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Abstract
Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated
materials, such as the high-temperature superconducting cuprates. In optical lattice
experiments, microscopic parameters such as the interaction strength between particles are
well known and easily tunable. Unfortunately, this benefit of using optical lattices to study
Hubbard models comes with one clear disadvantage: the energy scales in atomic systems are
typically nanokelvin compared with kelvin in solids, with a correspondingly miniscule
temperature scale required to observe exotic phases such as d-wave superconductivity. The
ultra-low temperatures necessary to reach the regime in which optical lattice simulation can
have an impact—the domain in which our theoretical understanding fails—have been a barrier
to progress in this field. To move forward, a concerted effort is required to develop new
techniques for cooling and, by extension, techniques to measure even lower temperatures. This
paper will be devoted to discussing the concepts of cooling and thermometry, fundamental
sources of heat in optical lattice experiments, and a review of proposed and implemented
thermometry and cooling techniques.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Following work by Paul Benioff in 1980 on quantum
mechanical models of computers as Turing machines [1],

Richard Feynman delivered a talk during a Physics of
Computation workshop in 1981 held at MIT that is credited
for introducing the concept of quantum simulation [2]. He
speculated that a universal quantum computer could efficiently
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simulate models of many-particle quantum systems that are
beyond the reach of any classical computer, a conjecture that
was later proven by Seth Lloyd in 1996 [3].

The problem that inspired Feynman is the exponential
scaling of resources required to simulate a quantum system as
the number of particles increases. For example, completely
simulating the quantum state of 300 interacting spin-1/2
particles would require 2300 ≈ 1090 bits of classical memory—
a number larger than the estimated number of protons in the
universe. While studying many-particle quantum systems
using numerical simulation without a full-scale quantum
computer may therefore seem hopeless at first blush, the
situation is not quite so desperate. Efficient quantum Monte
Carlo (QMC) methods have been developed for simulating
the ground state for models of a wide range of quantum
materials, such as superfluid helium [4]. Much, though,
is still out of reach. Consequences of the Pauli exclusion
principle (i.e. the so-called ‘fermion sign problem’) impede
exactly simulating even the static properties of large collections
of fermionic particles, such as the electrons in solids [5],
especially when strong interactions are present. Exactly
calculating the dynamics of more than a few tens of strongly
interacting quantum particles is beyond the capabilities of
today’s most powerful supercomputers, and advances in
computing consistent with Moore’s law enable the addition
of just a few particles per decade [6].

These limitations have frustrated our efforts to understand
a wide range of quantum systems, because we cannot
resort to numerical simulation when traditional theory
approaches fail to provide a complete picture (or to check
approximations). Unfortunately, despite some proof-of-
principle quantum simulation demonstrations using few-qubit
quantum computers [7, 8], large-scale quantum simulation
as Feynman envisioned is likely to remain a challenge for
some time.

Happily, developments in our ability to cool atomic gases
to ultra-low temperature have potentially opened the door
to circumventing the requirement of a full-scale quantum
computer in certain cases. The principle is to use ultra-cold
atom gases to simulate ideal models of other systems—by
tuning physical parameters with high precision, many models
of interest can be exactly realized [9]. Numerous suggestions
for using ultra-cold gases as model systems have emerged over
the last decade, from analogs of quantum chromodynamics
[10] to paradigms for solids [11]. The modus operandi for
quantum simulation in these experiments is to probe phase
transitions between different quantum states of matter as
experimental parameters are varied, thereby mapping out the
phase diagrams of the corresponding model.

In this paper, we will focus on one problem in particular:
using ultra-cold atoms trapped in an optical lattice to simulate
variants of the Hubbard model. At the moment, much attention
is focused in lattice experiments on cooling to low-enough
temperature to realize magnetically ordered states that are
known to exist in the Hubbard model, and then reaching even
lower temperature to discover if proposed superfluid states—
the analog of superconducting states in the cuprates—emerge.
Achieving low-enough temperature to probe such regimes of
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Figure 1. Simplified cuprate phase diagram. The phases present as
temperature and charge doping (per copper atom away from
half-filling) are varied are shown.

unknown physics has become considered a benchmark for the
success of lattice simulation.

So far, achieving the temperature scale for magnetic
ordering has proven to be out of reach. This paper is dedicated
to discussing the challenges that experiments have faced in
cooling to lower temperature and the prospects for overcoming
them. In the rest of this introduction, we review the basic
physics of optical lattice experiments, how atoms trapped
in lattices realize the Hubbard model, essential features of
Hubbard models, the important differences between solids and
lattice experiments, and state-of-the-art experimental tools. In
section 2, we discuss the concepts of cooling and thermometry
important to lattice experiments and our current understanding
of fundamental limits to cooling—i.e. is it physically possible
to reach the low temperature regime of magnetic ordering? In
sections 3 and 4 we review the state-of-the-art in lattice cooling
and thermometry and proposals for new techniques.

1.1. Simulating the Hubbard model

In optical lattice experiments, ultra-cold atoms are trapped in
a crystal of light. Over the last decade, using optical lattices to
study physics models, such as the Hubbard model, relevant
to strongly correlated materials has generated tremendous
excitement and a convergence of atomic and condensed matter
physics [9]. The premise is to use optical lattices as an analog
for a solid material, with the atoms playing the role of the
electrons (or superconducting electron pairs), and the light
acting as the ionic crystal.

Variants of the Hubbard model have been used as
paradigms for electronic properties of solids. In particular,
the two-dimensional Fermi–Hubbard (FH) model has been
proposed as a model for the high-temperature superconducting
cuprates (see, for example, [12]). A proposed, schematic phase
diagram of these materials is shown in figure 1 [13]. Much
is known about the basic features of the cuprates [14], such
as the d-wave nature of the superconducting order parameter.
However, while a great deal of the underlying physics has
been revealed, we do not have a complete, microscopic
picture for how high-temperature superconductivity emerges.
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Figure 2. Optical lattices based on a cubic geometry. The lattice potential is shown in false color. To create a 2D lattice, the atoms are
confined into ‘pancakes’ along the z direction by increasing the power in one pair of lattice beams. The power is increased in the z and y
beams to confine the atoms to a series of tubes and create a 1D lattice.

Even phenomena at relatively high temperature, such as
thermopower at room temperature [15–23] and transport in
the ‘pseudogap’ regime [24], remain poorly understood.

The FH model in its simplest form involves only two
ingredients: particles tunneling between adjacent lattice sites
with energy t , and particles in opposite states of spin on the
same site interacting with energy U . When the interactions
between particles are strong (t/U < 1),‘strongly correlated’
phases of matter can emerge that cannot be understood even
qualitatively using any single particle theory (such as mean
field theory). While the phase diagram of the FH model
for repulsive interactions at ‘half-filling’, or for a density
corresponding to one particle per site, is well known, the
nature of the FH model at lower fillings has been the subject of
intense debate. For example, we are uncertain whether d-wave
superconductivity exists in the FH model, as in the cuprates.

In 1998, it was pointed out in a theory paper that atoms
trapped in an optical lattice realize the Hubbard model [25].
The advantage of using atoms to study these models is that the
microscopic physics, such as the interactions between atoms,
is very well understood and easily controllable. A grand
challenge for the field that has developed is to use optical
lattices to determine the conditions necessary for d-wave SF
in the Hubbard model. The idea is to start with the atomic
realization—two-spin states of a fermionic atom trapped in
an optical lattice—of the simplest FH model, cool to low
temperature, and search for d-wave superfluidity (the analog
of superconductivity for neutral atoms). If the simplest FH
model is insufficient to generate d-wave superfluidity, then we
can add in long-range interactions, disorder, and other features,
and determine the impact on the phase diagram. Ultimately,
the hope is to use optical lattices to measure the FH phase
diagram.

Experimental and theoretical work on optical lattice
simulation has not been focused solely on the FH model.
An in-depth review of proposals can be found in [9]; here,
we mention a few areas that lattices are primed to impact.
Bosonic atoms trapped in a lattice realize the Bose–Hubbard
(BH) model [26]. In the simplest, spinless BH model, particles
tunnel between sites and interact if they are on the same
site, just as in the FH model. The primary difference with
the FH model is that the particles obey Bose statistics, and

therefore particles in the same spin state can interact. While the
ground-state phase diagram of the BH model is well understood
(see [27–29], for example), dynamics are not, and lattice
experiments are beginning to have an impact on that front
[30–36]. Adding disorder to bosonic particles in an optical
lattice is a method for studying the disordered Bose–Hubbard
(DBH) model [9, 37, 38], which has been used as a paradigm
for granular superconductors and superfluids in porous media.
In the DBH model, the characteristic physical parameters, such
as the tunneling energy, vary from site-to-site. Experiments are
starting to influence our understanding of the DBH model [39],
about which there remain some disputes. Finally, ultra-cold
atoms in a lattice can be used to study a variety of interacting
spin models that involve magnetic interactions between spins
pinned to a lattice (see, for example, [40–44]). Many of
these models, particularly those involving frustration, remain
unsolved.

1.2. Optical lattices

In optical lattice experiments, neutral atoms are first cooled to
nanokelvin temperature as a gas while confined in a parabolic
potential (characterized by a harmonic oscillator frequency ω).
Bosonic atoms (e.g. 87Rb, 7Li, 23Na), fermionic atoms (e.g.
6Li, 40K), or a combination can be used. An optical lattice
potential is superimposed on the gas by slowly turning on a
combination of laser beams. The simplest lattice potential
is realized using pairs of counter-propagating laser beams
with identical polarization and wavelength λ (figure 2). Each
pair creates an intensity standing wave and corresponding
periodic potential Vlat sin2(2πx/λ) through the ac Stark effect,
with the potential depth Vlat proportional to the local light
intensity. To create a cubic lattice, each direction has an
orthogonal polarization so that the lattice potentials along
each direction add independently, creating an overall potential
Vlat[sin2(2πx/λ) + sin2(2πy/λ) + sin2(2πz/λ)]. Square
lattices can be made by making one pair high intensity in order
to confine the atoms into a series of ‘pancakes’; similarly,
two strong pairs can trap the atoms in a series of tubes to
create an ensemble of one-dimensional lattices (figure 2). A
commonly used notation is to specify the lattice potential depth
as s = Vlat/ER, where ER = h2/2mλ2 is the ‘recoil energy’
(m is the atomic mass and h is Planck’s constant).
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While a wide variety of crystal geometries are possible, the
nature of the ac Stark effect limits what optical lattice potentials
are achievable [45]. For a monochromatic laser field and an
alkali atom, the potential from the ac Stark effect is [46]

Udip(�x) = πc2�

2ω3
0

[(
2

�3/2
+

1

�1/2

)
I (�x)

+ gF mF

∑
q=−1,0,1

q

(
1

�3/2
− 1

�1/2

)
Iq(�x)

]
,

where c is the speed of light, � is the decay rate of the
electronic excited state, ω0 is the angular frequency of the
atomic transition, Iq is the laser intensity with polarization q

(I = ∑
q=−1,0,1 Iq), and �3/2 (�1/2) is the detuning ωL − ω0

relative to the S → P3/2(S → P1/2) transition (ωL is the
angular frequency of the laser); for a more in-depth discussion
see [47]. This potential is in the rotating frame defined by the
laser frequency and is only correct for laser detunings large
compared with the atomic hyperfine splittings; if multiple
laser frequencies are employed, the overall potential is not
necessarily the sum of the potential generated by each laser
field. In general, the multi-level, multi-field problem must be
solved to determine the overall potential. In sections 2.3 and
A.5 we discuss how this formula must be modified for very
large detunings (|ω0 − ωL| � ω0). Various lattice geometries
are possible using different laser beam configurations. To
date, atoms have been trapped in in the strongly correlated
limit in cubic [26], square [48–50], one-dimensional [51],
hexagonal [52, 53] and triangular [54] lattices. Atoms have
also confined in spin-dependent lattices (for which the laser
detuning must be comparable to the atomic fine structure)
that involve polarization gradients in the strongly correlated
regime [47, 52, 55, 56].

In a lattice, the atoms develop a band structure, just
like electrons in a solid. The atomic wavefunctions can
be described as superpositions of Wannier states, where a
single Wannier state, wi(�x), describes an atom localized on
the ith potential well of the lattice. For certain geometries
(see [57], for example), the Wannier states are straightforward
to calculate. The tunneling energy for atoms to hop between
adjacent sites is t = ∫

d3xw∗
i (�x)[−(h̄2/2m)∇2 +V (�x)]wj(�x),

where i and j label adjacent sites, and V (�x) is the lattice
potential (somewhat unfortunately, t and J have been used
interchangeably in the literature; we reserve J for the super-
exchange energy). In the discussion that follows and for the
rest of this paper, we ignore excited bands and consider only
the lowest energy band (a good approximation for s � 4).
For single particles in a uniform, one-dimensional lattice, the
resulting Hamiltonian is H = −t

∑
〈i,j〉 â

†
i âj , with a spectrum

E(q) = 2t[1 − cos(πq/qB)], where 〈ij〉 indicates a sum over
adjacent sites, the operator â

†
i (âj ) creates (destroys) a particle

in state wi(x) on site i, q is the atomic quasimomentum and
qB = h̄π/d is the Brillouin-zone momentum (d is the distance
between sites). For a detailed discussion of quasimomentum,
see [58]. The term ‘bandwidth’ is often used to refer to the
range of energies 4t in the band.

The parabolic confining potential present in experiments
modifies the spectrum and quantum states [58, 59]. As

in a finite solid system, the spectrum becomes discrete;
furthermore, the bandgap disappears. The low-energy
states are harmonic oscillator states modulated by the lattice
potential, while at higher energy the states become localized
to the edge of the lattice. In section 2.3, we will employ the
effective mass approximation, which is valid for both trapped
and uniform systems for low-energy states and s � 1. In this
approximation, the effect of the lattice is only to renormalize
the mass according tom∗ = h̄2/2d2t,wherem∗ is referred to as
the effective mass. For trapped gases, the harmonic oscillator
frequency is modified according to ω∗ = ω

√
m/m∗.

The interaction between atoms on the same site drastically
modifies this single particle picture. Atoms at these low
temperatures interact primarily through an s-wave collision.
The interaction energy between two atoms on the same site
is approximately U = (4πh̄2as/m)

∫
d3 x|w(�x)|4, where

as is the atomic scattering length (we note that interactions
may affect the Wannier states, leading to occupation-based
corrections to the Hubbard parameters [60–62]). Bosonic
atoms in the same spin state can interact; in order for fermionic
atoms to collide they must have different states of spin. By
‘spin’ we mean the hyperfine state of the atom, which is
specified by the quantum numbers F and mF , and consists of
the combined electronic and nuclear total angular momentum.
In typical lattice experiments, the number of atoms in each
spin state is fixed, in contrast to electronic systems. We will
ignore inelastic, spin-changing collisions between atoms. This
physics can play an important (or dominant) role in lattice
experiments [63], although not in the context we envision
here. For studying the FH model, for example, typically two
hyperfine states are selected to proxy for spin up and down.
The relative populations are determined experimentally by
adjusting the relative number in each state.

These two ingredients—tunneling and on-site
interactions—exactly realize the Hubbard model. If the atoms
are (spin-polarized) bosons, then the BH model is realized:

H = −t
∑
〈ij〉

â
†
i âj +

U

2

∑
i

n̂i (n̂i − 1) +
∑

i

εi n̂i ,

where ni = â
†
i âj is the number of atoms on site i and

εi = mω2r2
i /2 is the potential energy (from the parabolic

confinement) for site i located at radius ri . Or, if the atoms are
fermions, the FH model:

H = −t
∑
〈ij〉,σ

â
†
i,σ âj,σ + U

∑
i

n̂i,↑n̂i,↓ +
∑
i,σ

εi n̂i,σ ,

where σ =↑, ↓. A thermodynamic chemical potential µ is
usually introduced to fix the total particle number. We will
discuss how corrections (arising from interactions) to these
single-band models can be important in lattice experiments.

All of the parameters in the Hubbard model that control
the behavior of the system can be relatively easily tuned in
an optical lattice experiment. The ratio t/U can be tuned by
changing the lattice laser intensity, which changes the lattice
potential depth; increasing the potential depth decreases t and
increases U . The interaction energy can also be adjusted
independently using a Feshbach resonance. The density can
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Figure 3. Zero-temperature BH phase diagram for a homogeneous
system. The trapped system can be treated using the local-density
approximation and introducing an effective chemical potential µ̃.
The atoms are then understood as sampling a vertical line on this
phase diagram, with the edge of the gas located at zero filling and
the center terminating at a maximum µ̃. The inset shows the
inhomogeneous configuration of phases present for the line
displayed in the phase diagram.

be controlled by tuning the confinement and/or the number of
atoms.

As t/U and the density are varied, different quantum
phases emerge at zero temperature in a uniform system. For
spin-polarized bosons, the BH model gives rise to superfluid
and Mott-insulator phases depending on the density (figure 3).
For low interaction energy, the particles delocalize into
a superfluid (SF) state, while above a critical interaction
strength a transition to a localized Mott-insulator (MI) phase
occurs for integer fillings (i.e. number of particles per site).
Because of the confining potential, which is often treated
using the local-density approximation (LDA) and an effective
chemical potential µ̃ = µ − mω2r2/2, the phases from
the uniform system appear inhomogeneously. For example,
for bosons, at high lattice depths (and low temperature) the
lattice is filled with nested MI and SF phases (see inset
to figure 3). This structure was originally detected using
microwave spectroscopy [64] and spin-changing collisions
[65], and recently directly imaged using high-resolution
microscopy [36, 66, 67].

In the LDA, the phases present in the lattice are understood
by sampling a vertical line on the homogeneous phase
diagram (with µ/U and U/t as axes). The characteristic
density ρ̃ = N(mω2d2/2t)j/2 (j is the dimensionality) is
a useful quantity—along with U/t—as an alternative for
characterizing quantum phases in a trapped system [68–70].
The characteristic density can be used to convert an LDA phase
diagram into a universal one for which the state of the system
is characterized by a single point. By specifying single values
of U/t and ρ̃, one can uniquely determine the phases present
and their spatial arrangement (figure 4). Furthermore, this
approach enables the inclusion of trap-induced modifications
to critical phenomena that go beyond the LDA [71].

The characteristic density is especially helpful for
understanding the phases of the inhomogeneous FH model
(figure 4). For low interaction strength and low density, a
delocalized metallic Fermi-liquid (FL) state exists. Instead of

an FL, a band insulator forms if the filling is two particles
(one spin up, one spin down) per site. As with bosons, above
a critical interaction strength (in this case, determined by the
bandwidth), the transition to an MI of fermions occurs. For
a recent review of studying these FH phases using optical
lattices, see [72].

For systems with more than one spin-component, there is
still a spin degree of freedom in the localized MI phase that
can lead to new phases not shown explicitly in figure 4. Unless
t = 0, the atoms are not completely localized and small, but
finite, hopping events—referred to as virtual tunneling—give
rise to another energy scale

J = 4t2

U
,

which is the super-exchange energy. Super-exchange is known
to play an important role in magnetic phenomena in solids and
was probed experimentally using atoms confined in an array
of double wells [42]. For the two-component Hubbard model
with one atom per site, equal tunneling and interaction energies
for all components, and t/U � 1, the Hamiltonian reduces to

H = ±J
∑
〈ij〉

�Si · �Sj ,

which is known as the Heisenberg spin Hamiltonian (�S is the
spin operator) [40, 41, 73], where the sign is positive (negative)
for fermions (bosons). For fermions, this Hamiltonian
gives rise to an antiferromagnetic (AFM) ground state (i.e.
alternating spin up-spin down ordering) at zero temperature
because the particles can slightly lower their energy in this
configuration via virtual tunneling. Reaching the regime
in which AFM order begins to emerge, below the Néel
temperature TN = J/kB, is a primary goal for fermion lattice
experiments and will be a necessary first step on the way
to the regime of d-wave SF. A number of other magnetic
Hamiltonians can also be simulated if the tunneling and/or
interactions can be made state and/or directionally dependent
[40, 41]. The energy scales of these magnetic phases are very
low, and the techniques required to detect and achieve these
phases will be a large part of the discussion in subsequent
sections.

We think it is important to mention a few differences
between solids and optical lattices. A primary difference
between lattice experiments and solids is precisely the variation
of density across the trap. In solids, the electron density
is roughly constant and controlled by doping. In lattice
experiments, the density is highest in the center of the
lattice. The interaction between atoms is naturally short
ranged, in contrast to the long-range Coulomb interaction
between electrons. The equivalent of phonons and other lattice
distortions are absent in an optical lattice. Effects in solids
arising from inner-shell or multiple outer shell electrons are
also missing in optical lattice experiments we discuss here,
and so overlapping bands do not play a role.

1.3. State-of-the-art experimental tools

Experimental progress on using optical lattices to study
variants of the Hubbard model has been rapid. We mention
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Figure 4. Zero-temperature phase diagram for trapped BH (left) and high-temperature phase diagram for trapped FH (right) gases. Three
phases are shown for bosons: the entire gas is a superfluid (I), an MI core surrounded by an SF shell (II), and a nested SF–MI–SF phase (III).
For fermions, Fermi-liquid (L), band-insulator (B), MI core surrounded by Fermi-liquid shell (Mc), and metallic core surrounded by MI shell
(Ms) phases are shown. The insets show the phases (II and Mc) we consider for addressing the impact of light-induced heating in section 2.3.

only a few relevant highlights here. A bosonic MI has
been realized in cubic [26], square [48–50], one-dimensional,
hexagonal [52] and triangular [54] lattices. The BH phase
diagram has been measured in a square lattice, and a small but
definite deviation from the LDA was detected [71]. The MI
phase for fermions has been achieved in a cubic lattice [74, 75].
Notably, temperatures low enough for magnetic ordering or
potential d-wave SF have not been reached, although super-
exchange oscillations have been measured between adjacent
sites [42]. Mixtures of atomic species in the strongly correlated
limit have been prepared in a lattice, including a Fermi–Bose
mixture of 40K and 87Rb [76–78], and a Bose–Bose mixture of
41K and 87Rb [79].

A number of unique techniques have been demonstrated
for creating lattice potentials. Lattices have been created
by holographic projection using phase masks [80, 81],
imaging micro-lens arrays [82], and magnetically [83]. The
polarization of the lattice beams can be used to create spin-
dependent lattices [47, 52, 55, 56] and also a lattice of double
wells [84]. Spontaneously emitted light from atoms trapped
in an optical cavity can then give rise to a lattice [85].
Another approach is to implement superlattices using more
than one wavelength of light [43]. If the wavelengths are
incommensurate, the potential is quasi-disordered and the
atoms are described by the Aubry–André Hamiltonian [86].
Dipole traps can be added to compensate the harmonic
potential of the lattice beams [61]. Light sent through
a disordered phase mask can be used to apply a speckle
potential to the lattice, which is a method to implement
the DBH Hamiltonian [38]. Dynamical lattices have been
implemented to explore the properties of models with time-
varying parameters. These include rotating lattices [87, 88],
lattices with rotating wells [89], and position-modulated
lattices [90].

A panoply of tools for measuring properties of atoms
trapped in a lattice has been developed theoretically and
experimentally. The quasimomentum distribution can

be measured, with some limits at high quasimomentum
[58, 91, 92]. Analyzing the noise correlations in a set of

time-of-flight images reveals the second-order momentum
correlations, which can probe the SF–MI transition and
detect Bose and Fermi bunching/anti-bunching effects
[93, 94]. The equivalent of many measurements on solids

have been demonstrated and are possible, such as the
excitation spectrum [74], transport [16, 30–32, 95–97] and
compressibility [74, 75]. Site and atom-number resolved
imaging has recently been demonstrated [36, 67]. The
excitation spectrum can be measured using Bragg and
Raman spectroscopy [98, 99]. If AFM ordering or d-wave
superfluidity is present, there are a number of realistic
theoretical proposals for detecting it (see sections 4.3 and 4.4).

2. Cooling and thermometry

We have made a strong case that optical lattice experiments are
poised to address fundamental questions about paradigms from
condensed matter physics and phenomena involving strong
correlations. The experimental tools have been in place for
several years to realize a wide variety of models, to control
the analog of material parameters, and to characterize and
detect different quantum phases. So what, then, is preventing
experiments from probing, for example, the regime of AFM
and d-wave superfluidity in the Hubbard model?

The stumbling block is temperature—both our inability
to measure it and to reach far enough into the ultra-cold
frontier. Much of the recent history of atomic, molecular and
optical physics has been dominated by the goal of cooling
atoms to ever lower temperatures in order to explore quantum
many-body physics and to improve precision measurements.
Reducing absolute temperature is the important function of
cooling for the latter application. For example, cooling
cesium atom gases to microkelvin temperatures enables long
interrogation times and commensurate high precision for the
fountain atomic clock, which is our current time standard.
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Figure 5. Cooling methods. (a) Cooling via adiabatic expansion: the gas cools as the confinement is adiabatically relaxed. No entropy is
removed, even though the temperature can be drastically reduced. Therefore, low-entropy states such as an AFM ordering or d-wave
superfluidity cannot be accessed using this method. The predominant cooling methods used in ultra-cold atom gas experiments are shown in
(b) laser cooling and (c) evaporative cooling. Entropy is removed by each process, in contrast to adiabatic expansion. Entropy is carried
away by scattered light in laser cooling and by high-energy atoms ejected from the trap in evaporative cooling.

In the context of the present discussion, cooling is
a process used to lower the entropy per particle S/N .
Quantum phase transitions are controlled by entropy because
it measures the number of accessible quantum states. Entropy
is generically a complicated and often unknown function of
the number of particles, temperature, interactions, and the
confining potential. Therefore, lowering absolute temperature
is not necessarily sufficient to reduce S/N . An example of a
method—adiabatic expansion—that has been used to reduce
T to as low as 450 pK for a trapped gas [100] without affecting
S/N is shown in figure 5. So, while it is convenient to refer
to how cooling reduces temperature, and we will use this
language, for the rest of this paper by ‘cooling’ we mean a
technique that decreases S/N .

A triumph of work during the 1980s and 1990s on
cooling the motional degrees of freedom of atomic gases was
the achievement of quantum degeneracy of both bosons and
fermions [101, 102]. While a wide range of cooling methods
were proposed and realized during this quest, the workhorse
of most experiments remains a relatively simple combination
of laser and evaporative cooling (figure 5). Laser cooling
is effective at cooling atoms gases from room temperature
where S/N ∼ 40kB to the microkelvin regime, for which
S/N ∼ 10kB, typically. A remarkably powerful process
that can provide over 1 kW of cooling for the human body,
evaporative cooling is used to further reduce S/N to below
3.6 kB, which, in a parabolic trap, corresponds to the critical
temperature Tc for condensation for ideal (i.e. non-interacting)
bosons and approximately 1/2 the Fermi temperature TF for
ideal fermions. Time-of-flight (TOF) thermometry (figure 6)
played an essential role as a tool for optimizing cooling in this
quest for quantum degeneracy. Temperature has also been a
quantity of physical interest, such as in early measurements
of the damping of collective modes [103] and in more recent
studies of dissipation in optical lattices [30].

In this section, we lay the groundwork for the
comprehensive discussion in sections 3 and 4 of the theoretical
and experimental state-of-the-art for thermometry and cooling
in optical lattice experiments. We introduce the fundamentals
of these topics both by reviewing past work and making forays
into other fields. In particular, we pay attention to a key concept
that has perilously been ignored in the literature: cooling

Figure 6. Data showing TOF thermometry for an ideal Fermi gas.
The inset shows a TOF image of a gas of 40K atoms that have been
cooled to approximately a fifth of the Fermi temperature, and
therefore most of the atoms have a momentum below the Fermi
momentum (indicated by the white line). The optical depth
(OD)—proportional to the density—is plotted for such TOF images
that have been angularly averaged. The profile is fit to a
hypergeometric function (blue) to determine temperature.
Temperature can also be extracted from a Gaussian fit (red) to the
low signal-to-noise ratio tail of the distribution.

into low-entropy states can only be successful if the cooling
power exceeds the heating rate in the regime of interest. We
also explain the complications for cooling and thermometry
created by strong correlations. Finally, we address in detail
some issues we believe to be universal to these experiments,
especially the fundamental limitations to cooling generated by
the very light used to create the lattice (which has also not been
thoroughly investigated).
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2.1. Measuring temperature

In optical lattice experiments, accurate thermometry will be
necessary to reach the ultra-low S/N required to realize
novel phases. Furthermore, a precise determination of
temperature will be a key ingredient in using optical lattice
experiments to experimentally determine the Hubbard model
phase diagram. In the weakly interacting regime, temperature
is typically inferred for harmonically trapped gases by imaging
the integrated density profile after turning off the confining
potential and allowing the gas to expand (i.e. TOF imaging).
For sufficiently long expansion time, the column density
profile is equivalent to the integrated momentum profile, which
can be fit to certain hypergeometric functions to determine
temperature, as shown for a Fermi gas in figure 6.

Interactions are the primary complication for TOF
thermometry. The expansion can significantly deviate from
ballistic even for moderate interaction strength (i.e. the
interaction energy per atom is comparable to the kinetic
energy). Indeed, in most Bose-Einstein condensate
(BEC) experiments the gas expands hydrodynamically [104].
Interactions also change how observables translate into
temperature by, e.g., modifying the equation of state [105]
or by distorting the effective potential experienced by the
atoms [106]. Fortunately, theory for nearly all experiments
not involving an optical lattice are under enough control such
that measurements of the density profile after TOF can still be
connected directly to temperature. For example, in BEC–BCS
(where BCS stands for Bardeen–Cooper–Schrieffer) crossover
experiments, the profile can be fit to the non-interacting result
and temperature can be inferred using the known equation of
state [105]. Even without theory, temperature can often still
be determined in this regime from the ‘tail’ of the distribution,
which corresponds to high kinetic energy states with low
occupation. Unfortunately, this procedure fails at very low
temperature, when the signal-to-noise ratio in the tail of the
distribution is too poor to obtain a reliable fit.

Determining the temperature in optical lattices in the
strongly correlated regime faces a fundamental, rather than
technical, problem. Ultimately, we are interested in probing
the regime for which we have no verified or well controlled the-
ory. Therefore, we will, in general, lack a method for connect-
ing observables—such as any part of the density profile after
TOF—to temperature. We may also be interested in the tem-
perature of other degrees of freedom, such as spin, for which we
have no proven general technique (although methods for spin
thermometry in certain limited regimes are emerging [107]).
The challenge is thus two-fold: to develop thermometry meth-
ods that do not rely on unverified theoretical results and that can
be experimentally validated. Experimental validation requires
achieving consistency between two or more techniques.

This situation is analogous to problems associated
with thermometry in cryogenic experiments with solids, as
summarized by Pobell in [108]. In that arena, secondary
thermometers, such as RuO2 resistance thermometers, are the
workhorse of experiments. These thermometers are calibrated
against primary thermometers, such as measurements of
thermal noise in a resistor or the angular anisotropy of
gamma rays emitted from nuclear isomers that are products

of β-decay. In both cases, a separate material may be used
as the thermometer and contacted to the sample. A primary
thermometer is one which we can connect the measured
quantity to temperature from first principles. For ultra-
cold atom gas experiments, TOF thermometry (for weak
interactions) is an example of a primary thermometer.

Thermometry in cryogenic experiments faces numerous
technical challenges, similar to the issue of finite imaging
signal-to-noise ratio in TOF thermometry. For example, any
particular thermometer has a limited regime of operation (e.g.
the sensitivity may be poor below or above some temperature),
and so an array of thermometers must be used to span the
temperature range of interest. The thermometer may ‘self-
heat’, thereby heating the sample and defeating attempts to
reach low temperature. Also, a thermometer may lose thermal
contact with the sample. Or, more subtly, the electrons in the
sample may be out of thermal equilibrium with the phonons,
which transfer heat between the sample and thermometer. This
problem and the related issue of the sample losing thermal
contact with the cryostat are common at low temperatures.
Consequently, there may be ambiguity regarding the root cause
of a measured quantity saturating or nonlinear behavior as one
attempts to cool the sample (see [109, 110] , for example).
At best, consistency between several thermometers may be
monitored as a check on thermal contact.

We feel that there are several important lessons from
thermometry in cryogenic applications. Foremost, the
challenge of primary thermometry in lattice experiments
originates in employing intrinsic properties of the gas for
measuring temperature. If we are to venture into regimes
for which we have no complete theory, then creating a
thermometer understood from first principles will necessarily
be problematic. Experiments on solids overcome this issue
using a different material with well understood properties
as a thermometer. For ultra-cold lattice experiments, we
must therefore develop a similar extrinsic thermometer, or
create multiple primary thermometers based on different
theoretical approximations, and then check for consistency at
low temperatures. The progress that has been made on both of
these fronts will be discussed in section 4.

We should also be mindful of the analog of technical
issues from the cryogenic realm. For extrinsic thermometers,
we must ensure thermal contact and equilibration on relevant
timescales. Any extrinsic thermometers should have a low
heat capacity and not introduce heat to the gas of interest.
Developing secondary thermometers can be useful, as long
as they can be calibrated against a primary method. All
thermometers should have high sensitivity to changes in
temperature, and so we will likely need different methods in
different regimes of temperature.

In section 4 we will assess the state-of-the art of
thermometry in light of these guiding principles. For the rest
of this section, we will focus on exploring the ultimate limits
to temperature in optical lattice experiments.

2.2. Temperature limits in optical lattices

In current optical lattice experiments, the lattice potential is
slowly superimposed on the atom gas after it is first cooled to
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as low temperature as possible in a purely parabolic potential.
The goal is to make the lattice turn-on as adiabatic as possible
so that S/N is preserved. The lowest attainable S/N in
a harmonic trap is therefore a lower limit to what will be
achievable in a lattice. The published state-of-the art in
cooling trapped gases reaches lower bounds of 0.05T/TF

for non-interacting gases [111]. For strongly interacting
gases, similar effective temperatures (derived from fitting
TOF distributions to a non-interacting profile) have been
measured [105, 112], and a careful study demonstrated cooling
toS/N ∼ 0.6kB [113]. We caution that measuring temperature
in the strongly interacting regime requires modeling [113,
114], and measuring temperatures below 0.1T/TF tends to be
dominated by systematic errors related to imaging [114, 115].
For the weakly interacting (in a harmonic trap, before transfer
into a lattice) regime relevant to lattice experiments, 0.13T/TF

[116] and 0.3T/Tc [30] are the lowest reported temperatures
for fermions and bosons, respectively, corresponding to
S/N ∼ 1kB and S/N ∼ 0.1kB for an ideal gas. For fermionic
atoms, this is too high to realize the AFM phase that exists
below S/N ∼ kB0.5 ln 2 ∼ 0.35kB [70, 116–119]. To study
low-energy physics of the Hubbard model and access d-wave
paired states will require cooling to yet lower S/N .

We now arrive at the crux of the matter: in order to
realize low-entropy phases such as an AFM in optical lattice
experiments, much lower temperatures are required. For
non-interacting fermions, S/N = −kB[24(T /TF)

3Li4(−z) +
ln z] (where the fugacity z is determined by Li3(−z) =
−(T /TF)

−3/6 and Lin is the polylogarithmic function of order
n), and therefore reaching S/N ∼ 0.5kB ln 2 will require
T/TF < 0.04. It may be possible to reach lower than S/N ∼
0.5kB ln 2 in a lattice by starting at even smaller entropy in
the parabolic potential. But, methods for cooling to far lower
entropy in parabolic potentials may not be sufficient, because
non-adiabaticity during the lattice turn-on and heating from
the lattice may be too severe. In section 2.3 we argue that this
is likely the scenario for reaching below the super-exchange
temperature scale for bosons in a lattice because of unavoidable
heating from the lattice light during the lattice turn-on. As we
will also discuss, reaching low entropy for fermions may be
frustrated by longer than expected adiabatic timescales.

The challenge is then to develop methods to cool
atoms in a lattice to S/N ∼ 0.35kB. Understanding the
limitations of cooling—i.e. what limits the ultimate achievable
temperature—is of key importance to evaluating the many
different proposals for lattice cooling that we review in
section 3. The limitation for any cooling scheme can be
understood as a competition between heating and cooling.
Because the temperature during cooling evolves according
to Ṫ = Ṫheat − Q, all cooling schemes are limited by the
same condition: the lowest temperature possible is achieved
when the cooling power Q equals the heating rate Ṫheat.
Heating is unavoidable in ultra-cold atom experiments and
arises both from intrinsic and technical sources. How exactly
this condition plays out depends on the details of the heating
present and the cooling method employed. Furthermore, atom
loss, either unintended or purposeful as in evaporative cooling,
will generally lead to a limit on S/N occurring at Q > Ṫheat

since Ṡ = (CṪ − µṄ)/T (µ is the chemical potential and C

is the heat capacity).
To better understand the interplay of heating and cooling

power, we use forced evaporative cooling as an example.
Evaporative cooling has been exhaustively studied for both
classical and quantum gases confined in parabolic potentials.
Typically, it is modeled as a process that truncates the trapping
potential at an energy ηkBT ; atoms with higher energies are
ejected from the trap. For large evaporation parameter η,
atoms with above the average energy and S/N are lost, thereby
resulting in cooling.

For evaporative cooling at constant and high η, Q ∝ N ,
so the cooling power is reduced as atoms are lost and the
temperature drops. An example of an evaporative cooling
‘trajectory’ is shown in figure 7, calculated using the kinetic
model from [120] for a classical gas (i.e. one obeying Maxwell–
Boltzmann statistics) with an atom loss time constant τ (from,
e.g., collisions with residual gas atoms). Cooling fails below
250 nK under the chosen scenario, coincident with Q < Ṫheat

(note that conditions are generally superior to this in realistic
experiments). The limiting S/N ≈ 7kb occurs for Q > Ṫheat

at the point in the trajectory when CṪ = µṄ . Although
evaporative cooling has no in principle temperature or S/N

limit, finite heating and loss rates always lead to a practical
limit, just as in this example. Because not all heating and
loss sources can be eliminated—particularly those arising from
the lattice light—the design and evaluation of any proposed
cooling method must include a comparison of the cooling
power with a realistic heating rate.

For fermionic atoms there are notably two other
inescapable limitations to any cooling method—hole heating
and Pauli blocking. Hole heating arises from atom loss,
which may result from collisions with residual gas atoms
(as indicated by time constant τ in the example in figure 8) or
from density-dependent losses (e.g. three-body recombination,
dipolar loss or spin-exchange). Entropy is produced as atoms
are lost, with collisions continually repopulating low-energy
states, leading to the promotion of atoms to high-energy states
and rethermalization to higher temperature. The heating rate
associated with loss at temperatures much lower than the Fermi
temperature is severe and given by Ṫheat = (4/5π2)(T 2

F /τT )
[121]. For a gas cooled to 0.01TF, the temperature doubling
time is 0.2% of τ , so cooling power on the order of at least
100TF/τ is required to reach temperatures this low. For a
system with TF ≈ 200 nK and τ = 100 s, this requires
Q > 200 nK s−1.

This intrinsic heating process is especially problematic
when combined with Pauli blocking, which limits the cooling
rate at low temperature [122, 123]. Pauli blocking affects all
dynamical processes in Fermi gases, including rethermalizing
collisions necessary to cooling. Collisions can be understood
as a phenomenon that rearranges the particles among the
energy levels of the system (figure 9). The average collision
rate per atom is proportional to the density of final states for
each colliding partner. Cooling requires one of the fermionic
colliding partners to emerge after the collision in a state
at lower energy. At temperatures far below TF, most low-
energy states are occupied and are unavailable as final states
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Figure 7. Evaporation trajectory (top) and cooling power (bottom).
In the top graph, the temperature (red), number of atoms (black) and
entropy per particle (blue) are shown as the evaporation proceeds in
time. For this simulation we start with 5 million atoms at 30 µK in a
trap with ω = 2π100 Hz, and assume a constant heating rate
Ṫheat = 7 nK s−1, η = 5, and loss time constant τ = 100 s (where
Ṅ/N = −1/τ ). In an experiment, the best choice for η results in the
smallest change in the number of atoms N for the largest change in
temperature T . Typically, the optimal η is between 3 and 5 and is
determined by the ratio of elastic rethermalizing collisions to the
loss rate induced by inelastic collisions and collisions with residual
gas atoms. In the bottom graph, the cooling power (black) and rate
of change of entropy (blue) are shown. The dashed lines represent
the heating rate (black) and the boundary between heating and
cooling (blue). Absolute temperature starts to increase when the
cooling power drops below the heating rate, at about 55 s. Cooling
(in the sense of reducing entropy per particle) fails when the rate of
change of entropy becomes positive slightly earlier at 45 s.

because of the Pauli exclusion principle. Therefore, the
collision rate is reduced, tending to zero as (T /TF)

2 [124].
Because the collision rate is a limiting timescale for cooling
(Q for evaporative cooling is proportional to the collision
rate, for example), Q is always reduced to zero as the gas is
cooled.

In summary, there is an important conclusion to be drawn
from our discussion of evaporative cooling. In order to assess
the efficacy of any cooling method, we require realistic models
for cooling and heating power, since the lowest achievable
temperature is determined by the competition between positive
and negative heat flow. In fact, naively one would assume that
evaporative cooling could reach arbitrarily low entropies unless
realistic heating and loss rates were included in a theoretical
model. Unfortunately, we generally lack sufficient models
because we do not have a quantum Boltzmann treatment—
necessary to capture dominant effects at low entropy such
as Pauli blocking and hole heating—that includes strong
correlations. Therefore, it is likely that progress on the theory
of dynamics and thermalization in strongly correlated systems

Figure 8. Hole heating in a Fermi gas. Residual gas atoms (green)
remove atoms from low-energy states in the trap through collisions,
leading to an increase in entropy per particle. Elastic collisions
between two-spin species (red and blue) then repopulate the empty
state.

will have a strong impact on guiding experiments to cool into
new regimes.

We will examine proposed cooling methods in section 3 in
light of this discussion of cooling power and quantum statistical
effects. First, though, we wish to examine what is likely to
be the largest stumbling block to reaching lower entropy—an
unavoidable source of heating resulting from the interaction
of the atoms with the light used to create the lattice. As we
will discuss, this rate is temperature independent, and so a
higher cooling power (compared with the thermal energy) will
be required to combat it at low temperatures. This heating has
not been dealt with extensively in the literature, and so, in the
next section, we discuss its properties and likely impact on
reaching low S/N .

2.3. Light-induced heating

All optical lattice experiments are afflicted with an intrinsic
heating rate that arises from the interaction of the atom with
the light that creates the optical lattice potential. Gordon and
Ashkin [125] first approached this problem by calculating the
momentum diffusion rate Dp = 1

2 (d/dt)(〈 �p · �p〉 − 〈 �p〉 · 〈 �p〉)
for a particle with momentum �p in a standing wave formed
from counter-propagating laser beams. Somewhat counter-
intuitively, they found Dp = h̄2k2�3Ĩmax/16�2 for large
detuning, with Ĩmax = Imax/Isat, where Imax is the intensity
at an anti-node and Isat is the saturation intensity. The
diffusion rate does not depend on the location of the atom,
i.e. whether it is trapped at a node (as in a blue-detuned lattice)
or an anti-node (as in a red-detuned lattice). We prefer to
consider Dp as deriving from two contributions: atomic recoil
arising from spontaneous emission, and the force from zero-
point fluctuations of the atomic electric dipole interacting with
gradients in the standing-wave electric field (figure 10). The
zero-point contribution, which has often been ignored, can be
understood in the following way. Fluctuations in the vacuum
electric field polarize the atomic electric dipole; this induced
dipole interacts with electric field gradients to produce a force
on the atom. While the average dipole moment and force
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Figure 9. Pauli blocking of collisions. Elastic collisions necessary for rethermalization are suppressed by the Pauli exclusion principle in
the quantum degenerate regime, when most states below the Fermi energy are occupied. The arrows indicate transitions to possible final
states following a collision for an atom with energy slightly above the Fermi energy. The effective cross-section for rethermalizing collisions
is reduced in the quantum degenerate regime, as shown in the data (reproduced from [123], copyright 2001, American Physical Society)
from measurements using a gas of harmonically confined 40K atoms.

Figure 10. Heating arising in an optical lattice from photon recoil (left) and fluctuations in the atomic dipole (right). The minimum in the
potential V (black) occurs at a maximum in the laser intensity I (red) for a red-detuned lattice (left). Heating arises from the random recoil
(gray arrow) following photon scattering events. In a blue-detuned lattice, the potential V follows the optical intensityI (right). The gradient
of the electric field E has a maximum at the minimum in the potential. The electromagnetic vacuum induces a fluctuating atomic dipole,
which then experiences a force (gray arrow), leading to heating.

vanish at the standing-wave nodes, the average of the dipole
moment squared is finite, and hence momentum diffusion
occurs even in dark regions of the light field. The recoil
contribution vanishes at the nodes (where the light intensity
vanishes), whereas the zero-point component is zero at the
anti-nodes (where the standing-wave electric field has no
gradient). Gordon and Ashkin’s unexpected discovery was
that the zero-point component at a node is exactly equal to the
recoil contribution at an anti-node, and, moreover, that the total
diffusion rate is constant at all points in the standing wave.

The diffusion rate can straightforwardly be converted into
an energy dissipation rate 〈Ė〉 = Dp/m = ERVlat�/h̄|�|,
where Vlat is the lattice potential depth. We use m instead of
m∗ in this equation because momentum diffusion occurs on the
timescale of the electronic excited state lifetime [125], which
is many orders of magnitude faster than any relevant lattice
timescale. For a single standing wave and a harmonically
trapped particle, the associated heating rate is Ṫ = 〈Ė〉/3kB

(assuming that the energy thermalizes equally into all three
dimensions). In the discussion that follows, we use this
formula to estimate a heating rate, primarily for simplicity. It

is correct in the effective mass limit, in which the standing
wave does not affect the heat capacity; the effective mass
approximation is valid for low kinetic energy even given the
rapid momentum diffusion rate, since thermalization times are
typically long compared with the tunneling time.

More recent papers [126, 127] improve on Gordon and
Ashkin’s calculation using a master-equation approach for the
quantized atomic motion in a lattice. Gerbier and Castin [126]
considered a single atom, whereas Picher et al [127] studied
a many-body calculation for bosons. In a limit obeyed by all
current experiments, these master-equation approaches find the
same result for the total increase in mean energy as Gordon and
Ashkin—namely that the mean energy increase is independent
of the sign of the lattice detuning. Both [126, 127] question
whether the total energy increase is the relevant metric. For
high lattice potential depth, heating from the lattice light is
mostly related to transitions to higher bands. Since energetic
considerations and 1D simulations [127] imply the atoms in
higher bands do not decay to the ground band and thermalize
on experimental timescales, [126, 127] focus on scattering
events that do not result in an inter-band transition. When
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only ground-band heating events are considered (i.e. atoms
promoted to higher bands are artificially removed from the
system), the heating rate is higher for red-detuned versus blue-
detuned lattices (at the same magnitude of detuning). In our
experience, however, decay rates from higher bands are rapid
(on the order of several milliseconds) in cubic lattices, so this
may be a significant source of heating, and therefore more
investigation is required.

Given that the key question is how lattice light heating
affects entropy, it is imperative to develop a many-body
quantum mechanical description of light scattering in a
densely populated optical lattice in order to accurately assess
and to overcome the impact of heating. The many-body
calculation for single component bosons in a lattice in [127]
is an important first step along these lines. The main result of
that work is to highlight that scattering events localize atoms to
specific lattice sites. For the SF state, which is delocalized, this
causes fast decay of the off-diagonal long-range order in the
correlation function. The MI state, which is already localized,
is more robust against scattering. Since this effect depends
on the overall rate of scattering, it is worse in red than blue-
detuned lattices.

While [127] is a preliminary stride toward a full
understanding of the heating effects from the lattice light, it is
worth noting several areas which still need to be addressed. In
a densely populated lattice with a high optical depth, multiple
scattering events may affect the recoil contribution to the
heating rate in much the same way Bragg scattering strongly
influences fluorescence imaging [128]. Also, spontaneous
Raman scattering into other hyperfine ground states was
ignored—while suppressed for large detuning [129], such
scattering may alter the heating rate, especially for magnetic
degrees of freedom. Finally, effects important for detunings
large compared to the resonant frequency [46] were ignored.
Furthermore, interactions and quantum statistics may change
the heating rate by modifying the density of states [130–133].
Most importantly, [127] must be extended to address fermionic
and multi-component gases. The authors of [127] only
considered bosonic SF and MI states, yet the main challenge
moving forward is to cool into fermionic AFM phases.
Addressing heating in this regime is vital.

Although calculations such as in [127] are needed to fully
assess the heating rate, the simple heating model from [125] has
been demonstrated to be roughly consistent with experiments
[134]. We will therefore use this straightforward model
for relative comparisons across a wide range of parameters
in order to address the impact of light-induced heating
on experiments to probe Hubbard phenomena using optical
lattices. Two questions arise immediately—first, how do we
vary experimental parameters such as the atomic mass m,
lattice spacing d and scattering length as to minimize the
impact of the heating while keeping the physics of interest
unchanged? And, second, what is the relevant figure of
merit?

With regards to the first issue, we claim that, for both
fermions and bosons, a fair comparison at different m, d

and as can be made by keeping the characteristic density
ρ̃, U/t , and the ratio of scattering length to lattice spacing

as/d fixed. By specifying single values of U/t and ρ̃, one
can uniquely determine the phases present and their spatial
arrangement (figure 4). The ratio as/d determines the size of
corrections to the single-band Hubbard model description of
an optical lattice [60, 61, 135–137]. We note that the ratio of
U to the bandgap energy Ebg can also be used as an equivalent
measure [137]—U/Ebg ∝ s1/4as/d (which scales very weakly
with s). As as/d grows, the tunneling and interaction
energies become increasingly density dependent; by fixing
as/d, we can constrain these corrections to be small and
constant.

For the rest of this section, we therefore concentrate on
exploring the impact of heating for a fixed point on the phase
diagram determined by a specific ρ̃ and U/t , keeping as/d

constant. We choose U/t = 18 for fermions and U/t = 45 for
bosons (set by the lattice potential depth), ensuring in each case
that the center of the trap consists of a unit filled MI phase. We
also choose as/d = 0.01 (maintained in these calculations by
assuming a Feshbach resonance is available and adjusting as—
potentially difficult for some atoms such as 87Rb [138]), which
leads to negligible corrections to t , for example, for unit filling
and the range of parameters considered here. For fermions, this
combination of parameters ensures that we sample the single-
band Heisenberg regime, and that we are close to the maximal
value of the super-exchange energy J (according to dynamical
mean field theory [70, 117]). We note that there are indications
that J may be maximal for significantly lower U/t , and
therefore improvements in the lattice-induced heating may be
possible for fermions [135]. We restrict our attention to cubic
lattices formed from three pairs of laser fields with mutually
orthogonal wave-vectors and polarizations. In sections A.3
and A.2, we discuss modifications to the energy dissipation
rate for lattices with imperfect contrast and for lattices formed
using laser fields that intersect at an angle.

We choose the laser wavelength (and therefore the lattice
constant) and atomic species as parameters to vary. Even
though changing m and d will likely affect cooling power, we
feel that it is sensible to consider the heating rate independently
since it is not apparent which cooling method will ultimately
reach the low entropies of interest. We consider two bosonic
species (87Rb and 133Cs) and two fermionic species (6Li and
40K) that span a wide range of atomic masses. We also consider
wavelengths in the range 400–1550 nm, corresponding to
200–775 nm lattice spacings.

Now we are poised to address the second question:
what is a relevant figure of merit? Unfortunately, there
is no single figure of merit that can capture the impact of
heating in lattice experiments—there are multiple energy and
timescales involved, and preparation of quantum phases may
proceed using fundamentally different methods. In spite of
this, some general conclusions can still be reached about the
impact of heating, methods for minimizing heating, and the
likelihood that heating will prevent experiments from reaching
low enough entropy to realize, e.g. AFM phases. In table 1
we collect several formulae (valid in the limit s � 1) and
definitions useful for this discussion. For these formulae
and the plots in this section, we apply corrections to Ė (as
derived in [125]) and the lattice potential depth relevant for
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Table 1. Formulae useful for assessing the impact of light-induced heating.
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large detunings (see section A.5 and equations (10) and (11)
in [46] for a treatment of a two-level system). This includes
a correction for the counter-rotating term in both the dipole
potential and heating rate, and a modification for the photon
density of states in the heating rate.

It is tempting to use the absolute heating rate Ṫ , shown in
figure 11, as a figure of merit. The heating rate is minimized for
high mass species and longer wavelengths, primarily because
this reduces the recoil energy. Naively, then, the optimal
experiment would work with either 133Cs or 40K in a lattice with
the largest possible lattice spacing. However, characteristic
energies such as t , U and J shrink for longer wavelengths
and higher masses. Therefore, to understand the impact of
the heating rate, we cannot examine solely its absolute value.
Rather, one should compare the heating rate with the ratio of
a characteristic energy to time.

Formulating a characteristic time for lattice experiments
is problematic, and strongly depends on the approach used
to prepare low-entropy states. In general, we assume
that experiments will be dominated by the longest relevant
timescale: either τt = h/t if tunneling or kinetic energy
plays a dominant role, or τJ = h/J if magnetism arising
from super-exchange is of interest. These timescales will
determine equilibration times for excitations and adiabatic
turn-on times of the lattice. Therefore, they are appropriate to
describe schemes that attempt to reach low entropy by initially
cooling to low temperature and then adiabatically turning on
the lattice, cooling in the lattice, or some version of filtering.
We emphasize that understanding the process by which certain
excitations equilibrate, such as spin waves, is a current topic
of research, and it is not clear if this simple analysis is
appropriate.

We can now formulate a figure of merit Fετ based on
a characteristic energy ε and time τ . We choose three
combinations. For experiments probing a MI, we choose
FUt , since the relevant energy scale is U and tunneling will
determine adiabatic transformation and equilibration times.
For measurements of SF or FL properties, we choose Ftt ,
since t sets the scale of Tc and TF as well as the characteristic
timescale. Finally, for experiments designed to probe AFM,
we suggest FJJ , because J is the relevant energy scale and
spin-excitations are likely to relax on a timescale related to τJ .

Figure 11. Absolute heating rate for the lattice conditions
considered in this section. The color scheme, used for all figures in
this section, is 133Cs (purple), 87Rb (red), 40K (blue) and 6Li (green).
For this and the remaining figures in this section, we include
contributions from the D1 and D2 transitions, but we make several
approximations that are only correct for detunings that are large
compared with the natural linewidth (roughly 6 MHz for the D1 and
D2 transitions) and ground-state hyperfine splitting (e.g.
approximately 10 GHz for 133Cs). We also include the 4s → 5p,
5s → 6p, 6s → 7p and transitions for 40K, 87Rb and 133Cs,
respectively. For the discussion in the text, however, we use a
simple two-level model for the atom for clarity. Under realistic
experimental conditions, sufficient optical power is available to
cover the wavelength range under consideration: appropriate high
power (>10 W) solid state and fiber lasers are available at 532, 1064
and 1550 nm, and over 1 W can be produced across the 600–900 nm
range using dye and Ti : sapphire lasers. Achieving the power
necessary to create a lattice at 400 nm with the desired parameters is
feasible for all but Li using frequency doubling [98]. Although laser
intensities can be high in a lattice, it is unlikely that photoionization
will have a detrimental effect for short wavelength lattices, since the
laser wavelength can be tuned away from exciting intermediate
electronic states [99, 100].

Perhaps most important is the qualitative dependence of
these figures of merit on the parameters that can be controlled
experimentally. All are independent of the atomic mass, since
the heating rate is proportional to 1/m2, and each energy and
time scale is proportional to 1/m. Therefore, although the
heating rate is highest for light species such as Li, this should

13



Rep. Prog. Phys. 74 (2011) 054401 D C McKay and B DeMarco

Figure 12. Figures of merit for cooling to low-entropy phases. In
this section, we fix the characteristic density by adjusting N and ω
within reasonable experimental bounds. Keeping U /t constant is
accomplished by controlling the lattice potential depth s according
to s = [ln2(Uλ/π

√
2ast)]/2, which gives s ≈ 11 and s ≈ 14 for

fermions and bosons, respectively.

not strongly impact the ability to reach low entropy. Also, all
figures of merit are proportional to (λ3

0/λ
2)(1/|λ/λ0 − λ0/λ|),

which implies that the impact of heating is minimized at
long lattice spacings and for short wavelength electronic
resonances. This is evident in the plots of Ftt , FUt , and FJJ

shown in figure 12.
Qualitatively, we see that Ftt and FUt can be smaller than

unity across a wide range of laser wavelengths for all species.
This should not be surprising, considering the realization of
superfluidity and the Mott insulator in optical lattices for both
fermions and bosons. The situation is a somewhat different
for FJJ . For fermions, FJJ can be well below one for laser

wavelengths far enough from the electronic resonance. One
way to interpret this is that if the gas was instantaneously cooled
to zero temperature, the time to heat above the super-exchange
energy scale is much slower than the dynamical timescale
associated with, e.g., spin-waves. We conclude, therefore, that
as long as sufficient cooling power is available, there is no
barrier in principle to accessing the AFM state for fermions.
This does not imply that any potential d-wave SF state may
be within reach. In the cuprates, d-wave superconductivity
occurs at temperatures 3–4 times lower than the undoped AFM
state [13]. Not only, then, will the filling have to be controlled
in optical lattice experiments, but even lower entropy will be
required.

The situation for bosons is somewhat less encouraging
with respect to studying magnetic phenomena induced by
super-exchange—FJJ is of order one or greater across the
full range of accessible wavelengths for bosonic species. The
reason FJJ is higher for bosons compared with fermions is
that stronger lattices are required to reach the MI regime
(again, keeping as/d constant). This consequence of quantum
statistics will likely foil efforts to observe super-exchange
induced magnetic phenomena for bosons.

In conclusion, adiabatic transfer into an AFM state may
be possible for fermions if lower S/N can be reached for
parabolically confined atom gases. The margin in the figure
of merit FJJ that measures the degree to which adiabaticity
is limited by light-induced heating is approximately a factor
of 10 for the lattice laser wavelengths employed in current
experiments (1064 nm > λ > 700 nm). Additional
sources of heating, i.e. from technical noise, are therefore a
concern, as are indications that adiabatic timescales may be
longer than expected. During attempted adiabatic transfer,
evidence is mounting that mass transport may limit adiabaticity
[96, 139]. Additionally, thermalization timescales may be

long depending on how excitations decay [140]. Finally,
reaching the low-entropy states of interest will require
thermalization between the spin and motional degrees of
freedom, which has not yet been demonstrated. There are some
promising approaches that may obviate these limitations, such
as magnetic lattices [83]—a method for avoiding limitations
from light-induced heating. Ultimately, we feel that in-lattice
cooling methods will be necessary, particularly to reach any
potential d-wave SF state; we discuss such cooling proposals
in the next section.

3. State-of-the-art lattice cooling

It is clear that new entropy reduction techniques are needed
if the quest for low-entropy phases is to be successful.
Simply attempting to circumvent the limits discussed in the
previous section by, for example, imposing AFM ordering
in isolated wells and slowly increasing the coupling may not
work [141]. Although it may be possible to explore certain
phases, such as AFM, as the highest energy states of certain
Hamiltonians [142], our focus will be on cooling to the ground
state. In the following we will review a number of proposed
entropy reduction methods. Although no significant changes
to current experiments are required, all but one (spin-gradient
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Figure 13. Filter cooling. In one method shown in (a), entropy is
removed by shaping the confinement (adapted with permission from
Bernier et al [143], copyright 2009, American Physical Society).
Number filtering schemes (b) transfer entropy into an auxiliary state
(red atoms); these atoms are then ejected from the lattice. A
limitation of this scheme is that initially empty sites cannot be
removed from the final state.

demagnetization) remain to be implemented. The proposals
fall roughly into two groups. Included in the first group are
filtration schemes, which take advantage of entropy residing
in certain modes of the system which can then be ‘filtered’
out. The second group is based on immersing the system in a
reservoir that carries away the entropy.

We note that cooling power has not been calculated for any
of these proposals. Unfortunately, the notion that the success
of any cooling method can only be assessed via a comparison
of cooling to heating power has been largely absent from the
literature on lattice cooling techniques. As we pointed out in
section 2.2 using evaporative cooling as an example, such an
evaluation is necessary. We comment on the implications of
this oversight at the end of this section and remark on what
work will be necessary to move forward.

3.1. Filter cooling

There are several different types of filtering schemes proposed.
The first method, which we will refer to as spatial filtering,
utilizes the harmonic trap to create high entropy regions
which can be removed from the system. With appropriate
tuning of the confinement, a gapped phase occurs in the
center of the trap (i.e. a band insulator for fermions) and the
majority of entropy will reside at the edge (figure 13(a)).
This high entropy region can be filtered from the system
by adding a potential barrier [143] or displacing [144] or
significantly weakening [145] the potential at the edge.
Simulations suggest a reduction in entropy per particle to
S/N ≈ 0.1kB [143] and S/N ≈ 0.001kB [145]. An
advantage of spatial filtering schemes is that they require
minimal changes to be implemented in current experiments.
For the scheme suggested in [143] the main limitation is
the ability to create effective barrier potentials, which has
recently been demonstrated, albeit not in application to cooling

[36]. The filtering method proposed in [145] relies on
adiabaticity between a very weakly trapped outer region and a
strongly confined inner region. It is likely that the timescales
for maintaining this adiabaticity are unrealistic and further
calculation of these is required.

The next category, band filtering, involves transferring
entropy to higher bands; atoms in these higher energy states
are then removed. In fermionic systems, atoms occupy higher
bands when the first band is full because of the Pauli exclusion
principle. Since there are no available states in the lowest band,
it has close to zero entropy, and so the majority of the entropy
resides in higher bands [146–148]. This is even more effective
if traps can be tailored with flat potential profiles (and hard
walls) [147] since there are no true bands in harmonic systems
[58, 59]. A possible method for removing the higher bands is to
use Raman transitions to free particle states [147]. Simulations
of non-interacting fermions suggest that temperatures as low
as T/TF ≈ 0.001 can be attained if the proper potentials can
be created [147]. To further evaluate this method, we need
to understand the role of interactions, particularly during the
removal of the atoms in the higher energy bands.

The final set of proposals, number filtering, are based
on transferring entropy contained in number fluctuations into
another internal state [149–151] (figure 13(b)). The other
state can then be removed from the lattice, or the two states
decoupled via a Feshbach resonance or by shifting the lattice
[152]. In deep lattices, entropy is mainly carried by number
fluctuations if only a single component is present. These
schemes are based on the fact that, although near the edge
of the trap the fluctuations are between empty and occupied
sites, in the center the fluctuations are between states with
finite occupancy. By engineering schemes to transfer exactly
one atom per site to a different internal state, for example, these
fluctuations can be eliminated. This scheme only works if the
occupancy is non-zero, so it is best suited for bosonic systems
in tight traps where there is high occupation at the center.
Calculations of this process show that the entropy per particle
can be reduced by a factor of two after one filtering operation.
However, by relaxing and then resqueezing the trap (which
carries entropy from the edges to the center), and repeating the
filtering step, the entropy can be rapidly reduced in as little as
four cycles. A complication is that once number fluctuations
are removed, the system is not in equilibrium, so the trap must
be relaxed to prevent entropy regeneration. A limitation of this
method is that it only works for specific ratios of interactions,
and a more realistic analysis of the timescales for carrying the
entropy from the edge to the center is required to understand
the efficiency of applying this scheme cyclically [139].

Beyond the three main filtering proposals, there are a few
others that we will briefly summarize. The first is algorithmic
number filtering, which creates a final state similar to number
filtering as described above, except the system is filtered in
a step-wise fashion. For example, if access to both single
site imaging and single site addressability is available, defects
can be repaired by individually moving atoms to empty sites
[153, 154]. Another procedure is to split the system into two,
separate the two parts, and bring them slowly back together
again. As the edges of the two gases start to overlap, atoms are
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Figure 14. Immersion cooling. Schematically (a), these cooling
methods work by driving entropy from the system (blue) into an
entropy reservoir (gray). One immersion cooling scheme shown
schematically in (b) drives atoms into excited bands (left). Decay
into the ground band proceeds by release of energy and entropy into
a co-trapped BEC (right). Cooling is achieved by selectively driving
the high-energy atoms into excited bands and eventual accumulation
after decay into a ‘dark state’ near zero quasimomentum in the
ground band (reproduced from [168]).

removed, for example using a Feshbach resonance [149, 150].
This has the effect of sharpening the number distribution at the
edge of each gas. Another proposal is a dynamical filtering, in
which removing the harmonic confinement causes low-entropy
regions consisting of doubly occupied sites (in the FH model)
to collect together [155]. A means to recapture this region has
not been proposed, however. The final proposal is to spectrally
filter by applying a potential gradient to spatially map energy to
density [156]—a process known as a spectral transform. This
procedure allows the system to be filtered by removing atoms
from the sites corresponding to higher energies. Subsequently,
the spectral transform is reapplied, taking the system back
to the original lattice eigenstates. However, the effect of
harmonic confinement, the timing of the transform, and how
the system rethermalizes after evaporating and reapplying the
transform require more investigation.

3.2. Immersion cooling

The next set of immersion cooling proposals is based on
immersing the system to be cooled (the ‘sample’) in a
‘reservoir’ system that can carry away entropy (figure 14(a)).
The most straightforward proposal is to adiabatically transform
the potentials of the system in such a way that the entropy of
the reservoir increases, and therefore the entropy of the sample
decreases. An experimental realization of this scheme was
investigated in a harmonic trap [157], where it was shown by
compressing the sample independently of the reservoir that the
sample, which was bosonic, could be reversibly condensed.
There are similar proposals to explore these effects where only
the sample experiences the lattice, using different states of the
same species [47], or two different species [158, 159]. The

most detailed study [158] considered a fermionic system in a
lattice as the sample, and a harmonically trapped BEC as the
reservoir. By increasing the confinement of the sample heat
flows into the BEC reservoir, and calculations show a decrease
to S/N ≈ 0.02kB. There are also a number of theoretical
and experimental studies where both species experience a
lattice potential [76–79, 160–162]. Given species-dependent
interaction and tunneling parameters, there can be an increase
in entropy in the one at the expense of the other, which may
be exploited for cooling purposes. The primary remaining
issue is to understand the thermalization rate in these systems.
For example, in [158] the simulated entropy decrease requires
full adiabaticity between the BEC reservoir and the sample.
However, if thermalization is not efficient, then the intrinsic
heating and loss processes will dominate.

An interesting variation on this concept is to use two
degrees of freedom of the same gas to play the role of the
reservoir and the system. For example, if two-spin components
of the same species are co-trapped, the spin degree of freedom
can be used as a reservoir for the motional/position degrees of
freedom. Such a cooling scheme is common in condensed
matter systems and is known as adiabatic demagnetization
cooling: the sample is polarized in a high magnetic field,
and, as the field is lowered, the spins disorder and absorb
entropy. In a cold atom system, rapid spin-changing but
non-spin-conserving collisions—such as those behind dipolar
relaxation—are required for this method. So far, this cooling
technique has only been demonstrated for the non-alkali Cr
at relatively high temperature and for a gas that was purely
harmonically trapped; Cr has a high magnetic moment and
therefore a high dipolar relaxation rate [163]. A related
technique—spin-gradient demagnetization cooling—has been
demonstrated using atoms trapped in a lattice [164]. Here, a
two-spin Bose gas is prepared in a magnetic field gradient,
which segregates the components to opposite sides of the
trap. The width of the inter-species mixing region can
be used to measure the spin temperature, as discussed in
section 4.5. As the gradient is lowered, the two species
mix, and ideally entropy from, for example, particle–hole
excitations is transferred into the spin mixing entropy. There
are indications of cooling via comparison with theory [164],
but direct evidence is lacking since there is no way to
independently verify that spin and particle–hole excitations
are coupled. This type of cooling will be limited by magnetic
correlations when the temperature is on the order of the super-
exchange energy [164, 165], and therefore may be of limited
usefulness for accessing the AFM state.

A way to circumvent this limit is discussed in [166],
which proposes to cool into the AFM regime using a high-
spin species. In this scheme, a mixture of two-spin states
selected from a larger manifold is cooled in a parabolic
trap to low temperature in the presence of a large quadratic
Zeeman effect. Subsequently, a lattice is applied and spin-
changing collisions are enabled by decreasing the magnetic
field. Then, an inhomogeneous quadratic Zeeman effect is
applied, and entropy is segregated into a spin liquid at the edge
of the gas. While this scheme will work into the regime of
strong magnetic correlations, limiting timescales may reduce
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the effective cooling power below the threshold required for
accessing the AFM regime.

Another route to immersion cooling is to drive the sample
to an excited state, such as an excited band, and let it
decay by releasing an excitation into the reservoir [167–169]
(figure 14(b)). Cooling can occur if the system is able to decay
to a state lower in energy than the initial state. Simulations
show that for a non-interacting Bose system an effective
temperature of kBT /4t ≈ 0.002 [169] can be attained in a time
50 h/t . Practical issues, such as interactions between lattice
atoms and interactions during the excitation and reabsorption
of excitations, may limit the effectiveness of this approach. A
general concern for all immersion proposals is that we lack
the experimental demonstration of a lattice system immersed
in a BEC reservoir, although the problem is currently being
studied [47, 157].

3.3. Conclusion

As discussed in section 2.2, the effectiveness of any cooling
scheme must be evaluated by comparing cooling power to
heating rates. In contrast to evaporative cooling, many of
the schemes presented here proceed in a step-wise fashion,
and so only a time-averaged cooling power can be defined.
Unfortunately, cooling power (including quantum statistical
effects, such as Pauli blocking) in the strongly correlated
limit has not been calculated for any of the proposed cooling
schemes. Ultimately, all these cooling schemes will be limited
by the timescale for the coupling between the atomic motion
and spin through super-exchange [158], since we wish to
cool into a low-entropy phase in which the motional and
spin degrees of freedom are in equilibrium. In principle,
then, any of these schemes may work for fermions, as we
discussed in section 2.3. Without more information such as
the cooling power and the scale of technical heating, however,
we cannot assess the likelihood of success in practice. That
said, any scheme that relies on state-dependent potentials
will be fundamentally limited to a poor figure of merit since
the light must be detuned on the order of the atomic fine
structure splitting. Species-dependent potentials suffer a
similar problem for at least one of the species, but certain
atom combinations may limit the heating for the species of
interest [159]. For example, in the scheme of [167] heating
from the light potential on the reservoir species should not
affect the temperature of the lattice gas being cooled.

To summarize, we have discussed several cooling schemes
which work to transfer entropy out of the system of interest,
by either filtering the entropy or immersing the system in a
low-entropy reservoir. Progress is being made toward the goal
of in-lattice cooling, including a (possible) demonstration of
immersion cooling using a spin reservoir (i.e. spin-gradient
demagnetization cooling). Another important step is that
high-resolution potential shaping has been realized [36],
which is a critical component for spatial filtering schemes
[143, 145, 147]. It is clear from our discussion that the most
important questions that remain to be addressed are related to
the dynamics in lattice systems. This includes thermalization
times between the system and the reservoir [158, 164], the

time required for transforming from the phases useful for these
cooling schemes into the strongly correlated phases of interest,
and the time for equilibration between the spin and motion.
Finally, it remains to be seen whether a cooling scheme can be
devised that directly removes spin entropy.

4. State-of-the-art lattice thermometry

In this section, we review the state-of-the-art in lattice
thermometry, including methods that have already been
employed and proposals for new techniques. Even though
most existing methods cannot be extended into the low-
entropy regimes of interest, they may provide guidance in
developing new techniques. In this section we will be careful to
distinguish between methods that are primary thermometers—
those for which the measured quantity can be connected to
temperature via first principles—and secondary thermometers,
which require calibration. We note that only two of the
methods we will discuss qualify as primary thermometers:
measuring fluctuations via in situ imaging and using a second
weakly interacting species as a thermometer.

All thermometry methods can roughly be separated into
five basic strategies. The first strategy is to assume that the
lattice is turned on adiabatically (i.e. without a change in
entropy) and therefore use traditional methods to measure
entropy before the lattice is turned on. The second approach
is to use theoretical input to understand TOF imaging. The
third method is to measure in situ distributions of the system.
Another strategy looks at the response of the system to external
perturbations. The final tactic is to develop extrinsic, primary
thermometers—independent systems (or degrees of freedom)
in thermal contact with the system under study.

4.1. Isentropic assumption

The standard method of preparing gases in optical lattices is to
transfer the gas from a harmonic trap by turning on the optical
power slowly compared with all timescales. If technical noise
plays no role, then the entropy per particle in the lattice is
limited only by the light-induced heating accumulated during
the lattice turn-on. For most experiments to date, the resulting
fractional increase in entropy per particle is small, and S/N

before the lattice turn-on is used to estimate the temperature
in the lattice [74, 75, 116, 170]. Clearly, this method will be
of limited use as experiments pursue ultra-low entropy phases
for which the entropy accumulated during the lattice turn-on
is significant.

To use this technique for thermometry, theory must be
employed to connect entropy to temperature. The relationship
between temperature and entropy can be calculated from
theory in the non-interacting limit [59, 146, 171–174],
with mean field methods [70, 117, 119, 175–178], analytic
approximations in certain limits [118, 179], and with QMC
in certain regimes [180–182]. The main limitations of this
method are the assumption of adiabaticity, which is violated
by heating processes in the lattice [116, 125, 170], and the
reliance on theory, which makes this method a secondary
thermometer in the strongly correlated regime. Heating can
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be estimated experimentally by measuring the entropy before
loading into the lattice and after turning the lattice on and then
off again [74]. A detailed study of these heating processes
for bosons concluded that the main heating contribution is
light-induced from the lattice beams and that the ramping
process itself is adiabatic [170]. However, other studies
have shown that while local adiabaticity is achieved during
the ramp, global adiabaticity requires timescales an order of
magnitude longer than typically used [139]. While the results
of this thermometry appear to agree well with observations
[74, 75, 116, 170], more research is needed into the adiabaticity
of the ramping process. This thermometry has a large range,
but the lower bound is set by entropies that can be measured
in the harmonic trap—S/N ≈ kB (fermions) [74, 75, 116] and
S/N ≈ 0.1kB (bosons) [30]. This method will not be useful
for evaluating in-lattice cooling schemes.

4.2. Time-of-flight imaging

There are a number of thermometry techniques that can be
applied to atoms in the lattice. The first group of these is to
analyze the images after releasing the atoms from the lattice
(TOF imaging). This is a natural choice given that it is the main
technique used for harmonically trapped systems and is not
demanding of imaging resolution. Assuming that interactions
play no role during the expansion and a long enough expan-
sion [183], the TOF images probe the momentum distribution.
In harmonically trapped, non-interacting gases, thermal energy
is equally shared between position and momentum degrees of
freedom (i.e. potential and kinetic energy), but this is not the
case for lattice systems. Instead there is a limited amount of
thermal energy that can be stored in momentum (i.e. kinetic
energy), proportional to the tunneling t , which decreases ex-
ponentially with lattice depth. Once the band is nearly filled,
the momentum distribution is not a sensitive probe of temper-
ature [58]. For fermions, the limit corresponds to TF > t or
T > t , and therefore TOF images are usually not used to probe
the temperature of fermions in a lattice. For example, in three
dimensions with sufficient atom number to achieve half-filling
at the center of the trap [116], TF ∼ 2.3t (in the non-tunneling
limit [184]). Only for very weak traps and/or low atom number
can TOF images be used for fermion thermometry.

Even when T is less than t , TOF images can be difficult
to interpret due to strong interactions. In the thermal regime
or in the SF regime of the BH diagram, non-interacting fits
to all or parts of the image can be used [50, 58]. There
have also been attempts to develop analytic, but approximate
distributions [50, 185], but these have not been evaluated
in an experiment. The only unequivocal method is direct
comparison of TOF images to QMC simulations [134],
which also takes into account finite expansion effects [183]
(figure 15(b)). Direct comparison with QMC simulations can
be considered a primary thermometer for bosonic systems, but,
in general, QMC simulations are not possible for interacting
fermion systems. Despite being a primary thermometer, QMC
comparison is limited because of the required computational
power. It would be difficult to use this technique for evaluating
the temperature of a running experiment, for example, to

Figure 15. TOF thermometry. (a) shows a typical TOF momentum
distribution for a bosonic system (reproduced with permission
from [50], copyright 2008 American Physical Society). A number
of properties of such images can be used for thermometry, such as
condensate fraction, defined as the fraction of atoms in the narrow
(red) component, shown in the cross-section on the left. Visibility,
defined as the contrast between the blue and red areas shown in red,
can also be used to determine temperature. Two other methods are
shown in (b) and (c) (reproduced from [134]; reprinted by
permission from Macmillan Publishers Ltd: Nature Physics,
copyright 2010). In (b), a direct comparison is made with QMC
calculations. In (c), heuristic measurements are used to find the
critical temperature and/or absolute temperature through
comparison with theory.

understand if the system is being properly cooled. By the
time QMC results are complete, the experimental situation may
have changed (i.e. due to ambient magnetic fields). The utility
of this method therefore lies in its ability to calibrate secondary
thermometers. Already in [134], QMC comparison was used
to calibrate thermometry based on the isentropic assumption.

Secondary thermometry will undoubtedly play an
important role cooling to low entropy. In this method,
heuristic observables are defined in the TOF images which
are then calibrated to temperature using either theory or a
different thermometer (i.e. such as in [134]). One suitable
observable is the visibility after TOF (figure 15(a)) [186].
At zero temperature the visibility decreases as the lattice
depth is increased and interactions fill the Brillouin zone—
an effect that was used as evidence for the first experiments
probing an optical lattice MI [26]. The visibility is
temperature dependent above the critical temperature for
bosons [180, 181, 187] and could be used for thermometry
[185, 186]. A ‘kink’ (i.e. discontinuous derivative) in
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the visibility is one method for determining Tc, but the
experimental error is large [134] (figure 15(c)). A similar
observable is to define a ‘condensate fraction’ by identifying
a bimodal distribution [187] that consists of a narrow peak
on a broad distribution (figure 15(a)). The fraction of atoms
in the sharp feature is the heuristic condensate fraction. The
condensate fraction defined in this way can be compared with
theory [173, 174, 176–178, 181, 187] for thermometry below
the critical temperature. The critical temperature can be
identified by a vanishing condensate fraction or changes in the
width of the narrow peak [50, 170] (figure 15(c)). Although
locating the critical point does not perform thermometry,
this achievement is important for calibrating and checking
thermometry methods.

Finally, there are techniques that look at the statistical
properties of a set of TOF images. For example, some of the
noise in each image is a consequence of second-order momenta
correlations. Correlations in this noise can be used to probe
temperature in the MI phase for fermions and bosons [94],
although the sensitivity has not been explored. In the AFM
phase a peak should appear in the correlation at a special
value of the momentum due to the formation of singlet pairs
[188]. The weight of this peak could be a method for probing
temperature in the regime of AFM ordering.

4.3. In situ imaging

In the previous section we discussed thermometry accom-
plished by analyzing TOF images. As mentioned, for deep
lattices, temperature information in the momentum distribu-
tion is reduced since the energy that can be stored in momenta
fluctuations scales as t , which shrinks exponentially as the
lattice depth increases. Thermal energy for strong lattices is
predominately stored in particles at the edge of the trapping
potential, particle–hole excitations, and spin disorder (at low
temperatures). These excitation modes appear weakly in TOF
images as, for example, small signals in the noise correla-
tions [82]. However, all these excitations are nearly diagonal
in the site and spin-resolved atom number basis, which points
to in situ imaging as a fruitful method for thermometry. Al-
though a few in situ techniques do not require high-resolution
imaging, it is necessary to exploit the full range of possible ther-
mometry methods. This daunting technical challenge has been
recently overcome by a number of groups [36, 66, 67, 189].
Site-resolved in situ imaging has also been demonstrated for
5 µm lattice spacing [190] in 3D, 2 µm [82] and 600 nm [191]
in 2D and 433 nm [189] in 1D for systems not in the strongly
correlated regime.

In situ imaging is well suited for systems that are
harmonically trapped. For probing techniques that lack
position resolution, such as TOF imaging, the signal is
averaged over all chemical potentials present in the trap.
Consequently, measured properties may be averaged over
several different phases, which can cause considerable issues
of interpretation. However, for in situ techniques with the
ability to resolve position, the harmonic trap is an advantage.
Because the chemical potential is small near the edge of the
trap, a perturbative expansion for the density distribution [192]

can be used to extract the temperature. A caveat is that the
region for which this expansion is applicable grows smaller
with higher interactions and lower temperatures, making finite
signal-to-noise ratio a limitation. Also, incomplete global
thermalization may lead to the local temperature at the edge
of the gas differing from the local temperature in the center of
the lattice [139, 165]. An extension of this idea is to use higher
order expansions [193], which are still numerically tractable
and increase the region of applicability in the trap.

This approach can also be used to extract an equation of
state, by first measuring pressure as the integral of density
with respect to chemical potential (along the camera line of
sight) [192]. By changing the harmonic confinement and
temperature, the entropy can be determined experimentally
from the derivative of pressure with temperature [192]. This
method has been used to measure the equation of state for a
strongly interacting Fermi gas, but not in a lattice [194, 195].

The trap can also be utilized to determine the
compressibility from the derivative of the density with respect
to chemical potential (i.e. position) [66], which can be used
to identify insulating phases. Furthermore, the ratio of
compressibility to local number fluctuations (which can be
directly measured) can be used to determine temperature
via the fluctuation–dissipation theorem [193, 196]; however,
experimental errors using this method are large [66]. The
fluctuation–dissipation theorem has also been used to measure
the temperature of a degenerate Fermi gas in a harmonic trap
with errors that are comparable to more traditional techniques
[197, 198]. Determining entropy and temperature using
these two techniques (via the equation-of-state or fluctuation–
dissipation theorem and measurements of the in situ density)
qualifies as primary thermometry since the methods are
entirely model independent. However, they both assume that
the LDA is valid and that the system can be described using a
grand canonical potential.

Another in situ technique is to fit the distribution to an
exact equation in the t → 0 limit, which may be justified
for deep lattices in which U/t � 1 [66, 139]. In [66], the
temperature was measured by fitting to in situ distributions with
approximately 20% uncertainty (see figure 16). As cooling
enables the realization of spin ordering, in situ techniques
will be able to identify these phases directly. Measuring
the magnetic order parameter, such as the magnetization or
staggered magnetization for antiferromagnetism, should be
effective for spin thermometry. It is an outstanding technical
challenge to demonstrate spin-sensitive imaging; however,
there are a number of proposals (i.e. [199], and see also
section 4.4). Eventually, in situ techniques will be limited
when there is almost complete magnetic ordering and samples
will be ‘doped’ in order to search for d-wave superfluidity. As
we approach that benchmark, new techniques will be required
with a number of solutions already proposed [200–202]. An
alternative, which is less demanding on resolution but works
only in certain limits, is to look at the width of the in situ
distribution [58, 75, 107].

Another method related to in situ imaging is to measure
the distribution of in situ site occupancies. Determining
temperature requires measuring the ratio of the atoms that
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reside on sites occupied by n atoms. The most straightforward
approach is to use site-resolved imaging, discussed above,
to measure the local site occupancies. This allows the
distributions to be measured in a single phase of the system,
without needing to average over the trap. In [36] temperature
was determined by measuring the distribution in both the n = 1

Figure 16. In situ thermometry via density profiles. In situ images
of an MI with unit filling (left) and two atoms per site (right) are
used to determine the average site occupancy at different trap radii.
Temperature is determined by fitting to the zero-tunneling
approximation (reproduced from [67]). Reprinted by permission
from Macmillan Publishers Ltd: Nature, copyright 2010.

Figure 17. In situ thermometry via fluctuations. In situ images (left) of the MI state averaged over 20 experimental runs. The imaging
process returns the number of atoms in each site modulo 2 due to rapid light-assisted collisional loss. The top image shows a unit filling MI
phase, and the bottom image an (invisible) MI phase with two atoms per site (surrounded by a visible SF shell). The number statistics in the
MI phase (right) is fit to QMC calculations to determine temperature. All images were reproduced from [36]. Reprinted with permission
from AAAS.

and n = 2 MI regions of a 2D boson lattice system (figure 17).
The variance around 1 and 2 atoms per site was fit to a QMC
curve to extract temperature (with about 20% uncertainty),
although analytic forms are available in the zero-tunneling
limit.

High-resolution imaging is not a requirement, however,
for measuring in situ number distributions. There are two
primary methods for measuring the number of sites with n

atoms that do not rely on high resolution imaging, both of
which measure the number of atoms transferred into an initially
unpopulated state. In the first technique, spin-changing
collisions between pairs of atoms on a site cause population
to shift into other spin states [203]. The other process uses an
external field to transfer atoms into another state; interaction
effects, which depend on the number of atoms per site, affect
the transfer. The occupation statistics can be measured by
investigating resonances that occur at different frequencies of
the external field [64, 116, 204].

While number distributions have been analyzed for
bosonic [65, 203, 205–207] and fermionic systems [116, 204],
this method has been extensively evaluated, specifically for
thermometry, in fermionic systems where the number of
atoms per site is limited to zero, one, and two [116, 204].
The number of doubly occupied sites as a function of
temperature in the FH model can be calculated from theory
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Figure 18. Light-scattering thermometry. Light is scattered from atoms trapped in a lattice in two-spin states, indicated by red and blue.
The frequency of the light is fixed so that it primarily interacts with atoms in the blue state. In the spin-disordered phase there is no Bragg
scattering (left), but in the AFM state the light is deflected (right). The degree of spin ordering and diffraction is a direct measure of
temperature.

with relative accuracy in certain limits [116, 184, 204, 208]. A
comparison of QMC, dynamical mean field theory (DMFT),
and series approximations demonstrated that simple series
approximations give almost identical results to the more
complex computational calculations in the parameter range of
current experiments [116]. The most important issue with this
thermometry method is that there are certain regimes in which
double occupation is not a sensitive function of temperature.
A detailed study of using double occupation to measure the in-
lattice entropy achieved results with less than 25% uncertainty
[116]. Also, this method is only useful above S/N ≈ kB,
because number fluctuations are absent at lower entropy.

4.4. Probing using light

Another approach to thermometry in lattices is to probe the
system using light. If the light is not resonant with an electronic
transition, it will scatter from the atomic gas, which acts as a
spatially dependent refractive medium. Because the scattering
is coherent, there will be interference between the light
scattered from different lattice sites, therefore making it a probe
of the density–density correlations in the lattice [209–216].
To sensitively probe thermal effects, one possibility is to
block the elastically scattered portion of the light and measure
the total amount of inelastically scattered power [216]. The
total amount of light detected in this scheme depends on
temperature; technical noise is a concern because the amount
of light scattered is small. For example, at T/TF = 0.1, one
hundred experimental runs are required for the uncertainty in
temperature arising from photodetector shot noise to be driven
below 20%. A variation on this method is to place the detector
at an angle that does not satisfy the Bragg condition for elastic
scattering (if there were identical numbers of particles in each
site, such as in the MI phase). The number of photons scattered
into this angle depends on the temperature and the phase of the
system [215]. A number of proposals have also considered
using a cavity to detect the scattered light [212–214].

By choosing suitable parameters of the light (such as
polarization and frequency), the atomic refractive index can
be spin dependent. Therefore, light scattering is one method
for detecting spin correlations (such as the AFM state). One
proposal [217] is to direct the beam at a specific angle so
that elastic scattering only occurs when the system is spin

ordered (figure 18). A variation of this is to filter based on
polarization [210], so that only light which scatters into an
orthogonal polarization is detected, thereby allowing detection
of the light that is coupled to atomic spin operators. Spin
correlations also appear as a polarization rotation (through
the Faraday effect) in the beam that is not scattered [209].
High resolution can be obtained if the probe light is also retro-
reflected and forms a lattice. In this scheme, different spin
phases can be identified by measuring the rotation of the probe
polarization as the probe lattice position relative to the atomic
lattice is varied. Spin thermometry is possible by measuring
the degree of spin correlations by, for example, determining the
fraction of the diffracted power. Above the Néel temperature,
however, these approaches provide no signal.

An alternative approach is to measure the effect of the light
on the atoms, either through Bragg or Raman scattering. In this
scheme, the system is excited using two laser beams with a pho-
ton energy and momentum difference determined by the fre-
quency difference and angle between the beams, respectively.
Several different definitions for light-scattering processes have
been used in the literature; here, we will call this process ‘Bragg
scattering’ if the atoms change only their motion, and ‘Raman
scattering’ if the internal state changes. For either, excitations
in the gas are created if the energy and momentum difference of
the beams corresponds to a transition to an excited state. Inter-
nal state dynamics, such as changes in the interaction strength,
may play a role in Raman scattering. Excitations created by
light scattering can be measured as an increase in the size of
the gas after TOF or, for Raman scattering, by counting the
atoms transferred to a different hyperfine state.

Bragg scattering is not a sensitive measure of temperature
in the SF regime, but in the MI regime could be used to measure
temperatures on the order of U/5 [218]. In the MI regime finite
temperature causes peaks to appear in the spectrum which do
not occur at zero temperature. The appearance of these peaks
has been observed in 1D [98], but more theory is required to
relate the observed signal to a temperature. The temperature
dependence of the Raman signal has been calculated
theoretically, but is it strongly model dependent [219].

4.5. Extrinsic thermometer

The final strategy for thermometry is to thermally connect the
lattice gas to an auxiliary system or degree of freedom that
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Figure 19. Extrinsic thermometry. The panel on the left shows
TOF images from a two-component system confined in a spin-
dependent lattice. The lattice potential depth is increased from top
to bottom. The images for the atoms in the |1, −1〉 state show this
lattice-bound component crossing into the MI regime; the lack of
‘diffraction peaks’ for the |2, 0〉 state shows that this co-trapped gas
is only parabolically trapped. The weakly interacting gas comprised
of atoms in the |2, 0〉 state could be used as an extrinsic thermometer
(reproduced from [47]). An in situ image for a two-component
gas with a magnetic field gradient present is shown in (b). The spin
degree of freedom acts as an extrinsic thermometer in thermal contact
with the motion, which is the system of interest. The temperature
can be determined from the width of the mixing region (reproduced
from [107], copyright 2009, American Physical Society).

can be used as a primary thermometer. The advantage of
this method is that measurable properties of the thermometer
system can have a simple analytic dependence on temperature.
One implementation of this method is to use the spin degree
of freedom as the thermometer for the motion. Spin ordering
is expected at very low temperatures in the Hubbard models;
above these temperatures, however, the spins on different
lattice sites are essentially decoupled from one another.
Therefore, the atomic distribution, which is the degree of
freedom we are interested in, is decoupled from the spin degree
of freedom (as long as the strength of the interactions are not
strongly state dependent). By adding a spatially dependent
energy scale for the spins, in the form of a magnetic field
gradient, one can extract the spin temperature based on the
width of the domain wall (figure 19). This technique was
demonstrated experimentally in [107] where temperatures as
low as 1 nK were measured, with the lower bound set by
imaging resolution and the super-exchange temperature. One
concern is that poor coupling between spin and particle degrees
of freedom may mean that the spin temperature from the
domain wall does not reflect the temperature at the edge of
the gas [165]. While the spin temperature was compared with
the particle temperature in the high-temperature limit, there
has been no independent confirmation at low temperatures.

Another proposal is to use a different atom that does not
experience the lattice potential as a thermometer. This can be
accomplished by polarizing the lattice beams in a specific fash-
ion [47] and using a different spin state (figure 19), or using a

different species altogether and a ‘magic’ wavelength for the
lattice light [157, 159]. In this way, thermometry can be per-
formed on the atoms that are only harmonically trapped using
the traditional methods. The main limitation to these methods
is whether or not the thermometer is truly in thermal equilib-
rium with the system under study. Interactions will maintain
thermal contact, but the timescale for thermalization may be
too long compared with loss processes and heating in the sys-
tem. Another limitation is that the presence of the thermome-
ter may perturb the system and vice versa. For example, if the
presence of the lattice atoms significantly alters the potential
felt by the harmonically trapped atoms, extracting temperature
using the traditional methods will no longer be possible and
the thermometer will not be effective. Or, along the lines of
self-heating in experiments on solids, adding the thermometer
atoms may introduce new technical heating sources, such as
inelastic collisions. Also, the heat capacity of the harmonically
trapped species will introduce limitations [47].

4.6. Conclusion

In this section we have reviewed the five main strategies for
thermometry in optical lattices: entropy matching, analyzing
the momentum distribution (TOF imaging), in situ measure-
ment, scattering with light and using an extrinsic thermome-
ter. While all have their benefits and disadvantages, we would
like to address the question of the most viable strategy for
developing a technique that can reach into the lowest entropy
regimes. While the most mature techniques are entropy match-
ing and TOF imaging, these cannot be the primary methods in
the future. Both require extensive theoretical input, and, in the
case of entropy matching, rely on the assumption of adiabatic-
ity, which will not apply as we pursue lower entropy phases.
Light scattering is a promising approach, yet it has not been
experimentally demonstrated and requires specific theoretical
models. The opposite is true for using a thermometer system,
which is model independent. Yet, such a thermometer has not
been satisfactorily demonstrated and important questions have
been raised about thermal contact between lattice gases and
external degrees of freedom. While these questions should be
pursued, they may limit the viability of this approach.

This leaves in situ measurement, which we feel may be the
principal technique for measuring temperature in future lattice
experiments. Recently, several groups have demonstrated
high-resolution imaging in a lattice [36, 66, 67, 139, 189],
thereby surpassing the main hurdle of in situ imaging. Since
the technical challenges have been overcome, there are clear
advantages of in situ imaging; we will highlight two. First,
local probes do not have to average over several in-trap phases,
which vastly clarifies interpretation of data. Second, in deep
lattices, the Hamiltonian is nearly diagonal in the number basis.
With little theoretical input, temperature can be measured
from distributions [67, 139] and local number fluctuations [36].
These methods are viable over a large temperature range,
until density fluctuations are frozen out and magnetic ordering
sets in. Although a main challenge is spin-dependent in
situ imaging, the resolution has been achieved [36, 67] to, in
principle, detect local magnetic ordering, which will naturally
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particle to which they are predicted (or demonstrated) to cool. Thermometry methods are indicated by their range of validity. Entropies are
indicated on the central thermometer, which shows the current limit reached in experiments (red).

extend temperature measurements into interesting magnetic
phases. Although a few challenges remain—spin-resolved
imaging, 3D systems, for example—in situ imaging is the
most promising technique for thermometry in a lattice for low-
entropy phases.

5. Conclusion

In summary, optical lattices are well suited to contribute to
our understanding of a wide variety of models of strongly
correlated materials. Unfortunately, energy and temperature
scales for Hubbard models as realized by optical lattices are
extremely small. Quantum phases with energy scales such as
t and U are within the range of current cooling techniques,
and accordingly have been realized in numerous experiments.
However, the next lowest possible energy scale J (super-
exchange) has not been reached. We must cross this barrier
to explore magnetic phases and ultimately search for d-wave
superfluidity. In this review, we addressed the issues involved
with cooling to and below the temperature scale associated with
magnetic ordering. Our main conclusions are the following.

(1) The standard technique for cooling in optical lattice
experiments—evaporative cooling in a harmonic trap
followed by slowly turning on the lattice potential—
will likely not reach sufficiently low entropy per particle.

New lattice cooling techniques must be developed and
investigated experimentally.

(2) Developing new cooling techniques will require a detailed
understanding of heating processes in the lattice, since the
cooling power must exceed the heating rate in the regime
of interest. From a single particle analysis of lattice-
light-induced heating, we conclude that it is in principle
possible to achieve magnetic ordering for large lattice laser
wavelengths. However, a complete study will require
a many-body quantum mechanical description of light
scattering in a densely populated optical lattice.

(3) We lack a complete theory of dynamics and thermalization
in strongly correlated lattices. In particular, we do not un-
derstand the exchange of entropy between the spin and mo-
tional degrees of freedom. Evaluating cooling proposals
without such a theory is impossible, since the feasibility
of any method strongly depends on competing timescales.

(4) New thermometry methods are required to develop and
evaluate cooling techniques. We feel that the principle ap-
proach for future experiments will be thermometry based
on site-resolved imaging.

Reaching the super-exchange temperature will require a
two-pronged approach. Firstly, we need to continue to develop
and investigate new cooling and thermometry techniques. A
number have already been proposed and tested, which are
summarized in figure 20. Simultaneously, the physics of
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Figure 21. Laser geometries for light-induced heating. In (a) the
lattice is formed from counter-propagating beams, in (b) using
beams intersecting at an angle, and in (c) using beams with two
different intensities.

heating and thermalization must be explored. Vigorous activity
on both fronts is underway, making a new regime of lattice
physics a tantalizing prospect.
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Appendix. Heating and dipole potential

In this appendix, we discuss in further detail the light-induced
energy dissipation rates and dipole potential for the three
common lattice configurations shown in figure 21. Following
[125], the energy dissipation rate for a two-level atom in a light
field is, in general,

Ė = ER
1

8

�3

�2

I (�x)

Isat

[
1 +

| �∇E(�x)|2
k2| �E(�x)|2

]
.

Here �E(�x) is the electric field, I (�x) = cε0| �E(x)|2/2 is the
optical intensity, Isat is the saturation intensity, we work in
the rotating frame and ignore counter-rotating terms, and
we assume that the light is far from resonance. In the last
section of this appendix, we introduce the contribution from
the counter-rotating term, which is important at large detunings
(comparable to the transition frequency).

A.1. Counter-propagating lattice

For a lattice formed from counter-propagating laser beams
(figure 21(a)), E(�x) ∝ cos(kx), and

Ė = ER
1

8

�3

�2

I0

Isat
,

where I0 is the intensity at a standing-wave anti-node. Using

Vlat = h̄

8

�2

�

I0

Isat

for the lattice potential depth, the energy dissipation rate can
be conveniently expressed as

Ė = ER
Vlat

h̄

�

|�| ,

which is independent of position in the standing wave. The
heating rate is identical for spin-dependent ‘lin-θ–lin’ lattices
[47], where Vlat is the potential depth of the lattice when θ = 0.
When θ = π/2 and the lattice is completely spin dependent,
the heating rate is independent of state and field direction.

A.2. Lattice beams intersecting at an angle

Optical lattices are often formed using laser beams that
intersect at an angle, as in figure 21(b). Referring to that
geometry shown in the figure, �E(�x) ∝ e−iky sin(θ) cos(kx cos θ ),
leading to a standing wave | �E(�x)|2 ∝ cos2(kx cos θ ) with
spacingd = λ/2 cos(θ)between wells. The energy dissipation
rate is

Ė = ER
Vlat

h̄

�

|�| [(1 + sin2 θ) cos2(kx cos θ)

+ cos2 θ sin2(kx cos θ)],

which is spatially dependent. To compare heating rates
between lattices made using different geometries, it is useful
to rewrite this as

Ė = h̄2

m

Vlat

h̄

�

|�|
π2

2d2
[(1 + 2 tan2 θ) cos2(kx cos θ)

+ sin2(kx cos θ)].

Although the heating is spatially dependent, the atoms
only reside in the nodes (anti-nodes) for a red (blue)-detuned
lattice, and so we consider only these two cases. For red-
detuned lattices, the atoms are localized at x ≈ 0 and so,

Ė = h̄2

m

Vlat

h̄

�

|�|
π2

2d2

(
8d2

λ2
− 1

)
,

where λ < 2d. Therefore, for lattices with equal well spacing
and potential depth, the heating rate is lowest using the longest
wavelength possible, which corresponds to the retro-reflected
configuration, i.e. the results of section 2.3 are not improved
using an angled lattice.

For blue-detuned lattices, the atoms are located at
x ≈ π/2k cos θ and so,

Ė = h̄2

m

Vlat

h̄

�

|�|
π2

2d2
.
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In this case, for lattices with equal well spacing and potential
depth, the heating rate is lower for shorter wavelengths (i.e.
larger detunings). However, this argument does not apply
to arbitrarily short wavelengths, since for large detunings
this formula must be corrected by a pre-factor (λ0/λ)3 (see
section A.5). Once the lattice is detuned by hundreds
of nanometers (the regime in which blue-detuned lattices
achieve the best figures of merit, see figure 12), the pre-factor
outweighs any benefit of using a shorter wavelength, angled
lattice.

A.3. Lattice beams with different intensities

An important issue is the effect of imperfect lattice contrast on
the heating rate. It is common in lattice experiments employing
a counter-propagating geometry to have, by necessity, unequal
intensity in the two laser fields (figure 21(c)). In this case,
�E(�x) ∝ [cos(kx) − αe−ikx]/

√
1 − 2α, with (1−2α)2 = I2/I1

as the ratio of intensities. A standing wave | �E(�x)|2 ∝
[cos2(kx)+α2/(1−2α)] is generated with minima that are not
completely dark. Once again, the dissipation rate

Ė = ER
Vlat

h̄

�

|�|
[

1 +
2α2

1 − 2α

]

is independent of position, but higher than a ‘perfect’ lattice
with the same lattice potential depth. Fortunately, Ė increases
very slowly as the ratio of laser intensities deviates from
unity, reaching only 1.06 times the ‘perfect’ lattice value for
I2/I1 = 0.5, for example.

A.4. Beyond two levels

When the detuning is comparable to the fine structure splitting
between the P3/2 and P1/2 states we must consider these two
levels independently for heating (the effect on the potential is
already listed in the main text). Then the heating rate is

Ė

ER
= I0

24

(
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1/2

�2
1/2Isat1/2

)
.

The total heating rate due to all transitions is the sum of the
heating rates from the individual transitions, provided that

I/Isat � 1.

A.5. Large detuning lattices

In all the previous expressions in this appendix we have
assumed that, for simplicity, the detuning is small compared
with the transition frequency. However, since the discussions
in the text have motivated the need for large detunings, we
must consider going beyond this limit. New terms (‘counter-
rotating’ terms) become important and must be included in the
equations for the dipole force and heating rate.

The dipole potential for a two-level atom is

Udip = −3πc2

2ω3
0

�

(
1

ω0 − ωL
+

1

ω0 + ωL

)
I (�x),

which is correct for all detunings much greater than the natural
linewidth [46].

Also, at large detunings the decay rate must be corrected
by a pre-factor of (ωL/ω0)

3 to account for the changing
blackbody density of states. Therefore, the large detuning
heating rate (for a two-level atom) is

Ė = ER
3πc2

2h̄ω3
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where I (x) is the maximum intensity in the lattice.
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[74] Jördens R et al 2008 A Mott insulator of fermionic atoms in
an optical lattice Nature 455 204–7

[75] Schneider U et al 2008 Metallic and insulating phases of
repulsively interacting fermions in a 3D optical lattice
Science 322 1520–5

[76] Günter K et al 2006 Bose–Fermi mixtures in a
three-dimensional optical lattice Phys. Rev. Lett.
96 180402

[77] Best T et al 2009 Role of interactions in87Rb-40K Bose–Fermi
mixtures in a 3D optical lattice Phys. Rev. Lett. 102 030408

[78] Ospelkaus S et al 2006 Localization of bosonic atoms by
fermionic impurities in a three-dimensional optical lattice
Phys. Rev. Lett. 96 180403

[79] Catani J et al 2008 Degenerate Bose–Bose mixture in a
three-dimensional optical lattice Phys. Rev. A 77 011603

[80] Bakr W S et al 2009 A quantum gas microscope for detecting
atoms in a Hubbard-regime optical lattice Nature 462 74–7

[81] Klinger A et al 2010 Optical lattices for atom-based quantum
microscopy Rev. Sci. Instrum. 81 013109

[82] Itah A et al 2010 Direct observation of a sub-Poissonian
number distribution of atoms in an optical lattice Phys.
Rev. Lett. 104 113001

[83] Schmied R, Leibfried D, Spreeuw R J C and Whitlock S 2010
Optimized magnetic lattices for ultracold atomic
ensembles New J. Phys. 12 103029

[84] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V
2006 Lattice of double wells for manipulating pairs of cold
atoms Phys. Rev. A 73 033605

[85] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010
Dicke quantum phase transition with a superfluid gas in an
optical cavity Nature 464 1301–6

[86] Fallani L et al 2007 Ultracold atoms in a disordered crystal of
light: towards a Bose glass Phys. Rev. Lett. 98 130404

[87] Williams R A, Al-Assam S and Foot C J 2010 Observation of
vortex nucleation in a rotating two-dimensional lattice of
Bose–Einstein condensates Phys. Rev. Lett. 104 050404

[88] Tung S, Schweikhard V and Cornell E A 2006 Observation of
vortex pinning in Bose–Einstein condensates Phys. Rev.
Lett. 97 240402

[89] Gemelke N, Sarajilic E and Chu S 2010 Rotating few-body
atomic systems in the fractional quantum Hall regime
arXiv:1007.2677

[90] Zenesini A et al 2009 Coherent control of dressed matter
waves Phys. Rev. Lett. 102 100403
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