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Abstract

Quantum systems with finite Hilbert space are considered, and phase-space methods like
the Heisenberg–Weyl group, symplectic transformations and Wigner and Weyl functions
are discussed. A factorization of such systems in terms of smaller subsystems, based on the
Chinese remainder theorem, is studied. The general formalism is applied to the case of angular
momentum. In this context, SU(2) coherent states are used for analytic representations. Links
between the theory of finite quantum systems and other fields of research are discussed.
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1. Introduction

The quantum mechanical formalism and related quantum phase-space methods are usually
presented in the context of the harmonic oscillator where both position and momentum take
values in R (real numbers). An analogous formalism can also be developed in the context
of quantum systems with a d-dimensional Hilbert space where the dual variables that we call
‘position’ and ‘momentum’ take values in Z(d) (the integers modulo d). Such systems with
finite Hilbert space were studied originally by Weyl [1] and also by Schwinger [2]. More
recently they have been studied by many authors [3–19] both as a subject in its own right and
also in the context of various applications. Related is also the mathematical work of [20].
In this paper, we review the work on quantum systems with finite Hilbert space.

The subject is quantum mechanics but in a position space that consists of a finite lattice with
periodicity. In this context, we discuss quantum mechanical topics like position and momentum
states and their relation through a Fourier transform; displacements in the position–momentum
phase-space; symplectic transformations; Wigner functions; general unitary transformations;
composite systems; etc. Due to the finite nature of the space, there are no mathematical
difficulties related to convergence. However, the fact that the position and momentum are
integers introduces other difficulties, and in some cases number theory can be used to derive
interesting results. This blending of quantum mechanics with number theory [21] makes
the formalism very exciting from an intellectual point of view and also in terms of potential
applications in the emerging area of quantum technologies. So there is close analogy between
finite quantum systems and the usual quantum mechanics in a real line; but there are also
differences, which we discuss in this article.

At first sight the subject might appear to be highly specialized, but this is not the case.
There is a wide variety of applications: quantum optics; quantum computing; two-dimensional
electron systems in magnetic fields and the magnetic translation group; the quantum Hall effect;
hydrodynamics; mathematical physics; applied mathematics; etc. Sometimes, specialized
scientific communities ‘rediscover’ in their own context ideas that are known to another
community (often with a different terminology). The aim of this article is to provide the
formalism of finite quantum systems, so that researchers in various areas can use it in their
own context.

There are strong links between quantum mechanics and signal processing that have been
emphasized by Gabor and Ville [22] a long time ago. In the present context, there is overlap
between the theory of finite quantum systems and the subject of signal processing and fast
Fourier transforms. The Fourier operator, the Wigner and Weyl functions, various analytic
representations, etc, are examples of tools that have been studied by both communities.

In section 2, we discuss the finite Fourier transform and its use to define two dual
orthonormal bases that we call ‘position’ and ‘momentum’. We also discuss the uncertainty
principle in this context. It is expressed quantitatively with the entropic uncertainty relation.

The phase-space in finite quantum systems is the toroidal lattice Z(d)×Z(d). In section 3
we study displacement operators in this phase-space and the corresponding Heisenberg–Weyl
group.

Many of the phase-space methods in the harmonic oscillator context are intimately con-
nected with the fact that the phase-space is the Euclidean plane R×R, which has a geometrical
structure. In finite systems, the phase-space is in general a set of d2 points with no geometrical
structure. However, when the dimension, d, of the Hilbert space is the power of a prime
number (d = pn), Z(d) is a field (the Galois field GF(pn)). In this case the phase-space
GF(pn) × GF(pn) is a finite geometry (e.g. [23]) and has very powerful geometrical prop-
erties (e.g. there are well defined translations and rotations, and they form groups). We call
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the corresponding systems Galois quantum systems. For those systems we can develop phase-
space methods that are equally powerful as the harmonic oscillator ones. In section 4, we
explain this point and study in detail the group of symplectic transformations Sp(2, GF(pn))

(the analogue of Sp(2, R) symplectic transformations in the harmonic oscillator). The sym-
plectic operatorS depends on three integer parameters (inGF(pn)) and is constructed explicitly
both analytically and numerically. Various examples elucidate the physical meaning of these
transformations in our discrete phase-space.

The displaced parity operators and the displacement operators are related to each other
through a Fourier transform and play an important role in phase-space methods. In section 5,
we discuss these operators in the context of finite systems and present their properties. Some
of these properties are general for all systems; but if we make extra assumptions, we can prove
much stronger properties. For example, in the case of Galois quantum systems where the phase-
space is a finite geometry, we study Radon transforms of the displaced parity operators and
the displacement operators.

In section 6, we discuss the Wigner and Weyl functions for finite quantum systems. They
are related to each other through a Fourier transform. The Wigner and Weyl functions
are intimately related to the displaced parity operators and the displacement operators,
correspondingly. Consequently, their properties are analogous to the properties of the displaced
parity operators and the displacement operators, correspondingly.

In section 7, we consider general transformations and show that they can be written as
a sum of displacement operators with the Weyl functions as coefficients and also as a sum
of displaced parity operators with the Wigner functions as coefficients. In this sense the
displacement operators (and also the displaced parity operators) are the ‘building blocks’ of
general transformations. An important class of transformations are the unitary transformations,
and we explain that the displacement operators can be used as generators of unitary SU(d)

transformations.
Calculations in large Hilbert spaces can be tedious. For example, numerical calculation

of the Fourier transform in a large Hilbert space can be very expensive in terms of computer
time. The ‘fast Fourier transform’ method [24] addressed this problem by factorizing the large
Hilbert space in terms of smaller spaces. The Fourier transform is performed in the smaller
spaces, and the results are ‘appropriately’ combined to produce the Fourier transform in the
large space. In section 8, we use such a factorization based on the Chinese remainder theorem,
to show that all unitary transformations and more generally the whole quantum mechanical
formalism in the large Hilbert space reduce to calculations in the smaller spaces, which should
be performed and combined appropriately to produce the results in the large Hilbert space.

In section 9, we consider transformations in composite finite quantum systems. In a
bi-partite system comprising two d-dimensional subsystems, we study local SU(d) × SU(d)

unitary transformations and more general SU(d2) unitary transformations that can entangle
the two subsystems. We also discuss in more detail local and entangling symplectic
transformations in these systems and calculate numerically the symplectic operators. More
general symplectic transformations in multi-partite systems are also studied. This section
provides a connection between finite quantum systems and their transformations discussed in
this article and the problem of entanglement. However, it is outside the scope of this article
to review entanglement, e.g. to discuss quantities that measure the amount of entanglement,
or to discuss mixed states and their characterization as factorizable, separable or entangled
ones, etc.

In the next two sections, the above general discussion about finite systems is applied to
the case of angular momentum. In section 10, we start with the usual angular momentum
states and operators and perform a Fourier transform to get angle states and angle operators.
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The SU(2) group becomes involved, and we get some additional features (in comparison
with the case of general finite quantum systems) that we discuss. For example, we make the
distinction between the Bose sector (with odd dimension) and the Fermi sector (with even
dimension) because the formulae are slightly different in these two cases.

In section 11, we study SU(2) coherent states. There exists already a lot of literature on
coherent states, and the purpose of this section is not to review the subject of coherent states
but to make the connection between SU(2) coherent states and the theory of finite quantum
systems presented in the previous sections. Intimately related to coherent states are the analytic
representations that exploit the powerful theory of analytic functions to derive strong results
in a quantum mechanical context. In section 12, we study the analytic representation in the
extended complex plane; and the Dirac contour representation in the extended complex plane.
They are both related to SU(2) coherent states.

In section 13, we consider systems with an infinite dimensional Hilbert space, which
are ‘naturally’ expressed as the direct sum of finite Hilbert spaces because a certain class of
transformations leaves these finite Hilbert spaces invariant. In such problems we can apply
the formalism of finite quantum systems. We discuss two examples: functions on a sphere and
spherical harmonics; and the Schwinger SU(2) formalism for two-mode systems.

There is a wide variety of applications of the theory of finite quantum systems, and
section 14 is a brief guide to the relevant literature. We conclude in section 15 with an overall
discussion of the topics covered in this article.

2. Quantum mechanics of finite systems

2.1. Fourier transform

We consider a quantum system with a d-dimensional Hilbert space H. In this space, we
consider an orthonormal basis of ‘position states’, which we denote as |X; m〉. Here, X is not
a variable, but it simply indicates position states. m belongs to Z(d) (the integers modulo d).
Clearly, the states |X; m〉 obey the relations

〈X, m|X, n〉 = δ(m, n),
∑
m

|X; m〉〈X, m| = 1, (1)

where δ(n, m) is the Kronecker delta, which is equal to 1 when n = m(mod(d)).
The finite Fourier transform plays an important role in the formalism and is defined as

F = d−1/2
∑
m,n

ω(mn)|X; m〉〈X; n|, ω(α) ≡ ωα = exp

[
i
2πα

d

]
. (2)

An identity that is easily proved and that is very useful later is

1

d

∑
n

ωn(m−	) = δ(m, 	). (3)

Using it, we prove that

FF † = F †F = 1, F 4 = 1 (4)

The fact that F 4 = 1 implies that the Fourier operator has four eigenvalues: 1, −1, i,
−i. The multiplicity of these eigenvalues is given in table 1 for the four possible cases where
d = 4m, d = 4m + 1, d = 4m + 2 and d = 4m + 3 [3]. Using this table, we conclude that
TrF = 1 + i when d = 4m; TrF = 1 when d = 4m + 1; TrF = 0 when d = 4m + 2; and
TrF = i when d = 4m + 3.
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Table 1. The multiplicity of the eigenvalues 1, −1, i, −i of the Fourier operator in a d-dimensional
Hilbert space.

1 −1 i −i

d = 4m m + 1 m m m − 1
d = 4m + 1 m + 1 m m m

d = 4m + 2 m + 1 m + 1 m m

d = 4m + 3 m + 1 m + 1 m + 1 m

The eigenvectors of F have been studied in [6, 25]. We note that there is a lot of work
by the signal processing and fast Fourier transform community on the Fourier operator and its
properties, and clearly these results are useful for the theory of finite quantum systems and its
applications.

2.2. Position and momentum bases

Using the Fourier transform, we define another orthonormal basis, the ‘momentum states’, as

|P ; m〉 = F |X; m〉 = d−1/2
∑

n

ωmn|X; n〉. (5)

Here, P is not a variable, but it simply indicates momentum states. It is now clear that an
arbitrary state |s〉 in H can be expanded as

|s〉 =
∑

n

λn|X; n〉 =
∑
m

µm|P ; m〉, λn = d−1/2
∑
m

µmωmn. (6)

{λn} and {µn} are ‘wavefunctions’ for the state |s〉 in the position and momentum
representations, correspondingly.

We also define the ‘position and momentum operators’, x and p, as

x =
d−1∑
n=0

n|X; n〉〈X; n|, p =
d−1∑
n=0

n|P ; n〉〈P ; n|, p = FxF †. (7)

We note that n are integers modulo d and consequently the x and p are defined modulo d1.
However, below we will use exponentials of these operators and they are single-valued.

It is easily seen that

FxF † = p, FpF † = −x. (8)

The x and p are finite matrices, and consequently their powers are not all independent.
Using the Cayley–Hamilton theorem of the theory of matrices, we can express the d-power
of these matrices as linear combinations of lower powers. The eigenvalues of both of these
matrices are the integers from 0 to (d − 1), and therefore the corresponding characteristic
polynomial is

Q(y) = y

d−1∏
n=0

(y − n) ≡ yd + µd−1y
d−1 + · · · + µ1y, (9)

where the above equation defines the integers µn. The Cayley–Hamilton theorem states that

Q(x) = Q(p) = 0. (10)

This implies than an arbitrary function f (x) is defined modulo the polynomial Q(x) and
therefore it can be reduced to the remainder polynomial R(x) of order d − 1, as follows:

f (x) = Q(x)S(x) + R(x), R(x) =
d−1∑
n=0

σnx
n. (11)
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The coefficients σn are calculated if we insert in this equation the roots of Q(x) and get a
system of d equations with d unknowns:

d−1∑
n=0

σnm
n = f (m), m = 0, . . . , (d − 1). (12)

The same comment applies to an arbitrary function of p also.

2.3. �m functions

We introduce the �m functions [16], which are the analogues of the delta function and its
derivatives in the harmonic oscillator case. The �m functions are of course well defined
because all sums are finite. We first define

�0(x) = d−1
d−1∑
n=0

ω(nx), (13)

where x is a real number. It is easily seen that

�0(x + d) = �0(x) (14)

and that

x �= 0 → �0(x) = ω(xd) − 1

d(ω − 1)
, (15)

x = 0 → �0(0) = 1. (16)

For integer values of x we get

�0(n) = δ(n, 0). (17)

We next introduce the function

�m(x) = ∂m
x �0(x) = d−1

d−1∑
n=0

(
i
2πn

d

)m

ω(nx). (18)

We note that n are integers modulo d , and extra care is required when we do calculations with
powers of n.

These functions are useful in the calculations of matrix elements. For example,

〈X, n|pk|X, m〉 = 1

d

∑
	

	kω[	(n − m)] =
(

d

2π i

)k

�k(n − m). (19)

A direct consequence of equation (10) is that(
d

2π i

)d

�d(n − m) + µd−1

(
d

2π i

)d−1

�d−1(n − m) + · · · + µ1

(
d

2π i

)
�1(n − m) = 0.

(20)

Therefore for x in Z(d) only the �m(x) with 0 � m � d − 1 are independent of each other.

2.4. Uncertainty principle and entropic uncertainty relations

A Fourier transform (in any context) is intimately related to an uncertainty principle. It states
that the two distributions, of a function of a variable and its Fourier transform that is a function
of the dual variable, cannot both be narrow. In our case the two distributions associated with
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the state |s〉 of equation (6) are |λn|2, and |µm|2, and the uncertainty relation states that they
cannot both be narrow. In order to quantify the uncertainty relation, we introduce the entropies

SX = −
∑

n

|λn|2 ln |λn|2, SP = −
∑
m

|µm|2 ln |µm|2. (21)

It has been proved in [26] that they obey the inequality

SX + SP � ln d. (22)

This is the entropic uncertainty relation for finite quantum systems. We note that for the states
|X; n〉 we get SX = 0 and SP = ln d and the above relation holds as the equality. Similarly for
the states |P ; n〉 we get SX = ln d , and SP = 0, and the above relation holds as the equality.
For another discussion of the uncertainties in this context, see [27].

3. Displacements in phase-space

3.1. The phase-space: a toroidal lattice

The position–momentum phase-space of the harmonic oscillator is the plane R×R. Let X and
P be the harmonic oscillator position and momentum operators, correspondingly. Infinitesimal
displacements in the phase-space are performed with the operators 1 + i(δA)X and 1 + i(δB)P ,
and their non-commutativity is described with the commutation relation [X , P] = i1. Finite
displacements are performed with the operators exp(iAX ) and exp(iBP), which obey the
relation

exp(iAX ) exp(iBP) = exp(iBP) exp(iAX ) exp(−iAB). (23)

They form the Heisenberg–Weyl group (e.g. [28–30]).
In our finite quantum system, both the position and momentum are integers modulo d.

Therefore the position–momentum phase-space is the toroidal lattice Z(d) × Z(d). In this
phase-space we define the displacement operators

Z = exp

[
i
2π

d
x

]
, X = exp

[
−i

2π

d
p

]
. (24)

They are unitary operators and perform displacements along the P and X axes in the phase-
space. Indeed we can show that

Zα|P ; m〉 = |P ; m + α〉, Zα|X; m〉 = ω(αm)|X; m〉, (25)

Xβ |P ; m〉 = ω(−mβ)|P ; m〉, Xβ |X; m〉 = |X; m + β〉. (26)

The displacement operators obey the relations

Xd = Zd = 1, XβZα = ZαXβω−αβ, (27)

where α, β are integers in Z(d). These relations are easily proved if we calculate the matrix
elements of both sides in the |X; m〉 basis, taking into account equations (25), (26). Equations
Xd = Zd = 1 are related to the toroidal nature of the phase-space. We note that in the
special case d = 2 the 〈X; m|X|X; n〉 and 〈X; m|Z|X; n〉 become the Pauli matrices σx and
σz correspondingly (and the notation for the operators X and Z has been inspired by that).
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3.2. The Heisenberg–Weyl group

The general displacement operators are defined as

D(α, β) = ZαXβω(−2−1αβ), [D(α, β)]† = D(−α, −β). (28)

The phase-factor ω(−2−1αβ) is not essential, but if it is not included the equation [D(α, β)]† =
D(−α, −β) and many other equations below, it will require additional phase factors. The
D(α, β) are unitary operators and are associated with the Heisenberg–Weyl group in the context
of finite quantum systems. Using equation (27) we can prove the multiplication rule

D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)ω[2−1(α1β2 − α2β1)]. (29)

We can also prove that

D(α, β)x[D(α, β)]† = x − β1, D(α, β)p[D(α, β)]† = p − α1 (30)

and that

D(α, β)|X; m〉 = ω(2−1αβ + αm)|X; m + β〉
D(α, β)|P ; m〉 = ω(−2−1αβ − βm)|P ; m + α〉. (31)

Acting with the Fourier operator on the displacement operators we get

FXF † = Z, FZF † = X−1, FD(α, β)F † = D(β, −α). (32)

We note that in finite quantum systems the Heisenberg–Weyl group is discrete, there is
no Lie algebra (there are no infinitesimal displacements) and the role of the position and
momentum operators, x, p, is limited. For this reason our formalism is based mainly on the
displacement operators X, Z. Consequently, the commutator [x, p] plays no important role.
For completeness, we easily calculate it to be

[x, p] = −i

(
d

2π

)
(n − m)�1(n − m)|X; n〉〈X; m|. (33)

It is seen that the commutator [x, p] is not equal to i1.

3.3. Sinusoidal functions of the position and momentum operators

The operator X is an ‘exponential’ of the momentum operator, p. We can also define ‘cosine’
and ‘sine’ operators as

CX = 1

2
(X + X†) = cos

(
2π

d
p

)
, SX = 1

2i
(X† − X) = sin

(
2π

d
p

)
, (34)

[CX, SX] = 0, C2
X + S2

X = 1. (35)

They are Hermitian operators, and their eigenvectors are the |P ; m〉. In a similar way, we can
define the operators CZ , SZ .

CZ = 1

2
(Z + Z†) = cos

(
2π

d
x

)
, SZ = 1

2i
(Z − Z†) = sin

(
2π

d
x

)
, (36)

[CZ, SZ] = 0, C2
Z + S2

Z = 1. (37)

The commutator of the operator CZ with the operator CX can be found using equation (27).
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4. Symplectic transformations

4.1. Symplectic transformations in the harmonic oscillator phase-space

An important class of transformations in the harmonic oscillator case is the Bogoliubov
transformations

X ′ = κX + λP, P ′ = µX + νP, κν − λµ = 1, (38)

which preserve the commutation relations

[X ′, P ′] = [X , P] = i1. (39)

They are associated with the symplectic group Sp(2, R) (e.g. [30–32]) which has three
generators, X 2, P2 and XP . These transformations play an important role in quantum optics,
where they are related to the concept of squeezing (e.g. [33]), in superconductivity, in the
theory of accelerated observers (e.g. [34]), etc.

The above transformations have been expressed in terms of the position and momentum
operators, X , P , which are generators of infinitesimal displacements. They can also be
expressed in terms of the displacements operators that perform finite displacements as

exp(iX ′) = exp[i(κX + λP)] = exp(iκX ) exp(iλP) exp

(
iκλ

2

)
,

exp(iP ′) = exp[i(µX + νP)] = exp(iµX ) exp(iνP) exp

(
iµν

2

)
.

(40)

Using the relation κν−λµ = 1, we can show that these transformations preserve equation (23).
It is this form of the symplectic transformations that will be extended to the finite quantum
systems below.

4.2. Symplectic transformations in Galois quantum systems

In the Z(d) × Z(d) phase-space of a finite quantum system, we consider the unitary
transformations

X′ = SXS† = XκZλω(2−1κλ) = D(λ, κ),

Z′ = SZS† = XµZνω(2−1µν) = D(ν, µ),

κν − λµ = 1 (mod(d)),

(41)

where κ , λ, µ, ν are integers in Z(d). S is a unitary operator that will be constructed explicitly
below. It is easily seen that these transformations preserve equation (27). Therefore, the X′, Z′

can also be used as displacement operators. In comparison to X, Z, they displace in different
directions. The phase-factors ω(2−1κλ) and ω(2−1µν) in the above equations are not essential,
but if they are omitted, many of the equations below will require additional phase-factors.

The transformations of equation (41) contain three independent variables (the fourth is
defined by the constraint). The important question here is whether for a given triplet κ , λ, µ,
there exists ν that satisfies the constraint. And this is intimately connected to the existence of
‘inverses’ of the elements of Z(d) because if they exist then ν = κ−1(λµ + 1).

When d is a power of a prime p (d = pn), Z(pn) is a Galois field [35] (the notation
GF(pn) is also used in the literature) and all non-zero elements have an inverse. For n = 1
it is easily seen that Z(p) is a field. For n � 2 the concept of field extension of Z(p) of
degree n is required. The elements are written as polynomials of an indeterminate x with
coefficients in Z(p). These polynomials are defined modulo an irreducible polynomial of
degree n. Different irreducible polynomials of the same degree n lead to isomorphic finite
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fields, and in this sense there is only one finite field which we denote as GF(pn). Addition
and multiplication rules in GF(pn) are for n � 2 different from the ‘normal’ ones and are
not easy to construct, but for practical purposes they can be found in computer libraries (e.g.
MATLAB). When d is not a power of a prime, Z(d) is a commutative ring with a unity, and
inverses do not necessarily exist.

We call Galois quantum systems those with a dimension that is a power of a prime.
The name Galois quantum system aims to remind the reader that in the n � 2 case,
the Galois addition and multiplication rules should be used. In this case the phase-space
GF(pn)×GF(pn) is a finite geometry (e.g. [23]). This is a geometrical structure with strong
mathematical properties. For example, transformations like dilations, contractions, discrete
rotations, etc. are well defined and form groups.

In the case of non-Galois quantum systems (with a dimension that is not a power of
a prime), the phase-space is a set of points with no geometrical structure. Consequently,
symplectic transformations are ‘accidental’ in the sense that for a given triplet (κ , λ, µ) we
might or we might not find ν such that κν − λµ = 1 (mod(d)).

More generally, the harmonic oscillator phase-space formalism, which is a set of
very powerful techniques, can be transferred to other quantum systems, provided that the
corresponding phase-space has some geometrical structure. In Galois quantum systems the
phase-space has a geometrical structure, and as we will see later, most of the harmonic-oscillator
phase-space formalism can be transfered in this context. Of course many results are valid for
all finite systems. In our discussion we make clear which assumptions are needed for each
result.

Below we will study in more detail the symplectic transformations S(κ, λ, µ) for Galois
quantum systems [14, 16]. For simplicity, all our examples involve systems with a dimension
that is the first power of a prime number. In this case, the addition and multiplication rules are
simply the ‘normal’ ones. [36–38] have studied symplectic transformations over a Galois field
from a pure mathematics point of view. Here, we study these transformations at an applied
level and in our particular context.

We can easily show that they form a group. First, we show that combining two of the
transformations (41) we get another transformation of the same type:

S(κ2, λ2, µ2)S(κ1, λ1, µ1) = S(ε, ζ, η),

ε = κ1κ2 + λ1µ2,

ζ = κ1λ2 + λ1κ
−1
2 (1 + λ2µ2),

η = κ2µ1 + µ2κ
−1
1 (1 + λ1µ1).

(42)

We can also show that associativity holds, that the identity element exists and that inverses
exist. We call this group Sp(2, GF(pn)) (in analogy with Sp(2, R) in the harmonic oscillator).

4.3. Example: the S(ξ, 0, 0) dilation/contraction (squeezing) transformations

In this subsection, we give an example that will elucidate the physical meaning of an important
special case of symplectic transformations.

We consider the unitary operators S(ξ, 0, 0), which (by definition) lead to the
transformations

SXS† = Xξ, SZS† = Zξ−1
. (43)

It is easily seen that

S(ξ, 0, 0)|X; n〉 = |X; ξn〉, S(ξ, 0, 0)|P ; n〉 = |P ; ξ−1n〉, (44)
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and consequently the operator S can be written as

S(ξ, 0, 0) =
∑

n

|X; n〉〈X; ξn| =
∑

n

|P ; ξ−1n〉〈P ; n|. (45)

We note that as n takes all values in Z(p), ξn takes all values in Z(p), and this is important
for the proof that S is a unitary operator.

Equation (44) shows that S stretches the X-axis and simultaneously contracts the P -axis
by the same factor (similar to squeezing in the harmonic oscillator). It should be appreciated
that stretching and contraction in a space of finite points is a one-to-one mapping from Z(p)

to Z(p) (reordering of the points on a line). For example, for p = 3 and ξ = 2 (ξ−1 = 2)

S|X; 0〉 = |X; 0〉, S|X; 1〉 = |X; 2〉, S|X; 2〉 = |X; 1〉,
S|P ; 0〉 = |P ; 0〉, S|P ; 1〉 = |P ; 2〉, S|P ; 2〉 = |P ; 1〉. (46)

The operators S(ξ, 0, 0) (for the various non-zero values of ξ in Z(p)) form a subgroup
of Sp(2, Z(p)). Indeed, using equation (42), we can show that S(ξ1, 0, 0)S(ξ2, 0, 0) =
S(ξ1ξ2, 0, 0).

4.4. Example: the S(1, ξ, 0) and S(1, 0, ξ) symplectic transformations

We consider the operators

S(1, ξ, 0) =
∑
m

ω(2−1ξm2)|X; m〉〈X; m| (47)

and prove that

SXS† = XZξω(2−1ξ), [S, Z] = 0. (48)

These operators (for the various values of ξ in Z(p)) form a subgroup of Sp(2, Z(p)). Indeed,
using equation (42), we can show that S(1, ξ1, 0)S(1, ξ2, 0) = S(1, ξ1 + ξ2, 0).

The corresponding symplectically transformed states are

|X′; n〉 = S(1, ξ, 0)|X; n〉 = ω(2−1ξn2)|X; n〉,
|P ′; n〉 = S(1, ξ, 0)|P ; n〉 = d−1/2

∑
m

ω(2−1ξm2 + mn)|X; m〉. (49)

It is seen that the X′-basis is the same as the X-basis, up to phase factors; but the P ′-basis is
very different from the P -basis. Extra care is required with the phases, as is already obvious
from the Fourier transform of equation (5).

Another set of operators very similar to those in equation (47) are the S(1, 0, ξ) given by

S(1, 0, ξ) =
∑
m

ω(−2−1ξm2)|P ; m〉〈P ; m|. (50)

They also form a subgroup of Sp(2, Z(p)). The corresponding symplectically transformed
states are

|X′; n〉 = S(1, 0, ξ)|X; n〉 = d−1/2
∑
m

ω(−2−1ξm2 − mn)|P ; m〉,

|P ′; n〉 = S(1, 0, ξ)|P ; n〉 = ω(−2−1ξn2)|P ; n〉.
(51)

It is seen that the P ′-basis is the same as the P -basis, up to phase factors; but the X′-basis is
very different from the X-basis.
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4.5. Analytical calculation of the symplectic operator S(κ, λ, µ)

Using equation (42), we can express the general symplectic operator S(κ, λ, µ) as

S(κ, λ, µ) = S(1, 0, ξ1)S(1, ξ2, 0)S(ξ3, 0, 0),

ξ1 = µκ(1 + λµ)−1,

ξ2 = λκ−1(1 + λµ),

ξ3 = κ(1 + λµ)−1.

(52)

We have given analytic expressions for the operators S(1, 0, ξ1), S(1, ξ2, 0), S(ξ3, 0, 0) in
equations (50), (47) and (45), correspondingly; and through equation (52) we get an analytical
expression for any symplectic operator.

4.6. Numerical calculation of the symplectic operator S(κ, λ, µ)

In this section, we discuss how to calculate the operator S(κ, λ, µ) numerically. We consider
the matrix 〈X; m|Z′|X; n〉 = ω(2−1/2νµ + nν)δ(m, n + µ) and calculate numerically its
(normalized) eigenvectors, which are the states |X′; m〉 (up to phase factors). The phases are
important in order to obey the relations Xβ |X; m〉 = |X; m + λ〉. To calculate the phases,
we start with the lowest eigenvector, |X′; 0〉 (for which we can choose any phase), and we use
numerically the equation

(X′)m|X′; 0〉 = |X′; m〉, (53)

where X′ is the matrix ω(2−1/2κλ + nλ)δ(m, n + κ). The |X′; m〉 calculated through this
equation should differ from the ones calculated earlier as eigenvectors of the matrix Z′ only by
a phase factor. This is a test that the numerical work is correct and at the same time it provides
the required phases. The operator S is now given in a matrix form as S(n, m) ≡ 〈X; n|S|X; m〉.

As an example, we consider a five-dimensional Hilbert space (d = 5) and S(1, −1, −1),
which leads (by definition) to the transformations

X′ = SXS† = XZ−1ω
(− 1

2

)
, Z′ = SZS† = X−1Z2ω(−1). (54)

The matrix elements S(n, m) for this case are given in table 2.

4.7. Symplectically transformed bases and displacement operators

We have started with the orthonormal bases |X; n〉 and |P ; n〉, and with respect to them we have
defined the displacement operators X and Z. The symplectic operators S(κ, λ, µ) transform
this basis into a new one

|X′; n〉 = S(κ, λ, µ)|X; n〉, |P ′; n〉 = S(κ, λ, µ)|P ; n〉 (55)

Table 2. The coefficients S(n, m) for the transformations of equation (54). Here, z1 = 0.4472,
z2 = z1ω

−1 and z3 = ω−2.

m = −2 m = −1 m = 0 m = 1 m = 2

n = −2 z2 −z∗
2 z∗

3 −z∗
3 z∗

2
n = −1 z1 −z3 z1 −z∗

2 z∗
2

n = 0 z2 −z3 z∗
2 −z3 z2

n = 1 z∗
2 −z∗

2 z1 −z3 z1

n = 2 z∗
2 −z∗

3 z∗
3 −z∗

2 z2
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and the displacement operators X and Z into X′ = SXS† = D(λ, κ) and Z′ = SZS† =
D(ν, µ). More generally, the displacement operators D(α, β) are transformed into

D′(α, β) ≡ SD(α, β)S† = D(αν + βλ, αµ + βκ). (56)

It is seen that D′(α, β) perform displacements by (α, β) in the P ′ − X′ bases or equivalently
displacements by (αν + βλ, αµ + βκ) in the P − X bases.

5. Parity and displacement operators

5.1. Displaced parity operators

We define the parity operator around the origin as

P(0, 0) = F 2, [P(0, 0)]2 = 1. (57)

Its name is justified from the fact that

P(0, 0)|X; m〉 = |X; −m〉, P (0, 0)|P ; m〉 = |P ; −m〉,
P (0, 0)x[P(0, 0)]† = −x, P (0, 0)p[P(0, 0)]† = −p,

P (0, 0)Z[P(0, 0)]† = Z†, P (0, 0)X[P(0, 0)]† = X†.

(58)

The fact that [P(0, 0)]2 = 1 implies that the parity operator has two eigenvalues, 1, −1. The
multiplicity of these eigenvalues can be found using table 1, which contains the multiplicities
of the eigenvalues of the Fourier operator. For even d = 2n, the multiplicity of 1 is n + 1, the
multiplicity of −1 is n − 1 and TrP(0, 0) = 2. For odd d = 2n + 1, the multiplicity of 1 is
n + 1, the multiplicity of −1 is n and the TrP(0, 0) = 1. We call H1(0, 0) and H−1(0, 0) the
subspaces spanned by the eigenvectors corresponding to the eigenvalues 1 and −1, respectively.
It is clear that H is the direct sum of H1(0, 0) and H−1(0, 0). We call π1(0, 0) and π−1(0, 0)

the projection operators into these subspaces.

πi(0, 0)πj (0, 0) = δijπi(0, 0), (i, j = 1, −1), π1(0, 0) + π−1(0, 0) = 1. (59)

Then

P(0, 0) = π1(0, 0) − π−1(0, 0). (60)

The displaced parity operator (parity operator around the point (α, β) in phase-space) has
been studied in the context of the harmonic oscillator in [39–41]. In the present context it is
defined as

P(α, β) = D(α, β)P (0, 0)[D(α, β)]† = D(2α, 2β)P (0, 0) = P(0, 0)[D(2α, 2β)]†, (61)

[P(α, β)]2 = 1. (62)

All our comments above about the multiplicities of the eigenvalues and about the trace of
P(0, 0) are also valid for P(α, β). We also introduce here the subspaces H1(α, β) and
H−1(α, β) spanned by the eigenvectors of P(α, β) with eigenvalues 1 and −1, correspondingly.
We call π1(α, β) and π−1(α, β) the projection operators into these subspaces and
prove that

P(α, β) = π1(α, β) − π−1(α, β), πi(α, β) = D(α, β)πi(0, 0)[D(α, β)]†. (63)
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We note that the product of two displaced parity operators is not a displaced parity operator
(it is a displacement operator):

P(α, β)P (γ, δ) = D(2α − 2γ, 2β − 2δ)ω(2βγ − 2αδ). (64)

5.2. Marginal properties of the displacement operators

We now consider systems with odd dimension, d = 2j + 1, where j is an integer. In this case
the 2 and d are coprime and the 2−1 exists within Z(d) (which is in general a ring). It is easily
seen that 2−1 = j + 1 (since 2(j + 1) = 1 modulo 2j + 1). We prove that in systems with odd
dimension the displacement operators obey the relations

1

d

d−1∑
β=0

D(α, β) = |P ; 2−1α〉〈P ; −2−1α|,

1

d

d−1∑
α=0

D(α, β) = |X; 2−1β〉〈X; −2−1β|
(65)

and also

1

d

∑
α,β

D(α, β) = P(0, 0). (66)

There are analogous relations for the harmonic oscillator [41] (with the summations replaced
by integrals), and the use of 2−1 above has been chosen in order to make this analogy clear.
But as we explained, 2−1α is here the integer (j + 1)α (otherwise the state |P ; 2−1α〉 makes
no sense). In order to prove these equations, we take the matrix elements of both sides with
regard to the states 〈X; n| and |X; m〉 and use equation (3) (which is valid for integers, and
here again we need the fact that 2−1 is the integer j + 1).

We next consider Galois quantum systems and act with the symplectic operator S on the
left and with S† on the right of equation (65). Taking into account equations (55) and (56), we
can prove

1

d

d−1∑
β=0

D′(α, β) = |P ′; 2−1α〉〈P ′; −2−1α|,

1

d

d−1∑
α=0

D′(α, β) = |X′; 2−1β〉〈X′; −2−1β|,
1

d

∑
α,β

D′(α, β) = SP (0, 0)S† ≡ P ′(0, 0),

(67)

where the ‘prime states’ on the right-hand side have been defined in equation (55). They show
that in Galois quantum systems we have relations analogous to (65) not only in the original X–P
frame but in all frames. Analogous results are known for the harmonic oscillator displacement
operators. Of course, in order to be able to talk about frames and validity of properties in all
frames, we need to have a phase-space with a geometrical structure; and this is the case in
Galois quantum systems where the phase-space is a finite geometry.
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5.3. Marginal properties of the displaced parity operators

Acting with the parity operator P(0, 0) on the right of equations (65) and using equation (61),
we prove that in systems with odd dimension,

1

d

d−1∑
β=0

P(α, β) = |P ; α〉〈P ; α|,

1

d

d−1∑
α=0

P(α, β) = |X; β〉〈X; β|,

1

d

∑
α,β

P (α, β) = 1.

(68)

We note that the last of these equations is consistent with the fact that in systems with odd
dimension TrP(α, β) = 1.

We next consider Galois quantum systems, and acting with the parity operator P(0, 0)

on the right of equations (67) we prove that analogous relations to (68) hold in other frames
also:

1

d

d−1∑
β=0

P ′(α, β) = |P ′; α〉〈P ′; α|,

1

d

d−1∑
α=0

P ′(α, β) = |X′; β〉〈X′; β|,
1

d

∑
α,β

P ′(α, β) = 1.

(69)

where the ‘prime states’ on the right-hand side have been defined in equation (55).

5.4. Fourier transform between the displacement operators and the displaced parity
operators

We consider systems with odd dimension, and multiplying equation (66) by D(γ, δ) on the
left and by [D(γ, δ)]† on the right and using equation (61) we prove

1

d

∑
α,β

D(α, β)ω(βγ − αδ) = P(γ, δ). (70)

This shows that the displaced parity operators are related to the displacement operators through
a two-dimensional Fourier transform. The inverse Fourier transform gives

1

d

∑
γ,δ

P (γ, δ)ω(−βγ + αδ) = D(α, β). (71)

5.5. Radon transforms

We consider Galois quantum systems and substitute equation (56) into equations (67). We
introduce the variables ε = αν + βλ and ζ = αµ + βκ and point out that in Galois fields as β

(or α) takes all values in GF(pn), ε and ζ also take all values in GF(pn). Therefore we can
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rewrite equations (67) as

1

d

∑
ε,ζ

D(ε, ζ )δ(κε − λζ, α) = |P ′; 2−1α〉〈P ′; −2−1α|,

1

d

∑
ε,ζ

D(ε, ζ )δ(−µε + νζ, β) = |X′; 2−1β〉〈X′; −2−1β|.
(72)

In these equations we sum over all points on the lines κε − λζ = α and −µε + νζ = β. On
the right-hand side we have the ‘prime states’ defined in equation (55).

The summation along one of the lines is the analogue in our context of the integration of a
two-dimensional function f (x, y) along a line in the Euclidean plane x–y which is the Radon
transform [42]. Therefore, equations (72) are the Radon transform in a finite geometry.

We note that the phase factors ω(2−1κλ) and ω(2−1µν) in the symplectic transformations
of equations (41) have been chosen so that they lead to Radon transforms in the simple form
of equations (72). Any other choice of phase factors is also acceptable, but the corresponding
equations (56) and (72), will be more complicated.

In a similar way we can rewrite equations (69) in terms of the Radon transform:

1

d

∑
ε,ζ

P (ε, ζ )δ(κε − λζ, α) = |P ′; α〉〈P ′; α|,

1

d

∑
ε,ζ

P (ε, ζ )δ(−µε + νζ, β) = |X′; β〉〈X′; β|.
(73)

This is proved using equations (72).
The inverse Radon transform of equation (73) is performed in two steps. In the first step,

we Fourier transform equations (73) and using equation (71) we get

D(λβ, κβ) =
∑

α

|P ′; α〉〈P ′; α|ω(−αβ),

D(να, µα) =
∑

β

|X′; β〉〈X′; β|ω(αβ).
(74)

In the second step, we perform the two-dimensional Fourier transform of equation (70) to get
the displaced parity operators.

The inverse Radon transform of equation (72) can also be writen in a similar way. We
gave explicitly equation (74) because from a physical point of view it is much more useful as
it involves projectors. Later in the study of Wigner and Weyl functions, we will take the trace
of these projectors with respect to density matrices and get probabilities that are measurable
quantities.

6. Wigner and Weyl functions

The Wigner and Weyl (or characteristic) functions play an important role in fundamental
problems in quantum mechanics [43] and also in more applied problems in quantum optics.
Recently Wigner tomography [44–47] provided a method for constructing the Wigner function
from its Radon transforms that can be measured experimentally.

The equations of quantum mechanics are usually expressed in terms of the wavefunction
(or the density matrix). They can also be expressed in terms of the Wigner (or Weyl) function
because all the information in the density matrix is also contained in the corresponding Wigner
function. However, the Wigner function can be reconstructed from all its Radon transforms
(for all angles in the phase plane) which are probabilities. Consequently, the equations of



Quantum systems with finite Hilbert space 285

quantum mechanics can be expressed in terms of tomographic probabilities only. This has
been studied by V Man’ko, M Man’ko, O Man’ko and their collaborators [48].

In this section, we discuss these functions in our context of finite quantum systems. The
Wigner functions are intimately related to the displaced parity operators. The Weyl functions
are intimately related to the displacement operators. Therefore, most of the results in this
section are a direct consequence of the results in the previous section. We will see that there
is one-to-one mapping between the operators, Wigner functions and Weyl functions. And
if one of them is given (e.g. the Wigner function) then we can find the other two (i.e. the
corresponding operator and its Weyl function).

Related to Wigner functions are the P and Q functions and the Moyal formalism [49,50].
The P and Q functions are intimately related to coherent states that have not been introduced at
this stage. Later we will apply the theory of finite systems to systems with angular momentum j ,
and in that context we have SU(2) coherent states and we will discuss briefly the P and Q

representations.
The Wigner and Weyl functions also play an important role in signal processing (e.g. [51])

where the Weyl function is known as an ambiguity function.
Recently, the so-called extended phase-space has been introduced, in the context of the

harmonic oscillator [52,53]. This work considers simultaneously in a four-dimensional phase-
space the Wigner function describing the uncertainties (noise) in the system and the Weyl
function describing the correlations in the system. This formalism has not yet been applied to
finite systems and will not be discussed here.

6.1. Wigner functions

Let � be an arbitrary operator. The Wigner function corresponding to the operator � is
defined as

W(�; α, β) = Tr[�P(α, β)]. (75)

If � is a Hermitian operator, then the Wigner function is real; but for non-Hermitian operators
it is complex. The Wigner function is the Fourier transform of the matrix elements of the
operator �:

W(�; α, β) = ω(2αβ)
∑

	

ω(−2α	)�X(	, 2β − 	)

= ω(−2αβ)
∑

	

ω(2β	)�P (	, 2α − 	),

�X(m, 	) ≡ 〈X; m|�|X; 	〉, �P (m, 	) ≡ 〈P ; m|�|P ; 	〉.

(76)

The inverse Fourier transform can be used to express the matrix elements of the operator � in
terms of the Wigner function.

Multiplying equations (68) with the operator � and taking the trace, we can prove that in
the case of systems with odd dimension, the Wigner function obeys the following ‘marginal
properties’:

1

d

d−1∑
β=0

W(�; α, β) = �P (α, α),

1

d

d−1∑
α=0

W(�; α, β) = �X(β, β),

1

d

∑
α,β

W(�; α, β) = Tr�.

(77)
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Density matrices ρ are Hermitian, and the corresponding Wigner functions are real. In this
case the Wigner function can be interpreted as a pseudoprobability distribution of the particle
in the position–momentum phase-space, which is consistent with quantum mechanics. It is not
a real probability distribution because it can take negative values. But the marginal properties
show that the ‘integral’ (in our context finite sum) of the Wigner function along the momentum
axis gives the probability distribution 〈X; β|ρ|X; β〉 along the position axis; and the integral
of the Wigner function along the position axis gives the probability distribution 〈P ; β|ρ|P ; β〉
along the momentum axis. This strengthens the interpretation of the Wigner function as a
pseudoprobability distribution of the particle in the position–momentum phase-space.

Another set of marginal properties that is less known involves the absolute value of the
Wigner function squared [52]. Again, we consider systems with odd dimension, and using
equation (76) we can prove

1

d

d−1∑
β=0

|W(�; α, β)|2 =
d−1∑
k=0

|�P (k, 2α − k)|2,

1

d

d−1∑
α=0

|W(�; α, β)|2 =
d−1∑
k=0

|�X(k, 2β − k)|2,

1

d

∑
α,β

|W(�; α, β)|2 = Tr[��†].

(78)

We have seen in equation (76) that the matrix elements of � are related to the Wigner function
through a Fourier transform and the first two equations are Parseval’s theorem in this context.

We next use equation (63) to express the Wigner function of a density matrix ρ as the
difference between two probabilities:

W(ρ; α, β) = Q1(ρ; α, β) − Q−1(ρ; α, β),

Qi(ρ; α, β) ≡ Tr[ρπi(α, β)], Q1(ρ; α, β) + Q−1(ρ; α, β) = 1.
(79)

This clarifies the fact that the Wigner function can take negative values. It also shows that
−1 � W(ρ; α, β) � 1.

The Wigner function of the sum of two operators is simply the sum the Wigner
functions corresponding to these operators. With regard to the product of two operators,
the corresponding Wigner function is given by the Moyal star product, which is written in the
context of finite systems as

W(�1) � W(�2) ≡ W(�1�2; α, β) = 1

d2

∑
α1,β1,α2,β2

ω(2α2β1 − 2α1β2)

×W(�1; α + α1, β + β1)W(�2; α + α2, β + β2). (80)

Since the mapping between operators and Wigner functions is one-to-one, the Moyal star
product has properties similar to the product of two operators. For example, the Moyal star
product of two operators is (in general) non-commutative and the Moyal star product of three
operators is associative. A full discussion of the Moyal star product and the related topic of
deformations [54] is beyond the scope of this article.

6.2. Weyl functions

The Weyl function corresponding to the operator � is defined in terms of the displacement
operators as

W̃ (�; α, β) ≡ Tr[�D(α, β)]. (81)
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The Weyl function is the Fourier transform of the matrix elements of the operator �:

W̃ (�; α, β) = ω(2−1αβ)
∑

	

ω(α	)�X(	, β + 	)

= ω(−2−1αβ)
∑

	

ω(−β	)�P (	, α + 	), (82)

where �X(m, 	) and �P (m, 	) have been defined in equation (76). The inverse Fourier
transform can be used to express the matrix elements of the operator � in terms of the Weyl
function.

The Weyl function is related to the Wigner function through a ‘two-dimensional’ Fourier
transform (indicated with the tilde in the notation). Indeed, using equations (76), (82) we can
prove that

W̃ (�; α, β) = 1

d

∑
γ,δ

W(�; γ, δ)ω(αδ − βγ ). (83)

We recall here that the displaced parity operators (which are intimately related to the Wigner
functions) are connected to the displacement operators (which are intimately related to the
Weyl functions) through a two-dimensional Fourier transform and equation (70) can be used
for an alternative derivation of equation (83).

The Weyl function is a generalized correlation function. In order to see this we consider the
density matrix ρ = |s〉〈s| of a pure state |s〉. The corresponding Weyl function is 〈s|D(α, β)|s〉.
In order to calculate the correlation function of some wavefunction f (x), we displace it from
x to x + α and calculate the overlap with the original wavefunction. In the Weyl function we
do exactly the same, but we displace the state in both position and momentum. In this sense
the parameters α, β entering in the Weyl function are position and momentum increments.

Using equations (65) we can prove that in the case of systems with odd dimension, the
Weyl function obeys the following ‘marginal properties’:

1

d

d−1∑
β=0

W̃ (�; α, β) = �P (−2−1α, 2−1α),

1

d

d−1∑
α=0

W̃ (�; α, β) = �X(−2−1β, 2−1β),

1

d

∑
α,β

W̃ (�; α, β) = W(�; 0, 0).

(84)

Another set of marginal properties that is less known involves the absolute value of the
Weyl function squared [52]. Using equation (82) we can prove that

1

d

d−1∑
β=0

|W̃ (�; α, β)|2 =
d−1∑
	=0

|�P (	, α + 	)|2,

1

d

d−1∑
α=0

|W̃ (�; α, β)|2 =
d−1∑
	=0

|�X(	, β + 	)|2,

1

d

∑
α,β

|W̃ (�; α, β)|2 = Tr[��†].

(85)

We have seen in equation (82) that the matrix elements of � are related to the Weyl function
through a Fourier transform and the first two equations are Parseval’s theorem in this context.



288 A Vourdas

The Weyl function of the sum of two operators is simply the sum of the Weyl functions
corresponding to these operators. With regard to the product of two operators we can prove that

W̃ (U1U2; α, β) = 1

d

∑
α1,β1

ω(2−1α1β − 2−1αβ1)

×W̃ (U1; α + α1, β + β1)W̃ (U2; −α1, −β1). (86)

Since the mapping between operators and Weyl functions is one-to-one, the above product has
properties similar to the product of two operators (e.g. it is associative, non-commutative in
general, etc.).

6.3. Radon transforms

In Galois quantum systems we can prove stronger marginal properties for the Wigner functions
than equation (77). Multiplying equation (73) with the operator � and taking the trace, we get

1

d

∑
ε,ζ

W(�; ε, ζ )δ(κε − λζ, α) = 〈P ′; α|�|P ′; α〉,

1

d

∑
ε,ζ

W(�; ε, ζ )δ(−µε + νζ, β) = 〈X′; β|�|X′; β〉,
(87)

where the ‘prime states’ on the right-hand side have been defined in equation (55). This is
the Radon transform in the present context and says that the sum of the Wigner function of
an operator � on a line is equal to the matrix elements of this operator with the appropriate
states. If the operator � is a density matrix, then these matrix elements are probabilities.

The inverse Radon transform is performed in two steps. In the first step, we Fourier
transform equation (87), and using equation (83) we get

W̃ (�; λβ, κβ) =
∑

α

〈P ′; α|�|P ′; α〉ω(−αβ),

W̃ (�; να, µα) =
∑

β

〈X′; β|�|X′; β〉ω(αβ).
(88)

We note that these relations are intimately related to equations (74). They give the Weyl
function and the second step involves the inverse of the two-dimensional Fourier transform of
equation (83), in order to get the Wigner function.

In the case that the operator � is a density matrix, the matrix elements on the right-hand
side of equation (88) are probabilities (measurable quantities) and these equations can be used
to construct the Wigner function from measurable quantities.

7. General transformations

In this section we consider general transformations and show that they can be expanded in
terms of the displacement operators with the Weyl functions as coefficients and also in terms
of the displaced parity operators with the Wigner functions as coefficients. In this sense both
the displacement operators and the displaced parity operators can be viewed as building blocks
of general transformations. The results are valid for any finite dimension d.

We also consider unitary transformations and show that the displacement operators are
generators of the SU(d) group.
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7.1. Expansion of an arbitrary operator in terms of displacement operators with the
Weyl functions as coefficients

We consider an arbitrary transformation � and show that it can be expanded in terms of the
displacement operators with the Weyl functions as coefficients:

� = 1

d

∑
α,β

W̃ (�; −α, −β)D(α, β). (89)

This is proved by taking the matrix elements of both sides with regard to the states 〈X; n| and
|X; m〉 and using equation (82).

We have seen earlier that the displacement operators displace states and operators in phase-
space. We see here that they also play another important role, as building blocks of general
transformations.

As an example, we consider the symplectic operator of equation (52), for a system with
dimension a prime number p. Using equation (52) in conjunction with equations (45), (49),
(51), we calculate its Weyl function,

W̃ (S; α, β) = 1

d

∑
	,n

ω[2−1ξ2n
2 − 2−1ξ1	

2 + (ξ3 − 1)	n − 	β + αξ3n − 2−1αβ], (90)

where all variables are integers in Z(p). This sum is the product of two Gauss sums and a
phase factor. Indeed, for ξ2 �= 0 (mod p), it can be written as

W̃ (S; α, β) = 1

d

∑
	,n

ω[γ −1
1 (γ1n + γ2	 + γ3)

2 + γ4(	 + γ5)
2 + γ6], (91)

where

γ1 = 2−1ξ2, γ2 = 2−1(ξ3 − 1), γ3 = 2−1αξ3,

γ4 = −2−1ξ1 − (2ξ2)
−1(ξ3 − 1)2, γ5 = [βξ2 + αξ3(ξ3 − 1)][ξ1ξ2 + (ξ3 − 1)2]−1,

γ6 = −2−1αβ − (2ξ2)
−1(αξ3)

2 − γ −1
4 γ 2

5 ,

(92)

are integers in Z(p). We change variables into n′ = γ1n + γ2	 + γ3 and 	′ = 	 + γ5. As n, 	

take all values in Z(p), the variables n′, 	′ also take all values in Z(p). Therefore,

W̃ (S; α, β) = d−1ω(γ6)

[∑
n′

ω(γ −1
1 n′2)

][∑
	′

ω(γ4	
′2)

]

= d−1ω(γ6)G(γ −1
1 )G(γ4), (93)

where

G(α) ≡
∑

n

ω(αn2) (94)

is the Gauss sum. The symplectic operator S can be expanded in terms of the displacement
operators as

S = G(γ −1
1 )G(γ4)

d2

∑
α,β

ω[−2−1αβ − (2ξ2)
−1(αξ3)

2 − γ −1
4 γ 2

5 ]D(α, β). (95)
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7.2. Expansion of an arbitrary operator in terms of displaced parity operators with the
Wigner functions as coefficients

We consider an arbitrary transformation � and show that it can be expanded in terms of the
displaced parity operators with the Wigner functions as coefficients:

� = 1

d

∑
α,β

W(�; α, β)P (α, β). (96)

This is proved by taking the matrix elements of both sides with regard to the states 〈X; n| and
|X; m〉 and using equation (76).

We note here that as we explained in equation (64) the product of two displaced parity
operators is not a displaced parity operator and this might be inconvenient if we want to
multiply two operators expressed in the form of equation (96). However the Moyal star
product of equation (80) evaluates the Wigner function of the product of two operators, and
this can be used to provide the product of two operators in the form of equation (96).

7.3. The displacement operators as generators of unitary transformations

An important class of transformations are the unitary transformations that form the group
SU(d). This group has d2−1 generators. It has been shown in [55] that the d2−1 displacement
operators D(α, β) (with (α, β) �= (0, 0)) are generators of SU(d) transformations in the Hilbert
space H. They are an alternative to the usual Cartan–Weyl generators.

Their commutator (which describes the corresponding SU(d) algebra) is given by

[D(α1, β1), D(α2, β2)] ≡ D(α1, β1)D(α2, β2) − D(α2, β2)D(α1, β1)

= 2i sin
[π

d
(α1β2 − α2β1)

]
D(α1 + α2, β1 + β2). (97)

Infinitesimal SU(d) transformations can be written as

g = 1 +
∑
α,β

ε(α, β)D(α, β), (98)

where ε(α, β) are infinitesimal coefficients.
Finite SU(d) transformations involve the exponentials of the generators, which are here

finite matrices. Since the exponential of a finite matrix is a polynomial, we expect that a finite
SU(d) transformation U can be written as the finite sum:

U =
∑
α,β

µ(α, β)D(α, β). (99)

Comparison of this with equation (95) shows that this is indeed the case and in fact the
coefficients µ(α, β) are simply the Weyl functions:

µ(α, β) = 1

d
W̃(U ; −α, −β). (100)

As an application of this general result we consider a system with a Hamiltonian H that
at t = 0 is in a state |s(0)〉 = ∑

m sm|X; m〉. Then the evolution operator can be expanded in
terms of the displacement operators as

exp(iHt) =
∑
α,β

τ (α, β; t)D(α, β), τ (α, β; t) = 1

d
Tr[exp(iHt)D(−α, −β)] (101)

The displacement operators act on the state of the system as described in equation (31).
Therefore, the state of the system at time t is

|s(t)〉 =
∑
α,β,m

τ (α, β; t)smω(2−1αβ + αm)|X; m + β〉. (102)
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8. Factorization of large systems in terms of smaller ones

The formalism described above is from a practical point of view easily implemented in systems
with small dimension d , but for large d it can be very tedious. Especially with unitary SU(d)

transformations, explicit calculations for large d can be very cumbersome. As an example, we
mention the Fourier transform where the computational time increases quickly with d.

The ‘fast Fourier transform’ method [24] addressed this problem by factorizing
‘appropriately’ the large Hilbert space in terms of smaller spaces. The Fourier transform
is performed in the smaller spaces, and the results are ‘appropriately’ combined to produce the
Fourier transform in the large space. There are many fast Fourier transform schemes, and here
we will use the scheme by Good, which is based on a factorization of d as d = d1 × · · · × dN ,
where the factors d1, . . . , dn are coprime with respect to each other. This scheme is based on
the Chinese remainder theorem.

In this section, based on [15], we use the scheme by Good for fast Fourier transforms, in a
large quantum system. In our context we are interested not only in Fourier transforms but in all
unitary transformations and more generally in the whole quantum mechanical formalism. For
example, we show how the phase-space Z(d) × Z(d) factorizes into the ‘multidimensional’
phase-space (Z(d1) × Z(d1)) × · · · × (Z(dN) × Z(dN)), and we study the correspondence
between displacement operators and Wigner and Weyl functions in these two phase-spaces.
We also show how unitary transformations and other quantum mechanical calculations in the
large quantum system can be reduced to calculations in many small quantum systems. In a
sense the whole quantum mechanics in the large system decomposes to quantum mechanics
in many small systems.

Related factorizations based on the Chinese remainder theorem have been used in a
different context in [56].

8.1. One-to-one mappings between Z(d) and Z(d1) × · · · × Z(dN)

We factorize a number d as d = d1 × · · · × dN , where the factors d1, . . . , dn are coprime with
respect to each other. In this subsection, we introduce two one-to-one mappings between Z(d)

and Z(d1) × · · · × Z(dN). In order to do this we first introduce the integers ri and ti :

ri = d

di

, tiri = 1 (mod di). (103)

Here, ti is the ‘inverse’ of ri within Z(di). Its existence is guaranteed by the fact that ri and di

are coprime. We also introduce si = tiri in Z(d). We note that since ti is the inverse of ri in
Z(di), si = tiri , defined in Z(d) is an integer multiple of di plus 1.

The first one-to-one mapping between Z(d) and Z(d1) × · · · × Z(dN) is

m ↔ (m1, . . . , mN), mi = m(mod di), m =
∑

i

misi . (104)

The second one-to-one mapping between Z(d) and Z(d1) × · · · × Z(dN) (which we call the
‘dual mapping’) is

m ↔ (m̄1, . . . , m̄N), m̄i = mti(mod di), m =
∑

i

m̄iri(mod d). (105)

The proof that these mappings are indeed one-to-one is based on the Chinese remainder theorem
and will not be discussed here.

An important formula that is needed for many proofs in this section is

ω(risi) = ωi ≡ exp

(
i
2π

di

)
, i �= j → ω(risj ) = 1. (106)
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Using this, we see easily that

ω(mn) =
N∏

i=1

ωi(min̄i). (107)

As an example, we consider the case where d = 15, d1 = 3 and d2 = 5. In this
case we find that r1 = 5, t1 = 2, s1 = 10 and r2 = 3, t2 = 2, s2 = 6. Therefore,
m = 10m1+6m2 = 5m̄1+3m̄2. For example, m = 7 inZ(15) corresponds to (m1 = 1, m2 = 2)

according to the mapping of equation (104) and (m̄1 = 2, m̄2 = 4) according to the mapping
of equation (105).

8.2. Quantum states

We consider a quantum system with Hilbert space H(d) (here the d in the notation indicates
the dimension of the space). As above, we factorize d as d = d1 × · · ·× dN , where the factors
d1, . . . , dN are coprime with respect to each other.

In this subsection we introduce an isomorphism between the Hilbert space H(d) and
a product of Hilbert spaces H(d1) ⊗ · · · ⊗ H(dN). We use the previous notation with
an extra index i to indicate states and operators in the Hilbert space H(di). We first
introduce the following mapping between the position and momentum bases in H(d) and
in H(d1) ⊗ · · · ⊗ H(dN):

|X; m〉 ↔ |X1; m̄1〉 ⊗ · · · ⊗ |XN ; m̄N 〉, |P ; m〉 ↔ |P1; m1〉 ⊗ · · · ⊗ |PN ; mN 〉. (108)

Here, we use equation (104) to map the momentum basis in H(d) into the momentum basis in
H(d1) ⊗ · · · ⊗ H(dN). We then use equations (106) and (107) to prove that the position basis
in H(d) is mapped into the position basis in H(d1)⊗· · ·⊗H(dN) as described in equation (108)
(which uses the ‘dual map’ of equation (105)).

We next consider an arbitrary operator � and its matrix elements with regard to the bases
|X; m〉 and also |P ; m〉:

σ(n, m) ≡ 〈X; n|�|X; m〉, τ (	, k) ≡ 〈P ; 	|�|P ; k〉. (109)

σ(n, m) are related to τ(	, k) through a double Fourier transform:

σ(n, m) = d−1
∑
	,k

τ (	, k)ω(	n − mk). (110)

We also consider the matrix elements of the same operator with regard to the bases
|X1; m̄1〉 ⊗ · · · ⊗ |XN ; m̄N 〉 and also |P1; m1〉 ⊗ · · · ⊗ |PN ; mN 〉, which we denote as
σ({n̄i}, {m̄j }) and τ({	i}, {kj }), correspondingly. The matrix elements σ(n, m) are here
relabelled as σ({n̄i}, {m̄j }); and similarly the matrix elements τ(	, k) are relabelled
τ({	i}, {kj }). σ({n̄i}, {m̄j }) are related to τ({	i}, {kj }) through a multi-dimensional Fourier
transform:

σ({n̄i}, {m̄j }) =
(

N∏
i=1

d−1
i

)∑
	i ,ki

τ ({	i}, {kj })
N∏

i=1

ωi(	i n̄i − m̄iki). (111)

We can check explicitly that the ‘large’ Fourier transform of equation (110) is equivalent to
the combination of ‘small’ Fourier transforms of equation (111). It is this equivalence that is
exploited in ‘fast Fourier transforms’.

A special class of operators are the ones that can be factorized as

� = �1 ⊗ · · · ⊗ �N, (112)
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where �i are operators acting on the Hilbert spaces H(di). In this special case, the matrix
elements factorize:

σ({n̄i}{m̄i}) =
N∏

i=1

σi(n̄i , m̄i), σi(n̄i , m̄i) ≡ 〈Xi; n̄i |�i |Xi; m̄i〉,

τ ({	i}, {ki}) =
N∏

i=1

τi(	i, ki), τi(	i, ki) ≡ 〈Pi; 	i |�i |Pi; ki〉.
(113)

8.3. Displacements in phase-space

The toroidal lattice phase-space factorizes into the ‘multi-dimensional’ toroidal lattice phase-
space (Z(d1) × Z(d1)) × · · · × (Z(dN) × Z(dN)). Here we show that the displacement
operators in Z(d) × Z(d) can be expressed as products of the displacement operators in the
various ‘factor phase-spaces’ as

D(α, β) =
N∏

i=1

Di(αi, β̄i), (114)

where as explained in equations (104) and (105) αi = α(mod di) and β̄i = βti(mod di). In
order to prove this, we first prove that

Z =
∑
m

|P ; m + 1〉〈P ; m| =
∑
m

N∏
i=1

|Pi; mi + 1〉〈Pi; mi | =
N∏

i=1

Zi,

X =
∑
m

|X; m + 1〉〈X; m| =
∑
m

N∏
i=1

|Xi; m̄i + ti〉〈Xi; m̄i | =
N∏

i=1

X
ti
i .

(115)

For simplicity we use the same symbol
∏

for both ordinary product and tensor product of
operators. Using this we prove that(

N∏
i=1

Zi

)α ( N∏
i=1

X
ti
i

)β

=
N∏

i=1

(
Z

αi

i X
β̄i

i

)
, ω(−2−1αβ) =

N∏
i=1

ωi(−2−1αiβ̄i), (116)

which leads to equation (114).
We can also prove a relation analogous to equation (114) for the displaced parity operators.

We first see easily that

P(0, 0) =
N∏

i=1

Pi(0, 0) (117)

and then use equations (61) and (114) to prove that

P(α, β) =
N∏

i=1

Pi(αi, β̄i). (118)

A direct consequence of equations (114) and (118) is that the Wigner and Weyl functions
of an operator � can be relabelled as

W(�; α, β) = W(�; {αi}, {β̄i}), W̃ (�; α, β) = W̃ (�; {αi}, {β̄i}). (119)
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We now consider the special class of operators that factorize as in equation (112). In this special
case, it is easily seen that the corresponding Wigner and Weyl functions also factorize as

W(�; α, β) = W(�; {αi}, {β̄i}) =
N∏

i=1

Wi(�i; αi, β̄i),

W̃ (�; α, β) = W̃ (�; {αi}, {β̄i}) =
N∏

i=1

W̃i(�i; αi, β̄i).

(120)

For later use we consider the problem of finding the displacements in the phase-space
Z(d)×Z(d) that lead to displacements in only one of the N factor phase-spaces Z(di)×Z(di).
In other words, we want to find the special cases for which the product in the right-hand side
of equation (114) contains only one non-trivial factor (the other factors are equal to 1). We see
easily that for given integers αi , β̄i in Z(di) the integers α = siαi and β = ri β̄i in Z(d) are
mapped to

α = siαi ↔ (0, . . . , 0, αi, 0, . . . , 0), (121)

β = ri β̄i ↔ (0, . . . , 0, β̄i , 0, . . . , 0), (122)

according to the mappings of equations (104) and (105), correspondingly. Consequently, in
this case

D(siαi, ri β̄i) = Di(αi, β̄i). (123)

8.4. SU(d) transformations

We consider SU(d) transformations in the system descibed with the Hilbert space H(d). We
have explained earlier that the displacement operators are generators of these transformations
and that infinitesimal SU(d) transformations are given by equation (98). Taking into account
the factorization discussed in this section, and in particular equation (114), we can express the
infinitesimal SU(d) transformations as

g = 1 +
∑
α,β

ε (α, β) D(α, β) = 1 +
∑

{αi },{βi }
ε
({αi}, {β̄i}

) N∏
i=1

Di(α, β̄i) (124)

where ε(α, β) are infinitesimal coefficients and ε({αi}, {β̄i}) are the same coefficients
relabelled.

Finite SU(d) transformations are given by equations (99) and (100). Taking into account
equations (114) and (119), we rewrite them as

U = 1

d

∑
α,β

W̃ (U ; −α, −β)D(α, β) = 1

d

∑
{αi },{βi }

W̃ (U ; {−αi}, {−β̄i})
N∏

i=1

Di(αi, β̄i). (125)

A special case of SU(d) transformations is the ones that factorize as in equation (112),
i.e. U = U1 ⊗ · · · ⊗ UN . These transformations form the

F = SU(d1) × · · · × SU(dN) (126)

subgroup of SU(d). This group has
∑

(d2
i − 1) generators, and we can choose them to be the

displacement operators Di(αi, β̄i). In this special case the product of displacement operators
appearing in equation (114) has only one non-trivial factor (the other factors are 1). Taking into
account equation (123), we see that transformations in the group F have as generators D(α, β),
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where α = siαi , β = ri β̄i and αi , β̄i take all values in Z(di). Infinitesimal F transformations
can be written as

gF = 1 +
∑
αi ,β̄i

ε(αi, β̄i)Di(α, β̄i) = 1 +
∑
αi ,β̄i

ε(αi, β̄i)D(siαi, ri β̄i) (127)

For finite F transformations we take into account that for factorizable operators the cor-
responding Wigner and Weyl functions factorize (equation (120)). Therefore, equation (125)
becomes

U = 1

d

N∏
i=1


∑

αi ,β̄i

W̃ (Ui; −αi, −β̄i)Di(αi, β̄i)


 . (128)

9. Transformations in composite finite quantum systems

We consider a composite finite quantum system composed of two parts described with the
Hilbert spaces H1 and H2. The total Hilbert space of the system is H1 ⊗ H2. In this section,
we study local and entangling unitary transformations of this system, and in more detail local
and entangling symplectic transformations.

For simplicity, we consider the case where both Hilbert spaces have the same dimension d.
Our notation is the same as above, with an index i to indicate the appropriate Hilbert space.
For example, Z1 = Z ⊗ 1, Z2 = 1 ⊗ Z; also |X1; n〉 and |X2; n〉 are position states in H1 and
H2, correspondingly, etc.

Zi has the d eigenvalues ωm, and there is a degeneracy with d eigenvectors corresponding
to each eigenvalue. For example, Z1 = Z ⊗ 1 has the eigenvalues ωm and corresponding
eigenvectors |X1; m〉|s2〉, where |s2〉 is any vector in the d-dimensional Hilbert space H2.
We consider the common eigenvectors of Z1 and Z2 (which commute with each other). To
each set of eigenvalues ω(m1), ω(m2) corresponds (up to a phase factor) one normalized
eigenvector,

Zi |X; m1, m2〉 = ω(mi)|X; m1, m2〉, |X; m1, m2〉 ≡ |X1; m1〉|X2; m2〉. (129)

In a similar way, we consider the common eigenvectors of both Xi with i = 1, 2. To each set of
eigenvalues ω(−m1), ω(−m2) corresponds (up to a phase factor) one normalized eigenvector

Xi |P ; m1, m2〉 = ω(−mi)|P ; m1, m2〉, |X; m1, m2〉 ≡ |X1; m1〉|X2; m2〉. (130)

The position space of this system is Z(d) × Z(d) and the momentum space is Z(d) × Z(d).
Therefore the phase-space is [Z(d)]4.

The displacement operators D1(α1, β1) ≡ D(α1, β1)⊗1 perform displacements in phase-
space in the first system only. Similarly D2(α2, β2) ≡ 1⊗D(α2, β2) perform displacements in
phase-space in the second system only. The operators D1(α1, β1)D2(α2, β2) ≡ D(α1, β1) ⊗
D(α2, β2) perform displacements in phase-space in both systems.

9.1. Local and entangling unitary transformations in bi-partite systems

We first study local unitary transformations on the composite system considered above. They
form the group SU(d) × SU(d), which consists of transformations of the form U1 ⊗ U2,
where Ui denotes SU(d) transformations in Hi . They are local transformations in the sense
that acting on a factorizable pure state, they give another factorizable pure state.
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The SU(d) × SU(d) group has 2(d2 − 1) generators, and as previously we choose them
to be the displacement operators Di(αi, βi) (i = 1, 2). Infinitesimal transformations can be
written as

g = 1 +
∑
α1,β1

ε1(α1, β1)D1(α1, β1) +
∑
α2,β2

ε2(α2, β2)D2(α2, β2), (131)

where ε1(α1, β1) and ε2(α2, β2) are infinitesimal coefficients.
For finite transformations, we use equations (99),(100) and the fact that the Weyl function

of U1 ⊗ U2 factorizes. We get

U1 ⊗ U2 = 1

d2

∑
α1,β1,α2,β2

W̃ (U1; −α1, −β1)W̃ (U2; −α2, −β2)[D1(α1, β1)D2(α2, β2)]. (132)

We next consider more general unitary transformations that describe both local and
entangling transformations. H1 ⊗ H2 is a d2-dimensional Hilbert space, and the general
unitary transformations are SU(d2). This group has d4 − 1 generators which we take to be
D1(α1, β1)D2(α2, β2). From them the 2(d2 −1) generators contain only one non-trivial factor
(the other factor is 1) and are associated as we explained earlier with local SU(d) × SU(d)

transformations. The rest of the (d2 − 1)2 generators contain two non-trivial factors and
describe entangling transformations. Infinitesimal SU(d2) transformations can be written as

g = 1 +


∑

α1,β1

ε1(α1, β1)D1(α1, β1) +
∑
α2,β2

ε2(α2, β2)D2(α2, β2)




+
∑

α1,β1,α2,β2

ε3(α1, β1, α2, β2)D1(α1, β1)D2(α2, β2), (133)

where ε1(α1, β1), ε2(α2, β2) and ε3(α1, β1, α2, β2) are infinitesimal coefficients. Here the
2(d2 − 1) generators appearing in the first two sums describe local transformations, and the
rest of the (d2 − 1)2 generators appearing in the last sum describe entangling transformations.

We stress that SU(d) × SU(d) is not a normal subgroup of SU(d2) as can be seen from
the fact that the commutators of the generators of SU(d) × SU(d) with the generators of
SU(d2) are not necessarily generators of SU(d) × SU(d). Therefore the space of entangling
transformations SU(d2)/SU(d) × SU(d) is not a group (the left cosets are different from the
right cosets).

Finite SU(d2) transformations can be written as

U = 1

d2

∑
α1,β1,α2,β2

W̃ (U ; −α1, −β1, −α2, −β2) [D1(α1, β1)D2(α2, β2)] . (134)

9.2. Local and entangling symplectic transformations in bi-partite systems

In this section, we study symplectic transformations in the phase-space of the composite
quantum system. For the reasons that we explained earlier, we consider Galois quantum
systems with d = pn.

The [GF(pn)]4 phase-space of the composite quantum system is ‘four-dimensional’ (if
such a term can be used for a finite set), and general symplectic transformations form the
Sp(4, GF(pn)) group. This describes both local and entangling symplectic transformations
and contains [Sp(2, GF(pn))]2 of local symplectic transformations as a subgroup. In order
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to study it, we consider the transformations

X′
i = SXiS

† = (X
κ1i

1 Z
λ1i

1 )(X
κ2i

2 Z
λ2i

2 ),

Z′
i = SZiS

† = (X
µ1i

1 Z
ν1i

1 )(X
µ2i

2 Z
ν2i

2 ),
(135)

where all exponents belong in GF(pn). S is a unitary operator that will be constructed
explicitly below. We require that these transformations preserve equations (27) and also that
X′

1, Z
′
1 commute with X′

2, Z
′
2. In this case, X′

i , Z′
i are new displacement operators in phase-

space, that displace in different directions, in comparison with Xi , Zi . This requirement leads
to the constraints

(κ11λ12 − λ11κ12) + (κ21λ22 − λ21κ22) = 0,

(µ11ν12 − ν11µ12) + (µ21ν22 − ν21µ22) = 0,

(κ1iν1k − λ1iµ1k) + (κ2iν2k − λ2iµ2k) = δ(i, k).

(136)

There are 16 integer parameters in these transformations and six constraints. Therefore there
are ten independent integer parameters. In Galois quantum systems (d = pn) we choose ten
integer parameters and then solve the constraints (136) (because the inverses exist) to find the
rest of the parameters.

We can show easily that the transformations (135) form a group that we have called
Sp(4, GF(pn)). In the special case

κ21 = λ21 = µ21 = ν21 = κ12 = λ12 = µ12 = ν12 = 0, (137)

the above transformations form the [Sp(2, GF(pn))]2 subgroup of local symplectic
transformations (independent symplectic transformations in each of the two subsystems). In
this special case, X′

1, Z′
1 are displacement operators in the phase-space [GF(pn)]2 of the

first subsystem (but they displace in different directions in comparison with X1, Z1). In the
more general case of equation (135) the X′

1, Z′
1 displace outside the phase-space of the first

subsystem (within the larger combined phase-space [GF(pn)]4 of the two subsystems).

9.3. Numerical calculation of the symplectic operator S

In this section we discuss how to evaluate the symplectic operator S numerically. We first
consider the common eigenvectors of the commuting operators Z′

1 and Z′
2, which we denote

as |X′; m1, m2〉:
Z′

i |X′; m1, m2〉 = ω(mi)|X′; m1, m2〉, |X′; m1, m2〉 = S|X; m1, m2〉. (138)

To each set of eigenvaluesm1, m2 corresponds (up to a phase factor) one normalized eigenvector
which we calculate numerically.

In order to calculate the phases, we start from the lowest state, |X′; 0, 0〉 (whose phase we
choose arbitrarily), and use numerically the equation

(X′
1)

m1(X′
2)

m2 |X′; 0, 0〉 = |X′; m1, m2〉. (139)

|X′; m1, m2〉 calculated through this equation differ from the corresponding vectors calculated
above as common eigenvectors of the matrices Z′

1, Z′
2, only by a phase factor. This is a test

that the numerical work is correct and at the same time it provides the phases. We stress that
the phases are very important for the self-consistency of the formalism.

We can now calculate the matrix elements of the operator S:

S(m1, m2|n1, n2) ≡ 〈X; m1, m2|S|X; n1, n2〉 = 〈X; m1, m2|X′; n1, n2〉. (140)
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As an example, we consider five-dimensional Hilbert spaces H1 and H2, and the
transformations

X′
1 = SX1S

† = (X−1
1 Z1)(X

2
2),

Z′
1 = SZ1S

† = (X1Z
2
1)(X2Z

2
2),

X′
2 = SX2S

† = (X1Z1)(Z2),

Z′
2 = SZ2S

† = (X1)(X
−2
2 Z−2

2 ),

(141)

which obey the constraints (136).
In order to find the common eigenvectors |X′; m1, m2〉 of Z′

1, Z′
2, we first consider Z′

1
in the basis |X1; n1〉|X2; n2〉. This is the Kronecker product of the two 5 × 5 matrices
δ(n1, m1 + 1)ω(2m1) and δ(n2, m2 + 1)ω(2m2) corresponding to the operators X1Z

2
1 and

X2Z
2
2 . We calculate numerically this Kronecker product (which is a 25 × 25 matrix) and its

eigenvalues and eigenvectors. There are five different eigenvalues ω(m1) where m1 ∈ Z(5).
To each of these eigenvalues correspond five eigenvectors, and we form 25 × 5 matrices that
have as columns these eigenvectors and that we denote as B(m1). The |X′; m1, m2〉 is in
the five-dimensional subspace spanned by the eigenvectors corresponding to the eigenvalue
ω(m1), and therefore it can be written as B(m1)A(m1, m2), where A(m1, m2) is a 5 × 1 vector
to be determined.

We next calculate numerically the Kronecker product of the two 5 × 5 matrices
δ(n1, m1 + 1) and δ(n2, m2 − 2)ω(−2m2) corresponding to the operators X1 and X−2

2 Z−2
2 in

Z′
2. Since B(m1)A(m1, m2) is an eigenvector of Z′

2 with eigenvalue ω(m2), this implies that
(Z′

2 − ω(m2)1)B(m1)A(m1, m2) = 0. Consequently, A(m1, m2) belongs in the null space
of (Z′

2 − ω(m2)1)B(m1), which is one-dimensional and which is readily available in most
computer libraries (e.g. MATLAB). With this method we have calculated all the eigenvectors
|X′; m1, m2〉 up to phase factors.

In order to calculate the phases, we start from the lowest state, |X′; −2, −2〉 (for which
we choose arbitrarily a phase), and use numerically equation (139). We then calculate the
matrix elements of the operator S(n1, n2|m1, m2) defined in equation (140). In table 3 we give
S(n1, n2|1, 1).

9.4. Symplectic transformations in multi-partite systems

Above we have studied symplectic transformations Sp(4, GF(pn)) in bi-partite quantum
systems. Here we study more general Sp(2N, GF(pn)) in N -partite quantum systems with
[GF(pn) × GF(pn)]N phase-space.

We consider the transformations

X′
i = SXiS

† = (X
κ1i

1 Z
λ1i

1 ) · · · (XκNi

N Z
λNi

N ),

Z′
i = SZiS

† = (X
µ1i

1 Z
ν1i

1 ) · · · (XµNi

N Z
νNi

N ),
(142)

Table 3. The coefficients S(n1, n2|1, 1) for the transformations of equation (141). Here,
z1 = −0.0494 − 0.1938i, z2 = z1ω

2, z3 = z1ω , z4 = z1ω
−2 and z5 = z1ω

−1.

n2 = −2 n2 = −1 n2 = 0 n2 = 1 n2 = 2

n1 = −2 z1 z1 z4 z5 z4

n1 = −1 z2 z3 z4 z4 z3

n1 = 0 z2 z1 z3 z1 z2

n1 = 1 z1 z2 z2 z1 z3

n1 = 2 z3 z2 z3 z4 z4
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where all exponents belong in GF(pn). We require that these transformations preserve
equations (27) and also that for i �= k, X′

i , Z
′
i commute with X′

k, Z
′
k . In this case, X′

i , Z′
i

can also be used as displacement operators in phase-space. In comparison with Xi , Zi , they
displace in different directions. This requirement leads to the constraints

N∑
	=1

(κ	iλ	k − λ	iκ	k) = 0,

N∑
	=1

(µ	iν	k − ν	iµ	k) = 0,

N∑
	=1

(κ	iν	k − λ	iµ	k) = δ(i, k).

(143)

There are 4N2 integer parameters in these transformations and 2N2 −N constraints. Therefore
there are 2N2 + N independent integer parameters.

We note that in the special case

κik = λik = µik = νik = 0, i �= k, (144)

the above transformations form the [Sp(2, GF(pn))]N subgroup of local symplectic
transformations (independent symplectic transformations in each of the N subsystems).

The numerical work presented earlier for the calculation of the symplectic operator S in
bi-partite quantum systems can also be generalized to multi-partite systems.

10. Angle and angular momentum states

Angular momentum is a well studied topic in the literature and there are several textbooks and
review articles on it (e.g. [57–59]). The aim of this section and the next section is to make a
connection between the general theory of finite quantum systems presented earlier and angular
momentum.

We consider the usual angular momentum states, which we denote as |J ; jm〉. The extra
J to the usual notation is not a variable but simply indicates angular momentum states. We also
consider the usual angular momentum operators, Jz, J+, J−, which form the SU(2) algebra

[Jz, J+] = J+, [Jz, J−] = −J−, [J+, J−] = 2Jz. (145)

The corresponding Casimir operator is

J 2 = J 2
z +

1

2
(J+J− + J−J+) = j (j + 1)1. (146)

The angular momentum operators act on the angular momentum states as follows:

J+|J ; jm〉 = [j (j + 1) − m(m + 1)]1/2|J ; jm + 1〉,
J−|J ; jm〉 = [j (j + 1) − m(m − 1)]1/2|J ; jm − 1〉,
Jz|J ; jm〉 = m|J ; jm〉,
J 2|J ; jm〉 = j (j + 1)|J ; jm〉.

(147)

We next introduce a polar decomposition of the ‘Cartesian operators’, J+ and J−, in terms
of the ‘radial operator’, Jr , and the ‘exponential of the phase operator’, which we denote as X
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because we will show that it is similar to the operator X used earlier.

J+ = JrX, J− = X†Jr,

Jr = (J+J−)1/2, X =
∑
m

|J ; jm + 1〉〈J ; jm|. (148)

It is easily seen that X is a unitary operator and that

Jr |J ; jm〉 = [j (j + 1) − m(m − 1)]1/2|J ; jm〉,
Jr = [j (j + 1)1 − J 2

z + Jz]
1/2,

[Jr, Jz] = 0.

(149)

Jr and X do not commute, and consequently the ordering of these operators in the polar
decomposition is important. An alternative polar decomposition is

J+ = XJ ′
r , J− = J ′

rX
†, J ′

r = (J−J+)
1/2, (150)

where in this case

J ′
r |J ; jm〉 = [j (j + 1) − m(m + 1)]1/2|J ; jm〉,

J ′
r = [j (j + 1)1 − J 2

z − Jz]
1/2,

[J ′
r , Jz] = 0.

(151)

In the following, we distinguise the Bose sector (integer j ) from the Fermi sector (half-
integer j ). This is because many relations are based on equation (3), which is valid for integers.
As pointed out in [14], a consequence of this is that some of the formulae are slightly different
in the two cases of Bose and Fermi sectors (the Fermi sector requires a ‘correction by 1/2’).

10.1. Bose sector

The Fourier operator of equation (2) is in this case

F = (2j + 1)−1/2
∑
m,n

ω(mn)|J ; jm〉〈J ; jn|. (152)

We introduce angle states by acting with the Fourier operator on the angular momentum states:

|θ; jm〉 = F |J ; jm〉 = (2j + 1)−1/2
∑

n

ωmn|J ; jn〉. (153)

In the harmonic oscillator, we have momentum and position states related through a Fourier
transform. Here we have angular momentum and angular position (angle) states related through
a finite Fourier transform.

Acting with the Fourier operator on the angular momentum operators we get the angle
operators

FJzF
† = θz, FJ+F

† = θ+, FJ−F † = θ− (154)

which form the SU(2) algebra

[θz, θ+] = θ+, [θz, θ−] = −θ−, [θ+, θ−] = 2θz. (155)

The Casimir operator is

θ2 = θ2
z + 1

2 (θ+θ− + θ−θ+) = j (j + 1)1 = J 2. (156)
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The angle operators act on the angle states in a way analogous to the angular momentum
operators acting on the angular momentum states:

θ+|θ; jm〉 = [j (j + 1) − m(m + 1)]1/2|θ; jm + 1〉,
θ−|θ; jm〉 = [j (j + 1) − m(m − 1)]1/2|θ; jm − 1〉,
θz|θ; jm〉 = m|θ; jm〉,
θ2|θ; jm〉 = j (j + 1)|θ; jm〉.

(157)

We next consider a polar decomposition of θ+ and θ− in terms of the ‘radial operator’, θr ,
and the ‘exponential of the phase operator’, which we denote as Z:

θ+ = θrZ, θ− = Z†θr ,

θr = (θ+θ−)1/2 = FJrF
†, Z = FXF † =

∑
m

|θ; jm + 1〉〈θ; jm|. (158)

We can show that the two exponentials of the phase operators X and Z obey equation (27)
and form the Heisenberg–Weyl group in this context. They also obey relations analogous to
equations (25) and (26), with the states |X; m〉 replaced by the angular momentum states, and
the states |P ; m〉 replaced by the angle states

Zα|θ; jm〉 = |θ; jm + α〉, Zα|J ; jm〉 = ω(αm)|J ; jm〉, (159)

Xβ |θ; jm〉 = ω(−mβ)|θ; jm〉, Xβ |J ; jm〉 = |J ; jm + β〉. (160)

It is seen easily that

X = exp

(
−i

2π

2j + 1
θz

)
, Z = exp

(
i

2π

2j + 1
Jz

)
. (161)

We can introduce cosine and sine operators CX, SX and also CZand SZ as in equations (34)
and (36):

CX = cos

(
2π

2j + 1
θz

)
, SX = sin

(
2π

2j + 1
θz

)
, (162)

CZ = cos

(
2π

2j + 1
Jz

)
, SZ = sin

(
2π

2j + 1
Jz

)
. (163)

We next calculate the expectation values 〈Ki〉 ≡ 〈θ; jn|Ki |θ; jn〉 and the corresponding
variances (�K)2 ≡ 〈K2〉 − 〈K〉2 of various operators K with respect to angle states:

〈Jr〉 = (2j + 1)−1
∑
m

[j (j + 1) − m(m − 1)]1/2,

〈Jx〉 = 〈Jr〉 cos

(
2πn

2j + 1

)
, 〈Jy〉 = −〈Jr〉 sin

(
2πn

2j + 1

)
,

〈CX〉 = cos

(
2πn

2j + 1

)
, (�CX)2 = 0,

〈SX〉 = sin

(
2πn

2j + 1

)
, (�SX)2 = 0,

〈CZ〉 = 0, (�CZ)2 = 1
2 ,

〈SZ〉 = 0, (�SZ)2 = 1
2 .

(164)

These quantities elucidate the physical meaning of the angle states.
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10.2. Fermi sector

Some of the relations in the Fermi sector (half-integer j ) are slightly different from the
corresponding ones in the Bose sector (integer j ). This is because many relations are based
on equation (3), which is valid for integers. Consequently, the j of the Bose sector is replaced
with j + 1/2 in the Fermi sector.

The Fourier operator in the Fermi sector is given by

F = (2j + 1)−1/2
∑
m,n

ω

[(
m +

1

2

)(
n +

1

2

)]
|J ; jm〉〈J ; jn| (165)

and the angle states are defined as

|θ; jm〉 = F |J ; jm〉 = (2j + 1)−1/2
∑

n

ω

[(
m +

1

2

)(
n +

1

2

)]
|J ; jn〉. (166)

Equations (154)–(158) are the same in both Bose and Fermi sectors. Equations (159) and
(160) are replaced in the Fermi sector with

Zα|θ; jm〉 = |θ; jm + α〉, Zα|J ; jm〉 = ω
[
α
(
m + 1

2

)] |J ; jm〉, (167)

Xβ |θ; jm〉 = ω
[−β

(
m + 1

2

)] |θ; jm〉, Xβ |J ; jm〉 = |J ; jm + β〉. (168)

Equation (161) is replaced with

X = exp

[
−i

2π

2j + 1

(
θz +

1

2

)]
, Z = exp

[
i

2π

2j + 1

(
Jz +

1

2

)]
. (169)

Equations (167)–(169) are proved using equations (165) and (166). The analogues of
equations (162)–(164) for the Fermi sector require ‘1/2 corrections’ and are not presented here.

10.3. The Holstein–Primakoff SU(2) formalism

In this section, H is the infinite dimensional Hilbert space associated with the harmonic
oscillator. Let a†, a be the creation and annihilation operators, correspondingly, and |N〉
be the number eigenstates. The Holstein–Primakoff SU(2) formalism [60] considers the
(2j + 1)-dimensional Hilbert space Htr spanned by the number states with 0 � N � 2j . The
index ‘tr’ in the notation indicates truncated Hilbert space. In Htr we consider the operators

J+ = [(2j + 1) − a†a]1/2a†, J− = a[(2j + 1) − a†a]1/2,

Jz = a†a − j, J 2 = j (j + 1)1.
(170)

Here 1 is the unit operator in Htr . It is easily seen that these operators obey the usual angular
momentum commutation relations of equation (145). The corresponding angular momentum
states are the number eigenstates

|J ; jm〉 = |N〉, N = j + m, (171)

and we can easily check the validity of equation (147). Clearly, the whole formalism on finite
quantum systems discussed earlier can be applied to Htr .

The Holstein–Primakoff SU(2) formalism expresses the angular momentum operators in
terms of harmonic oscillator creation and annihilation operators. Other formalisms that do that
are the Schwinger formalism, which will be studied later, and the Dyson formalism, which
will not be discussed here.
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11. SU(2) coherent states and Q and P representations

Coherent states play an important role in various branches of physics: quantum optics,
condensed matter, nuclear physics, particle physics (especially in connection with infrared
divergences), etc. They are usually related to various groups in the sense that transformations
from the group take a coherent state into another coherent state (‘temporal stability’). Coherent
states associated with the Heisenberg–Weyl group, the SU(1, 1) group and the SU(2) group
have been studied extensively in the literature. There are already several textbooks and review
articles on coherent states and their applications (e.g. [28–30, 33]). The aim of this section
is to make a connection between the theory of finite quantum systems presented earlier and
SU(2) coherent states.

11.1. SU(2) coherent states

A sphere is topologically equivalent to the extended complex plane (C∪{∞}). A stereographic
projection provides a one-to-one mapping between the points on a sphere and the points on
the extended complex plane. A point on a sphere described in spherical coordinates with the
angles (α, β) (0 � α � π , 0 � β < 2π ) is mapped into the point z in the extended complex
plane, where

z = − tan
(α

2

)
e−iβ. (172)

The south pole is mapped to the point z = 0 and the north pole to ∞.
With this notation in mind we consider the unitary SU(2) operators

U1(α, β, γ ) = exp
[− 1

2αe−iβJ+ + 1
2αeiβJ−

]
exp(iγ Jz). (173)

For later use we give without proof [28, 57] the relation

U1(α, β, γ )Jz[U1(α, β, γ )]† = Jε,

Jε = ε · J, J = (Jx, Jy, Jz), ε = (sin α cos β, sin α sin β, cos α),
(174)

and also the relation

exp
[− 1

2αe−iβJ+ + 1
2αeiβJ−

] = exp(zJ+)(1 + |z|2)Jz exp(−z∗J−), (175)

where z is given in terms of (α, β) in the stereographic projection relation of equation (172).
SU(2) coherent states are defined as

|Jcoh; α, β〉 = U1(α, β, 0)|J ; j − j〉, (176)

where the index ‘coh’ in the notation indicates coherent states. We have taken U1 with γ = 0,
but a non-zero value of γ gives the same coherent state with an extra trivial phase factor.

One of the most important properties of coherent states is the ‘temporal stability’ [61].
In the present context, this is the fact that the operators U1(α, β, γ ) acting on coherent states
produce other coherent states (i.e. under these transformations the states remain in the same
‘family’). This is indeed the case because the product of two U1 operators is an operator of
the same type (they form the SU(2) group).

A second definition of SU(2) coherent states that is equivalent to (176) is as eigenstates
of Jε :

Jε |Jcoh; α, β〉 = −j |Jcoh; α, β〉. (177)

The equivalence of these two definitions is easily proved with the use of equation (174).
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A third definition of SU(2) coherent states that is equivalent to both (176) and (177) is

|Jcoh; z〉 = (1 + |z|2)−j
∑

n

d(j, n)zj+n|J ; jn〉, d(j, n) =
[

(2j)!

(j + n)!(j − n)!

]1/2

,

(178)

where z belongs in the extended complex plane. The equivalence of (178) with (176) is proved
with the use of equation (175), and it is easily seen that

|Jcoh; α, β〉 = |Jcoh; z〉, (179)

where z is given in terms of α, β in the stereographic projection relation of equation (172).
The overlap of two coherent states is given by

〈Jcoh; z1|Jcoh; z2〉 =
[

(1 + z∗
1z2)

2

(1 + |z1|2)(1 + |z1|2)
]j

. (180)

There is a connection between this result and the distance δ(z1, z2) between the points z1 and
z2, in spherical geometry (extended complex plane) given by

tan2

[
1

2
δ(z1, z2)

]
=

∣∣∣∣ z1 − z2

1 + z∗
1z2

∣∣∣∣
2

. (181)

It is easily seen that

〈Jcoh; z1|Jcoh; z2〉 = {
1 + tan2

[
1
2δ(z1, z2)

]}−j
. (182)

The resolution of the identity in terms of SU(2) coherent states is

2j + 1

π

∫
|Jcoh; z〉〈Jcoh; z| dµ(z) = 1, dµ(z) = (1 + |z|2)−2 d2z, (183)

where the integration is over the extended complex plane. dµ(z) is the spherical geometry
metric, as expressed in the extended complex plane. Equation (183) is proved if we substitute
equation (178) into equation (183) and perform the integration. The resolution of the
identity (183) shows that the set of all SU(2) coherent states is at least complete. In fact,
it is highly overcomplete because we will prove below that small subsets of these coherent
states are also overcomplete.

We note that if we act with any unitary operator V on both states and operators we get
another set of coherent states. The states

|J ′
coh; z〉 ≡ V |Jcoh; z〉 (184)

are SU(2) coherent states with respect to the operators

U ′
1(α, β, γ ) = V U1(α, β, γ )V † = exp

[− 1
2αe−iβJ ′

+ + 1
2αeiβJ ′

−
]

exp(iγ J ′
z)

J ′
z = V JzV

†, J ′
+ = V J+V

†, J ′
− = V J−V †,

(185)

but they are not coherent states with respect to the original operators of equation (173).
However, it may be interesting to study the properties of the states (184) with respect to
the operators (173).

An example of this general comment is to take V = F , i.e. to act with the Fourier operator
on the above states and operators. We get the states

|θcoh; z〉 ≡ F |Jcoh; z〉 = (1 + |z|2)−j
∑

n

d(j, n)zj+n|θ; jn〉, (186)
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which are SU(2) coherent states with respect to the operators

U2(α, β, γ ) = FU1(α, β, γ )F † = exp
[− 1

2αe−iβθ+ + 1
2αeiβθ−

]
exp(iγ θz) (187)

but they are not coherent states with respect to the original operators of equation (173). It is
seen easily that

〈Jcoh; ζ |θcoh; z〉 = (2j + 1)−1/2(1 + |ζ |2)−j (1 + |z|2)−j
∑
m,n

d(j, n)d(j, m)(ζ ∗)j+nzj+mω(nm)

(188)

for the Bose case (integer j ).

11.2. Q and P representations

Q and P representations can be defined with respect to the J -coherent states or with respect
to the θ -coherent states; and for this reason we use the indices J and θ , correspondingly.

The QJ representation of an operator A is defined as

QJ (A; z) = 〈Jcoh; z|A|Jcoh; z〉. (189)

In a similar way, we can define Qθ(A; z), and the relationship between the two can be found
using equation (188).

The PJ representation of an operator A is defined as

A = 2j + 1

π

∫
PJ (A; z)|Jcoh; z〉〈Jcoh; z| dµ(z). (190)

In a similar way we can define Pθ(A; z).
It is seen easily that

TrA = 2j + 1

π

∫
QJ (A; z) dµ(z) = 2j + 1

π

∫
PJ (A; z) dµ(z) (191)

and also that

Tr(AB) = 2j + 1

π

∫
QJ (A; z)PJ (B; z) dµ(z). (192)

Inserting equation (190) into equation (189) and using equation (180), we prove that

QJ (A; z) = 2j + 1

π

∫
PJ (A; w)

[ |1 + z∗w|2
(1 + |z|2)(1 + |w|2)

]2j

dµ(w). (193)

The Q and P functions are also known as covariant and contravariant symbols. There are
many relations that connect the Q and P functions with the Wigner and Weyl functions and
will not be reviewed here [50].

12. Analytic representations based on SU(2) coherent states

Intimately related to coherent states are the analytic representations that represent the various
quantum states with analytic functions. In this way we can use the powerful theory of analytic
functions to derive strong results in a quantum mechanical context. We can also perform
easily the transformations of the corresponding group as conformal mappings. The Bargmann
analytic representation in the complex plane [62] is intimately related to ordinary coherent
states and Euclidean geometry. Analytic representation in the unit disc (or equivalently, half-
plane) [63] is intimately related to SU(1, 1) coherent states and hyperbolic geometry. Both
these representations are associated with infinite-dimensional Hilbert spaces and will not be
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discussed here. We will study an analytic representation in the extended complex plane that
is intimately related to SU(2) coherent states and spherical geometry.

Another analytic representation is the so-called Dirac contour representation. This has
been studied in the context of ordinary coherent states and Euclidean geometry in [64]. Here,
we will present the analogue of this representation in the context of the extended complex
plane and SU(2) coherent states.

12.1. Analytic representation in the extended complex plane: quantum states

We consider the 2j + 1-dimensional space spanned by the angular momentum states |J ; jm〉.
In this Hilbert space we consider an arbitary state

|f 〉 =
∑

n

fn|J ; jn〉,
∑

n

|fn|2 = 1. (194)

We use the following notation:

〈f | =
∑

n

f ∗
n 〈J ; jn|, |f ∗〉 =

∑
n

f ∗
n |J ; jn〉, 〈f ∗| =

∑
n

fn〈J ; jn|. (195)

In the analytic representation, the state |f 〉 is represented by the polynomial

f (z) = (1 + |z|2)j 〈Jcoh; z∗|f 〉 = (1 + |z|2)j 〈f ∗|Jcoh; z〉 =
∑

n

d(j, n)fnz
j+n, (196)

which in general is of order 2j (but in special cases it may be of lower order).
Examples of various states and their analytic representations are

|J ; jm〉 → d(j, m)zj+m,

|θ; jm〉 → (2j + 1)−1/2
∑

n

d(j, n)ω(nm)zj+n,

|Jcoh; ζ 〉 → (1 + zζ )2j

(1 + |ζ |2)j ,

|θcoh; ζ 〉 → (2j + 1)−1/2(1 + |ζ |2)−j
∑
n,k

ζ j+kωnkzj+n.

(197)

In this representation the scalar product of two states |f 〉 and |g〉 represented by the
functions f (z) and g(z), correspondingly, is given by

〈g|f 〉 = 2j + 1

π

∫
[g(z)]∗f (z)(1 + |z|2)−2j dµ(z), (198)

where dµ(z) has been given in equation (183). This is easily proved with the use of the
resolution of the identity (183).

The angular momentum operators are represented as

J+ = −z2∂z + 2jz, J− = ∂z, Jz = z∂z − j. (199)

Indeed we can check easily that these operators acting on d(j, m)zj+m which represent the
states |J ; jm〉 give the expected results of equation (147). Other operators are represented
with various kernels, as will be discussed in the next subsection.

We next consider a state |f 〉 represented by the function f (z). If w is a zero of the function
f (z) (i.e. f (w) = 0), then the state |f 〉 is orthogonal to the state |Jcoh; w∗〉, as can be seen
from equation (196). A more general result is that if w is a zero of order k of the function f (z)
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(i.e. f (z) = (z − w)kf1(z)), then the state |f 〉 is orthogonal to all states

|Jcoh; w∗〉, J+|Jcoh; w∗〉, . . . , (J+)
k−1|Jcoh; w∗〉. (200)

Indeed ∂	
z f (z) = (1 + |z|2)j 〈Jcoh; z∗|(J−)	|f 〉 and w is a zero of ∂	

z f (z) for 0 � 	 � k − 1.
Using this we can prove that any set of more than 2j SU(2) coherent states is at least

complete. Indeed, if this is not a complete set, then there exists a state |f 〉 that is orthogonal
to all of them. Correspondingly, there exists a polynomial f (z) with more than 2j zeros. But
this is not possible because as we explained f (z) is of order 2j .

When a set of states is at least complete, in principle we can expand an arbitrary state
in terms of these states. However, in practice it is not always easy to find the coefficients of
such expansion. In this sense a resolution of the identity is much stronger, because not only
does it show that the states involved form a set that is at least complete but it also provides
the coefficients of the expansion. For example, the resolution of the identity of equation (183)
shows that an arbitrary state |f 〉 can be expanded in terms of SU(2) coherent states as

|f 〉 = 2j + 1

π

∫
|Jcoh; z〉〈Jcoh; z|f 〉 dµ(z). (201)

This expansion involves all coherent states in the extended complex plane. Later, we will show
how to expand an arbitrary state in terms of SU(2) coherent states on a contour around the
origin, in the extended complex plane.

12.2. Analytic representation in the extended complex plane: transformations

We have seen in equation (199) that the angular momentum operators are nicely represented
by simple differential operators. An arbitrary operator

Q =
∑
n,m

Qnm|J ; jn〉〈J ; jm| (202)

cannot be easily expressed in terms of differential operators. It can be represented by a kernel
Q(z, ζ ) such that the action of Q on the state |f 〉 represented by f (z), is given by

Q|f 〉 →
∫

Q(z, ζ )f (ζ ) dµ(ζ ), (203)

where dµ(ζ ) has been given in equation (183). It is easily seen that the kernel should be
given by

Q(z, ζ ) = 2j + 1

π

(
1 + |z|2
1 + |ζ |2

)j

〈Jcoh; z∗|Q|Jcoh; ζ ∗〉,

= 2j + 1

π
(1 + |ζ |2)−2j

∑
n,m

[d(j, n)zj+n]Qnm[d(j, m)(ζ ∗)j+m]. (204)

As a first example, we consider the unit operator for which

1 → Q(z, ζ ) = 2j + 1

π

(1 + zζ ∗)2j

(1 + |ζ |2)2j
. (205)

This implies that for any state |f 〉, f (z) is related to f (ζ ) through the relation

f (z) = 2j + 1

π

∫
(1 + zζ ∗)2j

(1 + |ζ |2)2j
f (ζ ) dµ(ζ ). (206)

For this reason, the Q(z, ζ ) of equation (205) is called a ‘reproducing kernel’.
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As a second example, we consider the angular momentum operator Jz for which
Qnm = nδnm. A straightforward calculation gives

Jz → Q(z, ζ ) = −j (2j + 1)

π

(1 + zζ ∗)2j−1(1 − zζ ∗)
(1 + |ζ |2)2j

. (207)

This is an alternative to the differential form of Jz given in equation (199).
One of the merits of the analytic representation in the extended complex plane is that

SU(2) transformations are easily performed using conformal mappings. Below we give the
formulae without proof. We first consider the Möbius mapping

w = κz − λ∗

λz + κ∗ , |κ|2 + |λ|2 = 1. (208)

The action of the SU(2) operator U1(α, β, γ ) of equation (173) on the arbitrary state |f 〉
represented by the polynomial f (z), transforms f (z) into the polynomial

f (z) → f

(
κz − λ∗

λz + κ∗

)
(λz + κ∗)2j =

∑
n

d(j, n)fn[κz − λ∗]j+n[λz + κ∗]j−n. (209)

The relation between the complex coefficients κ and λ appearing in (208) and the variables α,
β, γ in (173) is

κ = cos
(α

2

)
exp

[
i

(
β + γ

2

)]
, λ = sin

(α

2

)
exp

[
i

(
β − γ + π

2

)]
. (210)

As an example, we consider the coherent states |Jcoh; ζ 〉, whose analytic representation
has been given in (197). In order to find the state U1(α, β, γ )|Jcoh; ζ 〉, we perform the Möbius
mapping of equation (209) and get

f (z) = ei2jψ (1 + zζ ′)2j

(1 + |ζ ′|2)j , ζ ′ = λ + κζ

κ∗ − λ∗ζ
, ψ = arg(κ∗ − λ∗ζ ). (211)

This function corresponds to the coherent state ei2jψ |Jcoh; ζ ′〉. κ and λ have been given in
terms of α, β, γ in (210).

12.3. The Dirac contour representation in the extended complex plane

In this representation, an arbitrary ket state |f 〉 is represented by a function fk(z) (which is
identical to the one used in equation (196)) but the corresponding bra state 〈f | is represented
by a different function fb(z):

|f 〉 =
∑

n

fn|J ; jn〉 → fk(z) =
∑

n

d(j, n)fnz
j+n, (212)

〈f | =
∑

n

f ∗
n 〈J ; jn| → fb(z) =

∑
n

f ∗
n

d(j, n)zj+n+1
. (213)

We use ‘k’ and ‘b’ in the notation to indicate ket and bra states, correspondingly. The function
fk(z) is a polynomial of z of order 2j and has singularity at ∞ (which is the north pole). The
function fb(z) is a polynomial of z−1 of order 2j + 1 and has singularity at 0 (which is the
south pole).

As examples, we give the angular momentum states

|J ; jm〉 → fk(z) = d(j, m)zj+m,

〈J ; jm| → fb(z) = 1

d(j, m)zj+m+1

(214)
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and the coherent states

|Jcoh; ζ 〉 → fk(z) = (1 + zζ )2j

(1 + |ζ |2)j ,

〈Jcoh; ζ | → fb(z) = 1

(1 + |ζ |2)j
z2j+1 − (ζ ∗)2j+1

(z − ζ ∗)z2j+1
.

(215)

We note that the fb(z) corresponding to 〈Jcoh; ζ | has a singularity at z = 0 but has no singularity
at z = ζ ∗.

In this analytic representation the scalar product is given by

〈f |g〉 =
∮

C

dz

2π i
fb(z)gk(z) =

∑
f ∗

n gn, (216)

where C is an anticlockwise contour around the origin, which is the singularity for fb(z).
The following transformations take the Dirac bra representation to the Dirac ket

representation and vice versa:∮
C

dw

2π i
fb(w)(1 + z∗w)2j = [fk(z)]

∗, (217)

2j + 1

z

∫ ∞

0

dt

(1 + t)2j+2

[
fk

(
t

z∗

)]∗
= fb(z). (218)

We can prove these equations if we substitute the fk(z) and fb(z) from equation (212) and
perform the integration.

An arbitrary operator

Q =
∑
n,m

Qnm|J ; jn〉〈J ; jm| (219)

is represented by a kernel Q(z1, z2) such that

Q|f 〉 →
∮

C

dζ

2π i
Q(z, ζ )fk(ζ ), (220)

〈f |Q →
∮

C

dw

2π i
fb(w)Q(w, z), (221)

where C is an anticlockwise contour around the origin. It is seen easily that the kernel Q(z1, z2)

is given by

Q(z1, z2) =
∑
n,m

Qnm

d(j, n)z
j+n

1

d(j, m)z
j+m+1
2

. (222)

As a first example, we consider the unit operator for which

1 → Q(z1, z2) = z
2j+1
1 − z

2j+1
2

(z1 − z2)z
2j+1
2

. (223)

This implies that for any state |f 〉, fk(z) is related to fk(ζ ) through the relation

fk(z) =
∮

C

dζ

2π i

z2j+1 − ζ 2j+1

(z − ζ )ζ 2j+1
fk(ζ ) (224)

and fb(z) is related to fb(w) through the relation

fb(z) =
∮

C

dw

2π i
fb(w)

w2j+1 − z2j+1

(w − z)z2j+1
. (225)
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C is an anticlockwise contour around the origin. We can check directly these relations if we
insert into them equations (212) and (213) and perform the contour integrals.

As a second example, we consider the angular momentum operator Jz for which
Qnm = nδnm. A straightforward calculation gives

Jz → Q(z1, z2) = j (z
2j+2
1 − z

2j+2
2 ) − (j + 1)z1z2(z

2j

1 − z
2j

2 )

(z2
1 − z2

2)z
2j+1
2

. (226)

As explained in the previous subsection, in the extended complex plane, SU(2)

transformations are performed easily using conformal mappings. Action of the SU(2) operator
(173) on the arbitrary ket state |f 〉 represented by the polynomial fk(z) is implemented with
the Möbius mapping as described in equations (208) and (209):

U1|f 〉 → fk

(
κz − λ∗

λz + κ∗

)
(λz + κ∗)2j =

∑
n

d(j, n)fn[κz − λ∗]j+n[λz + κ∗]j−n. (227)

With regard to bra states, it is not easy to find an analogous simple formula for the function
corresponding to 〈g|U1. But of course we can calculate the ket function for U

†
1 |g〉 and then

calculate the corresponding bra function using equation (218) or expand the ket function as in
equation (212), find the coefficients fn and then calculate the bra function using equation (213).

12.4. Expansion of a state in terms of SU(2) coherent states on a contour

As an application of the above formalism, we will show how we can expand an arbitrary state in
terms of SU(2) coherent states on a contour around the origin, in the extended complex plane.
This problem has been considered in [65–67]. We introduce the ‘complementary states’:

|Jcompl; z〉 = [N (|z|)]−1
∑

n

1

d(j, n)(z∗)j+n+1
|J ; jn〉,

〈Jcompl; z| = [N (|z|)]−1
∑

n

1

d(j, n)zj+n+1
〈J ; jn|,

(228)

where N (|z|) is a normalization factor,

N (|z|) =
[∑

n

(j + n)!(j − n)!

(2j)!

1

|z|2(j+n+1)

]1/2

. (229)

They are not SU(2) coherent states, but they play an auxiliary role. The representation of an
arbitrary bra state 〈f | given in equation (213) can be written in terms of these states as

fb(z) =
∑

n

f ∗
n

d(j, n)zj+n+1
= N (|z|)〈f |Jcompl; z∗〉 = N (|z|)〈Jcompl; z|f ∗〉. (230)

We can easily prove that∮
C

dz

2π i
(1 + |z|2)jN (|z|)|Jcoh; z〉〈Jcompl; z| = 1,∮

C

dz

2π i
(1 + |z|2)jN (|z|)|Jcompl; z∗〉〈Jcoh; z∗| = 1,

(231)

where C is an anticlockwise contour around the origin. Using this, we can prove that an
arbitrary ket state |f 〉 = ∑

fn|J ; jn〉 can be expanded in terms of SU(2) coherent states on
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a contour around the origin as

|f 〉 =
∮

C

dz

2π i
(1 + |z|2)j a(z)|Jcoh; z〉,

a(z) = N (|z|)〈Jcompl; z|f 〉 =
∑

n

fn

d(j, n)zj+n+1
.

(232)

It is seen that the coefficients a(z) are the Dirac representation for the bra state 〈f ∗|. We can
also prove that an arbitrary bra state 〈g| = ∑

g∗
n〈J ; jn| can be expanded in terms of SU(2)

coherent states on a contour around the origin as

〈g| =
∮

C

dz

2π i
(1 + |z|2)j b(z)〈Jcoh; z∗|,

b(z) = N (|z|)〈g|Jcompl; z∗〉 =
∑

n

g∗
n

d(j, n)zj+n+1
.

(233)

It is seen that the coefficients b(z) are the Dirac representation for the bra state 〈g|.
The overlap between a SU(2) coherent state and a complementary state is

〈Jcompl; z|Jcoh; w〉 = [N (|z|)]−1(1 + |w|2)−j w2j+1 − z2j+1

(w − z)z2j+1
. (234)

It is equal to zero when w = zωk , where k �= 0 and ω = exp(i2π/(2j + 1)). Other properties
of the complementary states can be found in [67].

13. Systems described by a direct sum of finite Hilbert spaces

In this section, we consider systems with an infinite dimensional Hilbert space, which however
is ‘naturally’ expressed as the direct sum of finite Hilbert spaces because a certain class of
transformations leaves these finite Hilbert spaces invariant.

One example is functions on a sphere (in connection with problems expressed in
spherical coordinates). With regard to rotations, it is useful to express the relevant infinite-
dimensional Hilbert space as the direct sum of the 2j + 1-dimensional Hilbert spaces spanned
by the spherical harmonics Yjm(α, β) (with −j � m � j ). This is because each of these
2j + 1-dimensional Hilbert spaces remains invariant under rotations.

In such problems we can apply the formalism of finite quantum systems as exemplified
below for the case of spherical harmonics and the Schwinger SU(2) formalism for two-mode
systems.

13.1. Dual spherical harmonics

We consider the (2j + 1)-dimensional Hilbert space H(2j + 1) spanned by the angular
momentum states |J ; jm〉. Let H be the infinite-dimensional Hilbert space which is the
direct sum of the Hilbert spaces H(2j + 1), for all integer values of j . In H we consider the
states

|J ; α, β〉 =
∑
j,m

Y ∗
jm(α, β)|J ; jm〉, (235)

where 0 � α � π and 0 � β < 2π are angles on a sphere and Yjm(α, β) are the usual
spherical harmonics. The states |J ; α, β〉 form an orthonormal basis in H:∫

|J ; α, β〉〈J ; α, β| d cos α dβ = 1,

〈J ; α1, β1|J ; α2, β2〉 = δ(cos α1 − cos α2)δ(β1 − β2).

(236)
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We call F2j+1 the Fourier operator within the Hilbert space H(2j + 1), and we introduce
the Fourier operator in H as

F =
∑

j

F2j+1. (237)

We also introduce the ‘dual spherical harmonics’ [14], which are related to the usual spherical
harmonics through a finite Fourier transform:

Xjn(α, β) = (2j + 1)−1/2
∑
m

Yjm(α, β)ω(nm). (238)

Acting with F on the states |J ; α, β〉, we get the states

|θ; α, β〉 = F |J ; α, β〉 =
∑
j,m

Y ∗
jm(α, β)|θ; jm〉 =

∑
j,m

X∗
jm(α, β)|J ; j − m〉. (239)

The states |θ; α, β〉 form an orthonormal basis in H.
An arbitrary state |s〉 in H can be represented with the function sJ (α, β) = 〈J ; α, β|s〉

(which we call J -representation) or with the function sθ (α, β) = 〈θ; α, β|s〉 (which we call
θ -representation). In order to find a transform between these two representations, we calculate
the matrix elements of the Fourier operator

F(α, β; γ, δ) ≡ 〈J ; α, β|F |J ; γ, δ〉 =
∑
j,m

Y ∗
jm(α, β)X∗

j,−m(γ, δ)

=
∑
j,m

Xjm(α, β)Y ∗
jm(γ, δ). (240)

We see easily that

sJ (α, β) =
∫

d cos γ dδF(α, β; γ, δ)sθ (γ, δ),

sθ (α, β) =
∫

d cos γ dδ[F(α, β; γ, δ)]∗sJ (γ, δ).

(241)

13.2. The Schwinger SU(2) formalism

We consider a two-mode harmonic oscillator with Hilbert space H1 × H2 spanned by the
number eigenstates |N1, N2〉. Let a

†
1, a1 and a

†
2, a2 be the creation and annihilation operators

for the two modes.
In the Schwinger representation of SU(2) the angular momentum operators are

expressed as

J+ = a
†
1a2, J− = a1a

†
2, Jz = 1

2 (a
†
1a1 − a

†
2a2). (242)

Indeed we can see easily that they obey the standard angular momentum commutation relations.
If ns is the sum of the number operators for the two modes, then

ns = a
†
1a1 + a

†
2a2, [ns, J+] = [ns, J−] = [ns, Jz] = 0,

J 2 = ns

2

(ns

2
+ 1

)
.

(243)

A consequence of this is that the number eigenstates |N1, N2〉 are also the angular
momentum states |J ; jm〉:

|N1, N2〉 = |J ; jm〉, j = 1
2 (N1 + N2), m = 1

2 (N1 − N2). (244)



Quantum systems with finite Hilbert space 313

Using the notation H(2j +1) for the (2j +1)-dimensional Hilbert space spanned by the angular
momentum states |J ; jm〉 with a fixed j , we see that

H1 × H2 =
∑

j

H(2j + 1), j = 0, 1
2 , 1, 3

2 , 2, . . . , (245)

where the summation here indicates a direct sum of Hilbert spaces. We call π2j+1 the
projection operator into the Hilbert space H(2j + 1), which is written in terms of number
eigenstates as

π2j+1 =
2j∑

N=0

|N, 2j − N〉〈N, 2j − N |,
∑

j

π2j+1 = 1. (246)

All π2j+1 commute with the angular momentum operators of equation (242). Therefore,
any operator that is a function of the angular momentum operators leaves the Hilbert spaces
H(2j + 1) invariant (i.e. acting on a state in H(2j + 1) produces another state that belongs to
the same Hilbert space).

As an application of this, we consider a two-mode system described by the Hamiltonian

H = ω1a
†
1a1 + ω2a

†
2a2 + λa

†
1a2 + λ∗a1a

†
2 = �ns + ωJz + λJ+ + λ∗J−,

� = 1
2 (ω1 + ω2), ω = ω1 − ω2. (247)

This Hamiltonian is used for the description of frequency converters in quantum optics [68].
We assume that at t = 0 the system is in a state |s〉, and we want to calculate the state of the
system at a later time t . We first write the state |s〉 as a sum of its projections to the Hilbert
spaces H(2j + 1):

|s〉 =
∑

j

|s2j+1〉, |s2j+1〉 = π2j+1|s〉. (248)

Taking into account that ns commutes with the angular momentum operators (equation (243))
and also that ns |s2j+1〉 = 2j |s2j+1〉, we prove that

exp(itH)|s〉 =
∑

j

exp(itH)|s2j+1〉

=
∑

j

exp(i2j t�) exp[it (ωJz + λJ+ + λ∗J−)]|s2j+1〉. (249)

We note that the state exp[it (ωJz + λJ+ + λ∗J−)]|s2j+1〉 is in the Hilbert space H(2j + 1). We
will not present the rest of the calculation, which is straightforward but lengthy.

14. Applications

The theory of finite quantum systems is a subject in its own right but it also has a variety of
applications. In this section we give a guide to the literature on the applications.

14.1. Quantum optics

The practical implementation of some of the transformations that we discussed earlier, using
beam splitters, has been discussed in [69]. Frequency converters [68] is another application
using the Schwinger formalism, which we presented earlier. In this case, as we explained,
the Hilbert space is infinite, but it is the direct sum of many finite Hilbert spaces that remain
invariant under the action of the Hamiltonian.
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The Pegg–Barnett formalism of phase states [70,71] starts with a finite Hilbert space and
uses extensively the theory of finite systems. Only at the end does it consider the limit d → ∞.

The theory of quantum multi-pole radiation uses the theory of finite quantum systems and
is reviewed in [72]. Coherent states in truncated (finite) Hilbert space [73] are also another
application.

A different formalism for finite quantum systems that is based on different boundary
conditions has been discussed in [74].

14.2. Qudits in quantum information processing

The theory of finite quantum systems is essential for the area of quantum information processing
[75]. For example, the quantum Fourier transform [76] is intimately related to the Fourier trans-
form studied earlier. Also, quantum computing with Wigner functions has been studied in [77].

Most of the work on quantum information processing has been with two-dimensional
Hilbert spaces (qubits). More recently the use of d-dimensional Hilbert spaces (qudits) as a
potentially more powerful tool has been studied [78]. In this context, the formalism on finite
quantum systems discussed in this paper plays an important role. Experimental realization of
qudits has been discussed in [79].

SU(2) transformations and the Pauli matrices used in the context of qubits are replaced
with SU(d) transformations and the diplacement operators D(α, β) in the context of qudits.
The displacement operators form the Heisenberg–Weyl group (also called the Pauli group by
the quantum information community). Arbitrary transformations on qudits are expressed in
terms of the displacement operators, as shown in equation (95).

The symplectic group of transformations (also called Clifford group by the quantum
information community) preserves the structure of the Heisenberg–Weyl group given in
equations (27). The symplectic group on one qudit and more importantly the symplectic
group on multiqudits (direct products of many qudits) are important in quantum coding.

Quantum coding introduces redundancy in order to protect qubits from errors. The
simplest coding schemes are the three-qubit repetition codes (reviewed in [75]). However
it is easily seen that they protect qubits from a very limited class of errors. For example,
the three-qubit bit flip code cannot protect against phase errors; and the three-qubit phase
flip code cannot protect against bit flip errors. For protection against larger classes of errors,
more qubits are required. Arbitrary errors at known positions (erasures) require at least four
qubits [80]. More general errors require at least five qubits [81]. Other coding schemes that
provide protection against any one-qubit error are Shor’s nine qubit code [82] and the seven
qubit code [83]. Generalization of coding and quantum computation with qubits into coding
and quantum computation with qudits is currently in progress.

14.3. Other applications

There are many applications of the theory of finite systems in various problems within the
general area of Mathematical Physics. Some examples are string theory [84], quantum
maps [85], hydrodynamics [86], etc.

Another application is the magnetic translation group in condensed matter. Two-
dimensional electron systems in a uniform magnetic field and in a toroidal topology and the
relevant magnetic translation group have been studied in [87–89]. Related also are applications
to the quantum Hall effect [90] and to the Hofstadter butterfly [91].

Some of the mathematical formalism relevant to the theory of finite systems has been
presented in [38].
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15. Discussion

In this paper we have reviewed the work on finite quantum systems. This is quantum mechanics,
in a position space that is a finite lattice with periodicity. A lot of the results are general.
However some results are for a particular class of finite systems (e.g. those with an odd
dimension or those with a dimension that is the power of a prime), and in our discussion we
have indicated this very clearly.

In this context we have introduced position and momentum states and the Fourier
transform that relates them. Consequently, an arbitrary state can be expressed in the position
representation or in the momentum representation. The uncertainty principle states that these
two distributions cannot be very narrow simultaneously, and it is quantified with entropic
quantities in equation (22). We have also introduced the functions �m of equation (18), which
are the analogues of the delta functions in the harmonic oscillator and which are useful in
practical calculations.

The phase-space is the toroidal lattice Z(d) × Z(d). We have studied displacements in
this phase-space and the corresponding Heisenberg–Weyl group. We have also considered
symplectic transformations in this phase-space. We have explained that when the dimension
d is the power of a prime number (d = pn), the phase-space has a geometrical structure
(it is a finite geometry). In this case, symplectic transformations are well defined and
they form the Sp(2, GF(pn))group. We have constructed explicitly the symplectic operator
S(κ, λ, µ) both analytically and numerically, and we gave several examples (for the simple
case where the dimension is the first power of a prime) that elucidate the nature of these
transformations.

An important tool in phase-space methods is the displaced parity operators and the
displacement operators. They are related to each other through a two-dimensional Fourier
transform. We have studied their marginal properties and their Radon transforms.

Intimately related to the displaced parity operators and the displacement operators are the
Wigner and Weyl functions, correspondingly. The Wigner function is a pseudoprobability
distribution of the quantum mechanical particle in phase-space. The Weyl function is a
generalized correlation function. We have explained that they are related to each other through
a two-dimensional Fourier transform, and we have studied their marginal properties and their
Radon transforms.

General transformations in the Hilbert space have also been studied. They can be written
as a sum of displacement operators with the Weyl functions as coefficients and also as a sum
of displaced parity operators with the Wigner functions as coefficients.

A factorization of the Hilbert space in terms of smaller ones can be useful because
calculations in large Hilbert spaces can be tedious. We have discussed such a factorization
based on the Chinese remainder theorem. This method has originally been used by Good in
the context of fast Fourier transforms, and here we used it in the context of finite quantum
systems. We have shown that all unitary transformations and more generally the whole quantum
mechanical formalism in the large Hilbert space reduce to calculations in the smaller spaces,
which should be performed and combined appropriately to produce the results in the large
Hilbert space.

Composite systems and their entanglement is a subject of enormous interest. We have
discussed one aspect of this problem, which is transformations in composite finite quantum
systems. We have made the distinction between local SU(d)×SU(d) unitary transformations
and more general SU(d2) unitary transformations that can entangle the two subsystems.
We have also discussed in more detail local and entangling symplectic transformations and
calculated numerically the symplectic operators.
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An important example of finite systems is systems with angular momentum j . A Fourier
transform on the usual angular momentum states gives the angle states. In this context, we have
made the distinction between the Bose sector (with odd dimension) and the Fermi sector (with
even dimension) because the formulae are slightly different in these two cases. We have also
discussed SU(2) coherent states and in particular the connection of SU(2) coherent states with
the theory of finite quantum systems. Related to coherent states are the analytic representations.
In connection with SU(2) coherent states we have studied the analytic representation in the
extended complex plane and the Dirac contour representation in the extended complex plane.

Some systems have an infinite-dimensional Hilbert space, which is naturally expressed
as the direct sum of finite Hilbert spaces, because a certain class of transformations leaves
these finite Hilbert spaces invariant. In such problems we can apply the formalism of finite
quantum systems. We have discussed two such examples: functions on a sphere and spherical
harmonics, and the Schwinger SU(2) formalism for two-mode systems.

Applications of the theory of finite quantum systems include quantum optics, quantum
computing, two-dimensional electron systems in magnetic fields and the magnetic translation
group, the quantum Hall effect, hydrodynamics, mathematical physics, applied mathematics,
etc. We have not discussed these in detail, but we have given a brief guide to the relevant
literature. We hope that this paper will motivate researchers to apply the theory of finite
systems into their own field.

References

[1] Weyl H 1950 Theory of Groups and Quantum Mechanics (New York: Dover)
[2] Schwinger J 1960 Proc. Natl Acad. Sci. USA 46 570

Schwinger J 1970 Quantum Kinematics and Dynamics (New York: Benjamin)
[3] Auslander L and Tolimieri R 1979 Bull. Am. Math. Soc. 1 847
[4] Hannay J and Berry M V 1980 Physica D 1 267
[5] Balian R and Itzykson C 1986 C R Acad. Science 303 773
[6] Mehta M L 1987 J. Math. Phys. 28 781
[7] Wootters W K 1987 Ann. Phys. (NY) 176 1

Wootters W K and Fields B D 1989 Ann. Phys. (NY) 191 363
[8] Varilly J C and Gracia-Bondia J M 1989 Ann. Phys. (NY) 190 107

Figueroa H, Gracia-Bondia J M and Varilly J C 1990 J. Math. Phys. 31 2664
[9] Varadarajan V S 1995 Lett. Math. Phys. 34 319

[10] Hakioglu T 1998 J. Phys. A 31 6975
[11] Hadzitaskos G and Tolar J 1993 Int. J. Theor. Phys. 32 517

Tolar J and Hadzitaskos G 1997 J. Phys. A 30 2509
[12] Cohendet O, Combe P, Sirugue M and Sirugue-Collin M 1988 J. Phys. A 21 2875

Cohendet O, Combe P and Sirugue-Collin M 1990 J. Phys. A 23 2001
[13] Ramakrishnan A, Chandrasekaran P S, Ranganathan N R, Santhanam T S and Vasudevan R 1969 J. Math. Anal.

Appl. 27 164
Santhanam T S and Tekumalla A R 1976 Found. Phys. 6 583

[14] Vourdas A 1990 Phys. Rev. A 41 1653
Vourdas A 1991 Phys. Rev. A 43 1564

[15] Vourdas A and Bendjaballah C 1993 Phys. Rev. A 47 3523
Vourdas A 2003 J. Phys. A 36 5645

[16] Vourdas A 1996 J. Phys. A 29 4275
Vourdas A 1997 Rep. Math. Phys. 40 367
Vourdas A 2003 J. Opt. B-Quantum Semiclass. Opt. 5 S581

[17] Lulek T 1992 Acta Phys. Polon. A 82 377
Lulek T 1994 Rep. Math. Phys. 34 71

[18] Galetti D and de Toledo-Piza A F R 1988 Physica A 149 267
[19] Leonhardt U 1995 Phys. Rev. Lett. 74 4101

Leonhardt U 1996 Phys. Rev. A 53 2998



Quantum systems with finite Hilbert space 317

[20] Weil A 1964 Acta Math. 111 143
Weil A 1965 Acta Math. 113 1

[21] Schroder M R S 1989 Number Theory in Science and Communications (Berlin: Springer)
Luck J M, Moussa P and Waldschmidt M (ed) 1990 Number Theory and Physics (Berlin: Springer)
Waldschmidt M, Moussa P, Luck J M and Itzykson C (ed) 1992 From Number Theory to Physics (Berlin:

Springer)
[22] Gabor D 1946 JIEE 93 429

Ville J 1948 Cables Transmission 1 61
[23] Hirschfeld J W P 1979 Projective Geometries Over Finite Fields (Oxford: Oxford University Press)

Lin S and Costello D J 1983 Error Control Coding (Englewood Cliffs, NJ: Prentice-Hall)
Berlekamp E R 1968 Algebraic Coding Theory (New York: McGraw-Hill)

[24] McClellan J H and Rader C M 1979 Number Theory in Digital Signal Processing (London: Prentice-Hall)
Blahut R E 1985 Fast Algorithms for Digital Signal Processing (Reading, MA: Addison Wesley)
Elliott D F and Rao K R 1982 Fast Transforms (London: Academic)

[25] McClellan J H and Parks T W 1972 IEEE Trans. Audio Electroacoust. 20 66
Yarlagadda R 1977 IEEE Trans. Acoustics Speech Signal Proc. 25 586
Dickinson B W and Steiglitz K 1982 IEEE Trans. Acoustics Speech Signal Proc. 30 25
Tolimieri R 1984 Adv. Appl. Math. 5 56

[26] Deutsch D 1983 Phys. Rev. Lett. 50 631
Partovi M H 1983 Phys. Rev. Lett. 50 1883
Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
Maassen H and Uffink J M 1988 Phys. Rev. Lett. 60 1103

[27] Floratos E G and Leontaris G K 1997 Phys. Lett. B 412 35
[28] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)

Klauder J R, Skagerstam B S 1985 Coherent States (Singapore: World Scientific)
[29] Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford University Press)

Perelomov A 1986 Generalized Coherent States and their Applications (Berlin: Springer)
Walls D F and Milburn G 1994 Quantum Optics (Berlin: Springer)

[30] Kim Y S and Noz M E 1986 Theory and Applications of the Poincare Group (Amsterdam: Reidel)
Kim Y S and Noz M E 1991 Phase Space Picture of Quantum Mechanics (Singapore: World Scientific)

[31] Guillemin V and Sternberg S 1984 Symplectic Techniques in Physics (Cambridge: Cambridge University Press)
Lang S 1975 SL2(R) (Berlin: Springer)

[32] Kastrup H A 2003 Fortschr. Physik-Prog. Phys. 51 975
[33] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709

Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
Dodonov V V 2002 Opt. J. B-Quantum Semiclass. Opt. 4 R1

[34] Unruh W G 1976 Phys. Rev. D 14 870
Davies P C W 1978 Rep. Prog. Phys. 41 1313
Sciama D W, Candelas P and Deutsch D 1981 Adv. Phys. 30 327

[35] Birkhoff G and MacLane S 1965 A Survey of Modern Algebra (New York: MacMillan)
Van der Waerden B L 1953 Modern Algebra vols 1, 2 (New York: Fred. Ungar)

[36] Gel’fand I M, Graev M I and Piatetskii-Shapiro I I 1990 Representation Theory and Automorphic Functions
(London: Academic)

Gel’fand I M and Graev M I 1962 Dokl. Akad. Nauk. SSSR 147 529
Piatetskii-Shapiro I I 1983 Complex Representations of GL(2, K) for Finite Fields K (Providence: American

Mathematical Society)
[37] Tanaka S and Osaka 1966 J. Math. 3 229

Tanaka S and Osaka 1967 J. Math. 4 65
[38] Terras A 1999 Fourier Analysis on Finite Groups and Applications (Cambridge: Cambridge University Press)
[39] Grossmann A 1976 Commun. Math. Phys. 48 191

Daubechies I and Grossmann A 1980 J. Math. Phys. 21 2080
Daubechies I, Grossmann A and Reignier J 1983 J. Math. Phys. 24 239

[40] Royer A 1992 Phys. Rev. A 45 793
Royer A 1977 Phys. Rev. A 15 449
Royer A 1991 Phys. Rev. A 43 44

[41] Bishop R F and Vourdas A 1994 Phys. Rev. A 50 4488
[42] Gelfand I M, Graev M I and Vilenkin Ya N 1966 Generalized Functions vol 5 (London: Academic)

Ludwig D 1966 Commun. Pure Appl. Math. 19 49



318 A Vourdas

[43] Balazs N L and Jennings B K 1984 Phys. Rep. 104 347
Hillery M, O’Connell R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
Lee H W 1995 Phys. Rep. 259 147
Buzek V and Knight P L 1995 Prog. Opt. 34 1

[44] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
Smithey D T, Beck M, Raymer M G and Faridani T 1993 Phys. Rev. Lett. 70 1244

[45] Leonhardt U 1995 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[46] Wunsche A 1996 Phys. Rev. A 54 5291

Wunsche A 1997 J. Mod. Opt. 44 2293
Wunsche A 2000 J. Mod. Opt. 47 33

[47] Leibfried D et al 1996 Phys. Rev. Lett. 77 4281
Kurtsiefer C, Pfau T and Mlynek J 1997 Nature (London) 386 150
Breitenbach G, Schiller S and Mlynek J 1997 Nature (London) 387 471

[48] Mancini S, Man’ko V I and Tombesi P 1996 Phys. Lett. A 213 1
Man’ko O and Man’ko V I 1999 J. Russ. Laser Res. 20 67
Man’ko M 2001 J. Russ. Laser Res. 22 505
Bazrafkan M R and Man’ko V I 2003 J. Russ. Laser Res. 24 80

[49] Moyal J E 1949 Proc. Cambridge Phil. Soc. 45 99
Bartlett M S and Moyal J E 1949 Proc. Cambridge Phil. Soc. 45 545
Baker G A 1958 Phys. Rev. 109 2198

[50] Berezin F A 1974 Math. USSR Izv. 8 1109
Berezin F A 1975 Math. USSR Izv. 9 341
Berezin F A 1975 Commun. Math. Phys. 40 153

[51] Grochenig K 2001 Foundations of Time-Frequency Analysis (Boston: Birkhauser)
[52] Chountasis S and Vourdas A 1998 Phys. Rev. A 58 1794

Chountasis S and Vourdas A 1999 J. Phys. A 32 6949
Chong C C and Vourdas A 2001 J. Phys. A 34 9849

[53] Ponomarenko S A and Wolf E 2001 Phys. Rev. A 63 062106
Franke-Arnold S, Huyet G and Barnett S M 2001 J. Phys. B 34 945
Agarwal G S and Ponomarenko S A 2003 Phys. Rev. A 67 032103

[54] Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Ann. Phys. (NY) 111 61
Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Ann. Phys. (NY) 111 111

[55] Fairlie D B, Fletcher P and Zachos C K 1990 J. Math. Phys. 31 1088
[56] Athanasiu G G, Floratos E and Nicolis S 1998 J. Phys. A 31 L655

Ellinas D and Floratos E G 1999 J. Phys. A 32 L63
[57] Biedenharn L C and Van Dam H (ed) 1965 Quantum Theory of Angular Momentum (New York: Academic)

Biedenharn L C and Louck J C 1981 Encyclopedia of Mathematics and its Applications vols 8, 9 (Reading, MA:
Addison-Wesley)

[58] Vilenkin N J 1968 Special Functions and the Theory of Group Representations (Providence, RI: American
Mathematical Society)

Vilenkin N J and Klimyk A V 1991 Representations of Lie Groups and Special Functions (Dordrecht:
Kluwer)

[59] Gelfand I M, Minlos R A and Shapiro Z Y 1963 Representations of the Rotation and Lorentz Groups and their
Applications (London: Pergamon)

Zelobenko P 1973 Compact Lie Groups and their Representations (Providence, RI: American Mathematical
Society)

[60] Holstein T and Primakoff H 1940 Phys. Rev. 58 1048
[61] Klauder J R 1996 J. Phys. A 29 L293

Gazeau J P and Klauder J R 1999 J. Phys. A 32 123
[62] Bargmann V 1961 Commun. Pure Appl. Math. 14 180

Bargmann V 1961 Commun. Pure Appl. Math. 14 187
Bargmann V 1967 Commun. Pure Appl. Math. 20 1

[63] Paul T 1984 J. Math. Phys. 25 3252
Klauder J R 1988 Ann. Phys. 188 120
Vourdas A 1992 Phys. Rev. A 45 1943
Gazeau J P and Hussin V 1992 J. Phys. A 25 1549
Brif C, Vourdas A and Mann A 1996 J. Phys. A 29 5873
Vourdas A, Brif C and Mann A 1996 J. Phys. A 29 5887



Quantum systems with finite Hilbert space 319

[64] Dirac P A M 1943 Commun. Dublin Inst. Adv. Studies A 1 1
Fan H Y and Klauder J R 1994 Mod. Phys. Lett. A 9 1291
Vourdas A and Bishop R F 1996 Phys. Rev. A 53 1205
Vourdas A and Bishop R F 1998 J. Phys. A 31 8563

[65] Janszky J, Adam P and Vinogradov A V 1992 Phys. Rev. Lett. 68 316
Janszky J, Domokos P and Adam P 1993 Phys. Rev. A 48 2213
Janszky J, Domokos P and Szabo S 1995 Phys. Rev. A 51 4191
Szabo S, Adam P, Janszky J and Domokos P 1996 Rev. A 53 2698

[66] Wunsche A 1996 Quantum Semiclass. Opt. 8 343
[67] Vourdas A 1996 Phys. Rev. A 54 4544
[68] Wodkiewicz K and Eberly J H 1985 J. Opt. Soc. Am. B 2 458

Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371
Fearn H and Loudon R 1989 J. Opt. Soc. Am. B 6 917
Vourdas A 1992 Phys. Rev. A 46 442

[69] Torma P, Stenholm S and Jex I 1995 Phys. Rev. A 52 4853
Torma P, Jex I and Stenholm S 1996 J. Mod. Opt. 43 245
Torma P and Jex I 1996 J. Mod. Opt. 43 2403

[70] Pegg D T and Barnett S M 1988 Europhys. Lett. 6 483
Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665
Pegg D T and Barnett S M 1997 J. Mod. Opt. 44 225

[71] Lynch R 1995 Phys. Rep. 256 367
[72] Shumovsky A S 2001 Adv. Chem. Phys. 119 395
[73] Miranowicz A, Piatek K and Tanas R 1994 Phys. Rev. A 50 3423
[74] Hakioglu T and Wolf K B 2000 J. Phys. A 33 3313

Atakishiyev N M, Pogosyan G S, Vicent L E and Wolf K B 2001 J. Phys. A 34 9381
Atakishiyev N M, Pogosyan G S and Wolf K B 2003 Int. J. Mod. Phys. A 18 317

[75] Nielsen M A and Chuang I L 2000 Quantum Information and Quantum Computing (Cambridge: Cambridge
University Press)

Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin:
Springer)

Lomonaco S 2002 Quantum Computation (Providence, RI: American Mathematical Society)
[76] Ekert A and Josza R 1996 Rev. Mod. Phys. 68 733
[77] Miquel C, Paz J P and Saraceno M 2002 Phys. Rev. A 65 062309

Paz J P 2002 Phys. Rev. A 65 062311
Miquel C, Paz J P, Saraceno M, Knill E, Laflamme R and Negrevergne C 2002 Nature 418 59

[78] Rains E M 1999 IEEE Trans. Inf. Theo. 45 1827
Gottesman D 1999 Chaos, Solitons, Fractals 10 1749
Gottesman D 1999 Lecture Notes Comput. Sci. 1509 302
Gottesman D, Kitaev A and Preskill J 2001 Phys. Rev. A 64 012310
Asikhmin A and Knill E 2001 IEEE Trans. Inf. Theo. 47 3065
Vourdas A 2002 Phys. Rev. A 65 042321
Bartlett S D, de Guise H and Sanders B C 2002 Phys. Rev. A 65 052316

[79] Brattke S, Guthohrlein G R, Keller M, Lange W, Varcoe B and Walther H 2003 J. Mod. Opt. 50 1103
[80] Grassl M, Beth T and Pellizzari T 1997 Phys. Rev. A 56 33

Cleve R, Gottesman D and Lo H-K 1999 Phys. Rev. Lett. 83 648
[81] Laflamme R, Miquel C, Paz J P and Zurek W H 1996 Phys. Rev. Lett. 77 198

Knill E and Laflamme R 1997 Phys. Rev. A 55 900
Braunstein S and Smolin J A 1997 Phys. Rev. A 55 945

[82] Shor P 1995 Phys. Rev. A 52 2493
[83] Steane A 1996 Phys. Rev. Lett. 77 793

Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[84] Floratos E 1989 Phys. Lett. 228B 335

Athanasiu G G and Floratos E 1994 Nucl. Phys. B 425 343
[85] Berry M V 1987 Proc. R. Soc. A 473 183

Balazs N L and Voros A 1986 Phys. Rep. C 143 109
Leboeuf P and Voros A 1990 J. Phys. A 23 1765
Leboeuf P, Kurchan J, Feingold M and Arovas D P 1992 Chaos 2 125
Vivaldi F 1992 Nonlinearity 5 133



320 A Vourdas

Keating J P 1994 J. Phys. A 27 6605
Athanasiu G G, Floratos E and Nicolis S 1996 J. Phys. A 29 6737

[86] Abarbanel H and Rouhi A 1994 Phys. Rev. E 48 3643
[87] Brown E 1964 Phys. Rev. A 133 1038

Zak J 1964 Phys. Rev. A 134 1602
Zak J 1989 Phys. Rev. B 39 694

[88] Florek W 1994 Rep. Math. Phys. 34 81
Lepinski D 1994 Rep. Math. Phys. 34 97
Walcerz S 1994 Rep. Math. Phys. 34 107

[89] Dubrovin B A and Novikov S P 1980 Sov. Math. Dokl. 22 240
Novikov S P 1980 Sov. Math. Dokl. 23 298

[90] Wen X G and Niu Q 1990 Phys. Rev. B 41 9377
Martinez J and Stone M 1993 Int. J. Mod. Phys. B 7 4389

[91] Hofstadter D 1976 Phys. Rev. B 14 2239


