kinetic energy density tτ; the spin current density tJ  (rank 2 
tensor); the vector part of the spin current density Jt (which 
is obtained by the tensor contraction J Jt t, ,= ∑κ µν µνκ µνε ); 
the spin density st; the spin kinetic energy density Tt and the 
momentum density jt. Their actual expressions as a function 
of the one-body density matrix can be found in [79, 93, 94]. 
The Skyrme energy density is the most general scalar that can 
be formed by coupling the fields derived from the one-body 
density matrix up to second order in derivatives as discussed 
in [95, 96]. There have been attempts to generalize the EDF 
(45) and (46) by going beyond the second order derivative 
[97–100] or by adding local, zero-range three-body forces to 
the potential given by (42) [101].

The Gogny force is the most widely used non-relativistic 
effective finite-range nuclear potential. It can be viewed as 
a Skyrme potential where the zero range central potential is 
replaced by the sum of two Gaussians in the spatial part. In 
fact, the central part of the Skyrme force can be obtained by 
expanding a Gaussian central and spin–orbit potential up to 
second order in momentum space as shown in [91]. The main 
advantage of the finite range is that the matrix elements are 
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free from ultraviolet divergences in the particle–particle chan-
nel, which allows using the same potential in both particle–
hole and particle–particle channels without introducing a 
window of active particles in the particle–particle channel. In 
its original formulation of [102], the Gogny force reads
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(47)

Note that the energy of two-body finite-range potentials such 
as the Gogny could also be put in the form (44), the differ-
ence being that the energy densities r( )H  would be expressed 
themselves not directly as functionals of the local density r( )ρ , 
but as integrals over r′ involving the non-local density r r,( )ρ ′ .

For both the Skyrme and Gogny forces, the energy density 
functional is obtained from a central and spin orbit potential 
plus a phenomenological density-dependent term. Note that 
we have not discussed the inclusion of explicit tensor poten-
tials in either the Skyrme or Gogny forces, see [94, 103, 
104] for detailed discussions on that topic. In the spirit of the 
Kohn–Sham theory, however, the EDF does not need to be 
derived from any potential and could be parametrized directly 
as a functional of the density. In the Barcelona–Catania–
Paris–Madrid (BCPM) functional of [105, 106], this idea is 
only applied to the volume part of the functional, as it can eas-
ily be constrained by nuclear and neutron matter properties. 
The resulting functional of the density is supplemented with a 
term from a spin–orbit potential and another potential provid-
ing the surface term, leading to

E T E E E ,SO
int int

FR[ ] [ ] [ ] [ ]ρ ρ ρ ρ= + + +∞� (48)

where T is the kinetic energy, ESO is the spin–orbit energy 
density obtained from a zero range spin–orbit potential, Eint

∞ 
is the bulk part given in terms of a fitting polynomial of the 
density with parameters adjusted to reproduce nuclear mat-
ter properties, and Eint

FR is the surface energy obtained from a 
finite-range Gaussian potential. Similar ideas had also been 
pursued earlier by Fayans and collaborators in [107, 108]. 
In their work, the parametrization of Eint

∞ was different from 
the BPCM functional, and the Eint

FR term was derived from a 
Yukawa potential instead of a Gaussian.

In realistic calculations, the Coulomb potential must also 
be included for protons. The direct contribution of this poten-
tial to the energy does not pose any particular problem. The 
exchange term is usually treated in the Slater approximation 
although several studies such as [109] have shown the impact 
of both Coulomb exchange and the associated Coulomb anti-
pairing effect in collective inertias.

As mentioned in section 2.2.1, the nuclear EDF comprises 
two components, Eph[ ]ρ  in the p.h. channel and E , ,pp ρ κ κ∗[ ] 
in the p.p. channel. Once again, pairing functionals are most 
often obtained by taking the expectation value of an effective 
(two-body) potential on the quasiparticle vacuum. Users of 
the Gogny force often take the same potential for the pairing 
channel. In the case of the Skyrme EDF, it is customary to 

consider simple pairing forces that can be put into function-
als of the local pairing density r˜( )ρ  introduced in [110]. The 
full one-body pairing density r r,˜( )ρ σ σ′ ′ , depending on spatial 
(r) and spin (σ) coordinates, is related to the pairing tensor 
through r r r r, 2 ,( ) ˜( )κ σ σ σ ρ σ σ= −′ ′ ′ ′ ′  (σ σ =±′, 1 2/ ) and has 
similar symmetry properties to the one-body density matrix ρ. 
A commonly used pairing force is the density-dependent, zero 
range potential
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where Vt
0, Vt

1, cρ , α are adjustable parameters and 0ρ  the isos-
calar one-body density. While Vt

0 controls the strength of the 
pairing interaction, cρ  represents the average density inside the 
nucleus (it is often set at 0.16 fm−3) and, therefore, Vt

1 controls 
the surface or volume nature of the pairing interaction. Such 
a schematic pairing force was originally introduced in [111]. 
Note that its zero-range requires introducing a cut-off in the 
number of active particles used to define the densities. In both 
the BCPM and Fayans functionals, a similar zero-range den-
sity-dependent interaction was adopted [107, 112].

Irrespective of the mathematical form of the functional, 
nuclear EDFs contain free parameters that must be adjusted 
to experimental data. In the case of the Skyrme force, these 
are the (t, x) parameters plus W0 and α; for Skyrme EDFs, the 
Cuu′ coupling constants (see [113] for an alternative represen-
tation of the Skyrme EDF where volume coupling constants 
are expressed as a function of nuclear matter characteris-
tics); in the case of the Gogny force, the parameters are the 
W B H M, , ,i i i i parameters of the central part, plus WLS and x0. 
Fitting these parameters on select nuclear data is an example 
of an inverse problem in statistics, and several strategies have 
been explored in the past; see [114, 115] for a discussion.

In the case of the Skyrme EDF, there are hundreds of dif-
ferent parametrizations; see [116] for a review. However, not 
all of these parametrizations are suitable for fission studies, 
where the ability of the EDF to reproduce deformation proper-
ties is essential. The two most widely used Skyrme EDFs to 
date are the SkM* parametrization of Bartel et al [117] and 
the UNEDF1 parametrization of Kortelainen et  al [118]. In 
both cases, the functionals were fitted by considering fission 
data in actinides, namely the height of the fission barrier in 
240Pu for SkM* and the value of a few fission isomer exci-
tation energies for UNEDF1. The case of the Gogny force 
is similar, although the number of Gogny parametrizations 
is much more limited since only five parametrizations have 
been published so far [102, 119–122]. Just as for the Skyrme 
force, the original D1 and D1’ parametrizations of the Gogny 
force could not reproduce accurately enough the height of 
the fission barrier in 240Pu. The D1S parametrization pro-
posed by Berger in [123] was a slightly modified version of 
D1 where the surface energy coefficient in nuclear matter was 
modified to decrease the fission barrier. Since then, the D1S 
parametrization has been the most popular force for fission. 
Note that there are extensions of the Gogny force to include 
density dependencies in each term as in [83] or to add a ten-
sor force with a finite-range spatial part, see e.g. [104, 124].  
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In the BCPM case there is a single set of parameters, adjusted 
to nuclear matter properties (bulk part) and to the binding 
energies of even–even nuclei (surface term). Fission informa-
tion has not been included in the fit.

2.2.4.  Excitation energy.  As mentioned in the introduc-
tion, applications of the neutron-induced fission of actinides 
with fast neutrons (kinetic energies of the order of 14 MeV) 
involve excitation energies of the fissioning nucleus that can 
be as large as 20 MeV or more. At such excitation energies, 
the potential energy surface of the nucleus can be markedly 
different from what is obtained from constrained HF +BCS 
or HFB calculations. Similar and higher excitation ener-
gies can be reached during the formation of the compound 
nucleus in heavy ion fusion reactions, which are one of the 
primary mechanisms to synthesise heavy elements as dis-
cussed in [125]. As shown in [56], the level density increases 
exponentially with E*, and at excitation energies beyond a 
few MeV, it becomes impossible to individually track excited 
states using direct methods. Finite-temperature density func-
tional theory thus provides a convenient toolbox to quantify 
the evolution of nuclear deformation properties as a func-
tion of excitation energy. The inclusion of temperature in 
microscopic studies of fission has been done within the Har-
tree–Fock approach (FT-HF) in [126, 127], the HF +BCS 
approach in [17] and the fully-fledged HFB approach (FT-
HFB) in [16, 17, 128, 129]. The reader can also refer to [129] 
for additional references to the use of temperature in semi-
microscopic methods. Note that in practical applications, the 
temperature must be related to the excitation energy of the 
nucleus, which is not entirely trivial; see [129] for a detailed 
discussion.

Various elements of the FT-HF and FT-HFB theory can 
be found in [81, 130–136]. Let us recall that the nucleus is 
assumed to be in a state of thermal equilibrium at temperature 
T. It is then characterized by a statistical density operator D̂, 
which contains all information on the system. In particular, 
once the density operator is known, the expectation value of 
any operator F̂ can be computed by taking the trace DFTr ˆ ˆ in 
any basis of the Fock space. Here, the notation ‘Tr’ refers to 
the statistical trace by contrast to the trace ‘tr’ used before 
with respect to a single particle basis. If we further assume the 
system can be described by a grand canonical ensemble (the 
average value of the energy and particle numbers are fixed), 
then the application of the principle of maximum entropy 
yields the following generic form of the density operator as

D
Z

1
e ,H Nˆ ( ˆ ˆ )= β λ− −� (50)

where Z is the grand partition function, Z Tr e H N( ˆ ˆ )= β λ− − , 
kT1/β = , Ĥ is the (true) Hamiltonian of the system, λ the 

Fermi level and N̂ the number operator. The demonstration of 
(50) is given in [81, 137].

In practice, the form (50) is not very useful in nuclear phys-
ics, where the true Hamiltonian of the system is not known. 
The mean-field approximation provides a first simplification. 
It consists in replacing the true Hamiltonian H Nˆ ˆλ−  by a sim-
pler, quadratic form K̂ of particle operators,

D
Z

Z
1

e , Tr e .K K
MF

MF
MFˆ     ˆ ˆ= =β β− −� (51)

Given a generic basis i⟩|  of the single particle space, with ci 
and ci

† the corresponding single particle operators, the opera-
tor K̂ can be written formally
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At this point, the matrices K11, K22, K20 and K02 in (52) are 
still unknown.

The next step is to take advantage of the Wick theorem 
for ensemble averages [138]. This theorem establishes that 
when the density operator has the form (51), statistical traces 
defining the expectation value of operators can be expressed 
uniquely in terms of the generalized density R, which is 
defined by

=R
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where ⟨ ⟩⋅  refers to the statistical average: for instance, 

c c Dc cTrj i j i ij⟨ ⟩ ( ˆ )† † ρ= =  is the one-body density matrix, 

κ= =〈 〉 ( ˆ )c c Dc cTrj i j i ij is the pairing tensor, etc. The con-
sequence of the Wick theorem is that once the generalized 
density R of (53) is known, the expectation value F⟨ ˆ⟩ of an 
arbitrary operator F̂ can be computed by

F D F F FTr
1

2
tr .MF⟨ ˆ⟩ ( ˆ ˆ ) → ⟨ ˆ⟩ ( )= = R� (54)

In other words, the computation of the statistical trace over 
a many-body basis of the Fock space can be substituted by 
the much simpler operation of taking the trace within the 
quasiparticle space. In effect, this implies that the Wick 
theorem transfers the information content about the sys-
tem from the density operator DMFˆ  into the generalized 
density R.

The final step is thus to determine the generalized density. 
This is where we take advantage of the fact that the matrix 
elements of the operator K̂ in (52) are arbitrary and can be 
taken as variational parameters of the theory. We thus deter-
mine them by requiring that the grand potential be minimum 
with respect to variations K̂δ . This leads to the identification 
of K with the usual HFB matrix H, K = H where H has the 
generic form (22), and to the relation

1

1 exp
,

( )β
=
+

R
H

� (55)

where kT1/β = . Equation (55) is the FT-HFB equation; see 
[81, 134] for the demonstration. It establishes a self-consis-
tency condition between the HFB matrix H and the general-
ized density R. In practice, this self-consistency condition is 
most easily satisfied in the basis where H is diagonal. In this 
basis (the usual quasiparticle basis of the HFB equations), one 
easily shows the following relation
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D fTr
1

1 e
,

E
( ˆ )†β β δ δ=

+
=ν µ β µν µν µνµ

� (56)

with Eµ the quasiparticle energy, i.e. the eigenvalue μ of H. 
This result allows one to extract the expression R of the gen-
eralized density in the quasiparticle basis, recall (15). By 
applying the Bogoliubov transformation, W W †R=R , one 
then finds the following expression for the density matrix and 
pairing tensor in the single particle basis,

V f V UfU1 ,ij
T

ij ij( ( ) ) ( )†ρ = = − +∗� (57)

V f U UfV1 ,ij
T

ij ij( ( ) ) ( )†κ = = − +∗� (58)

where U and V are the matrices of the Bogoliubov 
transformation.

The finite-temperature extension of the HFB theory poses 
two difficulties. While in the HFB theory at zero temperature 
the one-body density matrix and two-body pairing tensors are 
always localized for systems with negative Fermi energy [89, 
110], this is not the case at finite temperature. In particular 
quasiparticles with E λ>−µ  bring a non-localized contrib
ution to the one-body density matrix through the UfU( )†  term. 
This effect is discussed in [126, 129, 139, 140]. In addition, in 
the statistical description of the system by a grand canonical 
ensemble, only the average value of the energy and of the par-
ticle number (or any other constrained observable) are fixed. 
Statistical fluctuations are also present [141]. They increase 
with temperature and decrease with system size [137]. The 
FT-HFB theory thus gives only the most probable solution 
within the grand-canonical ensemble, the one that corresponds 
to the lowest free energy. Mean values and deviations around 
the mean values of any observable Ô should in principle be 
taken into account. In the classical limit, they are given by
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Such integrals are computed across the whole collective space 
defined by the variables q q q, , N1( )= …  and require the knowl-
edge of the volume element qdN . This was done for instance in 
[136]. Other possibilities involve functional integral methods 
as in [142].

2.2.5.  Beyond mean-field.  Potential energy surfaces should 
in principle be corrected to account for beyond mean field 
correlations. In particular, all broken symmetries (transla-
tional, rotational, parity, particle number) should be restored, 
which yields an additional correlation energy to the system. 
Moreover, the variational HFB equation should, in principle, 
be solved after the projection on good quantum numbers has 
been performed (variation after projection, VAP).

The general problem of symmetry restoration is most 
naturally formulated in the framework of the SCMF model: 
given an effective Hamiltonian, one can associate a pro-
jector operator Pĝ to any broken symmetry and compute 
E HP Pg g g⟨ ˆ ˆ ⟩/⟨ ˆ ⟩= Φ| |Φ Φ| |Φ . When ⟩|Φ  is the symmetry-break-
ing HFB state minimizing the HFB energy, Eg corresponds to 

the projection after variation (PAV) result; if ⟩|Φ  is determined 
from the equations  obtained after varying Eg, the energy is 
the VAP result. The correlation energy is defined as the dif-
ference E Eg 0− , where E H0 ⟨ ˆ ⟩= Φ| |Φ . Unfortunately, projec-
tion techniques, especially the VAP, are computationally very 
expensive when multiple symmetries are broken (as in fis-
sion). In addition, the thorough analysis of [143–146] showed 
that they are, strictly speaking, ill-defined as soon as Ĥ con-
tains density-dependent terms. Finally, in spite of the recent 
work of [147–149], it is not really clear how such correlation 
energies can be rigorously computed in a strict EDF frame-
work where no Hamiltonian is available.

In practice, the situation depends on the symmetry 
considered:

	 (i)	Translational invariance: The kinetic energy of the 
centre of mass must be subtracted to account for the corre-
lation energy due to restoration of translational invariance 
[61]. The correlation energy is most often computed as 

P mA2cm
2

⟨ ˆ ⟩/− , which is a first-order approximation of the 
VAP result as shown in [150]. Here, P pi i

ˆ ˆ= ∑  is the total 
linear momentum of the system and the expectation value 
is taken on the quasiparticle vacuum. In heavy nuclei, the 
study of [13] showed that its value can vary by about 1 
MeV as a function of deformation.

	(ii)	Rotational invariance: For the reasons mentioned above, 
the correlation energy induced by angular momentum 
projection is also often taken into account by approxi-
mate formulas. For large deformations of the intrinsic 
reference state, the rotational correction energy can be 
approximated by J 2R

2⟨ ⟩ /( )= −ε J , where J  is the nuclear 
moment of inertia (which depends on the deformation) 
[61]. In this expression, the analyses of [150–152] showed 
that one should in principle use the Peierls–Yoccoz 
moment of inertia of [153] for the denominator although 
many authors use the Thouless–Valatin one. Typical 
values of the rotational correction range from zero MeV 
for spherical nuclei to 7–8 MeV for strongly quadrupole 
deformed configurations, as illustrated in the bottom 
panel of figure 6.

	(iii)	Reflection symmetry: Asymmetric fission is explained 
by invoking potential energy surfaces where the nuclear 
shape breaks reflection symmetry. Parity projection is, 
therefore, required to restore left–right symmetry. Due 
to the discrete nature of the symmetry (only two states 
involved) the correlation energy is negligible for the 
typically large values of the octupole moment in fission 
as shown in [154].

	(iv)	Particle number: By definition, the quasiparticle vacuum 
does not conserve particle number and this symmetry 
should also be restored. There have been very few studies 
of the impact of this kind of correlation energy on the PES, 
and the few available results, for instance of [155], are 
only based on the Lipkin–Nogami approximate particle 
number restoration scheme. Based on results obtained in 
other applications, this correlation energy could modify 
the values of the typical quantities characterizing the PES 
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(barrier height, fission isomer excitation energy, etc) by 
at most a couple of MeV. The impact on the collective 
inertia, however, could be significant. In addition to this, 
the particle number breaking intrinsic states are averages 
of wave functions with different numbers of protons and 
neutrons and therefore symmetry restoration is critical to 
recover nuclear properties strongly dependent on particle 
number.

The issue of how to describe those correlation energies in 
the transition from the one-fragment regime to the two-frag-
ments one is also of paramount importance in order to deter-
mine the kinetic energy distribution of the fragments. The 
works of [156–159] are among the few attempts to describe 
such transitions in the HFB framework.

2.3. The collective space

The success of the adiabatic approximation relies entirely on 
the small set of collective variables that are assumed to domi-
nate the fission process. However, there is some degree of arbi-
trariness in the choice of these collective variables. The success 
of semi-phenomenological approaches to fission suggests 

using collective variables related to the shape of the nucleus 
(in its intrinsic frame). In DFT, this will be implemented by 
introducing the relevant operators and solving the HFB equa-
tions under constraints on the expectation values of said opera-
tors; see section  2.3.1 for a discussion of the most typical 
choices. Although these ‘geometrical’ degrees of freedom are 
the most important for a realistic description of fission, recent 
studies have shown that fission dynamics can be very sensi-
tive to additional collective degrees of freedom such as pairing 
correlations. Just as for nuclear deformations, there exist sev-
eral possibilities to define collective variables associated to the 
pairing channel. These options are discussed in section 2.3.2.

2.3.1.  Parametrizations of the nuclear shape.  In nuclear 
DFT, the traditional parametrization of the nuclear shape is 
based on mass multipole moments qλµ. These quantities are 
computed in the intrinsic frame of reference of the nucleus as 
expectation values of the operators

rQ C r Yd , ,3ˆ ( )∫ θ ϕ=λµ λµ
λ
λµ� (60)

where Y ,( )θ ϕλµ  are the usual spherical harmonics, and Cλµ 
are arbitrary coefficients introduced for convenience; see for 

Figure 6.  Lower panel: illustration of the impact of the rotational energy correction on the total HFB energy as a function of the 
quadrupole deformation 2β . The HFB energy is represented by dotted lines and the one corrected with the rotational correction by full lines 

with symbols. Middle panel: pairing energy tr1

2
( )κ∆ ∗  as a function of the quadrupole deformation. Upper panel: Collective inertias for the 

2β  degree of freedom and computed in two different schemes discussed below.
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example [160] for one particular choice. Since these operators 
are spin-independent, one-body operators, their expectation 
value is simply

r rq Q C r Ytr d , .3( ˆ ) ( ) ( )∫ρ ρ θ ϕ= =λµ λµ λµ
λ
λµ

�
(61)

The mass multipole moments qλµ are the analogues to the 
deformation parameters αλµ of the nuclear surface parametri-
zation of (2) used in the MM approach. In fact, since multipole 
moments scale like the mass of the nucleus, it is sometimes 
advantageous to convert them to the A-independent deforma-
tion parameters αλµ. The most commonly used technique to 
do so, which is recalled in [61], is to insert a constant density 

0ρ  in (61), compute the volume integral for a surface defined 
by (2) and expand the result to first order in αλµ. The result 
is thus only valid for small deformations. At large deforma-
tions, other methods can be used—see, e.g. [161] and refer-
ences therein for a discussion. Note that there is an important 
difference between the explicit shape parametrization of the 
MM models and the choice of multipole moments as collec-
tive variables: in the nuclear DFT the multipole moments that 
are not constrained take a possibly non-zero value so that the 
energy is minimal, whereas in the MM approach they are zero.

In the context of fission, by far the most important col-
lective variable is the axial quadrupole moment q20, which 
represents the elongation of the nucleus. The degree of tri-
axiality of nuclear shapes is captured by either q22 or the ratio 

q qtan 22 20/γ∝  (the exact relation depends on the convention 
chosen for the normalization Cλµ of the multipole moments). 
Several studies, e.g. in [15, 87, 162, 163], have confirmed that 
triaxiality is particularly important to lower the first fission bar-
riers of actinides. The mass asymmetry of fission fragments, 
especially in actinides, can be well reproduced by introduc-
ing non-zero values of the axial mass octupole moment q30. 
The hexadecapole moment q40 has been mostly used as a col-
lective variable in the study of the neutron-induced fission of 
actinides: starting from the ground-state, the two-dimensional 
calculations of PES in the q q,20 40( ) plane reported in [120, 
123, 162, 164] showed the existence of two valleys, the fission 

(high q40-values) and fusion (lower q40 values) valleys; see 
also figure  28 p 49. The figure  7 gives a visual representa-
tion of the impact of each of these multipole moments on the 
nuclear shape.

Let us insist that in the HFB theory the expectation value 
of any multipole moment can take non-zero values if symme-
tries allow it: for example, even when q20 is the only collective 
variable (=the only constraint on the HFB solution), all other 
multipole moments will vary along the q20 path in such a way 
as to minimize locally the total energy. By taking advantage of 
the non-linear properties of the HFB equations and switching 
on/off constraints along the iterative process, it is therefore 
often possible to compute an N-dimensional PES that is guar-
anteed to be a local minimum in the full variational space. In 
practice, however, one often encounters situations where this 
local minimum is the ‘wrong’ one. This point is illustrated in 
figure 8 for a toy-model two-dimensional collective space. In 
panel (a), calculations are initialized with the solution at point 
A and each value of q20 is obtained by starting the calculation 
with the solution at a lower q20 value. The resulting path fol-
lows the left valley in the (q Q, xx20 ) space and rejoins the right 
valley only when the barrier between the two vanishes; con-
versely, in panel (b) calculations are initialized at point B and 
the step-by-step process follows the right valley. The resulting 
trajectories are markedly different and show a discontinuity in 
energy. Panel (c) illustrates a possible continuous trajectory. 
These points were discussed extensively in [165].

In addition to the set q q q q, , ,20 22 30 40( ) of multipole 
moments, a constraint on the size of the neck between the 
pre-fragments has often been used, in particular at very large 
elongations; see for instance [129, 162, 166–169]. The stand-
ard form of this operator is r rQ aexpN neck

2 2ˆ ( ( ) / )= − − , with 
a an arbitrary range and rneck the position of the point with the 
lowest density between the two fragments. The figure 9 shows 
the effect of decreasing the value of qN near the scission point 
of 240Pu. This constraint is often used as a way to continuously 
approach the final configuration of two separated fragments.

Although multipole moments are widely used to character-
ize nuclear shapes in low-energy nuclear structure in general, 

Figure 7.  Visual representation of the mass multipole moments. In each frame, the axial quadrupole moment is constrained to q20  =  60 b.  
In the frame labelled ‘q20’, there is no other constraint; in the frame ‘q20 q22’, the triaxial quadrupole moment is fixed at q22  =  30 b 
(equivalent to 30oγ = ); in the frame ‘q20 q30’, the axial octupole moment is fixed at q b3030

3 2/= ; in the frame ‘q20 q40’, the axial 
hexadecapole moment is fixed at q b2040

2= . All calculations are performed in 240Pu; see [162] for technical details.
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and nuclear fission in particular, they are in fact not particularly 
well adapted to capture some of the most relevant features of 
fission. In particular, the charge and mass of the fission frag-
ments computed at scission from PES generated with multipole 
moments are most of the time non-integers. Although particle 
number projection techniques were used in [170], they were 
not applied on a large scale, as e.g. in the determination of fis-
sion product yields. In addition, Younes and Gogny noticed in 
their two-dimensional study of fission mass distributions for 
239Pu(n,f) and 235U(n,f) presented in [171] that several frag-
mentations Z N Z N, , ,L L R R( ) ( ) were missing along the scission 
line. This is a consequence of computing a potential energy 
surface in a restricted collective space: discontinuities of the 
surface, especially at scission, become critical, and the choice 
q q,20 30( ) of collective variables does not guarantee that the 

proper fragmentations will be recovered. For these reasons, the 
authors suggested adapting the practice of the MM approach 
by using as collective variables the distance between the two 
pre-fragments d and the mass asymmetry between the frag-
ments A A AR L( )/ξ = − . These quantities can be computed by 
introducing the spatial operators

d
A

zH z z
A

z H z z
1 1

1 ,
R L

neck neck
ˆ ( ) [ ( )]= − − − −� (62)

H z z2 1,neck
ˆ ( )ξ = − −� (63)

where H(x) is the Heaviside step function. As a result of this 
choice, they obtained a much more continuous potential energy 
surface. The figure 10 shows the two PES, in the q q,20 30( ) and 
in the D,( )ξ  variables, side-by-side. Scission configurations 
are much better mapped out in the D,( )ξ  parametrization.

2.3.2.  Non-geometric collective variables.  In nuclear DFT, 
the amount of pairing correlations in the wave function is in 
principle automatically determined by the minimum energy 
principle. Altering the amount of pairing correlations in the 
wave function increases the energy by an amount that depends 
on the specific properties of the state considered (essentially, 
the level density) but is typically in the range of 1–2 MeV. 
Therefore, artificially modifying the amount of pairing corre-
lations can modify the shape of the PES. Calculations in [162, 
172] have shown that increasing pairing correlations decreases 
the fission barrier and leads to scission occurring at lower elon-
gations. Most important is the strong dependence of the collec-
tive inertia on the pairing gap already pointed out in [173, 174]. 
The inertia is inversely proportional to the square of the pairing 
gap parameter and [175–178] showed that larger pairing gaps 
imply a smaller inertia and therefore shorter fission half-lives.

Figure 8.  Pedagogical illustration of discontinuities in PES calculations when the PES is generated by a step-by-step algorithm using 
neighbouring points. Figure reproduced from [165], courtesy of Dubray; copyright 2012, with permission from Elsevier.

Figure 9.  Two-dimensional density profiles in the (x, z) plane of the intrinsic reference frame for 240Pu in the scission region, with qN  =  4.0 
(left) and qN  =  0.3 (right). In both cases, the value of the quadrupole moment is fixed at 345 b. Figures reproduced with permission from 
[162], courtesy of Schunck; copyright 2014 by The American Physical Society.
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There are several possibilities to define collective vari-
ables that characterize the amount of pairing correlations in 
the system:

	 (i)	The mean value of the number of particles fluctuation 

operator N
2⟨ ˆ ⟩∆  has been used in the recent calculations of 

[179]. The main drawback is that this is a two-body operator 
and therefore the computation of quantities of interest are 
more involved. Also its two-body character prevents the use 
of standard formulas used to compute the inertia.

	(ii)	The average value of the pairing gap ⟨ ⟩∆  and the gauge 
angle φ associated with the particle number operator have 
been mostly studied within semi-microscopic approaches 
based on a phenomenological mean-field complemented 
by a BCS description of pairing, see, e.g. [180, 181]. 
The formalism could in principle be extended to a full 
HFB framework with realistic pairing forces by defining 
the average value of the pairing gap as the mean value 

of the Cooper pair creation operator P c ck k k
† †

¯
†= ∑  times 

a convenient strength parameter G, i.e. G P⟨ ⟩ ⟨ ⟩†∆ = . 
In this way, the HFB theory with one-body constraints 
and all the subsequent developments discussed below 
for one-body operators can be straightforwardly imple-
mented. However, including the gauge angle φ may cause 
problems when using density-dependent forces because 
of the singularities analysed in [143–146].

	(iii)	Another possibility is to use as starting point the Lipkin–
Nogami (LN) method that adds to the HFB matrix a term 

N2
2ˆλ− ∆  with 2λ  in principle determined by the LN equa-

tion. Using instead 2λ  as a free parameter allows to change 
the mean value of N

2ˆ∆  at will and therefore the strength 
of pairing correlations. This is the choice used in [178].

2.4.  Scission configurations

As recalled in section  1.2, scission is defined as the point 
where the nucleus splits into two or more fragments. In non-
adiabatic time-dependent approaches to fission such as TDHF 

or TDHFB, scission automatically occurs at some time sc.τ  of 
the time evolution of the compound nucleus as the result of the 
competition between nuclear and Coulomb forces. For exam-
ple, the figure 11 taken from the TDHFB calculation of [182] 
shows how the nuclear shape of 240Pu evolves as a function 
of time, from a compact deformed initial state to two sepa-
rated fragments. Most importantly, owing to the conservation 
of total energy in TDHFB, these fragments are automatically 
in an excited state, see e.g. discussion in [183]. The character-
istics of the system before and after the split can thus easily be 

Figure 10.  Two-dimensional potential energy surface for 240Pu in the q q,20 30( ) collective space (left panel) and in the D,( )ξ  collective 
space (right panel). Calculations were performed with the D1S parametrization of the Gogny force according to details given in [171]. 
Figure courtesy of Younes Gogny and Lawrence Livermore National Laboratory from [171].

Figure 11.  Left panel: neutron (proton) densities r( )ρ  in the 
top (bottom) half of each frame. Right panel: neutron (proton) 
pairing field r( )∆  in the top (bottom) half of each frame. The time 
difference between frames is t 5 10 21∆ ≈ ⋅ −  s. The colour bar is 
in units of fm−3 for the density and MeV for the pairing field. 
Figure reproduced with permission from [182], courtesy of Bulgac; 
copyright 2016 by The American Physical Society.
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quantified and provide realistic estimates of fission fragment 
properties.

In the adiabatic approximation, however, there is no scis-
sion mechanism: static potential energy surfaces are often pre-
calculated for the compound nucleus within a given collective 
space and do not, strictly speaking, contain any information 
about the fragments. In these approaches, scission configura-
tions must explicitly be defined. This definition happens to be 
essential to obtaining sensible estimates of fission fragment 
properties. Indeed, the solutions to the HFB equation corresp
onding to very large elongations of the fissioning nucleus do 
not lead to excited fission fragments in contrast to non-adiaba-
tic approaches. Because of the variational nature of the HFB 
equation, the fragments are essentially in their ground-state, 
which is counter to experimental evidence, see discussion in 
[184, 185]. In such adiabatic approaches, it is, therefore, nec-
essary to invoke reasonable physics-based arguments to jus-
tify introducing scission configurations before the fragments 
are far apart from one another. Unfortunately, all quantities 
pertaining to fission fragments such as charge, mass, exci-
tation energy, etc, happen to be extremely sensitive to the 
characteristics of scission configurations. In this section, we 
recall some of the definitions that have been introduced in the 
literature.

2.4.1.  Geometrical definitions.  Historically, the concept of 
scission takes its origin in the liquid drop (LD) picture of the 
nucleus and reflects the fact that for very large deformations, 
the LD potential energy can be a multi-valued function of the 
deformation parameters, with at least one of the solutions 
corresponding to two separate fragments as exemplified in [9, 
41, 60]. This is illustrated, for example, in the figure 4 p 7 for 
the parametrization of the LD in terms of Cassini ovals. In the 
LD approach, these multi-valued regions originate from the 
finite number of collective variables (=deformations) and/or 
the lack of bijectivity between a set of parameters and a given 
geometrical shape.

In DFT, such multi-modal potential energy surfaces are 
encountered when working in finite collective spaces as 
recalled in section 2.3.1. For example, studies of hot fission 
of actinide nuclei published in [120, 123, 162] showed that 

the least energy fission pathway from ground-state to scission 
follows the fission valley, which lies higher in energy than 
the fusion valley. For given values of the axial quadrupole 
and octupole moments, these two valleys differ by the value 
of the hexadecapole moment q40, and nuclear shapes in the 
fusion valley correspond to two well-separated fission frag-
ments. Similar multi-modal potential energy surfaces have 
been observed in superheavy nuclei, for example in [186, 
187]. Discontinuities in the energy (or any relevant collective 
variable) for large elongations of the fissionning nucleus are 
usually the first tell-tale signal of the transition to the scission 
region.

However, these discontinuities are also the manifestation of 
the truncated nature of the collective space: when additional 
collective variables such as, e.g. the size of the neck qN, are 
used, they can disappear. The transition from a compact shape 
to very loosely joined fragments can thus be continuous. This 
point is illustrated in the top panel of figure 12 adapted from 
[162]. The graph shows the energy of 240Pu as a function of 
qN at the point q20  =  345 b. This point is located just before 
the discontinuity in energy along the most likely fission path 
of figure 29 p 49. When the qN collective variable is used as 
a constraint, the system can go continuously to two separated 
fragments, as illustrated by the density contours of the bottom 
panel of the figure.

In such cases, one needs a specific criterion to define when 
exactly one may consider the two fragments as fully sepa-
rated. To this purpose, one can use the value of the density 
between the two fragments as in [188]: the fragments are 
deemed separated if max sc.∥ ∥ ⩽ρ ρ . Alternatively, one may use 
the expectation value of the neck operator discussed in sec-
tion  2.3.1. This quantity gives a measure of the number of 
particles in a slice of width a centred on the neck position. 
The decision of considering the fragments as separated would 
be based on the condition q qN sc.⟨ ˆ ⟩ ⩽ . Whatever the criterion 
retained, however, there remains a part of arbitrariness in the 
definition of scission: how to choose the value of qsc. (or sc.ρ )?

Recently, there were attempts in [129, 162, 189] to use 
topological methods to characterize scission in a less arbi-
trary manner. The main idea is to map the density fields rn( )ρ  
and rp( )ρ  into an abstract contour net, and infer properties of 

Figure 12.  Left panel: HFB energy as a function of qN in the scission region for the most likely fission path (point labelled 5 in figure 29  
p 47) of 240Pu. The value of the quadrupole moment is fixed at 345 b. Right panel: corresponding two-dimensional density profiles in the  
(x, z) plane of the intrinsic reference frame for six different values of qN.
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those fields from the connectivity properties of these nets. 
Mathematically rigorous, the method can identify from the 
PES the regions where the variations of densities within the 
pre-fragments are commensurate with those in the compound 
nucleus. As a result of this work, the authors proposed to rede-
fine scission as a region characterized by a range of values 
rather than by a fixed value of either qN⟨ ˆ ⟩ or max∥ ∥ρ .

2.4.2.  Dynamical definitions.  By design, geometrical defi-
nitions of scission only reflect static properties, and do not 
take into account the fact that the split is caused by a time-
dependent competition between the repulsive Coulomb 
and the attractive nuclear force. As a result of this competi-
tion, however, scission may occur even when the two pre-
fragments are separated by a sizeable neck. To mock up the 
dynamics of scission in static MM calculations, it was thus 
proposed already in [190] to use as a criterion for scission the 
ratio between the Coulomb and the nuclear forces in the neck 
region. These forces can be computed by taking the deriva-
tives of the potential energy with respect to the relevant col-
lective variable. Such techniques have been later extended in 
[191] by adding an additional phenomenological neck poten-
tial. This ‘dynamical’ definition of scission was adapted in the 
DFT framework by the authors [29, 184].

Both the geometrical or dynamical definition of scission 
are, however, semi-classical, in the sense that they ignore 
quantum mechanical effects in the neck region. This limitation 
was highlighted by Younes and Gogny in a couple of papers 
[184, 192]. In the framework of DFT, the degrees of freedom 
of the fission fragments are the one-body density matrix and 
the pairing tensor, which are themselves obtained from the 
quasiparticle wave functions. Near scission, one can introduce 
a localization indicator (simply related to the spatial occupa-
tion of quasiparticle wave functions) to partition the whole set 

of quasiparticles into two subsets belonging to either one of 
the pre-fragments. The total one-body density matrix of the 
compound nucleus is then decomposed
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Similar expressions hold for the pairing tensor r r,( )κ σ σ′ ′ . 
With these definitions, it becomes possible to analyse fission 
fragment properties, including their intrinsic energy and their 
interaction energy within the DFT framework; see also [162] 
for details. In [184], Younes and Gogny made the crucial 
observation that the fission fragment density distributions 
thus extracted have large tails that extend into the other frag-
ment and reflect the quantum entanglement between the two 
fragments as shown in figure 13. Because of these large tails, 
there was a substantial nuclear interaction energy between 
the fragments even when the size of the neck was very small. 
Similarly, the Coulomb interaction energy was much too high 
compared to its experimental value.

Most importantly, because the HFB solutions are invariant 
under a unitary transformation of the quasiparticle operators, 
it is possible to choose a representation in which this degree 
of entanglement is minimal, as discussed in [162, 184, 192] 
leading to a ‘quantum localization’ of the fission fragments. 
This freedom in choosing the representation of the HFB 
solutions is the analogue to localization techniques used in 
quantum chemistry and is discussed in some details in [162]. 
The implementation of the quantum localization procedure 
yields much more realistic estimates of fission fragment prop-
erties at scission, even for neck size up to q 0.3N ≈ . Figure 13 

Figure 14.  Nuclear interaction energy between the two pre-
fragments near the scission point (point labelled 5 in figure 29  
p 47) of 240Pu as a function of the size of the neck. Calculations are 
done with the Skyrme SkM* effective force at finite temperatures. 
Plain curves with open symbols show the nuclear interaction energy 
before localization for T 1.00, , 1.75= …  MeV; dashed curves with 
filled symbols show the energy after localization. Figure reproduced 
with permission from [129], courtesy of Schunck; copyright 2015 
by The American Physical Society.

Figure 13.  Nuclear interaction energy between the two pre-fragments 
near the scission point of 240Pu as a function of the size of the neck. 
Calculations are done with the Gogny D1S effective force. Black: 
nuclear interaction energy before localization; dashed red: same after 
localization of the fragments by minimization of the tails; dotted 
green: two-body exchange contribution to the nuclear interaction 
energy. The insert shows the density profile along the symmetry 
axis of the nucleus. Figure reproduced with permission from [184], 
courtesy of Younes; copyright 2011 by The American Physical Society.
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illustrates the impact of choosing a representation that better 
reproduces the asymptotic conditions of two separated frag-
ments: by reducing the tails by about an order of magnitude, 
the interaction energy is reduced by a factor 3 and is close to 
0 for thin necks.

Recently, the localization method was extended at finite 
temperature in [129]. Figure 14 illustrates the impact of mini-
mizing the tails at different temperatures for the same case of 
240Pu most likely fission, only with the SkM* Skyrme poten-
tial instead of the Gogny D1S. Although the practical imple-
mentation differs from the zero-temperature case because the 
generalized density matrix is not diagonal any longer after a 
rotation of the quasiparticles, it is still possible to reduce the 
tails of the fragment densities without changing the global 
properties of the compound nucleus. As the temperature 
increases, however, this procedure becomes more and more 
difficult, especially for well-entangled fragments, because of 
the coupling to the continuum; see section 2.2.4.

3.  Dynamics of fission

Fission is intrinsically a dynamical process where the quasi-
static ground state (or other quasi-static excited configura-
tions) evolves with time towards a two-fragment solution. 
Ideally, the probability of such an event to occur could be 
computed using the rules of quantum mechanics as

= | Ψ | |Ψ |U t t, ,1 1 0 0
2P 〈 ˆ ( ) 〉

� (66)
where 0⟩|Ψ  is the initial wave function, 1⟩|Ψ  is the wave func-
tion of the two fragments and U t t,1 0ˆ ( ) is the time evolution 
operator. In nuclear physics, computing any of the elements of 
the above expression represents a formidable task and there-
fore reasonable approximation schemes are in order.

One of the most common such approximations is the 
hypothesis of adiabaticity already mentioned in the introduc-
tion and in section 2. Based on the related separation of scales 
between slow collective motion and fast intrinsic excitations, 
it is assumed that a small set of collective variables drives 
the fission process. Fission dynamics can then be studied in 
that reduced collective space using pure quantum mechanical 
methods based on configuration mixing. As we will show, this 
approach is particularly well adapted to computing spontane-
ous fission half-lives and fission product distributions. Formal 
aspects underpinning the hypothesis of adiabaticity are dis-
cussed in [193] in the context of the classical theory of col-
lective motion.

A second, related, approximation consists in representing 
the nuclear wave function at each time t by a mean field solu-
tion formally of the HF or HFB type. This leads to the concept 
of time-dependent density functional theory (TDDFT). This 
approach has recently gained ground with the development of 
supercomputers, and should, in principle, offer a more realis-
tic description of fission fragment properties since it does not 
rely on adiabaticity.

A third approximation particularly relevant for sponta-
neous fission is the notion of tunnelling through a potential 
barrier, which is based on semi-classical concepts related 

to the least action principle of classical dynamics. The least 
action principle establishes that the action, defined as the int
egral of the Lagrangian from time t0 to t1, has to be stationary 
for the trajectories that satisfy the laws of motion of classi-
cal mechanics (Euler–Lagrange). The action thus defined is 
called Hamilton’s action. An alternative to Hamilton’s action 
involves the integral of the momentum as a function of the 
generalized coordinates q (Maupertuis’ action). Again, the 
physical trajectory of the system in phase space is the one for 
which the action is stationary. In quantum mechanics, where 
the concept of a trajectory does not apply, we usually want 
to compute the probability amplitude (66). If the initial and 
final quantum states are eigenstates of the position operator, 
|Φ = |r0 0〉 〉→ , the probability amplitude can be written as the 
path integral over all possible trajectories connecting r0

→  at t0 

and r1
→  at t1 of the exponential of Si

cl�
 where Scl is the classi-

cal action. The main contribution to the path integral comes 
from the ‘classical trajectories’, that is the ones that minimize 
the action [194]. The argument is still valid in the classically-
forbidden regions where the action is an imaginary number 
[195]—see section 3.2.2 below.

Another approach is based on the semi-classical approx
imation to quantum tunnelling through a classically-forbidden 
region, which is at the heart of the Wentzel–Kramers–Brillouin 
(WKB) approximation discussed in section  3.2.1; see also 
[196] for a complete presentation. In this case, the idea is to 
write the wave function of the system as r e rWi( ) ( )Ψ = �  where 

rW ( ) is the new unknown quantity. Inserting this expres-
sion for r( )Ψ  into the Schrödinger equation, one obtains a 
new equation for rW ( ). The WKB approximation consists in 
expanding rW ( ) in powers of � and keeping only the zero-
order term. In this limit, it turns out that rW ( ) is the classical 
action. Minimizing it is again a way to increase the penetration 
probability that can be extracted from the semi-classical wave 
function—see section 3.2.1 below for practical formulas.

As can be concluded from this brief introduction, there 
is no quantum mechanics least action principle, but semi-
classical arguments tend to point to favoured trajectories that 
minimize the classical action. In fission, only a few collective 
variables are considered as relevant quantities in the evolution 
of the system from the ground state to scission. Therefore, it 
is first necessary to define the classical action for a system 
characterized by these variables. The knowledge of the clas-
sical action in turn requires the knowledge of the inertia and 
the potential energy associated with the collective variables.

In this section, we review these various approaches to fis-
sion dynamics. In the adiabatic approximation, collective iner-
tia plays a special role as it contains the response of the nucleus 
to a change in the collective variables and effectively plays 
the role of the mass of the collective wave-packet. Section 3.1 
summarizes the various recipes to compute the collective 
inertia, from the generator coordinate method, section 3.1.1, 
to the adiabatic time-dependent Hartree–Fock–Bogoliubov 
approach, section  3.1.2. An accurate determination of col-
lective inertia is essential both for spontaneous and induced 
fission. In spontaneous fission, it appears in the definition 
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of the action and has, therefore, an exponential effect on the 
calculation of half-lives. This is discussed in section 3.2. In 
induced fission, it naturally appears both in the classical and 
quantum treatment of dynamics in the collective space, which 
are based upon the Langevin and Kramers equations, and the 
time-dependent generator coordinate methods, respectively. 
Section 3.3 explores some of the similarities between these 
techniques, and compares them with non-adiabatic time-
dependent density functional theory techniques. An excellent 
review covering some of this material in great detail can be 
found in chapter 5 of [12], where the reader is referred for 
further details.

3.1.  Collective inertia

In a phenomenological picture of fission, the collective iner-
tia B can be introduced when the dynamics is assumed to be 
restricted to a path in the manifold of collective variables with 
the associated classical action

∫= −( ) ( )( ( ) )S s s s B s V s E, d 2 .
s

s

1 0 0
0

1

� (67)
Here, s is the parameter describing the path. For simplicity, it 
is assumed that all collective variables q (multipole moments, 
neck, pairing gap, etc), are smooth functions of s. The collec-
tive inertia along the path is

B s B
q

s

q

s

d

d

d

d
( ) ∑=

αβ
αβ

α β
� (68)

and is given in terms of the inertia tensor B≡ αβB  defined for a 
pair of collective variables qα and qβ. Note that the expression 
for the action and other related formulas like the penetrability 
factor of the WKB formula for the spontaneous fission lifetime 
have not been derived from first principles and only represent 
reasonable quantities inspired by semi-classical arguments to 
the tunnelling process [197].

In nuclear physics, the notion of collective inertia also 
arises naturally in theories of large amplitude collective 
motion such as the generator coordinate method (GCM) or 
the adiabatic time-dependent Hartree–Fock–Bogoliubov 
(ATDHFB) theory [61]. Therefore these general approaches 
to the quantum many-body problem provide rigorous methods 
to compute the collective inertia needed in fission. Below we 
briefly review the derivation of both the GCM and ATDHFB 
masses and discuss some of the common approximations used 
to lessen the computational load.

3.1.1.  Generator coordinate method.  The generator coordi-
nate method (GCM) is a general quantum many-body tech-
nique designed to encapsulate collective correlations in the 
wave function. It is based on the expansion of the unknown 
many-body wave function of the system on a basis of known 
many-body states. The variational principle is used to deter-
mine the set of expansion coefficients. The technique is closely 
related to the configuration interaction (CI) method popular 
in quantum chemistry and known in nuclear physics as the 
‘shell model’. Usually, basis states are continuous functions 

of a finite set of coordinates (such as deformation parameters, 
Euler rotation angles, etc) whereas in the CI method, they can 
be unrelated to each other (for instance a set of two quasipar-
ticle excitations). In this section, we focus on the GCM as a 
tool to extract a collective inertia tensor. The time-dependent 
extension of the GCM also provides a powerful tool to extract 
fission fragment distributions, and will be presented sepa-
rately in section 3.3.3.

In the GCM, the general ansatz for the wave function is

q q qfd ,⟩ ( ) ( )⟩∫|Ψ = |Φ� (69)

where q( )⟩|Φ  represents a set of known wave functions 
depending on a general label q that can include not only con-
tinuous but also discrete variables. Also the integral has to be 
taken in a broad sense as representing either sums over dis-
crete values of q, genuine integrals or an admixture of the two. 
In fission studies, the q( )⟩|Φ  are usually quasiparticle vacua 
obtained by solving the HFB equation with constraints on a 
set of n operators Q n, 1, ,ˆ α = …α . As before, the boldface 
symbol q represents the set of collective variables such that 

q qQ q⟨ ( ) ˆ ( )⟩Φ | |Φ =α α. Applying the variational principle to 
the energy with the amplitudes qf ( ) as variational parameters 
leads to the Hill–Wheeler equations,

q q q q q q q q q qh n f E n fd , , d , .( ) ( ) ( ) ( ) ( )∫ ∫=′ ′ ′ ′ ′ ′ ′� (70)

It is an integral equation with the norm kernels,

q q q qn , ,( ) ⟨ ( ) ( )⟩= Φ |Φ′ ′� (71)

and energy kernels,

q q
q q

q q
h

H
, .( )

⟨ ( ) ˆ ( )⟩
⟨ ( ) ( )⟩

=
Φ | |Φ
Φ |Φ

′
′

′
� (72)

Since the set of wave functions q( )⟩|Φ  is in general not orthog-
onal, the qf ( ) amplitudes cannot be interpreted as probability 
amplitudes, and qf 2( )| |  is not a probability density. In order to 
obtain probability amplitudes, the set q( )⟩|Φ  has to be orthogo-
nalized using standard techniques of linear algebra to obtain 
what are called ‘natural states’ q˜ ( )⟩|Φ . These states are defined 
by folding q( )⟩|Φ  with the inverse of the square root of the 
norm kernel,

q q q q qnd , .1 2˜ ( )⟩ [ ( )] ( )⟩/∫|Φ = |Φ′ ′ ′−� (73)

The square root of the norm kernel is defined as

q q q q q q qn n n, d , ,1 2 1 2( ) [ ( )] [ ( )]/ /∫ ″ ″ ″=′ ′� (74)

which corresponds to a Cholesky decomposition of the posi-
tive-definite norm kernel.

Collective Schrödinger equation.  The connection of the 
GCM with the theory of fission comes from the reduction of 
the Hill–Wheeler equation  (70) to a collective Schrödinger-
like equation (CSE) of the collective coordinates, which natu-
rally leads to the definition of a collective inertia. Following 
[12, 198–200], the CSE is derived after assuming that the 
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norm overlap (71) is a sharply peaked function of the coor-
dinate difference s q q= − ′ and smoothly depends upon the 

average q q q1

2
¯ ( )= + ′  in such a way that the norm kernel is 

well approximated by a Gaussian

q q s q sn , exp
1

2
.Γ( ) ( ¯)⎜ ⎟

⎛
⎝

⎞
⎠= −′� (75)

In this expression the width Γ is to be understood as a rank 2 
tensor with components Γαβ and the exponent is thus given 

explicitly by s s1

2
− ∑ Γαβ αβ α β. If we assume that the comp

onents Γαβ of the width are slowly varying functions of 
the coordinate q̄, they can be related to the norm kernel by 

q qn ,
q q

( )Γ = ′αβ
∂
∂

∂
∂ ′α β

. This expression can also be computed 

using standard linear response techniques from the alternative 
definition

q q
q q

.⟨ ( ) ( )⟩Γ = Φ |
∂
∂

∂
∂
|Φαβ

α β

← →

� (76)

which involves the ‘momentum operator’ 
q

∂
∂ β

→

 see below. 

Another, simpler way, is to evaluate the overlap of the two 
HFB wave functions for near q and q′ values using the Onishi 
formula [61] and make a local fit to a Gaussian. If the Gaussian 
overlap approximation (GOA) is valid, it does not make sense 
to accurately compute the Hamiltonian overlap for values of 
s greater than the inverse of the square root of the width Γ ( ¯)/ q1 2 3. 
Therefore, a reasonable approximation is to expand q qh ,( )′  
around s 0=  (or q q q̄= =′ ) and keep quadratic terms only,

=
+ − + −

+ − − + − −

+ − − +

′
′

′ ′

′

′

′ ′
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( ¯) ( ¯)]

� (77)

In this expression hq denotes the set of partial derivatives with 
respect to q of the energy kernels,

q q
h h h h

h

q
, , ,

,
.q

q q q

q qN q1
( )     ( )

¯

≡ … =
∂
∂
′

α = =′
α� (78)

This quantity is a vector and products like q qhq( ¯)−  have to be 
understood as scalar products h q qq ( ¯ )∑ −α α αα

. On the other 
hand, qqH ′ denotes the set of second partial derivatives with 
respect to q and q′ and therefore it is a rank 2 tensor with 
components Hq q′α β

q q
H H

h

q q
,

,
,qq

q q q

q q N q q, 1, ,

2

H ( )     ( )

¯

≡ =
∂
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′
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α β
= …

= =

′ ′ ′

′
α β α β� (79)

and products like q q q qqqH ( ¯)( ¯)− −′′  are to be understood 
as contractions of this tensor with the two vectors q q̄−  and 

q q̄−′ , namely H q q q qq q ( ¯ )( ¯ )∑ − −′αβ α α β β′α β
. Using the expo-

nential form of the norm kernels, assuming a constant width 
Γ and the quadratic expansion (77) for the energy kernels, it is 
possible to reduce the Hill–Wheeler equation to the following 
CSE in the collective space defined by the variables q,

q
q

q
q q q qV g g

2
.

2

GCM zpeB ( ) ( ) ( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟−

∂
∂

∂
∂
+ − =σ σ σε ε

�

� (80)
The derivation is given in [12, 61, 199]. The collective mass 

qGCMM ( ) is a rank 2 tensor that depends on q and is the inverse 
to the collective inertia qGCMB ( ) (curvature) of the collective 
Hamiltonian when expanded to second order in the variable s,

q q
1

2
.qq qqGCM

1
GCM

1 1M B Γ H H Γ( ) ( ) ( )≡ = −− − −
′� (81)

The potential energy qV ( ) is the HFB energy and qzpe( )ε  is a 
zero point energy correction,

q
1

2
qqzpe

1H Γ( ) = −
′ε� (82)

given in terms of the contraction of the two tensors to form 
a scalar. The zero point energy (zpe) correction represents a 
quantum correction to the classical potential for the collec-
tive variables and given by the HFB energy. The zpe correc-
tion corresponds to the energy of a Gaussian wave packet [61, 
201]. The interpretation of this term is similar to the rotational 
energy correction but with the rotation angles replaced by the 
collective variables. The solution of (80) provides the ener-
gies σε  and wave functions qg ( )σ  of the collective modes. The 
wave functions qg ( )σ  are related to the amplitudes qf ( ) of the 
Hill–Wheeler equation (70) through the relation

q q q q qf n gd , ,1 2( ) ( ) ( )/∫= ′ ′ ′σ σ
−� (83)

which can be used to compute, for instance, mean values of 
other observables where the Gaussian approximation is not 
justified. Apart from the simplification that the local reduction 
brings to the solution of this problem, an interesting physi-
cal picture emerges: the collective dynamics is driven by the 
behaviour of the potential energy surface (PES) given by 
the HFB energy as a function of q with some coordinate-
dependent quantal corrections qzpe( )ε  and inertia qGCMM ( ). 
If the q are chosen to be the collective variables driving the 
nucleus to fission (quadrupole moment, octupole moment, 
neck, etc) then the probability of tunnelling through the fis-
sion barrier is given by the integral of the exponential of the 
action computed with the collective potential and the collec-
tive inertia of the CSE approximation to the Hill–Wheeler 
equation of the GCM.

Local approximation.  The collective inertia can be evaluated 
from the energy kernels using numerical differentiation to 
obtain hq and qqH ′. Various finite difference schemes can be 
used and the precision is controlled by the value of qδ  and qδ ′. 
However, it is also common practice to use the explicit expres-
sion for the ‘momentum’ operator associated to the variable q. 
Following [200, 202], we write

3 The square root of Γ has to be understood in a matrix sense. The comp
onents Γαβ of Γ are also the matrix elements of a symmetric positive-definite 
matrix. The square root is then understood as the Cholesky decomposition 
of Γ.

Rep. Prog. Phys. 79 (2016) 116301



Review

25

q q
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.q( )⟩ ˆ ( )⟩∂
∂
|Φ = |Φ
α

α�
� (84)

The action of the momentum operator Pq̂α on the quasipar-
ticle vacuum q( )⟩|Φ  can be obtained from the Ring and Schuck 
theorem of [203],

q qP P P .q q q
20 20ˆ ( )⟩ [( ) ( ) ] ( )⟩† †∑ β β β β|Φ = − |Φ

µ ν
µν µ ν µν µ ν

<

∗
α α α� (85)

The quasiparticle matrix elements of the momentum operator 

Pq
20( )µνα

 are obtained by expanding the HFB solution at point 
q qδ+  to first order in qδ . They are related to the matrix of the 
derivatives of the generalized density with respect to the col-
lective variables,
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and take the generic form
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where M is the linear response matrix in the quasiparticle 
basis,

A B
B A

,( )= ∗ ∗M� (88)

and A and B are given by (see, e.g. [61, 81])

A H B H, .⟨ ˆ ⟩     ⟨ ˆ ⟩† †β β β β β β β β= =µνµ ν ν µ µ ν µνµ ν ν µ ν µ′ ′ ′ ′ ′ ′ ′ ′� (89)

In (87), we have introduced the moments
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where n 1 1= ×…− − −M M M  n times. Using the explicit 
form of the momentum operator we can then express the 
width tensor in terms of the moments (which are also rank 
2 tensors)

= − − − − −q q q
1

2
.1 1 2 1 1Γ M M M[ ( )] ( )[ ( )]( ) ( ) ( )� (91)

The linear response matrices of (89) have been defined 
only in the case of interactions deriving from a Hamiltonian 
Ĥ. For density-dependent interactions and generic EDFs 
that cannot be expressed as mean values of a Hamiltonian, 
the generalization of (89) involves second derivatives 
of the energy with respect to the variational parameters. 
Typical expressions are given in [81] in the most general 
case. The idea is to use the short version of Thouless theo-

rem [61] Z Zexp 0β β|Φ = ∑ |Φµ ν µν µ ν<( )( )〉 ( )〉† †  to define 
the density and pairing tensor entering the EDF as func-

tions of the independent variables Zµν and Zµν
∗  (for instance, 

Z Z Z c c Z Z Z,ji i j( ) ⟨ ( ) ( )⟩/⟨ ( ) ( )⟩†ρ = Φ | |Φ Φ |Φ∗ ) and define

A
E Z Z
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� (92)

Cranking approximation.  The evaluation (90) of the moments 
nM( )−  requires inverting the full linear response matrix M. 

Computationally, this is a daunting task that is often alleviated 
by approximating M by a diagonal matrix, which simplifies 
the inversion problem enormously. This ‘cranking approx
imation’ corresponds to neglecting the residual quasiparticle 
interaction. The diagonal matrix elements are simply the two-
quasiparticle excitation energies. With this simplification, 
(90) reduces to the more manageable form

M
Q Q

E E
,n

n

⟨ ˆ ⟩⟨ ˆ ⟩
( )

( )
†

∑
µν µν

=
Φ| | | |Φ

+αβ
µ ν

α β

µ ν

−

<
� (93)

where ⟩|Φ  stands for the quasiparticle vacuum at point q and 
⟩µν|  represents a two quasiparticle excitation built on top of 

that vacuum, i.e. ⟩ ⟩† †µν β β| = |Φµ ν . The combination of intro-
ducing the local momentum operator to substitute for exact 
numerical differentiations with the cranking approximation is 
also referred to as the ‘perturbative cranking’ approximation. 
In this case, the curvature term qqH  vanishes and some algebra 
leads to

1

2
.qq

1 1H M[ ]( )= − −
′� (94)

Introducing this last result in (81) while taking into account 
the form (91) for the norm overlap, the collective mass tensor 
reduces to

q 4 .GCM
1M ΓM Γ( ) ( )= −� (95)

The zero point energy correction becomes

q q
1

2
.zpe GCM

1ΓM( ) ( )= −ε� (96)

This last expression must again be understood as the contrac-
tion of the two tensors. Both expressions (95) and (96) are 
then used in the evaluation of the action qS( ) that enters the 
WKB expression of the spontaneous fission half-life (114).

Variable width.  The above discussion has been restricted for 
simplicity to a constant Gaussian width Γ. In case this assump-
tion is not strictly valid, a change of variables to a new set of 
coordinates η is required. The new variables are defined to 
make the width locally constant, [175]

q q q q qd d d .2( ) ( ) ( ) ( )∑ ∑η = − Γ −′ ′
α

α
αβ

α αβ β� (97)

This last expression is reminiscent of the field of differential 
geometry where the new variables η have a constant metric 
δαβ and distances in the original variables q have to be mea-
sured with the new metric Γ. In this framework the expressions 
derived above are still valid if standard derivatives with respect 
to qα are replaced by covariant derivatives q/ αD D  that include 
in their definition the corresponding Christoffel symbols  
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[12, 175]. For an introduction to differential geometry, the 
reader may refer to chapter 5 of [204]. As the metric in the 
variables q is now coordinate-dependent, the volume element 
of integrals must be modified to account for an extra detΓ , 
which is the determinant of Γ. Also the kinetic energy term has 
to incorporate the bells and whistles of differential geometry 
involving covariant derivatives. The final expression reads

q
q

q
q q q
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(98)

The use of covariant derivatives is still required in the evaluation 
of the inertia. As the calculation of the Christoffel symbols and its 
use in the covariant derivatives is rather cumbersome, it is often 
assumed that the width matrix Γ, which is used also as the metric 
of the curved space, varies slowly with the q coordinates. In this 
case, and given that the Christoffel symbols are defined in terms 
of partial derivatives of the metric, they can be neglected and 
therefore the covariant derivative reduces to the standard partial 
derivative. However the term detΓ is kept in its original form.

3.1.2.  Adiabatic time-dependent Hartree–Fock–Bogoliubov.  
For a given choice of collective variables q{ }, the ansatz (69) 
for the GCM wave function leads to a notorious underestima-
tion of the collective inertia qGCMM ( ), even when computed 
with exact numerical derivatives. This is illustrated in the top 
panel of figure 6 p 16, which shows the collective inertia as a 
function of the quadrupole deformation for both the GCM and 
ATDHFB prescriptions (in the perturbative cranking approx
imation). Ring and Schuck recall, in their textbook [61], how 
one-dimensional GCM calculations using a shift of the centre 
of mass as collective variable q fail to reproduce the exact result 
in the exactly solvable case of translational large amplitude col-
lective motion (where the collective mass is just the sum of the 
masses of all nucleons). Back in 1962, Peierls and Yoccoz had 
showed in [205] that adding another collective variable corresp
onding to the momentum of the centre of mass was sufficient to 
reproduce the exact mass. Qualitatively, a naive implementation 
of the GCM where the only collective degrees of freedom q 
are time-even functions (such as, e.g. HFB states under vari-
ous constraints on multipole moments) is bound to fail, since it 
does not contain enough information on the actual motion in the 
collective space, which is controlled by time-odd momenta. In 
fact, Reinhard and Goeke showed in their review [206], that a 
‘dynamic GCM’ (DGCM), where the set of collective variables 
q is expanded to include the associated momenta Pq̂, was neces-
sary to provide a more realistic description of collective dynam-
ics. The implementation of the DGCM in practical applications 
is, however, a lot more involved than the usual GCM.

The adiabatic time-dependent HFB (ATDHFB) approx
imation of the TDHFB equation  thus provides an appealing 
alternative; see, e.g. [207–216] for a presentation of the the-
ory. The ATDHFB is based on a small velocities expansion of 
the TDHFB equation,

i ˙ , ,[ ]=�R H R� (99)

where the generalized density matrix t( )R  is given by (14) and 
the HFB matrix by (22)—both are now time-dependent. As we 
will show below, this expansion introduces a set of collective 
‘coordinates’, which are time-even generalized densities, and 
the related collective ‘momenta’. Coordinates and momenta 
differ by their properties with respect to time-reversal sym-
metry. Once these quantities are defined, the energy of the 
system can be expressed as the sum of a kinetic part, which 
is a quadratic function of the momenta, and a potential part—
both parts being time-dependent functions. It is then possible 
to assign a collective inertia associated to any point of the col-
lective space. At this point the problem is reduced to a classi-
cal one and it is not possible to describe phenomena involving 
quantum tunnelling through the barrier. However, we can still 
resort to the semi-classical description of tunnelling based 
on the WKB method. Within this scheme it is thus possible 
to compute spontaneous fission lifetimes using quantities pro-
vided by the HFB theory and its time-dependent extension 
ATDHFB.

Note that all applications of ATDHFB to fission so far have 
been performed in the particular case where the collective 
path, i.e. the trajectory of the system in the collective space, 
is not calculated dynamically by solving the ATDHFB equa-
tions, but predefined as a set of constrained HFB calculations. 
This is so even though (i) there are several possible prescrip-
tions to compute the collective path, as can be seen, e.g. in 
the studies of [217–219] and (ii) comparisons of dynamically-
defined collective paths with constrained ones indicate that 
there can be significant differences in the collective inertia 
tensor and zero-point energy corrections; see the examples 
studied in [158, 215]. The main reason for this approximation 
is that the ATDHFB theory is mostly used as a tool to compute 
a realistic collective inertia for WKB-types of calculations, 
and the actual evolution of the system in collective space is 
not needed. The adiabatic self-consistent collective model 
formulated in [220, 221] represents an alternative formulation 
of the adiabatic approximation to the TDHFB equations that 
solve many of the formal difficulties but has not been applied 
to the specific case of fission yet.

The starting point of the ATDHFB method is the expansion 
of the full time-dependent generalized density t( )R  according 
to

t te et ti
0

i( ) ( )( ) ( )= χ χ−R R

where t0( )R  is a time-dependent, time-even generalized den-
sity matrix satisfying the standard relation 0

2
0=R R . t( )χ  is 

also a time-even operator. The time-even density t0( )R  is con-
sidered as some kind of coordinate variable whereas t( )χ  will 
be related to its conjugate momentum, which is assumed to 
be a small quantity. Expanding the density matrix in powers 
of t( )χ

t t t t0 1 2( ) ( ) ( ) ( )= + + +�R R R R� (100)

we obtain terms which are either time-odd, such as 
i ,1 0[ ]χ= −R R , or time-even, such as 0R  or 2R . Introducing 

the above expansion in the TDHFB equation, we obtain a set 
of two equations, one for time-odd and the other for time-even 
quantities,
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i ˙ , , ,0 0 1 1 0[ ] [ ]= +�R H R K R� (101)

i ˙ , , , , ,1 0 0 0 2 1 1 2 0[ ] [ ] [ ] [ ]= + + +�R H R H R K R K R� (102)

where µH  and µK  are obtained from the expressions (22) 
and (29) of H and K with the densities µR —all being time-
dependent quantities. In the next step, the TDHFB energy is 
expanded according to (100) in order to obtain a zero-order 
term, which resembles the HFB energy for the 0R  density, 
and a second order term reminiscent of a kinetic energy and 
given by

1

2
tr ˙ , .0 0 1{ [ ]}R R R

� (103)
In this expression, the first term ˙

0R  plays the role of a gen-
eralized velocity, whereas the second one is a momentum-like 
quantity. The identification of this term with a kinetic energy is 
at the origin of the definition of the ATDHFB mass. In order to 
obtain a more explicit definition of the mass, we use (101) to 
express 1R  in terms of ˙

0R . To this end it is customary to intro-
duce the ATDHFB basis, which diagonalizes t0( )R  at all times 
t and has an analogous block structure as the traditional HFB 
basis. In the ATDHFB basis, the matrix of χ̂ is noted generically

,
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and one can show that only the blocks 12χ  and 21χ  of the matrix 
of t( )χ  are relevant for the dynamics (and they are related 
through †χ χ=21 12  ). After some manipulations, one finds
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where M is the same linear response matrix as in (88). 
Inserting this relationship in (103) we end up with an expres-
sion that is fully reminiscent of the kinetic energy

1

2
,

1

2
˙ , ˙

˙

˙
.T T12 12

12

12 0
12,

0
12 1 0

12

0
12

(   ) (   )† †⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟χ χ

χ
χ

≡ =
∗

−
∗

K M R R M
R

R
�

(106)

This expression shows that the linear response matrix is 
indeed the matrix of inertia.

As for the GCM, the above expressions are used in a frame-
work where it is assumed that just a few collective coordi-
nates are responsible for the time evolution of the system. This 
assumption allows the expression of the time derivative of the 
density matrix as

q
q˙ ˙ ,0

0∑=
∂
∂α α

αR
R

� (107)

where the qα are the relevant collective coordinates and q̇α 
their time derivatives. The kinetic energy (106) becomes

M q q
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which constitutes the expression of the collective inertia for 
the relevant collective coordinates qα.

As in the GCM case, the final expression of the ATDHFB 
mass involves the inverse of the linear response matrix. The 
only (very recent) attempt to invert this matrix explicitly has 
been reported in [222]. Most often, the problem is simplified by 
resorting to the same two approximations encountered earlier 
and discussed in detail in [216]: the ‘cranking approximation’ 
uses the diagonal approximation to the linear response matrix 
with two quasiparticle energies as diagonal elements. The par-
tial derivatives of the density 0R  with respect to the collective 
variables qα are evaluated numerically by obtaining the HFB 
wave function with the constraints q qδ+  and using finite dif-
ference approximations to the partial derivatives4. However, 
the partial derivatives of the generalized density can also be 
obtained by applying linear response theory, which leads to an 
explicit expression of the partial derivatives involving again 
the inverse of the linear response matrix. If the same cranking 
approximation is used as before, we then obtain the ‘perturba-
tive cranking’ formula for the ATDHFB mass,

,ATDHFB
2 1 1 3 1 1M M M M[ ] [ ]( ) ( ) ( )= − − − − −�� (110)

with the moments defined in (93).
The validity of the perturbative cranking approximation 

(replacing exact derivatives by a linearization) has recently 
been tested in the calculation of fission pathways of super-
heavy elements in [223]. The figure 15 shows the fission path-
ways in 264Fm in the q q,20 22( ) collective space obtained under 
different approximations: the path obtained by only consider-
ing the lowest energy is marked ‘static’; the path obtained by 
minimizing the action while taking a constant inertia is marked 
‘const’; the paths obtained by minimizing the action with the 
collective inertia computed at the cranking approximation 
either directly or perturbatively are denoted by ‘C+DPM’, 
‘Cp +DPM’ and ‘C+RM’, ‘Cp +RM’ respectively. There is a 
clear, qualitative difference between the perturbative and non-
perturbative treatment of collective inertia.

3.2. Tunnelling and fission half-lives

Strictly speaking, the ground-state of many nuclei is not a 
stationary state since there are open channels through which 
the nucleus can decay. Nevertheless, it still makes sense to 
do this approximation since the evolution towards those open 
channels must proceed through classically-forbidden regions 
with a tiny transmission probability coefficient. Similarly, 
in spontaneous fission the evolution of the nucleus from the 
ground-state to scission configurations and to a two-fragment 
final state is achieved by tunnelling through classically-for-
bidden regions. Fission lifetimes are then proportional to the 

4 Obviously, higher order formulas are used to compute the derivatives that 
also involve multiples of δqi.
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tunnelling transmission coefficient through multi-dimensional 
potential energy surfaces in the relevant collective space.

3.2.1. The WKB approximation.  The WKB approximation is 
often used to get an estimate of the transmission coefficient 
through the fission barrier [197]. To get an idea of how it 
works, let us consider first the one-dimensional case. The basic 
idea is to substitute the classical expression for the momentum 
p m E V x2 ( ( ))= −  into the quantum mechanical identity

x

x

p
x

d

d
.

2

2

2

2

( ) ( )Ψ
= − Ψ
�

� (111)

This second-order differential equation  is then solved under 
the assumption that the wave function can be expressed in the 
generic form

x A x e .xi( ) ( ) ( )Ψ = φ

Inserting this ansatz in (111) and assuming that the amplitude 
A(x) varies slowly with x one obtains

A x
C

p x
,( )

( )
=

and

�
( ) ( )∫φ =±x x p x

1
d ,

which is valid in the ‘classical’ region where E V x⩾ ( ). The 
extension to classically-forbidden regions is straightforward, 
requiring the introduction of a complex momentum p(x) that 
leads to an exponential wave function in that region
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The positive sign in the exponent yields an exponentially 
increasing tunnelling probability and therefore the corresp
onding amplitude C+ has to be very small. By keeping only the 
term with the minus sign for the wave function in the classically-
forbidden region, we obtain for the transmission coefficient

�
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⎛
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2
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where a and b are the inner and outer turning points at the bar-
rier corresponding to the energy E.

The extension of these ideas to fission is not entirely 
straightforward because of the infinite degrees of freedom 
of the nuclear many-body system. In the adiabatic approx
imation, however, the use of the WKB formula is somewhat 
justified owing to the reduction in the number of relevant col-
lective variables. Clearly, the role of the mass of the particle in 
the one-dimensional problem recalled above should be played 
by the collective inertia tensor, and the potential energy 
should be replaced by the HFB energy along the collective 
path (possibly supplemented by quantum corrections such as 
the rotational energy correction, zero-point energies, etc). The 
actual path used to compute the transmission coefficient is 
determined by invoking the last action principle mentioned in 
the introduction to this chapter: The physical path is the one 
for which the classical action (67) is minimal. The spontane-
ous fission lifetime 1 2

SF
/τ  is then usually given by the inverse of 

the product of the transmission probability T times the number 
of assaults to the barrier per unit time ν

∫τ
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Usually 1/ν is estimated assuming that the zero point energy 
correction of the nucleus in its ground-state is of the order 
of one MeV, which leads to the value 1 10 21/ν = −  s. Other 
authors (e.g. [20]) prefer to compute this parameter as the 
zero-point energy ω�  of the ground-state of the potential well 
corresponding to the collective variable q. For the mass, the 
two expressions for the collective inertia obtained previously 
in the framework of the GCM and ATDHFB methods are 
used, usually within the perturbative cranking approximation. 
Some results have recently been published in [223] without 
the perturbative treatment of the derivatives but, to our knowl-
edge, there has been no calculation where the exact masses 
(involving the inverse of the full linear response matrix) have 
been used.

As expected, the results for 1 2
SF
/τ  are very sensitive to the 

particular approximation used, especially for nuclei with large 

1 2
SF
/τ  values. This is a straightforward consequence of the expo-

nentiation of the action, leading to an exponential dependence 
on the potential, energy and inertia tensor. In applications 
of the WKB method, the collective potential V(q) is usually 
supplemented by the various corrections discussed in detail 
in section 2.2.5. Strictly speaking, zero-point energy correc-
tions (ZPE) should only be computed when the GCM frame-
work is used to compute the collective inertia. Some authors 
have argued that even in the ATDHFB case, where no ZPE 

Figure 15.  Dynamic paths for spontaneous fission of 264Fm, 
calculated for the non-perturbative CM  (109) and perturbative CPM  
(110) versions of the ATDHFB cranking inertia using the dynamic 
programming method (DMP) and Ritz method (RM) to minimize 
the collective action integral. The static pathway (‘static’) and that 
corresponding to a constant inertia (‘const’) are also shown. The 
trajectories of turning points sin and sout are marked by thick solid 
lines. Figure reproduced with permission from [223], courtesy of 
Sadhukhan; copyright 2013 by The American Physical Society.
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correction is present by construction, some sort of ZPE can 
still be used by taking the GCM form and replacing the GCM 
by the ATDHFB mass, see for instance [19, 20, 223]. In any 
case, it is commonly assumed as in [202] that the ZPE correc-
tions associated to the quadrupole moment vary slowly with 
the collective variable and therefore only represent a displace-
ment of the energy origin.

Finally, the E0 parameter is often taken as the HFB ground-
state energy. However it has been argued, e.g. in [168, 224], 
that the dynamics of the collective degree of freedom has an 
associated zero-point energy correction on top of the poten-
tial minimum (the HFB ground-state energy). This zero-point 
energy is often taken as a phenomenological parameter vary-
ing in the range 0.5–1 MeV. Some authors prefer to compute 
it using the formulas obtained in the GCM formalism [20].

3.2.2.  Multidimensional quantum tunnelling.  Although the 
WKB method is the most popular choice to compute fission half-
lives, several authors have considered alternative methods based 
on functional integrals, see for instance [225–231]. Such tech-
niques offer, at least in principle, the possibility to be extended 
to arbitrary many-body systems without relying on an explicit 
choice of collective coordinates (and the underlying adiabaticity 
hypothesis). Qualitatively, it can be thought of as an extension 
of time-dependent density functional theory in the classically-
forbidden region ‘below the barrier’. In this section, we only 
summarize some of the main features of the theory by following 
[227] in the simplified case of a one-dimensional problem.

We thus assume that the potential energy of the system has 
the typical fission-like features shown in figure 16. We then 
adopt a functional integral representation of the quantum-
mechanical evolution operator Û, and following [227] write

E E H E
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with q the one dimensional coordinate, and the summa-
tion in the left-hand side extends over all eigenstates of the 
Hamiltonian. The poles of the resolvent as a function of E 
give the energy of bound states and resonances. In the classi-
cally-forbidden region, no bound states are possible and the 
resonances appear as complex energies with an imaginary part 
providing the width Γ of the state.

In order to estimate the integral over q, the integrand is first 
converted to a Feynman path integral

q q q q q td e d e ,HT S q ti i⟨ ⟩ [ ( )]ˆ [ ( )]∫ ∫ ∫| | =− D� (117)

where S[q(t)] is the classical action. This Feynman path int
egral is then computed in the static path approximation (SPA). 
The SPA picks out only the path q0(t) that is periodic both with 
respect to the coordinate q and the momentum p, q(0)  =  q(T) 
and p(0)  =  p(T), and corresponds to a minimization of the 
classical action. The remaining integral over T is computed 
using again the SPA, which provides the relation E S T/= −∂ ∂  
connecting E with the classical energy. The contribution to the 
resolvent is proportional (the proportionality factor depends 
on second order corrections to the SPA that we do not discuss 
here) to e W Ei ( ) where W E ET S Tcl cl cl( ) ( )= +  and Tcl is the clas-
sical period of motion for an energy E. Summing over all inte-
ger multiples of the period at an energy E gives the contribution 
e 1 eW E W Ei i/( )( ) ( )−  to the resolvent for the orbits in the clas-
sically-allowed region around the local minimum. The poles 
of this quantity are at those energies satisfying W E n2( ) π= , 
which is the WKB quantization energy formula up to a factor 
π. As argued in [226], better treatment of the omitted factor in 
front of the phase provides the missing π. In the classically-
forbidden region, we can repeat the same kind of arguments by 
going into imaginary time, t i→ τ. Still neglecting the quadratic 
corrections to the SPA, the total contribution of all paths to the 
resolvent is then given in [225] by
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where W1(E) is the action in the classical allowed region and 
W2(E) is its generalization in the classically-forbidden region,
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The expression of the trace is slightly different if corrections 
are taken into account and is given in [227]. The poles of the 
resolvent are now the solutions of 1 e e 0W E W Ei 1 2( ) ( )− − =−  
and therefore lie in the complex plane. Assuming that the 
last term is small, the complex energy solutions are given by 

En n
i

2
+ Γ  where En is the solution of the WKB energy quanti-

zation condition. The width of the resonance is given by

E
e ,n

n W Ecl n2
( ) ( )ω
π

Γ = −� (120)

which is a factor of 2 smaller than the WKB formula in the 
large W2 limit. Again, this factor is recovered when including 

Figure 16.  Schematic representation of a quantum tunnelling 
problem in one dimension. The system is assumed to be described 
by a Hamiltonian of the type H(q, p)  =  p2/2m + V(q).
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quadratic corrections, as argued in [227]. It can also be shown 
that the region to the right of the barrier does not contribute 
significantly to the resolvent.

These ideas can in principle be extended to a quantum 
many-body system as discussed in [226, 227, 232]. The pecu-
liarity of this approach is that the SPA to the Feynman path 
integral corresponds to the mean field solution instead of the 
classical trajectories. Aside from that, the method requires 
solving many TDHFB-like equations in imaginary time with 
periodic boundary conditions to describe the dynamics below 
the barrier. A non trivial and still unresolved issue is how to 
connect periodic trajectories in classically-allowed regions 
to the solutions under the barrier. In one dimension there is 
only one way to do so but in a multidimensional case the con-
nection is far from trivial. Early studies in [229] point to the 
important role of symmetry-breaking. The connection to the 
standard WKB formula is still missing although the results 
of [232] seem to suggest that the WKB formula might grasp 
some of the physics involved.

Although not directly connected with functional integral 
methods, the tunnelling through a multidimensional barrier 
has also been studied in a two-dimensional model using a 
semi-classical approximation with complex classical trajec-
tories [233]. Finally, we also mention the recent attempt in 
[231] to compute tunnelling probabilities by considering a 
complex absorbing potential: although the method was tested 
on simple fission model Hamiltonians, it could in principle be 
extended to more microscopic collective Hamiltonians of the 
form (131).

3.3. Time-dependent methods and induced fission

As mentioned in the introduction, the observables of interest 
in induced fission are essentially the distribution of fission 
fragment properties such as their charge, mass, total kinetic 
energy or total excitation energy. Such distributions emerge 
naturally from a time-dependent description of fission: if one 
could simulate the time evolution of the system from an initial 
state defining the compound nucleus to a final state charac-
terized by two fragments, then repeating the calculation for 
several initial conditions would allow one to construct all the 
distributions of fission fragment observables.

Let us recall that the time evolution of a (non-relativistic) 
many-body quantum system is given by the time-dependent 
Schrödinger equation. It originates from the requirement that 
the variations of the quantum mechanical action defined by

t H
t
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be zero with respect to variations of the many-body wave func-
tion t( )⟩δ| Ψ . Solving (121) for a realistic nuclear Hamiltonian is 
of course a formidable task. Just as in the case of spontaneous 
fission half-lives, the calculation of fission fragment observ-
ables is performed by making additional approximations.

3.3.1.  Classical dynamics.  The simplest and most drastic 
of all approximations is to forgo the quantum nature of the 
nucleus and treat fission dynamics in a semi-classical way. 

We do not intend to give a comprehensive description of the 
various stochastic methods used to describe nuclear dynam-
ics, and refer the reader to the review [234] by Abe et al where 
this topic is discussed in great detail. Here, our goal is simply 
to recall how some of these techniques have been applied to 
describe induced fission, especially fission fragment distribu-
tions, particle evaporation and fission probabilities.

We introduce the conjugate momenta p of the collec-
tive variables q driving fission. At any time t, the nucleus 
is represented by a point in phase space with coordinates 
q pt t,( ( ) ( )) where the potential energy is qV ( ). If the total 

energy of the nucleus is E, then the local excitation energy 
is q qE E V( ) ( )= −∗  (note that for such a classical treatment 
of nuclear dynamics, the excitation energy must be positive 

qE 0( ) ⩾∗  for all q). The dynamics of the system can be repre-
sented in several ways:

	 •	The Langevin equations directly give the position of the 
system in phase space at any time t. They read
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		 with q qBB( ) ( )≡ αβ  the tensor of inertia, q qΓ( ) ( )≡Γαβ  the 
coordinate-dependent friction tensor (not to be confused 
with the width in the GCM) and qV ( ) the potential energy 
in the collective space. The Langevin equations are non-
deterministic owing to the presence of the random force 

t( )ξ . The strength of this random force is controlled by 
the parameter Θ≡ Θαβ. In applications of the Langevin 
equation  to fission such as, e.g. in [63, 235, 236], this 
parameter is usually related to the friction tensor through 
the fluctuation-dissipation theorem, Tk ik kj ij∑ Θ Θ = Γ , 
with qT T ( )≡  a local nuclear temperature related to the 
excitation of the system qE ( )∗  at point q . Furthermore, it 
is often assumed that the random variable is a Gaussian 
white noise process characterized by

0,⟨ ⟩ξ =α� (124)

t t t t2 ,⟨ ( ) ( )⟩ ( )ξ ξ δ δ= −′ ′α β αβ� (125)

		 where in this equation, .⟨ ⟩ refer to statistical averaging. 
This absence of memory for ξ implies that the Langevin 
equations represent a Markovian stochastic process, i.e. 
the value of the random force at time t does not depend 
on previous values at time t t<′ ; see [137] for an intro-
duction. It can be thought of as a random walk on the 
PES defined by qV ( ). Each such random walk from some 
initial state to a properly defined scission configuration 
defines a fission event; repeating the procedure, e.g. by 
Monte-Carlo sampling, allows one to reconstruct the full 
distribution of fission fragments.

	 •	The Kramers equation gives the probability distribution 
function for the nucleus to be at a given point in phase 
space. It reads
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		 where D T= Γαβ αβ  and T is the temperature. Since the 
Kramers equation  does not contain an explicit random 
term, it lends itself to analytic approximations. On the 
other hand, its generalization to N-dimensional collective 
spaces is numerically more involved since it is a second-
order differential equation in terms of collective variables.

Historically, the Kramers equation  was essentially used to 
extract an analytic expression for the induced fission width fΓ  
by considering fission as a diffusion process over a potential 
barrier approximated by an N-dimensional quadratic surface 

(of the type q qij i j
1

2
∑  where qi are the collective variables), for 

instance in [237–239]. More recently, progress in computing 
capabilities has enabled solving the full Langevin equations in 
several dimensions. Results reported by various groups dif-
fer mostly in the number and type of collective degrees of 
freedom, as well as the prescription for the friction tensor Γ.  
Most studies have been performed in the high temperature 
regime, where the potential energy surface is approximated 
by a liquid-drop-like formula, for example [235, 240–242]. 
The Langevin equations  have also been solved for macro-
scopic-microscopic PES in the limiting case of strong friction 
(strongly damped Brownian motion) in [63, 64, 243]. Note 
that both the Langevin and Kramers equations involve the col-
lective potential energy qV ( ) and the inertia tensor qB( ). In the 
recent work of [244], these quantities were computed using 
the ATDHFB formula, and Langevin dynamics was solved 
from the outer turning point to scission in order to extract 
spontaneous fission fragment distributions.

3.3.2. Time-dependent density functional theory.  Time-
dependent density functional theory (TDDFT) provides a fully 
microscopic approach to describe real time fission dynam-
ics. It is a reformulation of the many-body time-dependent 
Schrödinger equation as discussed in [245, 246]. If one con-
siders an interacting electron gas in a time-dependent external 
potential, then the Runge–Gross existence theorem of [247] 
asserts that given an initial state all properties of the system 
can be expressed as a functional of the (time-dependent) local 
one-body density, providing the potential satisfies certain reg-
ularity conditions. Just as in the static case, the Kohn–Sham 
scheme can in principle be applied so that the TDDFT equa-
tions turn into simple time-dependent Hartree-like equations. 
However, again as in the static case, the form of the exchange-
correlation time-dependent potential rv t,xcˆ ( ) is not known. 
What is called the adiabatic approximation in TDDFT (not to 
be confused with the adiabatic approximation in fission the-
ory) consists in assuming that rv t,xcˆ ( ) has the same functional 
dependence on the density as at t  =  0,

r rv t v t, , .xc xc
adiabaticˆ ( ) ˆ [ ]( )ρ=� (127)

As for the Hohenberg–Kohn theorem of static DFT, there is no 
direct analogue of the Runge–Gross theorem for self-bound 
nuclear systems characterized by symmetry-breaking intrinsic 
densities; see also [248] for a discussion of self-bound systems 
with symmetry-conserving internal densities. In spite of this, 
the popular time-dependent Hartree–Fock (TDHF) and time-
dependent Hartree–Fock–Bogoliubov (TDHFB) are de facto 
adaptations of adiabatic TDDFT in nuclear physics, and we 
give below a very brief presentation of each of these methods.

The TDHF equation

hi ˙ ,[ ]ρ ρ=�� (128)

can be obtained by enforcing that the many-body wave-
function remains a Slater determinant at all times [61]. Given 
an initial density at time t0, which is typically obtained by 
solving the static HF equations  under a set of constraints, 
solving the TDHF equation provides the full time-evolution 
of the system. If the initial condition is such that the system 
has enough excitation energy—a point discussed in detail in 
[249, 250]—this time evolution may follow the system past 
the scission point and lead to two separated, excited fission 
fragments. In some way, TDHF is the microscopic analogue 
of the Langevin equation in that it simulates a single fission 
event in real time. One of the earliest applications of TDHF 
in [251] was made by Negele and collaborators to study the 
fission of actinides. At the time, a number of approximations 
were needed such as axial and reflection symmetry, no spin–
orbit potential, and a coarse spatial grid. Progress in com-
puting has enabled more realistic simulations including the 
full Skyrme potential and 3D geometries as in [183]. In all 
cases, the initial point must have a deformation larger than the 
‘dynamical fission threshold’ introduced in [250] in order for 
the system to fission. The existence of such a threshold was 
explained by Bulgac and collaborators in [182] as the con-
sequence of neglecting pairing correlations. Because TDHF 
does not rely on the hypothesis of adiabaticity, it is expected 
to give a much more realistic description of the scission point, 
in particular of fission fragment properties. The initial results 
on fragment total kinetic and excitation energies reported in 
[182, 183] are very promising.

As has already been emphasized several times, pairing cor-
relations play a crucial role in fission. While, in principle, the 
TDDFT equations could provide the exact time-evolution of 
the system with only a functional of the density ρ, our igno-
rance of the form of this functional forces us to introduce 
explicitly a Kohn–Sham scheme based on symmetry-breaking 
reference states and a (time-dependent) pairing tensor κ. This 
problem is identical to the static case. Nuclear dynamics is 
then described by the TDHFB equation,

i ˙ , .[ ]=�R H R�
(129)

While formally analogous to the TDHF equations, the TDHFB 
equation is substantially more involved numerically. Indeed, 
the number of (partially) occupied orbitals at each time t is 
much larger than the number of nucleons. In spherical sym-
metry, the TDHFB equation has recently been solved without 
specific approximations [252]. In deformed nuclei, it has been 
solved in the canonical basis in [253–255], but no application 
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of this formalism to fission has been performed yet. The 
first pioneer calculation of neutron-induced fission with full 
TDHFB, which the authors refer to as time-dependent local 
density approximation, has also been reported in [182]. We 
note that, as for the static problem, the TDHFB equation can be 
approximated by the simpler TDHF +BCS limit as done, for 
instance in [170, 256]. However, the TDHF +BCS approach 
does not respect the continuity equation, contrary to TDHFB, 
which may lead to non-physical results in specific cases such 
as particle emission. The authors of [256] advocated using a 
simplified version of TDHF +BCS where occupation numbers 
are frozen to their initial value and do not change with time.

3.3.3.  Collective Schrödinger equations.  If the TDHF equa-
tions are the analogue of the classical Langevin equations, the 
time-dependent generator coordinate method (TDGCM) can 
be viewed as the microscopic translation of the Kramers equa-
tion (126). The TDGCM is a straightforward extension of the 
static GCM introduced in section 3.1.1, where the ansatz for 
the solution to the time-dependent many-body Schrödinger 
equation takes the form

q q qt f td , .( )⟩ ( ) ( )⟩∫|Ψ = |Ψ� (130)

As with (69), the functions q( )⟩|Ψ  are known many-body states 
parametrized by a vector of collective variables q, which most 
often are chosen as the solutions to the static HFB equa-
tions under a set of constraints q, see also section 2.3 for a 
discussion of collective variables.

Inserting the ansatz (130) in the variational principle (121) 
provides the time-dependent analogue of (70), where the only 
difference is that the functions qf t,( ) are now time-dependent. 
All applications of the TDGCM method have been made by 
further assuming the Gaussian overlap approximation for the 
norm kernel. Generalizing the procedure given in section 3.1.1 
in the case where the overlap kernel does not depend on the 
collective variable (constant metric), we find the time-depend-
ent collective Schrödinger equation
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where the function qg t,( ) is related to the weight function 
qf t,( ) of (130) according to

q q q q qg t f t n, d , , ,1 2( ) ( )[ ( )] /∫= ′ ′ ′� (132)

(see (73) for the definition of the square root of the norm) and 
contains all the information about the dynamics of the system. 
As before, the rank 2 tensor q qBB( ) ( )≡ αβ  is the collective 
inertia of the system in the collective space, and qV ( ) is the 
potential energy.

Equation (131) implies a continuity equation  for the 
quantity qg t, 2( )| | ,

q J q
t

g t t, , .q
2( ) ( )∂

∂
| | = −∇ ⋅� (133)

This equation can be derived in perfect analogy with standard 
one-body quantum mechanics, see for example the derivation 
in [196]. It suggests that qg t, 2( )| |  can be interpreted as a prob-
ability amplitude for the system to be characterized by the col-
lective variables q at time t. Consequently, the vector J q t,( ) 
is a current of probability in perfect analogy with the results 
of one-body quantum mechanics (see, e.g. equation (IV.9) in 
[196]),

⎡⎣ ⎤⎦J q q q q q qt g t g t g t g t,
2i

, , , , .q qB= ∇ − ∇∗ ∗�( ) ( ) ( ) ( ) ( ) ( )
� (134)
When more than one collective variable are involved, the 
coordinates of the current of probability are
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Therefore, like the classical Kramers equations, the TDGCM 
equation give the evolution of the flow of probability in the 
collective space. The probability amplitude qg t, 2( )| |  and the 
current (135) are the key quantities to extract fission fragment 
distributions in the TDGCM + GOA approach to nuclear fis-
sion. Based on the adequate identification of scission configu-
rations, see discussion in section  2.4 p 21, it is possible to 
estimate the probability of a given scission configuration at 
point q by simply calculating the integrated flux of the prob-
ability current through the scission hyper-surface at that same 
point q. If we define the integrated flux F t,( )ξ  through an ori-
ented surface element ξ as

J q SF t T t, d , d .
qt

t

0
( ) ( )∫ ∫ξ = ⋅

ξ= ∈
� (136)

then, following [171, 257, 258], the fission fragment mass 
yield for mass A is

y A F tlim , ,
t

( ) ( )
→

∑ ξ∝
ξ∈ +∞A

� (137)

where A is the set of all oriented hyper-surface elements ξ 
belonging to the scission hyper-surface such that one of the 
fragments has mass A. In practice, fission fragment mass 
yields are normalized,

Y A
y A

y AA

( ) ( )
( )

=
∑

� (138)

4.  Numerical methods

One of the reasons behind the resurgence of fission studies in a 
microscopic framework is the availability of high-performance 
computing facilities throughout the world. Computational 
aspects are very often overlooked in the discussion of fission 
theory. Yet it is essential to bear in mind that all theories of fis-
sion share an inextinguishable thirst for computing power that 
even the largest supercomputers can barely quench. In fact, 
the microscopic theory of fission has been identified in two 
recent reports [259, 260] by US agencies as a science justifica-
tion for the construction of exascale computers.
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Indeed, while the backbone of the microscopic theory of 
fission was for the most part already formalized at the begin-
ning of the 1980s, practical applications were very limited. 
As a simple example, consider the aforementioned pioneering 
work of Negele and collaborators in 1978 on the dynamics of 
induced fission with the time-dependent Hartree–Fock theory: 
calculations were performed in axial symmetry, neglecting the 
spin–orbit component of the Skyrme force and the exchange 
Coulomb force, using a constant gap approximation for pair-
ing, a discretization of space with a mesh size of h  =  0.65 fm, 
and using 3-point finite differences for derivatives yielding 
an error of at least 2 MeV on the energy. Today, all of these 
approximations can be removed, but significant work on algo-
rithms, code development and parallelization techniques is 
constantly needed.

The goal of this section is to give a comprehensive review 
of the various numerical methods needed to implement the 
microscopic theory of fission. In section  4.1, we review the 
technology of DFT solvers, which are essential tools to map 
out the potential energy surface of the nucleus in the adiabatic 
approximation. In particular, we offer a critical discussion of the 
advantages and drawbacks of basis expansion methods and lat-
tice techniques. In section 4.2, we present some of the methods 
and challenges related to the description of fission dynamics, in 
particular the implementation of time-dependent DFT solvers.

4.1.  DFT solvers

In the adiabatic approximation of nuclear fission, DFT solv-
ers are used to compute the potential energy surface of the 
nucleus of interest within a given collective space or to pro-
vide the wave function for an initial state in time-dependent 
calculations. In practice, this requires solving the HFB equa-
tions for a set of constraints q. As mentioned in section 2.3, 
these collective variables may correspond to geometrical 
properties of the nucleus, such as the expectation value of 
multipole moments, or non-geometrical quantities such as the 
fluctuation of particle number. The success of the microscopic 
approach to fission as outlined in sections 2 and 3 depends to 
some extent on the ability of the chosen collective space to 
accurately capture the physics of fission. This implies that (i) 
there are enough collective variables (ii) the ‘spatial’ resolu-
tion of the collective space is good enough, (iii) the numerical 
precision is good enough.

Today, there is a relative consensus that at least a handful 
of different collective variables are needed, see for instance 
the discussions in [48, 192]. In particular, the elongation of 
the nucleus, the degree of mass asymmetry, triaxiality, the 
thickness and density of particles in the neck between the two 
pre-fragments are among the most fundamental quantities. If 
we assume for the sake of argument that the collective space 
is described by a N  =  5 dimensional hyper-cube and a grid of 
n  =  100 points per dimension, one finds that 1010 deformed 
HFB calculations must be performed to fully scan the poten-
tial energy landscape. To put this number in perspective, we 
recall that high-precision HFB solutions for triaxial, reflec-
tion-asymmetric shapes take up to a few hours on standard 
architectures. The computational challenge is thus formidable.

In this section, we present the techniques used to numer
ically solve the HFB equation. While many of these tech-
niques are well known, we emphasize their advantages and 
drawbacks in the specific context of fission studies. We can 
distinguish between two main classes of DFT solvers: those 
based on the expansion of HFB solutions on a basis of the sin-
gle particle Hilbert space, and those based on direct numerical 
integration.

4.1.1.  Basis expansion techniques.  Basis expansion tech-
niques are ubiquitous in practical applications of quantum 
mechanics and quantum many-body theory. Expanding the 
solutions to the Schrödinger or Dirac equation  on a basis 
of known functions yields a linear eigenvalue problem that 
can be solved very efficiently. In particular, the method is 
oblivious to the local or non-local character of the underlying 
nuclear potential. Moreover, the formulation of beyond mean-
field extensions such as, e.g. the generator coordinate method 
or projection techniques is straightforward.

In nuclear science, the eigenfunctions of the one-centre 
harmonic oscillator (HO) have historically played a special 
role. They are known analytically in spherical, cylindrical, 
Cartesian coordinates, among others. Talmi, Moshinski and 
Talman showed long ago in [261–263] that any product of two 
HO basis functions could be expanded into a sum of single 
HO functions, which allows for the exact separation of the 
centre of mass and relative motion for two-body potentials. 
Using the harmonic oscillator basis also greatly simplifies 
the calculation of matrix elements of Gaussian potentials, 
such as, e.g. the Gogny force as highlighted in [102, 264]. 
Special care must be taken in the evaluation of matrix ele-
ments of states with large quantum numbers, e.g. by recurring 
to known properties of hypergeometric sums as in [167]; see 
also [265] for a recent account on the calculation of matrix 
elements of the Gogny force with axially symmetric harmonic 
oscillator wave functions. High-accuracy expansions of the 
Coulomb or Yukawa potentials onto a finite sum of Gaussians 
were also used in [87, 266, 267] for the precise calculation 
of the Coulomb exchange contribution to the nuclear mean 
field. Last but not least, the nuclear mean field can be well 
approximated by a HO, which is one of the reasons for the 
spectacular success of the phenomenological Nilsson model 
of nuclear structure [11].

Several DFT solvers based on expanding the HFB solu-
tions on the HO basis have been used in fission studies. Let 
us mention in particular the codes hfbtho ([268, 269]) and 
hfodd ([160, 267, 270–274]), which have been released 
under open source license. Both codes implement general-
ized Skyrme-like functionals in the particle–hole channel and 
density-dependent delta-interaction in the particle–particle 
channel. The latest version of hfodd also implements EDF 
based on finite-range pseudopotentials such as the Gogny 
force in both channels. Axial and time-reversal symmetries 
are built-in in hfbtho, but reflection-asymmetric shapes are 
possible; by contrast, hfodd breaks all possible symmetries 
of the nuclear mean-field. The two codes have been carefully 
benchmarked against one another, and the hfbtho kernel is 
included as a module of hfodd. These codes were used to 
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study both spontaneous and induced fission; see the follow-
ing papers [15–17, 20, 129, 162, 186, 216, 223, 275–277]. In 
applications with the Gogny forces, the codes hfbaxial and 
hfbtri have been widely used to study spontaneous fission in 
actinides and superheavy elements [128, 168, 172, 278, 279].

Let us recall that the three-dimensional quantum HO is 
characterized by its frequency vector , ,x y z( )ω ω ω ω=  (in 
Cartesian coordinates). The frequency, measured in MeV, 

is also related to the oscillator length b m/ ω=µ µ�  (in fm), 
where m is the mass of a nucleon. While the single particle 
Hilbert space is of course infinite, practical implementations 
require truncating the HO basis. This is achieved in differ-
ent ways. For a spherical basis with x y z 0ω ω ω ω= = ≡ , one 
usually imposes a cut-off in the number Nshell of oscillator 
shells. Each N-shell contains (N +1)(N +2) degenerate states 
[11, 56]. Deformed or ‘stretched’ HO bases are introduced to 
describe elongated geometries. In these cases, x y zω ω ω≠ ≠ , 
but the condition of volume conservation yields x y z 0

3ω ω ω ω=  
and accordingly b b b bx y z0

3 = . Since there is no degeneracy of 
the HO shells any more, one must introduce additional criteria 
to truncate the basis. Among the popular choices are the ratios 
p x y/ω ω=  and q x z/ω ω= , which define the deformation of the 
basis. Alternatively, this basis deformation can also be defined 
by introducing an ellipsoidal liquid drop characterized by the 

,( )β γ  Bohr deformations; see [61] for the relation between 
,( )β γ  and the ,20 22( )α α  parameters of the expansion (2). The 

quantities p and q can then be expressed as ratios of the radii 
of each of the principal axes of this ellipsoid, p R Ry x/=  and 
q R Rz x/= , each radius being a function of ,( )β γ . This method 
was introduced in [87] and generalized in [270]. An additional 
number of states nmax is sufficient to completely determine the 
basis states.

As important as the truncation schemes are the choices for 
the oscillator lengths used in the HO basis. Typically, these 
quantities are used as additional variational parameters that 
are adjusted to minimize the energy. This search for optimal 
oscillator lengths is obviously less important the bigger the 
size of the basis is, as illustrated in figure 17. Therefore, there 
is always a compromise between using a large basis where 
the precise value of the oscillator lengths is less relevant but 
calculations are expensive, or using a smaller basis at the 
cost of repeating, for the configuration of interest, the HFB 
calculation several times for different oscillator lengths. In 
this respect various phenomenological formulas relating the 
oscillator lengths to the imposed deformation parameters of 
the nucleus can be used as in [162].

Because of the truncation of the basis, the solution of the 
HFB equation becomes dependent on the characteristics of 
the basis, namely Nshell, 0ω , and q in the most common case 
of an axially-deformed basis. This dependence is clearly 
spurious and disappears in the limit of an infinite basis. In 
practical calculations, however, its effect must be properly 
quantified. The figure  17 illustrates the expected size of 
truncation effects as a function of the oscillator frequencies 
and maximum spherical shell number. We show the energy 
of a deformed configuration along the fission path of 240Pu 
characterized by Q b20020⟨ ˆ ⟩ =  and Q b5040

2⟨ ˆ ⟩ = . Even at 

N 24shell = , the energy varies by several hundreds of keV over 
the range b 1.9, 2.60 [ ]∈  fm..

The work reported in [88, 161, 168, 277] showed the impact 
of basis truncation on fission properties, mostly on the static 
properties of the potential energy surface such as, e.g. the 
height of fission barriers . One should bear in mind that trunca-
tion errors typically amount to a few hundred keV at the top 
of the first fission barrier in actinides. Such errors can cause 
several orders of magnitude changes in spontaneous fission 
half-lives because of the exponential factor in (114). In addi-
tion, the truncation error increases with the mass of the nucleus, 
especially when pairing correlations are non-zero. Because 
of the Gaussian asymptotic behaviour of HO wave functions, 
the convergence of basis expansions in weakly bound nuclei 
near the dripline is also problematic, see possible alternatives 
for DFT solvers in, e.g. [280, 281]. This could have a major 
impact in fission fragment calculations of nuclei involved in 
the r-process discussed in [282, 283]. Finally, we already men-
tioned that both spontaneous fission at high excitation energy 
and neutron-induced fission are often described in the finite-
temperature HFB theory, where the density matrix contains a 
spatially non-localized component. This increases truncation 
errors accordingly. In figure 18, we show the evolution of the 
energy as a function of the oscillator length for FT-HFB calcul
ations at T  =  1.0, 1.5, 2.0 MeV for large bases characterized 
by shell numbers N 20shell =  and N 28shell = . We note that the 
plateau condition for convergence degrades substantially as 
nuclear temperature increases: at T  =  1.0 MeV, the energy does 
not change by more than 50 keV over the range b 2.2, 2.40 [ ]∈  
fm, while at T  =  2.0 MeV, even a small change of b 0.05δ =  fm 
around the minimum induces variations of energy of 200 keV.

In the vast majority of DFT solvers based on the HO 
basis expansion, the basis functions are the eigenstates of the 
one-centre, three-dimensional quantum HO. In the nineteen 

Figure 17.  Convergence of DFT calculations using HO expansions. 
The figure is obtained at the HFB approximation with the SkM* 
functional and a surface-volume pairing and shows the total energy 
of 240Pu as a function of the oscillator length b0 (in fm) for different 
numbers of oscillator shells Nshell for the configuration defined 
by Q b20020⟨ ˆ ⟩ =  and Q b5040

2⟨ ˆ ⟩ = . Stretched HO bases with 
different deformations 0.5β =  and 1.0β =  are used; adapted with 
permission from [114]. Copyright 2015 IOP Publishing Ltd.
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eighties, the French group at CEA Bruyères-le-Châtel devel-
oped an axial two-centre DFT solver, in which the basis 
functions are superpositions of the eigenfunctions of two 
one-centre HOs shifted by a distance d (adjustable). By con-
struction, the set of all such functions is not orthogonal, which 
requires a Gram–Schmidt orthogonalization procedure. This 
represents a disadvantage as the number of linearly independ-
ent states depends upon the distance d and therefore wave 
functions at different elongations are expanded in different 
sub-spaces of the full Hilbert space. As a consequence, the 
evolution of observables in the transition from one subspace to 
the neighbouring ones is not necessarily smooth. On the other 
hand, this technology is especially advantageous to describe 
very deformed nuclear shapes and/or two fragments such as 
the ones encountered near scission. This code has been used 
to study induced fission in actinide nuclei, see [120, 123, 164, 
188, 258, 284] for instance.

4.1.2.  Mesh discretization and lattice techniques.  The coor-
dinate space formulation of the HFB equation provides one of 
the simplest methods to remedy the limitations of basis expan-
sion techniques. In this case, the HFB equation (24) becomes
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with the mean field r rh ,( )σ σ′ ′  and pairing field r r,( )σ σ∆ ′ ′  
expressed in coordinate space, see for instance [79] for trans-
formation rules between configuration and coordinate space. 
While the separation of the Schrödinger equation makes this 
direct approach very straightforward if spherical symmetry 
is conserved (see applications in [89, 110]), extensions to 
deformed nuclei require introducing lattice techniques, as 
finite differences become either numerically too inaccurate 
or computationally impractical. There are several different 
examples of coordinate-space approaches to solving the HFB 
equation that have been applied to fission studies.

The HFB equation (139) is a particular example of an inte-
gro-differential equation. The B-spline collocation method 
(BSCM) was introduced in nuclear theory more than two dec-
ades ago in [285, 286] to solve such equations. In practice, 
the BSCM has been successfully implemented in cylindrical 
coordinates for the particular case of axially-deformed nuclei. 
After discretizing the spatial domain as a set of knots, one 
introduces a set of interpolating B-spline functions with order 
M in each knot. Any arbitrary function or operator is then rep-
resented at the collocation points defined by the maximum of 
the spline functions at each knot. With this technique, the HFB 
equation takes the form of the standard non-linear eigenvalue 
problem, which can be solved iteratively by successive diago-
nalizations. This approach was implemented in [287–289]. 
Vanishing boundary conditions are assumed at the boundaries 
of the domain (a cylinder of radius R and length 2L).

Such lattice-based techniques achieve a very high numer
ical precision regardless of the underlying nuclear geometry. 
Their convergence is essentially characterized by the order M 
of the B-spline and the maximum value maxΩ  of the z-projec-
tion of angular momentum (For Hartree–Fock calculations, 

maxΩ  is simply equal to the maximum j-value of occupied 
single particle orbitals). They are especially suited to dealing 
with very deformed nuclei, weakly-bound systems or nuclei 
at high temperature. Comparisons with HO basis expansion 
techniques given in [114, 115, 161, 289] show that a prohibi-
tively large number of basis states would be needed to reach 
similar precision. The downside of the BSCM techniques is 
the larger computational cost: explicit parallelization across a 
few dozen cores is needed to keep run time within a few hours. 
In addition, extending the codes to handle either finite-range 
nuclear potentials or fully triaxial geometries would be costly, 
and such extensions do not exist yet.

A slightly different lattice technique relies on using a vari-
ational method with a set of Lagrange functions introduced 
in [290]. As in the BSCM, both functions and operators are 
represented on the resulting mesh, the functions by a vector 
and the operators by a matrix. This technique is implemented 
in three-dimensional Cartesian meshes in the code ev of [291, 
292]. The use of Lagrange meshes to estimate derivatives 
delivers high and controllable numerical precision as demon-
strated in [293]. In particular, it is possible to limit numer
ical errors to only a few dozen keV across an arbitrarily large 
deformation span with even relatively coarse meshes. Note 
that the implementation of finite-range potentials represents a 
significant increase in computations, see however [294] for a 
recent example using the finite range Gogny force.

Another popular technique used in DFT solvers based on 
the coordinate space representation consists in evaluating 
derivatives, which are needed to define the Laplacian in the 
kinetic energy, in momentum space. Consider a Cartesian grid 
of N N Nx y z× ×  points defined in such a way that x xidi =  for 
i N1, x= …  (and similarly for the coordinates y and z). Then 
the momentum is discretized according to p Li2i / / )π=� . As 
is well known, derivatives in momentum space are simple 
multiplications. The transformation back to coordinate space 
can be performed by Fast Fourier Transforms. This technique 
has been used in [13, 14, 33, 34, 79, 182, 295, 296].

Figure 18.  Similar as figure 17 for different nuclear temperatures. 
The basis deformation is fixed at 1.0β = . For better legibility, all 
curves have been normalized to their minimum value.
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We finish this section  by mentioning two slightly alter-
native lattice-based techniques. Finite element analysis was 
introduced in the series of papers [297–300] to solve the equa-
tions  of the relativistic mean-field. Although this technique 
seemed promising, it was not disseminated further. Most 
recently, the NUCLEI SciDAC collaboration has published in 
[301] a new DFT solver based on multi-resolution analysis 
and wavelet expansions. The advantage of multi-resolution is 
the possibility to impose the numerical precision desired.

4.1.3.  Algorithms to solve self-consistent equations.  The HFB 
equation (21) is a non-linear problem since the HFB matrix H 
depends on the generalized density R—recall (37) and (23). 
Even in the BCS approximation, the non-linearity of the equa-
tion  remains since the HF mean field h is still a functional 
of the one-body density ρ. There are three main strategies to 
solve such problems: successive diagonalizations, gradient 
methods or imaginary time evolution. In each case, the algo-
rithm must be initialized. This can be done by solving, e.g. the 
Schrödinger equation with a Nilsson potential followed by the 
BCS approximation: this provides an initial one-body density 
matrix 0( )ρ  and pairing tensor 0( )κ , which define the HF or HFB 
matrix at the first iteration. Given this initialization, the three 
algorithms mentioned proceed as follows:

	 •	Successive iterations: In this method the HFB equa-
tion is written in the form of a diagonalization problem

W W=H E� (140)

		 with W having the structure of (11) and E of (25). The 
W(i) matrix at iteration i is used to compute the next itera-
tion of the HFB matrix, i 1( )+H , which is diagonalized to 
obtain W(i+1). The iterative process is repeated until conv
ergence, i.e. W Wi i 1∥ ∥ ⩽( ) ( ) ε− +  within a given accuracy ε. 
The convergence of the method is not guaranteed and 
‘jumping’ solutions such that W Wi i q( ) ( )= +  can occur. 
These deficiencies are usually overcome by annealing the 
density at iteration i +1 with the density at iteration i

1i i i1 1→ ( )( ) ( ) ( )α α− ++ +R R R

		 with the annealing parameter α. More advanced linear 
mixing schemes have been introduced in quantum chem-
istry and ported to nuclear structure in [302]. Constraints 
are handled very efficiently by using methods based on 
the augmented Lagrangian method or approximate linear 
response theory, see [162, 186, 192]. In the special case 
of the HF + BCS approximation to the HFB equation, the 
same overall algorithm is applied to diagonalize the HF 
mean field h instead of the HFB matrix H.

	 •	Gradient methods: The HFB equation  is a direct con-
sequence of the variational principle on the HFB energy. 
Therefore solving the HFB equation  is equivalent to 
finding a minimum of the HFB energy. The gradient 
method was used as early as the late nineteen seventies in 
[303, 304] to solve the HFB equations using a phenom-
enological approach to determine the gradient step and is 
based on the representation of the HFB equation in terms 

of the Thouless matrix Z, see p 10. The efficient han-
dling of constraints inherent to the method is especially 
convenient in fission calculations: during the iterative 
process one has to ensure that the descendant direction 
is orthogonal to the gradient of the constraint condition. 
The orthogonality is imposed by modifying the objective 
function by subtracting the mean value of the constraint 
operator multiplied by a Lagrange multiplier that is 
subsequently used to impose the orthogonality condition 
at every iteration. The procedure is straightforwardly 
extended to many constraints. The iteration count of the 
method is high, although the cost of evaluating the gra-
dient is just slightly higher than evaluating the H matrix. 
To reduce the number of iterations, the conjugate gradient 
method introduced in [305] chooses the steepest descent 
direction as the ‘conjugate’ of the previous one. The 
method is very efficient for a quadratic function but the 
cost of each iteration increases because of the need to do 
a line minimization at each step. The Newton or second 
order method relies on the use of the Hessian matrix 
to modify the gradient direction in such a way that the 
minimum is reached in just one iteration for a quadratic 
function. The iteration count is severely reduced but the 
cost of evaluating the Hessian is very high (in the HFB 
case, the Hessian resembles the matrix of linear response 
theory), as is the evaluation of its inverse. For not so many 
degrees of freedom the method is competitive as shown 
in [306] but becomes prohibitively expensive in typical 
applications in nuclear physics with effective forces. An 
enormous simplification of the method is achieved if the 
Hessian matrix is assumed to be diagonal dominant as 
the most important contribution to the diagonal matrix 
elements is the sum of two quasiparticle energies. In this 
way the computation and inversion of the Hessian matrix 
is enormously simplified. This method was implemented 
in the hfbaxial and hfbtri DFT solvers for the Gogny 
force. For an early account of the different gradient 
method techniques applied to the solution of the HF and 
HFB problems with an emphasis on the election of the 
gradient step, see [307]

	 •	Imaginary time method: In the particular case of the 
HF + BCS approximation, one can also use the imaginary 
time method. It is based on the general result that the 
eigenvalues of a Hamiltonian Ĥ evolve with time through 
an oscillatory phase factor E texp i n( / )− �  depending on the 
eigenvalue En. If time is replaced by a complex quantity 
t i→ τ−  the complex phase in front of each eigenvalue 
becomes real and a decaying function with a decay rate 
that increases with excitation energy. Therefore, applying 
the time evolution operator with imaginary time to a gen-
eral linear combination of eigenvalues of the Hamiltonian 
will converge to the lowest eigenvalue (ground-state 
energy) after a sufficiently long time. The problem with 
this method is that the time evolution operator involves 
the exponential of the true Hamiltonian, typically 
approximated by the two-body effective Hamiltonian 
(27), which is very expensive to compute. In practice, 
the full Hamiltonian Ĥ is therefore replaced by a simpler 
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approximation: In nuclear physics, this method was intro-
duced in [308] by replacing Ĥ by the HF Hamiltonian ĥ. 
This is the technique implemented in the ev suite of code 
of [291, 292] to solve the HF + BCS equation. The direct 
extension of this algorithm to the case of the HFB equa-
tion is not trivial because the HFB matrix is unbounded 
from below: the lowest eigenvalue is infinite resulting in 
the divergence of the algorithm at →τ +∞. In [309], the 
authors introduced the two-basis method, where the HFB 
matrix is diagonalized in a small discrete basis composed 
of the eigenstates of the HF Hamiltonian obtained from 
the imaginary time evolution.

4.2.  Dynamics

The various time-dependent methods used to describe fission 
dynamics, in particular induced fission, were discussed in sec-
tion 3.3. These methods present specific numerical challenges 
that we briefly address below in section 4.2.1. In addition, the 
calculation of the collective inertia tensor, which has a critical 
impact on fission half-lives, has also been subject to several 
approximations, which are discussed in section 4.2.2.

4.2.1. Time-dependent approaches.  As emphasized in sec-
tion 3.3, time-dependent density functional theory (TDDFT) 
provides, at least on paper, a convenient framework to simulate 
fission in real time, since it does not require introducing collec-
tive variables or scission configurations. Assuming the original 
Runge–Gross theorem could be extended to the nuclear case, 
the (unknown) energy functional that gives the exact ground-
state energy would only depend on the local, time-dependent, 
one-body density, and the Kohn–Sham scheme would reduce 
to solving Skyrme-like TDHF equations.

All existing implementations of TDHF in computer codes 
are based on the coordinate-space formulation of the HF equa-
tions in a box, using both absorption layers on the edges of the 
box and vanishing boundary conditions. The coordinate space 
approach is necessary because TDHF solutions at large time 
can have very extended geometries that cannot be accurately 
represented by a one-centre basis expansion such as the famil-
iar HO basis. Because of the computational cost of the coor-
dinate space approach, the first implementations of TDHF 
used several simplifications such as axial symmetry as in 
[251, 310]. The first application of a fully three-dimensional, 
Skyrme TDHF calculation was published in [311] in 1997 and 
was based on the adaptation of the ev8 HF +BCS solver. Very 
recently, a full 3D implementation of the TDHF equations in 
coordinate space using the Fourier representation of spatial 
derivatives has been published [296].

The simplest way to include pairing correlations in TDHF 
is the BCS approximation. Such a TDHF +BCS solver was 
developed in [256] and applied to the study of fission of 258Fm 
in [170]. The solver is also an extension of the ev HF +BCS 
computer program and relies on the same underlying technol-
ogy, particularly the use of a 3D Cartesian mesh and a set of 
Lagrange functions—see the two previous sections 4.1.2 and 
4.1.3.

The full TDHFB equation  is substantially more involved 
than the TDHF or TDHF +BCS equation  because of the 
non-zero occupation of high-lying, de-localized quasiparti-
cle states. The full TDHFB equation in nuclei was originally 
solved in spherical symmetry in [252]. For arbitrary defor-
mations of the nuclear shape, the TDHFB equation has been 
implemented in the canonical basis, where the density matrix 
is diagonal and the pairing tensor has the canonical form, in 
[253–255]. The most advanced implementation of TDHFB 
today is by Bulgac, Roche and collaborators and was described 
in [312]. Their code, which is massively parallel and has been 
ported to GPU architectures, implements a local Kohn–Sham 
scheme for TDDFT dubbed the time-dependent superfluid 
local density approximation (equivalent to a TDHFB theory 
with a functional of the local density r( )ρ  only) and was very 
recently applied for the first time to the description of neutron-
induced fission in [182]. The code uses fast discrete Fourier 
transforms to evaluate derivatives on a three-dimensional 
Cartesian lattice, and a multi-step predictor-modifier-corrector 
method for the time evolution.

In contrast to real-time dynamics described by TDDFT 
methods, the description of fission dynamics as a large-ampl
itude collective motion driven by a small set of collective vari-
ables is especially suited to the calculation of the distributions 
of fission fragment properties. The time-dependent generator 
coordinate method (TDGCM) developed in the 1980s at CEA 
Bruyères-le-Châtel is currently the only microscopic theory 
capable of producing realistic fission fragment distributions. 
Until now, it has only been applied under the Gaussian overlap 
approximation. The very first applications of this approach to 
the dynamics of fission were reported in a series of papers by 
Berger and Gogny in [120, 123, 257]. The first actual calcul
ations of fission fragment mass distributions with this tech-
nique were published in [258, 284], with additional results 
reported in [171]. The implementation of the TDGCM was 
based on solving the collective Schrödinger equation by using 
finite differences for derivatives. This choice imposed the use 
of a regular grid of points that did not offer the possibility to 
discard regions of the collective space that were irrelevant to 
the dynamics (for example the points with a very high energy). 
In practice, applications were restricted to two-dimensional 
collective spaces, and large computational resources were 
needed to achieve good numerical accuracy. Very recently, the 
collaboration between CEA and LLNL developed a new pro-
gram to solve the TDGCM + GOA equations for an arbitrary 
number of collective variables using finite element analysis 
[313].

4.2.2.  Collective inertia.  Computing collective inertia is usu-
ally accomplished by using the perturbative cranking formula 
(110), which only requires moments of the collective opera-
tors in quasiparticle space and two-quasiparticle energies. 
However, as recalled in section 3.1.2 (see also figure 6 p 16), 
this approximation falls too short and can underestimate the 
inertia by more than 40%. On the other hand, the exact evalu-
ation of the ATDHFB inertia would require both inverting the 
linear response matrix M of (88) and evaluating the partial 
derivatives of the generalized density matrix with respect to 
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the collective variables, see (109) p 27. There exist analytical 
formulas giving the partial derivatives (86) as a function of 
the matrix of the collective variables, but this again requires 
inverting the linear response matrix as seen from (87). A more 
convenient and thrifty procedure consists in the numerical 
evaluation of the derivatives using finite difference formulas 
such as the popular and accurate centred difference formula. It 
requires the densities q q( )δ±R , which can be obtained by any 
DFT solver by slightly modifying the value of the constraints 
q q q→ δ± . The choice of qδ  obviously depends on the collec-
tive variable and usually also on particle number (as q usually 
has such dependence). This approach has been taken in [216].

Concerning the inversion of the linear response matrix, a 
possibility used by the authors of [314] is to build the linear 
response matrix in a reduced subspace of two-quasiparticle exci-
tations and compute the inverse there. This is a computationally 
intensive task, but the main advantage is that the convergence of 
the procedure can be easily tested by slightly increasing the size 
of the subspace and repeating the calculation. Other authors use 
the fact that the linear response matrix is diagonal dominant, 
with two-quasiparticle energies on the diagonal, to build an 
iterative method to compute the action of the inverse on a given 
vector (that is the only quantity required to compute the iner-
tias). This method has only been used to compute the inertias 
associated to Goldstone modes in [315]. Yet another approach 
aiming at the evaluation of the inertias associated to Goldstone 
modes (Thouless–Valatin moments of inertia) has been recently 
proposed in [316]. It resorts to the ideas of the finite amplitude 
method (FAM) to compute the action of the inverse of the linear 
response matrix on a given vector.

5.  Results

After discussing in details the theoretical framework used in 
the DFT approach to fission in sections 2 and 3 and its compu-
tational implementation in section 4, we review here a selec-
tion of results obtained by various groups. The presentation is 
organized in four main themes: fission barriers in section 5.1, 
spontaneous fission half-lives in section 5.2, alternative fission 
modes in section 5.3 and induced fission in section 5.4.

Since this article is about the microscopic theory of fis-
sion, we have not recalled the many results obtained with 
empirical or semi-microscopic methods. In many cases such 
as, e.g. the structure of fission barriers in actinides or super-
heavy elements—the evolution of these barriers with triaxi-
ality, excitation energy or spin—DFT calculations confirm 
earlier predictions obtained with these approaches. Instead, 
the emphasis here is put both on the progress made toward 
a fully-fledged, rigorous implementation of DFT methods in 
fission studies, and on the universal predictions coming out 
of the DFT calculations. The reader interested in a presenta-
tion of results obtained with the MM method could consult the 
review articles of Brack and collaborators in [9] and that of 
Bjørnholm and Lynn in [317] or the textbook by Nilsson and 
Ragnarsson [11]; for more recent results, see, e.g. the work 
by the Los Alamos and Berkeley collaboration in [47, 49, 63, 
243] and references therein.

5.1.  Fission barriers

In principle, fission barrier heights Bf (both inner and outer) 
are not observable quantities since the ‘experimental’ values 
are determined through a model-dependent analysis of vari-
ous induced fission cross-sections. However, these quantities 
are used in various models aimed at describing, for instance, 
heavy-ion fusion reactions, the competition between neutron 
evaporation and fission in compound nucleus reactions and 
the cooling or fission recycling in the r-process. Fission barri-
ers are thus important building blocks of modern nuclear reac-
tion software suites such as EMPIRE of [318] or TALYS of 
[319], which are extensively used in the application of nuclear 
science in reactor technology.

Because of computational limitations, early DFT calcul
ations of fission barriers were performed at the Hartree–Fock 
approximation with pairing correlations typically treated 
within the BCS formalism. This is the case in [320], for 
instance, where the SIII parametrization of the Skyrme force 
and a seniority pairing force are used. In the nineteen eighties, 
the theory was extended by introducing the finite temperature 
formalism as, e.g. in [127, 321], to account for modifications 
of the fission barrier with excitation energy, and by adding 
constraints on the angular momentum [322]. In parallel, the 
first full HFB calculation of the fission barrier in 240Pu was 
reported by Berger and collaborators in [156]. This last work 
should be considered as an important milestone in the micro-
scopic theory of fission since this was also the first example 
of a DFT calculation with a finite-range effective potential in 
both the particle–hole and particle–particle channel. In addi-
tion, the authors reported the first example of two-dimensional 
PES within this fully microscopic framework. Since then, pro-
gress has been made on three fronts (i) systematic calculations 
of fission barriers with DFT are now possible, see [14] for 
an early application; (ii) calculations involving more than one 
collective variable are commonplace, with several examples 
of three-dimensional adiabatic studies reported in the last few 
years in [37, 162, 185, 192], (iii) beyond mean-field correla-
tions, beyond the subtraction of a zero point energy correction, 
have begun to be incorporated systematically in the calcul
ations. For instance in [88], the impact of variation after parity 
projection on the height of fission barriers was investigated. 
In [323], a similar analysis was performed with respect to the 
role of simultaneous particle number and angular momentum 
projection.

In spite of formal differences between non-relativistic and 
relativistic formulations of DFT, between zero- and finite-
range nuclear potentials, and in the treatment of pairing cor-
relations, the conclusions of DFT studies on fission barriers 
are remarkably similar qualitatively and in some cases even 
quantitatively. First, as well known from earlier macroscopic-
microscopic calculations, the fission barrier in actinide nuclei 
is in most cases double-humped: the ground-state is sepa-
rated from a fission isomer by a first barrier, and the second 
barrier separates the fission isomer from the scission region. 
Quantitatively, the energy of the fission isomer and the height 
of the fission barriers depend on the functional, as reported in 
the comparative studies of [14, 275, 324].
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Among the actinides, 232Th plays a special role, as it has 
been conjectured that it could have a triple-humped fission 
barrier; see [275] for references on experimental work. The 
early triaxial Gogny HFB calculations of [123] suggested 
the existence of the third barrier indeed, although predictions 
were model-dependent: the D1 parametrization of the Gogny 
potential did not exhibit any such minimum. Triaxial calcul
ations with the Skyrme potential, either at the HF +BCS level 
with rotational correction, as in [187], or at the HFB level as 
in [275], suggest a very shallow minimum that becomes more 
pronounced for N  <  142. In [275], through a reduction of 
pairing correlations as shown in figure 19.

Fermium isotopes have also attracted considerable 
attention and are often used as test benches of theoretical 
approaches. DFT calculations were performed with Skyrme 
potentials both at the HF +BCS and HFB approximations in 
[15, 34, 186, 187] and with the Gogny D1S potential in [168, 
325]. All these calculations predict a multimodal decay pat-
tern in many of these isotopes, especially for 256, 258Fm where 
several different fission pathways lead to significantly differ-
ent geometries at scission (often labeled compact symmetric, 
compact asymmetric and extended asymmetric). Figure  20 
gives a visual representation of the nuclear shape in 258Fm 
along the different fission paths.

Another robust prediction of DFT models concerning 
fission barriers is the disappearance of the fission isomer in 
superheavy elements with Z 108⩾ . This conclusion has been 
first obtained in [34] using Skyrme HF +BCS and confirmed 
in the systematic calculations of [14]. It was also found in stud-
ies based on the full HFB approach with the D1S parametri-
zation of the Gogny force in [19, 325]. This general trend is 
illustrated in figure 21, which shows both reflection-symmet-
ric and reflection-asymmetric fission barriers in superheavy 
elements for the D1S parametrization of the Gogny potential.

It has been known since 1972 and the work of Larsson 
and collaborators in [163] that breaking axial symmetry 
lowers the inner barrier in actinide and superheavy nuclei. 
This result has been confirmed in all DFT calculations: in 
non-relativistic formulations with the Skyrme force at the 
HF +BCS level ([15, 34]) and at the HFB level ([162, 186]), 
and with the Gogny potential at the HFB level ([87, 168]). 

This effect is typically of the order of 2 to 3 MeV. In actinide 
nuclei, there is almost no effect of triaxiality on the outer 
barrier.

Another important component of the calculation affecting 
the barrier is the amount and nature of pairing correlations. 
Calculations reported in [88] show a quantitative difference 
between the BCS and HFB approximations for pairing cor-
relations: fission barriers at the HF +BCS level are typically 
larger than at the HFB level by about 0.5 MeV for Pu isotopes. 
However, this effect may be an indirect consequence of using 
a zero range pairing force (which involves introducing a quasi-
particle space): in [87], calculations with a finite-range Gogny 
force led to the exact opposite conclusion. The authors of [88] 
also showed that reducing the strength of the pairing force 
results in an increase of fission barriers. The same conclusion 
was also obtained with Skyrme forces in [162] and with the 
Gogny force and the BPCM functional in [172]. Finally, the 
impact of particle number projection was also investigated in 
[88, 326], where it is shown that projection can reduce the bar-
riers by about 0.5 MeV.

The evolution of fission barriers with excitation energy is 
important for superheavy nuclei, since heavy elements are 
typically formed in cold- or hot-fusion heavy-ion reactions at 
an excitation energy that can reach up to 30 MeV, see [125] 
for a review. In induced fission, the compound nucleus is also 
at a non-zero excitation energy, and the evolution of fragment 
properties will depend on how the fission barriers change 
with that excitation energy. As recalled in section 2.2.4, finite 
temperature DFT is a convenient tool to model fission at 
E*  >  0. Bartel and Quentin reported in [127] the first example 
of a FT-HF calculation with the SkM* Skyrme force. They 
confirmed predictions from macroscopic-microscopic models 
that fission barriers decrease as T increases, and have vanished 
for temperatures of the order of 3 MeV. This initial result was 
extended to the case of a FT-HFB calculation in [16, 17, 128]. 
The calculations in the low temperature regime of [129] tell a 
slightly more nuanced story: for T0 0.75⩽<  MeV, the effect 
of temperature is to slightly increase fission barriers as a result 
of the dampening of pairing correlations; once the latter have 
completely vanished, around T  >  1 MeV, barriers monotoni-
cally decrease with T, as shown in figure 22.

Figure 19.  Left: HFB deformation energy in 232Th computed for three different Skyrme energy functionals; Right: evolution of the 
HFB deformation energy with excitation energy E* for the SkM* functional. Figure reproduced with permission from [275], courtesy of 
McDonnell; copyright 2013 by The American Physical Society.
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Finally, fission barriers are also sensitive to angular momen-
tum. There have been only two studies of this effect. In [135], 
Egido and Robledo performed cranked HFB calculation with 
the Gogny force (D1S parametrization) and showed that the 
double-humped nature of the fission barrier in 254No persisted 
up to I 60= �. In addition, the energy of the fission isomer is 
pushed down so that it becomes the ground-state for I 30> �. 
In [327], similar types of calculations, up to I 16= �, were 
performed with the SkM* parametrization of the Skyrme force 
and density-dependent pairing in Fm isotopes. The authors 
noticed again a gradual, weak decrease of the fission barrier, 
the magnitude of which depends on the number of neutrons.

5.2.  Spontaneous fission half-lives

Spontaneous fission half-lives 1 2
SF
/τ  are usually computed with 

the WKB formula, see section 3.2.1, combined with the least 
action principle to determine the most probable fission path—
see [9] for a gentle introduction. Elements of the calculations 
that have been shown to play a major role are

	 (i)	Collective inertia: As recalled in sections  3.1.1 and 
3.1.2, the collective inertia can be computed either from 
the GCM or ATDHFB formalism. Until now, the cranking 
approximation (where the residual interaction term of the 
QRPA matrix is neglected) was used in both cases. In 
addition, the perturbative version of it is also most com-
monly used: in the case of the GCM, it originates from 
the introduction of a local momentum operator in place 
of explicit derivatives with respect to q, while in the case 

of ATDHFB it implies expressing the derivatives q/∂ ∂ αR  
in terms of the matrices of the operator Q̂α. As recalled 
in section  3.1.2, the perturbative and non-perturbative 
cranking formulas for the ATDHFB mass tensor lead 
to significant differences in fission half-lives. The most 
recent studies in [40, 178, 223, 328] are therefore based 
on the non-perturbative expression. The collective 
inertia tensor is a function of the collective variables and 
depends sensitively on both the shell structure and pairing 
correlations.

	(ii)	Zero-point energy corrections: One may distinguish two 
forms of zero-point energy corrections. On the one hand, 
any spontaneously broken symmetry can be associated 
with a collective variable. This leads to a zero-point energy 
correction if the resulting collective motion is sufficiently 
decoupled from the intrinsic motion. This is the case, for 
instance, for translational and rotational symmetry, as 
discussed in section 2.2.5. On the other hand, zero-point 
energy corrections also arise naturally as corrective terms 
to the collective Hamiltonian obtained after applying the 
GOA to the GCM equations, see section 3.1.1.

	(iii)	Ground-state energy: The energy E0 is used to define 
the inner and outer turning point for the WKB formula. 
It is usually taken as the quantal ground state energy 
obtained by adding the zero point energy correction of 
the collective motion to the HFB potential energy—see, 
for instance, [20]. Instead of the zero point energy many 
authors prefer to use a single constant value of the order 
of 1 MeV to estimate this quantity.

Figure 20.  Fission pathways in 258Fm computed in the Skyrme HFB approach with the SkM* parametrization. Figure courtesy of 
Staszczak.
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There is a rich literature on the semi-microscopic calcul
ations of spontaneous fission half-lives, where the potential 
energy is computed in the macroscopic-microscopic frame-
work and the inertia is computed from the Inglis cranking 
model or parametrized empirically. Again, since our goal is 
to discuss DFT predictions, we refer the reader interested to 
the reference calculations of [329] (actinide and transactinide 
elements) and of [330] (superheavy elements).

Whichever approach is chosen to compute the potential 
energy, half-lives calculations are based on determining the 
optimal fission path from the least action principle. The result-
ing dynamical path can be sensibly different from the static, 
least-energy path, leading to differences of several orders of 
magnitude for 1 2

SF
/τ  as reported in [223]; see also figure 15 p 28 

for an illustration. This effect is amplified when the collec-
tive space includes pairing degrees of freedom, as illustrated 
in [172], because of the approximate 1 2/∆  dependence of 
collective inertia on the pairing gap discussed earlier in sec-
tion 2.3.2. Similarly, the size of the collective space in which 
the fission path is determined can have a sizeable impact on 
the half-lives. The figure 23 shows a comparison between one-
dimensional trajectories through two- and three-dimensional 
collective spaces. At some points along the path, the 3D col-
lective action can be lower by nearly a factor 2 than in the 2D 
scenario, which could result in huge differences for 1 2

SF
/τ  since 

the action is in the exponent, see (114). Note that in the case 

where the PES is determined by 1D constrained HFB calcul
ations (typically involving the axial quadrupole moment), the 
fission path is automatically the least-energy path. This is the 
case, for instance, in the works of [19], [331–334].

Owing to the variety of their fission modes, Fermium isotopes 
are an excellent test bench of DFT calculations. Experimental 

Figure 21.  Axial fission barriers for the Gogny D1S force. Solid (dashed) lines denote the reflection-symmetric (reflection-asymmetric) 
paths. Figure taken from [324], courtesy of Baran; copyright 2015, with permission from Elsevier.

Figure 22.  Free energy (solid lines, open markers) and internal 
energy (dashed lines, plain markers) as a function the axial quadrupole 
moment in 240Pu for the Skyrme SkM* EDF. See [129] for additional 
discussion. Figure taken with permission from [129], courtesy of 
Schunck; copyright 2015 by The American Physical Society.
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half-lives are known in ten different isotopes from N  =  142 to 
N  =  160 and cover about 15 orders of magnitude. In [19, 168, 
332], axially-symmetric HFB calculations of spontaneous fis-
sion half-lives with the Gogny force in one-dimensional col-
lective space could reproduce qualitatively the evolution of the 
half-lives around N  =  154. In parallel, calculations breaking 
axial symmetry were performed along the entire Fm isotopic 
chain with the Skyrme functional (SkM* parametrization) in 
[15, 20] and reproduced quantitatively (within about 1–2 orders 
of magnitude) the trend of 1 2

SF
/τ  as a function of neutron number. 

State-of-the-art results are summarized in figure 24.
Since spontaneous fission is one of the major decay modes 

of superheavy elements, the accurate calculation of sponta-
neous fission half-lives is an important tool in the search for 
the next island of stability. The first systematic calculations 
of superheavy elements half-lives in the context of DFT were 
reported by Berger and collaborators in [331]. Calculations 
were performed at the HFB approximation along an axially-
symmetric path in a 1D collective space using the Gogny D1S 
parametrization. In [19], similar calculations were compared 
with the available data. As an illustration, the figure 25, which 
is taken from [20], gives an overview of fission and α decay 
properties of superheavy elements in the particular case of the 
SkM* Skyrme functional. Overall, theoretical predictions over-
estimate the fission half-lives by a few orders of magnitude 
(recall that the experimental values are spread over about 15 
orders of magnitude), but results pointed to the large variability 
of 1 2

SF
/τ  with respect to the symmetry breaking effects along the 

fission path. Using HF +BCS calculations, the authors of [333] 

showed the variability of the predictions with respect both to 
proton and neutron number, and to the parametrization of the 
functional. This variability can reach 10–20 orders of magni-
tude. These conclusions were confirmed and further discussed 
in [324], where systematic comparisons of fission barriers and 
half-lives using the macroscopic-microscopic method, non- 
relativistic Skyrme and Gogny EDF and relativistic Lagrangian 
pointed to the huge uncertainties in the theory. As an exam-
ple, the largest fission half-life for the SkM* Skyrme force is 
recorded for Z  =  120, N  =  182 and is of the order of 1011 s; for 
the D1S Gogny force, it is at Z  =  124, N  =  184 and in excess 
of 1020 s. In the same paper, uncertainty quantification meth-
ods based on the linear approximation of the covariance matrix 
showed that fission barriers can vary by  ±1 MeV under even 
small changes in parameters. This result is consistent with the 
results of [335], which used Bayesian inference techniques to 
propagate uncertainties in the parametrization of the EDF to 
model predictions for barriers.

As mentioned in the introduction to this article, another 
important area of science where fission theory provides criti-
cal input is nucleosynthesis. There have been only two pioneer 
studies of spontaneous fission half-lives in very neutron-rich 
nuclei. In [334], the same methodology as in [333] (Skyrme 
HF +BCS, one-dimensional collective space, zero-point 
quadrupole energy, rotational correction) was employed to 
survey the spontaneous fission half-lives of superheavy ele-
ments up to the neutron drip line. In spite of the very large 
dependence on the parametrization of the EDF—four differ-
ent Skyrme forces are used—mentioned earlier, there seems 

Figure 23.  (a) Potential V (in MeV), (b) effective inertia eff
CM  

(in 2�  MeV1/1000), (c) action S, and (d) average pairing gaps  n∆  
and p∆  (in MeV) plotted along the 2D (static pairing; dotted line) 
and 3D (dynamic pairing; solid line) paths. The static fission 
barrier is displayed for comparison in (a). Figure reproduced with 
permission from [178], courtesy of Sadhukhan; copyright 2014 by 
The American Physical Society.

Figure 24.  Spontaneous fission half-lives of even–even Fm isotopes 
with A236 266⩽ ⩽ , calculated with the SkM* nuclear EDF with 
initial energy E 0.70 ZPE= ε , where ZPEε  is the zero-point energy  
(th-0.7) compared with experimental data. The corresponding 
collective ground-state g.s. energies E 0.70 ZPE= ε  are shown in the 
lower panel. The results obtained without scaling (th-1.0) are also 
shown. Figure reproduced with permission from [20], courtesy of 
Staszczak; copyright 2013 by The American Physical Society.
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to be a consistently marked increase in spontaneous fission 
half-lives as a function of N for N/Z  >  2. A similar result was 
obtained in [279, 336], where the focus was on the Uranium 
and Plutonium isotopic sequences, from the well-known 238U 
and 240Pu isotopes to the neutron drip line. Again, the paper 
highlights the extreme dependence of fission half-lives on the 
details of the microscopic calculation but identifies two robust 
trends: fission is favoured over α decay for N  >  166, and there 
is a marked increase of fission half-lives as N increases for 
N/Z  >  1.8, with a maximum around N  =  184.

5.3.  Other fission modes

So far, we have focused our survey of DFT results on only two 
particular themes, spontaneous fission barriers and half-lives, 
and only presented results for even–even nuclei. Let us first 

note that odd mass nuclei pose a number of additional difficul-
ties compared to even–even ones:

	 •	The odd particle is typically handled in the HFB theory 
through the blocking approximation, where the HFB 
wave function for the odd nucleus is defined as a one-
quasiparticle excitation of some reference even–even 
nucleus, see [61]. Such excitations break time-reversal 
symmetry internally, resulting in non-zero time-odd 
fields, see (46) for the form of these terms in the case 
of Skyrme functionals and [337–339] for more general 
discussions. Of particular relevance for applications in 
potential energy surfaces for fission is the fact that time-
odd fields can induce a small triaxial polarization of the 
nuclear shape as exemplified in [339]. In practice, most 
large-scale calculations of odd mass nuclei such as, e.g. 
in [340], are based on the equal filling approximation of 
the exact blocking prescription, which preserves time-
reversal invariance and axial symmetry as discussed in 
[85].

	 •	When implementing the blocking approximation, whether 
exactly or through the equal filling approximation, it is 
not possible to know beforehand which quasiparticle 
excitation will yield the lowest energy for the odd mass 
system. Therefore, potential energy surfaces have to be 
computed for a number of different configurations—in the 
case of axial symmetry, such configurations would typi-
cally be characterized by the projection K of the angular 
momentum of the odd particle on the axis of symmetry. 
This can add substantially to the computational burden.

	 •	Both spontaneous and induced fission require the knowl-
edge of the collective inertia tensor (95) or (109) in 
section 3.1. While the extension of the GCM method to 
odd-mass nuclei has recently been published in [341], the 
case of the ATDHFB theory remains open (Currently, the 
theory relies on the explicit hypothesis that the system 
is described by a time-even generalized density, see sec-
tion  3.1.2 p 26). In addition, the generalization of the 
Gaussian overlap approximation to odd nuclei published 
recently in [342] is restricted to quadrupole collective 
variables, which is not sufficient to describe fission.

For all these reasons, fission in odd mass nuclei has been very 
rarely considered in DFT. The only exceptions can be found 
in [343], where fission barriers for 235U and 239Pu are com-
puted at the HF +BCS approximation, and in the earlier study 
of [344], where full HFB calculations using the equal filling 
approximation are performed in 235U.

Before we discuss neutron-induced fission, we should men-
tion three other topics of interest where DFT has been applied, 
albeit with varying degrees of success: (i) γ-decay of fission 
isomers, (ii) β-delayed fission, (iii) cluster radioactivity:

	 •	γ-decay of fission isomers— Although fission isomers 
decay predominantly by spontaneous fission (see [317] 
for a comprehensive review), they could also γ-decay 
back to the ground-state. The rate of such a decay would, 
of course, affect the estimate of the fission isomer life-
time. There have been only few attempts in the literature 

Figure 25.  Summary of results for even–even superheavy nuclei 
obtained with the SkM* nuclear EDF. (a) Inner fission barrier 
heights EA (in MeV); (b) Spontaneous fission half lives log10 1 2

SF
/τ  (in 

seconds); (c) α decay half-lives log T10 α (in seconds); (d) Dominant 
decay modes. If two modes compete, this is marked by coexisting 
triangles. Figure reproduced with permission from [20], courtesy of 
Staszczak; copyright 2013 by The American Physical Society.

Rep. Prog. Phys. 79 (2016) 116301



Review

44

at computing such quantities within a fully microscopic 
approach. In [345], the partial lifetime of the fission 
isomer in 238U, which decays via electric quadrupole 
radiation to the lowest 2+ state of the ground-state band, 
was estimated with the collective Hamiltonian derived 
from the GCM with the GOA approximation. Calculations 
were performed with the D1S parametrization of the 
Gogny force and were within two orders of magnitude of 
experimental data. Considering the restriction to axially-
symmetric shapes for the HFB states used in the GCM, 
the authors concluded that the computation of the trans
ition rates provided an upper limit on the γ-decay lifetime 
of the isomer. Simpler but more systematic studies of the 
γ half-life 1 2/τ

γ  based on the WKB approximation were 
performed in [325]. The γ half-life was computed in 
perfect analogy to fission half-lives (see section 3.2.1 for 
details), only the trajectories relevant to γ decay connect 
the fission isomer to the ground-state in the q q,20 22( ) 
space, instead of the ground-state to the outer turning 
point in the q q,20 30( ) space. Results were typically within 
1–2 orders of magnitude of the experimental data.

	 •	β-delayed fission— β-delayed fission (see [346] for a 
review) is a mechanism relying on the fact that odd–odd 
nuclei may β-decay to a (highly) excited state of the 
even–even daughter. Assuming that the fission barrier 
does not depend much on the intrinsic configuration 
of the excited state, the extra excitation energy of the 
initial configuration in the even–even daughter leads to 
a decrease by the same amount of the effective fission 
barrier height. This qualitative mechanism explains why 
it is possible to observe fission in nuclei such as 180Hg, 

where the fission barrier for the ground-state would 
otherwise be too high. In this particular nucleus, recent 
experimental results showed that fission is asymmetric, 
contradicting simple arguments based on the symmetric 
split into two semi-magic 90Zr fragments. Calculations 
with the SkM* parametrization of the Skyrme functional 
and the D1S parametrization of the Gogny force, both at 
zero ([19]) and finite temperature ([347]) in the mercury 
and polonium region have conclusively confirmed the 
reflection-asymmetric nature of the fission paths in this 
region.

	 •	Cluster radioactivity— The phenomenon denoted 
‘cluster radioactivity’ is a new kind of radioactivity where 
some atomic nuclei emit a light nucleus such as 14C and 
was first reported in [348]. The characteristics of the light 
fragment are strongly influenced by the magic character 
of the heavy fragment; doubly-magic heavy fragments 
such as 208Pb are common. This type of radioactivity 
shares features from both α emission and standard fis-
sion, and its properties can thus be described by invoking 
models developed in these two fields. From a DFT point 
of view, cluster radioactivity has been explained in [349] 
as a very asymmetric fission where the axial octupole 
moment q30 is the driving coordinate. In figure  26, we 
show the evolution of the density in the nucleus 224Ra 
from the ground-state to cluster emission as a function of 
the constraint on the octupole moment.

In [278, 350, 351], systematic calculations of cluster 
emission lifetimes using the same WKB framework as 
for fission have shown good agreement with experimental 

Figure 26.  Shape evolution of 224Ra as a function of the octupole moment q30. Panels (a)–(d) correspond to the ascending (energy-wise) 
part of the fission path, panel (e) corresponds to the saddle region and panels (f)–(j) correspond to the descent from saddle to scission. 
Figure reproduced with permission from [278], courtesy of Warda; copyright 2011 by The American Physical Society.
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data in the actinides as well as in some neutron deficient 
Ba isotopes. Note that, like fission, cluster emission 
lifetimes cover a range of more than 15 orders of mag-
nitude, thereby posing significant challenges to theory. 
In figure 27, various theoretical estimates of spontaneous 
cluster emission lifetimes are compared to experimental 
data for several decay channels. In this particular case, 
theoretical values have been computed from the same 
one-dimensional WKB formula as in spontaneous fission 
by replacing the quadrupole inertia by the octupole one.

5.4.  Neutron-induced fission

Most of the work on neutron-induced fission has been focused 
on actinide nuclei, where there is a large amount of exper
imental data. As in spontaneous fission, the essential ingredient 
is the calculation of potential energy surfaces. Until now, only 
two-dimensional collective spaces have been explicitly con-
sidered in the literature in the context of induced fission within 
DFT. In [120, 164], Berger and Gogny from the Bruyères-
le-Châtel group were the first to compute fully microscopi-
cally the PES in the q q,20 30( ) and q q,20 40( ) collective spaces 
at the HFB level with a finite-range Gogny potential using 
a two-centre HO basis. Similar calculations were performed 
later by Goutte and collaborators in 238U in [258, 284], and 
by Dubray and collaborators in Th and Fm isotopes in [188]. 
Recently, Younes and Gogny provided additional information, 
such as the position of the scission line, energy for pre- and 
post-scission configurations, number of particles in the neck 
at scission, for the q q,20 30( ) PES with the D1S Gogny force in 

[192]. Schunck and collaborators provided a similar analysis 
of the PES in 240Pu while including axial-symmetry breaking 
within the Skyrme DFT framework in [162]. In the follow-
up work presented in [129], the same authors also calculated 
the evolution of the most likely fission path as a function of 
nuclear temperature.

Calculations with Skyrme and Gogny show similar fea-
tures for 240Pu: the most likely fission pathway emerges into 
the fission valley (high q40 values, see bottom left panel in 
figure 28) which coexists with the fusion valley (low q40 val-
ues). This most likely fission path is clearly asymmetric, with 
values of q30 at scission of the order of 45 b3/2, see top right 
and bottom right panels in figure 28. Another very asymmet-
ric fission path exists at very high energy (cluster emission). 
Figure 29 shows the energy along the most likely fission path-
way in that nucleus (top panel) along with illustrations of the 
density profiles at various points: ground-state, top of the first 
barrier, fission isomer, top of the second barrier, just before 
scission and just after scission.

As discussed in section  2.3.1, multipole moment opera-
tors are not always the most adequate collective variables. 
In particular near scission, two-dimensional potential energy 
surfaces obtained in the q q,20 30( ) collective space show 
marked discontinuities, reflecting the increasing role of addi-
tional degrees of freedom. As a consequence, the number of 
HFB iterations needed to reach convergence may increase 
substantially as the system has to explore a very large vari-
ational space characterized by changes in many different 
collective variables. The most important consequence of 
these discontinuities at scission is that some particular mass 
splits are missing along the scission line. As a consequence, 

Figure 27.  Half-lives for cluster emission of various isotopes and various clusters. Blue diamonds show the experimental half-lives. Arrows 
indicate the low experimental limit. Connected diamonds are for experimental values for two clusters. If experimental data from different 
experiments differ by more than 0.3, the extreme values are indicated. Figure reproduced with permission from [278], courtesy of Warda; 
copyright 2011 by The American Physical Society.
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the actual distribution of fission fragments is skewed in an 
uncontrolled way5. In [171], Younes and Gogny therefore 
suggested using collective variables similar to the ones used 
in macroscopic-microscopic approaches and directly related 
to the distances between the two pre-fragments and their 
mass asymmetry. We showed in figure 10 p 19 an example of 
a PES in this new collective space.

In the adiabatic approximation, the calculation of potential 
energy surfaces and identification of scission configurations 
is the first step required before the full calculation of fission 
fragment properties. Among the latter, charge and mass distri-
butions can be obtained by solving the TDGCM equations as 
outlined in section 3.3.3. The method was introduced by the 
French group at Bruyères-le-Châtel in the nineteen eighties 
[120, 123, 164, 257]. The first realistic calculations of fis-
sion fragment mass distributions were reported by Goutte 
et  al in 237U(n,f) in [258, 284]. The same overall approach 
was used by Younes and Gogny a few years later, the main 
difference being the change of collective variables discussed 

above— q q D, ,20 30( ) → ( )ξ —and the use of the neck degree of 
freedom to improve the description of the scission region. The 
figure 30 taken from [171] shows the best result obtained so 
far for the mass distributions 239Pu(n,f) using the combination 
of DFT plus TDGCM. Fission product yields were convoluted 
with a Gaussian folding function of width 3.5σ =  to account 
both for experimental uncertainties on pre-neutron emission 
mass yields (about 2–3 mass units) and theoretical uncertain-
ties on particle number at scission (between 2 and 5 mass 
units); see also discussion of open questions in section 6.2.

One of the most important quantities in induced fission is 
the total kinetic energy (TKE) carried out by the fission frag-
ments. Early estimates of TKE in [188, 284] within the adi-
abatic approximation were based on assuming two spherical 
uniform charge distributions of Z1 and Z2 protons separated by 
a distance d, with the three quantities Z1, Z2 and d extracted 
from the characteristics of the PES at scission. More realistic 
calculations of TKE involve precisely identifying the scission 
region and disentangling the fragments by localizing them 
as discussed in section  2.4.2. The TKE is then obtained by 
computing the direct Coulomb energy between the two charge 
distributions of the fragments—which takes into account the 
deformation of the fragments. To our knowledge, this entire 
procedure was only applied by Younes and collaborators in 
[185] for the Gogny D1S force using a collective space com-
posed of the collective variables D,( )ξ  (distance between the 

Figure 28.  Contour plots of the potential energy surface for 240Pu in the q q,20 22( ) collective space (top left), q q,20 30( ) (top right), and 
q q,20 40( ) (bottom left). The bottom right panel shows a close-up of the q q,20 30( ) surface in the vicinity of the ground-state. Calculations 

were performed with the SkM* parametrization of the Skyrme energy density with surface-volume pairing according to the details given in 
[162]. Figure reproduced with permission from [162], courtesy of Schunck; copyright 2014 by the American Physical Society.

5 This is most easily understandable in a toy model. Assume there exist only 
two possible mass splits that are characterized by the mass of the heavy 
fragment A1 and A2. For the sake of argument, assume that in nature the 
yields (normalized to 1) are such that ( ) ( )= =Y A Y A 0.51 2 . If A1 is miss-
ing because of some artificial discontinuities in the PES, then, by virtue 
of the definition (138) of the normalized yield, the calculation would give 
Y(A2)  =  1, which is non-physical.
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fragments and mass asymmetry). After the scission line has 
been obtained in that space, constraints on the size of the neck 
were added to remove the effect of discontinuities, and the 
two fragments were localized to reproduce asymptotic condi-
tions. The results are shown in figure 31 and show a very good 
agreement with experimental data.

As already discussed, the drawback of such an adiabatic 
calculation of TKE is the dependence on the criterion used to 
define scission configurations. Calculations of TKE are, there-
fore, more rigorously defined in the non-adiabatic approach to 
fission dynamics based on TDDFT, since there is no need to 
characterize scission (the nucleus ‘automatically’ splits as a 
function of time) and to disentangle the fragments. In TDDFT, 
the kinetic energy of the fission fragments is calculable as a 
function of time, as is the direct Coulomb energy, and the TKE 
is simply the sum of the two contributions. Recently, Simenel 
and Umar have reported the first calculation of TKE in the fis-
sion of 258Fm using the TDHF approximation to TDDFT. The 
results are shown in figure 32: the clear advantage of TDHF 
over non-adiabatic methods is the possibility to account for 
the transfer of energy between Coulomb repulsion and kinetic 
energy of the fragments as a function of time owing to the 

conservation in energy. On the other hand, such calculations 
remain expensive and can be performed only for a few cases: 
computing full TKE distributions (like mass or charge distri-
butions) would require orders of magnitude increases in com-
puting power.

Many uncertainties impacting the applications of nuclear 
fission come from the challenge of computing realistic esti-
mates of fission fragment properties in a fully microscopic 
framework, especially at large excitation energy of the fission-
ing nucleus. In [183] the total excitation energy TXE in the 
fission of 258Fm was extracted by again taking advantage of 
the conservation of energy in TDHF, as shown in figure 32: 
E TKE TXE0 = + . In principle, the TDHF framework could 
also provide a consistent framework to extract individual frag-
ment properties, including their excitation energy. However, 
as discussed in [352] in the particular case of 240Pu, one of 
the challenges is then to extract from the total TDHF excita-
tion energy the contribution of the intrinsic excitations of the 
system only (be it of single-particle or collective nature). In 
the adiabatic approach to fission, the calculation of excitation 
energies is technically straightforward, but it depends very sen-
sitively on the actual definition of scission configurations, on 

Figure 29.  Total energy along the most likely fission pathway in 240Pu. Calculations were performed with the SkM* parametrization of the 
Skyrme energy density with surface-volume pairing according to the details given in [162]. Figure reproduced with permission from [162], 
courtesy of Schunck; copyright 2014 by the American Physical Society.
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the localization of the fission fragments, and on the amount 
of dissipation of pre-scission energy into collective modes as 
discussed in [353]. Results reported in [184, 185] for 240Pu and 
shown in the bottom panel of figure 31 do not reproduce exper
imental data very well, but come with large uncertainty bands.

Charge and mass distributions and TKE/TXE are natural 
outputs of DFT +TDGCM or TDFT calculations. In the pre-
sent status of the theory, this is not the case for other important 
observables such as the multiplicity of the prompt neutrons 
emitted from the fragments. In this latter case, the average 
neutron multiplicity ν̄ can be obtained from a simple energy 
balance equation that defines how the total excitation energy 
available to the fragment can be distributed in various decay 
modes (neutrons, gamma, etc). In [188], it was assumed that 
the excitation energy took the form of deformation energy, 
leading to

E

E Bn
frag

def¯
⟨ ⟩ ¯ν =
+ν ∗� (141)

where Edef is the deformation energy of the fragment with 
respect to its ground-state deformation, Bn

¯∗ is the (average) 
one-neutron separation energy in the fragment and E⟨ ⟩ν  is 
an estimate of the mean energy of the emitted neutron (often 
taken from experimental data or evaluations). The figure 33 
shows a comparison between theoretical predictions of the 
average neutron multiplicity, based on (141) and inputs from 

DFT calculations with the D1S parametrization of the Gogny 
force, and experimental data. The sawtooth feature of ν̄ is 
properly reproduced. Note that more realistic estimates of the 
neutron spectrum are typically obtained from reaction theory 
calculations, where fission fragment charge, mass, TKE and 
TXE distributions are important inputs; see for instance the 
code freya of [354] and references therein.

In HFB calculations, particle number is only conserved on 
average. This point was already mentioned in section 2.2.5 in 
the context of beyond mean-field corrections that can impact 
the potential energy surface. Particle number symmetry break-
ing also has consequences for fragment properties:

	 •	In adiabatic approaches, fission fragments at scission are 
characterized by the functions rf( )ρ  with f  =  1, 2 identifying 
the fragment, see (65). Although these functions resemble the 
one-body density matrix of the HFB theory, they are not the 
same; in particular, the corresponding object

1f
f f

f f

⎛
⎝
⎜

⎞
⎠
⎟

ρ κ
κ ρ= − −∗ ∗R� (142)

is not a projection operator ( f
2

f≠R R ). As a result, fρ  
and fκ  have been dubbed ‘pseudodensities’ in [162]. The 
charge and mass of the fission fragments along the scis-
sion configurations, however, are obtained by integration 
over space of these functions: as a result the charge and 
mass of fission fragments coming out of DFT calculations 
are often non-integer numbers.

	 •	This leads to uncertainties in the theoretical calculation 
of fission fragment yields in adiabatic approaches, such 
as those shown in figure  30. First, the yield for each 
integer fragment mass A is often obtained by summing 
all contributions from all non-integer fragment masses 
a such that a A A0.5, 0.5[ ]∈ − + . Then, the HFB wave 
function for mass a is itself the superposition of several 
wave functions with good particle number, schematically 
a c AA A⟩ ⟩| = ∑ | ; coefficients cA could be extracted by par-
ticle number projection, but the usual techniques are not 
easily applicable at scission because of the high degree 
of entanglement of the fragments—see below.

	 •	Particle number symmetry breaking also occurs in non-
adiabatic approaches described by TDDFT as soon as 
pairing correlations are included. This is the case for the 
TDHF +BCS or TDHFB approximations to TDDFT. 
Just as in adiabatic approaches, fission fragments may 
have non-integer particle numbers. The advantage of 
TDHF +BCS or TDHFB, however, is that particle number 
projections techniques are readily applicable by simply 
extending the definition of the particle number following, 
e.g. the method proposed by Simenel in [355]. Assuming 
the full space is partitioned in two regions, one defined by 
r  >  0 and the other by r  <  0, and that the fragment f is 
in the region r  >  0, then the particle number operator for 
isospin projection τ and for the fragment f reads

r r rN H rd ,f
3ˆ ( ) ( )( ) ( )∫∑ ρ σ σ=

τ

σ

τ
� (143)

Figure 30.  Fission fragment mass distributions for 239Pu(n,f) as a 
function of neutron incident energy given in [171]. The results were 
obtained by evolving the nuclear collective wave-packet with the 
TDGCM in the (q q,20 30) space up to scission. The initial energy of 
the wave packet is defined by E E EA n0 = + , where EA is the height 
off the first fission barrier. Figure courtesy of Younes, Gogny and 
Lawrence Livermore National Laboratory from [171].
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		 where H(r) is the Heaviside function, H(r)  =  1, r  >  0 
and 0 elsewhere. r r,( )( )ρ σ στ  is the coordinate space 

representation of the one-body density matrix ij
( )ρ τ  for 

the fissioning nucleus, which can be readily obtained by 
expanding (13)

r r r r, ,
ij

ij i j( ) ( ) ( )( ) ( )∑ρ σ σ ρ ϕ σ ϕ σ=τ τ ∗
� (144)

		 where the ri( )ϕ σ  are the wave functions associated with 
the creation and annihilation operators c c,i i( )†  introduced 
in section 2.2.1 p 8. In [170], Scamps and collaborators 
used this technique to extract the decomposition of the 
fragment wave function into the sum of good-particle 
number components. The results are shown in figure 34 
for the particular case of 258Fm. It is important to note that 
the spread in particle number for the fragment strongly 
depends on the fission pathway.

Figure 31.  Estimates of total kinetic energy (TKE, top panel) and total excitation energy (TXE, bottom panel) for 239Pu(n,f). Calculations 
were performed at the scission configurations of 240Pu with the Gogny force in a three-dimensional collective space D q, , N( )ξ  (distance 
between the fragments and mass asymmetry, size of the neck). Figure reproduced with permission from [185], courtesy of Younes; 
copyright 2013 World Scientific Publishing Co., Inc.

Figure 32.  Time evolution of the several energies during the fission of 
258Fm: E0 is the mean TDHF energy (constant of motion), ECoul is the 
Coulomb repulsion energy between the two fragments, while Ekin is 
the kinetic energy of both fragments. By definition, ETDHF

∗  represents 
the total excitation energy of the fission fragments in the TDHF 
approach. Figure reproduced with permission from [183], courtesy of 
Simenel; copyright 2014 by The American Physical Society.

Figure 33.  Average prompt neutron multiplicity from fission 
fragments of 258Fm calculated from (141) for the Gogny D1S 
effective nuclear force. Figure reproduced with permission from 
[188], courtesy of Dubray; copyright 2008 by The American 
Physical Society.
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6.  Conclusions

The purpose of this article was to review the current state of 
the microscopic methods used to describe nuclear fission. By 
‘microscopic’, we meant a theory centred on quantum many-
body methods and the use of explicit nuclear forces, in con-
trast with semi-phenomenological approaches that are based 
on the liquid drop picture of the nucleus (with various correc-
tive terms). At this point, a direct, ab initio approach to fission 
remains an utopia, and more effective methods must be used. 
Nuclear density functional theory, in its various formulations, 
provides the best microscopic framework to study fission. It 
is at the intersection of both phenomenological approaches—
since it is built upon the notion of independent particles in an 
independent mean field potential, and of the theory of nuclear 
forces and ab initio methods—since EDF are often derived 
from effective nuclear forces.

6.1.  Summary

In our discussion, we have tried to break down the DFT 
approach to fission into several elementary steps. We first 
emphasized in section 2 the important hypothesis of adiaba-
ticity, which remains one of the cornerstones of the theoretical 
view of fission and has its origin in phenomenological models. 
In the adiabatic approximation, it is assumed that fission is not 
driven by all of the nucleon degrees of freedom, but only by a 
small number n of collective variables. Furthermore, it is also 
assumed, somewhat implicitly, that there is a perfect decou-
pling between these n collective degrees of freedom and the 
intrinsic excitations of the fissioning nucleus. These hypoth-
eses were originally formulated by Bohr and Wheeler in their 
seminal paper [5] on fission.

In practice, the hypothesis of adiabaticity is implemented 
by choosing a small set of collective variables. There are few 
constraints on the type and nature that these collective varia-
bles must have, and choosing the right ones is something akin 
to an art. Fortunately, one can draw from the large body of 
experience accumulated in phenomenological models of fis-
sion. Practitioners of the liquid drop model have developed 
very sophisticated parametrizations of the nuclear surface 
over the years—see section  2.1.1—and have investigated 

the role of several degrees of freedom such as mass asym-
metry, triaxiality, pairing. The same degrees of freedom can 
be explicitly introduced in DFT thanks to the mechanism of 
spontaneous symmetry breaking of the EDF and the use of 
constraint operators.

To make this clear, we have deliberately adopted a mod-
ern presentation of nuclear DFT, where the central object 
is a symmetry-breaking energy density functional treated 
at the Hartree–Fock–Bogoliubov approximation. We have 
thus recalled in section 2.2.1 the basic features of the HFB 
approximation in the general case where the energy is only 
given as a functional of the density matrix ρ and pairing ten-
sor κ, which has the merit of highlighting the actual degrees 
of freedom of the theory. We have also summarized in sec-
tion  2.2.2 the BCS approximation to HFB, which remains 
popular in many applications. In practice, the EDF is often 
derived from an effective two-body nuclear potential, and we 
have recalled in section 2.2.3 the two most popular choices 
that have been used in fission, namely the Skyrme and Gogny 
force. The determination of a universal (=applicable to all 
nuclear properties) functional is currently a very active area 
of research, and we could only allude to some of the on-going 
work, whether on the form of the functional or on the determi-
nation of its parameters. We have also given a brief overview 
of the finite-temperature HFB theory in section 2.2.4, as it has 
been in practice one of the most popular tools to study the 
evolution of fission properties, both spontaneous and induced, 
with excitation energy. Symmetry-breaking manifests itself, 
among others, by quantum fluctuations that are associated 
with zero-point energy corrections, and section 2.2.5 contains 
a discussion of some of the most important ones.

As already mentioned, the definition of the right collective 
variables is an important ingredient in the adiabatic view of 
fission. In section 2.3, we have reviewed the various collective 
variables that have been identified over the years as essen-
tial. Most of them are ‘geometrical’, in the sense that they 
correspond to the actual distribution of mass in the intrinsic 
frame of the nucleus, see section 2.3.1, but collective variables 
associated with pairing correlations have recently been inves-
tigated and shown to be important. There are different ways to 
introduce pairing collective variables, which are briefly dis-
cussed in section 2.3.2.

Figure 34.  Proton (a) and neutron (b) number distributions in the fission fragments of 258Fm for the symmetric compact mode (scf, dashed 
blue), symmetric extended mode (aef, plain red) and asymmetric extended mode (aef, dotted green). Figure reproduced with permission 
from [170], courtesy of Scamps; copyright 2015 by The American Physical Society.
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One of the unpleasant consequences of adiabaticity is that 
the theory does not explicitly contain any scission mech
anism. The importance of scission configurations had been 
recognized very early on in the study of stability conditions 
for liquid drops. Extending these notions to DFT, one may 
define scission configurations based on some condition on 
the density of particles: if the density in the neck between the 
two pre-fragments is ‘small enough’, one may decide that the 
system has scissioned. This is clearly unsatisfactory, and vari-
ous other geometrical criteria have been explored and are 
discussed in section 2.4.1. These geometrical definitions are 
somewhat limited, though, and cannot really account for the 
complex physics of scission. For these reasons, it has been 
suggested recently to define scission quantum-mechanically 
by taking advantage of the invariance of the HFB solutions 
under a unitary transformation. This technique, briefly pre-
sented in section 2.4.2, gives a more realistic description of 
the fission fragments at scission.

Given a realistic nuclear EDF, a set of collective variables 
and a criterion to identify scission configurations, one then 
maps out the collective space in which fission will (adiabati-
cally) take place by solving the HFB equations  under a set 
of constraints. Confining the dynamics of fission in this col-
lective space requires introducing a collective inertia tensor, 
which, roughly speaking, represents the overall mass of the 
nucleus as it evolves across the collective space. The collec-
tive inertia plays a major role both in spontaneous fission and 
in induced fission, and we give in section 3.1 a comprehensive 
account of the two main techniques used to compute it.

	 •	In the generator coordinate method presented in sec-
tion 3.1.1, the nuclear wave function is written as a linear 
superposition of HFB states corresponding to different 
values of the collective variables. The coefficients of this 
superposition can be determined by applying the vari-
ational principle. If one assumes a Gaussian form for the 
overlap kernel of the HFB states, it is possible to derive 
a collective Schrödinger-like equation  that governs the 
dynamics of the system in the collective space. The col-
lective inertia tensor appears in the kinetic energy part of 
this collective Hamiltonian and in the zero-point energy 
corrections to the collective potential.

	 •	In the adiabatic time-dependent HFB theory outlined 
in section  3.1.2, the starting point is a low-momentum 
expansion of the full time-dependent HFB density. This 
expansion yields a set of coupled equations that drive the 
collective dynamics. Under the (most common) assump-
tion that the collective space is predetermined as a set of 
constrained HFB calculations, it is also possible to extract 
a classical collective Hamiltonian, with an expression for 
the collective inertia that is more realistic than the GCM 
(for identical collective spaces).

The calculation of collective inertia, whether in the GCM 
or ATDHFB approximation, can be performed at each point of 
the collective space with only the knowledge of the HFB wave 
function or, equivalently, the HFB densities, at that point. In a 
sense, one could argue that the calculation of the PES and of 
collective inertia completes the static part of a DFT simulation 

of fission. For the dynamics itself, one has to distinguish 
between spontaneous and induced fission:

	 •	As pointed out in the introduction, spontaneous fission is 
essentially characterized by fission half-lives. The calcul
ation of this observable is presented in section  3.2. It is 
done in analogy with the standard problem of tunnelling in 
quantum mechanics. Starting from a (multi-dimensional) 
potential energy surface—the collective PES, one uses the 
WKB approximation to compute the action between inner 
and outer turning points. The half-life is then proportional 
to the exponential of the action corresponding to the least-
action principle. The mass of the nucleus is represented 
by the collective inertia tensor. Section 3.2.1 gives a quick 
overview of the various formulas involved. There have 
been early attempts to generalize this framework by using 
path integral methods instead of the WKB approximation. 
For the sake of completeness, we outline this approach in 
section 3.2.2, although we should point out that no practical 
calculation has been performed so far in this framework.

	 •	Induced fission is mostly concerned with the properties 
of the fission fragments, and it often involves an explicit 
time-dependent evolution of the system as discussed in 
section 3.3. We chose to recall in section 3.3.1 some of 
the classical methods used to describe fission dynamics, 
based on the Langevin and Kramers equations, since 
these approaches can be coupled with DFT inputs on 
the potential energy and the collective inertia. Also, the 
Langevin equation  can be viewed qualitatively as the 
classical analogue of time-dependent density functional 
theory, which is presented in section  3.3.2. TDDFT is 
the primary non-adiabatic theory that can be applied to 
studies of fission. While it is not suited to studies of spon-
taneous fission (TDDFT can not account for tunnelling), 
it can provide invaluable insights into the physics of scis-
sion, which is strongly non-adiabatic. On the other hand, 
the distribution of fission fragments is better formulated 
in the time-dependent extension of the GCM, which gives 
the time-evolution of the collective wave packet in the 
collective space up to the scission configurations. The 
TDGCM is briefly described in section  3.3.3, together 
with the techniques used to extract fission product yields.

In our presentation of results in section 5, we have made 
the distinction between fission barriers, fission half-lives and 
results in neutron-induced fission.

	 •	Fission barriers are not observables, but are very impor-
tant inputs to models of the fission spectrum, of nuclear 
databases, of simulations of the r-process, etc. In sec-
tion 5.1, we survey some of the results on fission barriers 
obtained in both relativistic and non-relativistic versions 
of DFT. Note that the most recent DFT calculations have 
a predictive power that is comparable with more phenom-
enological approaches.

	 •	Fission half-lives are very sensitive to the details of the DFT 
calculation, since they depend exponentially on both the 
HFB energy and the collective inertia. Most often, actinide 
nuclei are used as benchmarks to test the validity of DFT 
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calculations. The real motivation for computing spontaneous 
fission half-lives, however, is in connection with superheavy 
and very neutron-rich nuclei involved in nucleosynthesis. A 
survey of the most recent results is given in section 5.2.

	 •	There have been comparatively few studies of neutron-
induced fission in a microscopic setting. One possible 
reason is the much higher cost of performing the calcul
ations, since it is necessary to compute the PES up to the 
scission point. By contrast, estimates of fission half-lives 
are based on the knowledge of the PES around the first 
fission barrier only. We summarize in section 5.4 the few 
results published in the literature. Note that most of them 
are less than a decade old.

6.2.  Open questions

The only microscopic theory currently capable of predicting 
fission fragment distributions is the TDGCM (under the GOA 
approximation). As of today, the accuracy of fission product 
yields in actinides is of the order of 30%. Can we reach 5% 
accuracy without major changes to the theory, and can we 
quantify the associated uncertainty of such calculations? The 
latest results suggest that at least three degrees of freedom, 
corresponding to elongation, mass asymmetry and necking, 
may be needed. Will constraints on pairing also be neces-
sary to reach this level of accuracy? In terms of uncertain-
ties, we already discussed in section 2.4 the dependence on 
the definition of scission configurations. In addition to these, 
the TDGCM +GOA approach is based on symmetry-breaking 
states and thereby inherits many of its limitations. In part
icular, symmetry restoration and beyond mean-field correla-
tions, which were already discussed in section  2.2.5 in the 
context of PES calculations, most likely have an effect on fis-
sion product yields. Currently, the flux of the collective wave 
function through a small surface element at the scission point 
q is associated with a fragment mass number a (most often 
non integer as discussed in reference to figure 34). Assuming 
the nascent fragments have been disentangled with the proce-
dure outlined in section 2.4.2, how can we extract a realistic 
estimate of the yield of the true fragment with integer charge 
Z and mass A? Will this change the current estimates of fission 
product yields significantly?

Individual properties of fission fragments, in particular 
their excitation energy and their spin, are currently very poorly 
known. Can a microscopic theory based on DFT provide a 
quantitative understanding of the energy sharing mechanism 
between the fragments? Although static DFT calculations 
combined with the localization procedure of section  2.4.2 
are always feasible, TDDFT seems a more promising frame-
work. Recently, pairing correlations have been implemented 
in TDDFT at the HFB approximation in [182], and one may 
hope that progress in both algorithms and hardware will ena-
ble more systematic TDHFB calculations in the near future. 
At what accuracy can a full-blown TDHFB calculation predict 
the individual excitation energy of fission fragments in acti-
nide nuclei for thermal neutrons?

Better modelling of the excitation energy of the nucleus 
is another area where progress can be made. In the past few 
years, several groups have reported successful finite-temper
ature DFT calculations that reproduce well the trend of fission 
barriers with excitation energy; see, e.g. results in [16, 17, 
128, 129, 275]. However, most of these studies were restricted 
to barrier calculations. Only in [128] is there an attempt to 
generalize the formula for collective inertia to T  >  0. Also, 
the price to pay when using finite temperature is the increase 
of statistical fluctuations on observables, see some discussion 
of this effect in [129]. In addition, many of the beyond mean-
field techniques used to restore symmetry are not defined at 
T  >  0. In the low-energy regime, direct methods based on 
QRPA and/or the GCM at zero temperature could be more 
useful. For example, Bernard and collaborators introduced in 
[356] techniques to derive a collective Hamiltonian from the 
GCM built on top of two-quasiparticle excitations. Dittrich 
and collaborators outlined a method to build a statistical den-
sity operator from GCM states in [357]. Most of these ideas 
are in their infancy and a lot more work is needed before they 
can become valuable options for applications. In addition, one 
should anticipate a tremendous need for computing power.

Most of the theoretical framework used in the microscopic 
theory of fission was invented and developed many decades 
ago. It is only in the past two decades that unprecedented 
gains in computing power have allowed scientists to test these 
theories without resorting to debilitating approximations. In 
some ways, this process of catching up with theory is still 
ongoing, and, therefore, the jury is still out on the intrinsic 
predicting power of the current DFT framework. In the long 
term, there is little doubt that progress in the determination 
of reliable energy functionals better rooted into the theory of 
nuclear forces will become critical to increasing accuracy. 
Processes that accompany, and compete with, fission such 
as particle evaporation (neutrons, protons, alpha particle) or 
gamma emission will also need to be incorporated within a 
unified theoretical framework.
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