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Proton and antiproton cross sections at high energies 
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Abstract 

Measurements of the total cross section and of diffractive processes, which have been 
performed in the last decade at the high-energy hadron colliders, are presented and compared 
with earlier results at lower energy. The general properties of the scattering amplitude, as 
derived from fundamental principles, are discussed, together with the cunent models and 
with the recent theoretical developments based on QCD. 
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The present review is mainly devoted to a general discussion of the total cross section 
and elastic scattering of strongly interacting particles at high energy. Moreover, the related 
subject of diffraction dissociation will also be treated in some detail. 

Traditionally, the study of the total cross section, which measures the overall probability 
of interaction, has played a crucial role in nuclear and particle physics. At energies in the 
centre-of-mass system (CMS) below a few GeV, the total cross section of strongly interacting 
particles (hadrons) usually has a complex structure with peaks, or resonances, which reveal 
the formation of excited hadronic states. At higher energies a common feature of all hadron- 
nucleon cross sections is a smooth behaviour. 

The first clear experimental evidence that the total cross sections grow with energy was 
reported in 1972 from measurements on proton-proton collisions at the CERN intersecting 
storage rings (ER) in the CMS interval of energy from 20 GeV up to about 50 GeV. Later 
the measurements at Fermilab on pion-proton and kaon-proton collisions demonstrated that 
rising with energy is a common property of all hadron-nucleon total cross sections. 

In the ’80s the advent of the new proton-antiproton machines, the SPS collider at CERN 
and the Tevatron at Fermilab, opened a new energy domain ( C M S  energy from 0.5 TeV 
up to 1.8 TeV) giving some new insight on the mechanism of growth of the total cross 
sections. Recent cosmic ray data which extend up to CMS energies as large as 30 TeV have 
also provided relevant information on this subject, 

In addition to the total cross sections, elastic scattering has been thoroughly investigated, 
especially for proton-proton and proton-antiproton interactions. Some of the elastic 
scattering data extend to large values of the momentum transfer, thus providing important 
insight on the dynamical mechanism of high-energy collisions. Similarity and differences 
between pp and i p  scattering have been carefully studied. 

The prominent feature which emerges from the data is that the effective range of 
interaction of the colliding hadrons increases with energy. Moreover, the absorption 
probability also increases. In a qualitative picture the particles appear to ‘expand’ and 
become more ‘opaque’ at high energy. 

In this article, we first present in section 3 a short review of the general properties of 
the scattering amplitude which are derived from fundamental principles and are therefore 
model-independent. 

A survey of the theoretical ideas which are incorporated into current models is made 
in sections 4 and 5 .  At present several models may rightly claim to being successful in the 
phenomenological description of high-energy scattering, but a real theory is still missing. 

According to the common and well founded belief, quantum chromodynamics (QCD) is 
the underlying theory. QD had a remarkable success in the description of large momentum- 
bansfer processes where the constituents of the hadrons (quarb) behave to some extent as 
free particles. In this case the perturbative approach retains its validity. On the other 
hand, in the low-momentum-transfer domain of the so-called ‘soft collisions’ the effective 
coupling constant of strong interactions is large and the perturbative approach is no longer 
applicable. This explains why we do not at present have a theory for high-energy scattering 
but we observe a proliferation of ‘QCD-inSpired’ models. Various attempts toward a QCO 
description of high-energy scattering, will be mentioned in section 6. 

The measurements of elastic scattering and of the total cross section at the high-energy 
hadron colliders are not trivial. It was necessary to develop special techniques for this 
specific problem. The experimental methods and their limitations are discussed in section 7. 

The review of the experimental results on total cross section and elastic scattering 
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(section 8) will essentially be concentrated on the data obtained in the last decade at the 
high-energy accelerators, i.e. the SPS collider and the Tevatron. Earlier results at lower 
energy will be mentioned only when relevant in  connection with the more recent data. 

The process of diffraction dissociation, a two-body inelastic reaction without exchange 
of quantum numbers, which may be considered as a kind of ‘quasi-elastic’ scattering will 
be discussed in section 9. 

Several review papers on the subject of high-energy scattering have appeared in the last 
few years. We mention here the articles on the measurementS at the SPS collider (Castaldi 
and Sanguinetti 1985, Martin and Matthiae 1989, Ward 1989), the recent review by Albrow 
(1993) which includes the last experimental results, and the critical discussion by Halzen 
(1993) on several aspects of present theoretical activity. 

2. Definitions 

In the discussion of the elastic-scattering reaction (Chew 1961) of particle a against particle 
b, it is useful to consider in addition to the main or direct process 

a i b - t a i - b  (1) 
also the corresponding crossed processes in which one of the ingoing particles is replaced 
by an outgoing antiparticle, i.e. 

a + E +  b i 6  (2) 

a + 6 - + a i 6 .  (3) 

and 

The kinematics is defined by the three invariant quantities s. t and U, also called Mandelstam 
variables, which are related by the equation 

si- t -+ u = 2m; i- 2mi. 

In the direct channel defined by (l), s represents the square of the CMS energy while I is 
the 4-momentum transfer squared which is written as 

t = -2k2(1 - CoS8) 

where k is the CMS momentum and 8 the scattering angle. The three processes related by 
crossing, as defined by (1)-(3), are also called $, t and u-channel, respectively. 

In the formal theory of the scattering process one starts from the definition of the 
S-matrix and of the transition matrix T which transform the initial into the final state. 
Conservation of probability implies the unitarity of the S-matrix. The usual scattering 
amplitudes can be expressed in terms of the matrix elements of T in the momentum 
representation. 

Assuming that spin effects can be ignored, we shall describe elastic scattering by a 
single invariant amplitude F(s ,  t). The differential cross section du/dQ (or duldt) is given 
in terms of the amplitude F by 

A direct consequence of the unitarity of  the S-matrix is the optical theorem which relates 
the imaginary part of the amplitude in the forward direction to the total cross section 

8n 
utOt = - ImF(f = 0 ) .  

k f i  
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It is usual to introduce the parameter p. defined as the ratio of the real to the imaginary 
part of the forward amplitude, 

(6)  p = ReF(r = O)/ImF(t = 0).  

At large energy, where s Y 4k2, we may use the approximate relations 
d o  16n 16n 
dt s2 

omt Y - ImF(r = 0) _ - _  
S 

- I F ?  

The conventional amplitude f ( s ,   COS^), defined by du/dCZ =( f l2 is related to the invariant 
amplitude F by 

L 
f = - F  (7) f i  Y F / k .  

The usual expansion of the scattering amplitude in the partial-wave series is 

where the partial-wave amplitudes fi(s) are given in terms of the phase shifts S,(s) by 
fi = (ezi6 - l ) / X  The optical theorem can then be written in terms of the partial waves as 

4n 
lo‘ - k2 

U - - C(21+ 1 ) h f i  (9) 

Unitarity implies I fi Iz< Imfi < 1. 
We now introduce the impact parameter b, defined by kb  = I + $. In a geometrical 

picture of the collision, the impact parameter has the semiclassical interpretation of minimum 
distance of approach between the two colliding particles. It becomes a very useful notion 
at high energy when the number of partial waves contributing to scattering is very large. 
Already at fi  = 20 GeV, for a range of interaction of 1 fm, the number of partial waves 
which are involved in the scattering process is of the order of 100. It is therefore legitimate 
and often very convenient to rewrite the partial-wave expansion as an integral over the 
impact-parameter plane which is perpendicular to the incident momentum: 

F(s,  q )  = - ei9’b [ I  - 1 d2b (10) 8n is 1 
where q2 = --t. This is sometimes called the eikonal approximation. The phase shifts 
are now replaced by the continuous function a(s, b), which is often called ’opacity’ or 
‘eikonal’. The angular integration in (10) is readily performed and leads to express the 
amplitude as a Fourier-Bessel transform, 

F(s, q )  = lm Jo(q6) [I - bdb 

The ‘profile’ function r(s, b) = 1 - e-*(.’.b) is obtained by inverting (1 1): 

Jo(qb)F(s, q)qdq . (17.) 

The unitarity condition in impact-parameter space reads 

Gjn(s, b) = 2Rer(s, b)- I r(s, b) I’ 
where Gin@, b) is the so-called ‘inelastic’ or ‘shadow’ profile function 

W . 6 )  Z G&,b) = 1- 1 e- I . 
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It is the Fourier transform of Van Hove’s (1964) inelastic overlap function and represents 
the probability of absorption which is associated with each value of the impact parameter b. 
By integrating the function Gi,(s, b) over the impact-parameter plane one gets the inelastic 
cross section 

uii0(s) = Gin@, b)d2b s 
while the total cross section is given by 

3. General propertis of the amplitude 

Great effort has been spent to describe high-energy hadron scattering by using only a few 
general principles of relativistic quantum-field theory. An historical review of this field of 
theoretical activity is given in a recent paper by Martin (1993) which also contains reference 
to the most important contributions. 

In the early ’60s the motivation to pursue this theoretical approach was the lack of 
a dynamical theory of the strong interactions and also the belief that the description of 
scattering should become simpler as the energy increases. In fact, at high energy, with the 
number of partial waves which are involved very large, an accurate knowledge of each of 
them actually becomes irrelevant and a small number of p a r a t e r s  should be sufficient to 
describe high-energy collisions in a satisfactory way. These motivations remain essentially 
valid today because at present the low-momentum-transfer processes which contribute to 
most of the total cross section and the diffractive reactions cannot be treated perturbatively 
and calculated in a reliable way within QCD. 

The fundamental principles which are used in this context are, in addition to Lorentz 
invariance, given by the following. 

(i) Analyticity which descends from the principle of causality. It states that the scattering 
amplitudes when expressed as a function of the appropriate kinematical variables can 
be continued analytically into the complex domain and the resulting analytic function 
has a simple singularity structure or at least the simplest one which is consistent with 
the other principles. 

(ii) Unitarity of the S-matrix which is a consequence of the principle of conservation of 
probability. 

(iii) Crossing symmetry which states that the invariant amplitudes describing elastic 
scattering in the s, 1 and U channels which a priori might be thought as independent, 
are actually embodied in a single analytic function F(s.  t ,  U). 

Direct and very important consequences of analyticity are the dispersion relations which 
relate the real and the imaginary part of the scattering amplitude. In the simple and most 
useful form a dispersion relation allows us to write the real part at t = 0 as an energy 
integral involving the total cross section. 

For the special case of proton-proton and proton-antiproton scattering, neglecting pole 
terms which are irrelevant at high energy, the once subtracted dispersion relations can be 
written as ( W i n g  1964) 
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where E and p are the laboratory energy and momentum of the incoming particle and A is 
the subtraction constant. The parameter p is defined by (6). The subscripts p and $ refer 
to p p  and to j i p  scattering respectively. 

When discussing proton-proton and proton-antiproton collisions it is useful to introduce 
the even and odd signature amplitudes. The even signature amplitude is F+ = (F,,i+ F,,,,)/2, 
while the odd signature amplitude is F- = (Fp i -Fpp) /2 .  From these amplitudes one defines 
in the usual way U+, U- and p+, p-. If we assume that at high energy the odd-signature 
amplitude becomes negligible, then from (14) we get the following simple expression for 
the even signature amplitude: 

P 

A simplified form of dispersion relations known as 'derivative dispersion relations' 
(Bronzan eta[ 1974) exhibits in a straightforward way the connection between the parameter 
p and the energy dependence of the total cross section. The derivative relations are valid 
when the energy dependence of the total cross section is sufficiently smooth as is the case 
at high energy. For the even signature amplitude one has 

n - 
'\ / logs 

1 n do, n du+ 

In the region where the total cross section is first decreasing with energy and then rising, we 
expect that p, which is initially negative, will rise, going through zero when the cross section 
has a minimum, becoming positive at high energy. This behaviour is indeed observed in 
all elastic hadronic reactions. If asymptotically utOt - (logs)', then p will reach a broad 
maximum and then slowly decrease toward zero as njlogs. 

The connection between the real part and the total cross section was first established 
in a rigorous way by Khuri and Kinoshita (1965). The physical content of the theorems 
by Khuri and Kinoshita is presented in figure 1 where the behaviour of the parameter p is 
shown for different assumptions on the energy dependence of the total cross section. 

This correlation between p and umt has been exploited to make predictions on ut,,, at 
energies higher than those at which measurements were actually performed. Examples of 
these predictions made several years ago by Amaldi et al (1977) for p p  and p p  scattering 
and by Burq etnl(l983) for n + p  and n - p  scattering are shown in figure 2. 

Since then, higher energy data have become available only for j ip .  The result obtained 

~ . .  
forward amplitude) for different assumptions on 
the enem dependence ofthe tow cross section. 
After Khuri and Kinoshita (1965). 
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Momentum IGeV/d 

Figure 2 Predictions based on measurements of the red pal  of lhe high-energy behaviour of 
the lord cross section from Amaldi el nl (1977) and Burq el a1 (1983). 

by the UA4 collaboration (Bozzo et af 1984~) at the CERN SPS collider (,& = 546 GeV) was 
uta[ = 62.2f 1.5 mb which is well within the range of the predicted extrapolation. 

3.1. Bounds on the scattering amplitude 

Several 'theorems' on high-energy collisions have been derived using the fundamental 
principles of analyticity, unitarity and crossing symmetry. These theorems are usually 
expressed in the form of mathematically rigorous inequalities which must be satisfied by 
the scattering amplitude. Here we only mention the most important results while for details 
and derivation we refer the reader to the specialized reviews on the subject (Roy 1972 and 
Fischer 1981). 

A classical result on the high-energy behaviour of the total cross section is the 
famous Froissat-Martin bound, first derived by Froissat (1961) from the Mandelstam 
representation and then proved directly by Martin (1966) using analyticity and unitarity. 
This theorem states that asymptotically, i.e. as s + 00, the total cross section cannot 
increase faster than (logs)*; precisely, 

The physical content of the Froissart-Martin bound can be expressed in the following way. 
At large energy the number of partial waves which effectively contribute to scattering is 
bounded by 

Unitarity puts the constraint Imfi < 1 for 1 < L(s) .  On the other hand for I > L ( s )  the 
partial-wave amplitude is constrained by analyticity to be a fast decreasing function of I ,  
with exponential bound, 
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This implies that asymptotically the contribution to the total cross section of the partial 
waves for I > L(s )  increases only as logs. Asymptotically, the dominant contribution to 
ulot comes from the partial waves for 1 < L(s ) .  Using the unitarity constraint, from (9) and 
(IS) one gets the bound given by (17). 

After the discovery of the rise of the total cross sections there has been much discussion 
as to whether this rise might be related to the Froissart-Martin bound. As discussed in 
section 8.1, the data are consistent with a (logs)z behaviour but the observed cross sections 
are numerically much smaller than the upper bound given by (17). In fact the numerical 
value of rr/mi is about 60 mb. On the other hand it must be noted that the Froissart-Martin 
bound is a rigorous statement derived from general principles and therefore must be satisfied 
by any model of high-energy collisions for reasons of internal consistency. 

On the integrated elastic cross section uel the following lower bound exists: 

U:,(.) const- 
' 

Bounds were also derived on the forward slope of the elastic differential cross section which 
is defined by 

One of them corresponds to the Froissart-Martin bound on the total cross section 

B(s ,  0) < const(1ogs)'. (20) 

An important theorem is the lower bound known as the MacDowell-Martin (1964) relation, 
which is a consequence of unitarity and was derived exploiting the properties of the Legendre 
polynomials: 

If we neglect the real part of the amplitude at t = 0, then (21) gives 

This bound was extended away from the forward direction but still in the low4 region 
by Singh and Roy (1970). We note the interesting fact that, contrary to most other 
asymptotic relations, the bound (22) appears to be almost saturated already at present 
energies. This is related to the fact that at high energy the shape of the differential cross 
section at low t can be approximately described by a simple exponential eBr, which implies 
do/df = Bu,lexp(Bt). Then, for a purely imaginary amplitude, From the optical theorem 
one gets B = (l/16r)u&/ue~ which is very close to the bound (22). 

Combining the previous bounds, one finds that if asymptotically the Froissart-Martin 
bound is saturated, i.e. if uI&) - (logs)' then the elastic cross section and the 
forward slope will also follow the same behaviour and we expect U&) - (logs)2 and 
B(s,O) - (logs)'. In that case the scattering amplitude acquires an important scaling 
property in the asymptotic regime (Auberson et a[ 1971). It becomes a function only of the 
variable 5 = -t(Iogs)' - -tuml, 

(23) 
This formula was used as the basis for the 'geometrical scaling' model (Dias de Deus 

and Kroll 1978, Kroll 1983) which assumed that the asymptotic scaling law which holds if 

F(s,  t )  = F e ,  0) 445) . 
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the Froissart-Martin bound is saturated, is already valid at present energies. In this model 
the opacity function has the special scaling form, Q(s, b)  = Q [b /R(s )]  with R(s )  - logs 
and the ratio of the elastic to the total cross section is predicted to be a constant. 

This model was quite successful in explaining some properties of elastic scattering 
at the ISR energies where the ratio U&,,, indeed appears to be constant. However, later 
measurements at the SPS collider (Bozzo ef al 19%) have shown that uel/uw, increases with 
energy. As a consequence the notion of ‘geometrical scaling’ has only limited validity. 

3.2. Particle and antiparticle reactiom 

Several theorems exist on the comparison between the cross sections for interaction of a 
particle and its own antiparticle on the same target. In the ’60s when the total cross sections 
were assumed to reach a finite limit as s -+ 00, the comparison between particle-particle 
and particle-antiparticle cross sections was established by the Pomeranchuk theorem (1958) 
which stated that asymptotically 

u d a b )  = u d W  . (24) 
Afterwards, when cross sections were found to increase with energy, the Pomeranchuk 
theorem was reformulated (Grunberg and Truong 1973) including the possibility of an 
indefinite rise as (logs)’. This ‘generalized’ Pomeranchuk theorem states that asymptotically 

If the Froissart-Martin bound is saturated, it can be proven that 

ctol(W - otodab) < C [oW@b) + %dab)l /(logs). (26) 
This means that the total cross section difference between a particle and its antiparticle is 
allowed by general principles to increase with energy and even diverge asymptotically but 
it is bound by (logs). 

A theorem similar to (25) exists for the ratio of the forward slopes of the differential 
cross section 

As will be discussed in section 8, the experimental results on p p  and pp from the 
ISR are consistent with these asymptotic predictions. Present data show that the total cross 
section difference Auml = umt( jp)  -ulol(pp) decreases with energy approximately as s-I/’ 
for f i  Q 60 GeV. These results indicate that the odd signature amplitude F- becomes 
negligible at high s and low t .  

While this is the present common belief, or prejudice, as based on simple extrapolation 
of the trend of the available data, a different picture, the ‘odderon model’, was proposed 
(Lukaszuk and Nicolescu 1973, Kang and Nicolescu 1975, Gauron et al 1988). This 
unconventional model has the interesting feature that it satisfies all basic requirements 
of analyticity and unitarity and predicts Aulol - (logs) asymptotically together with a 
saturation of the Froissart-Martin bound. 

4. Regge models 

The Regge theory has been successfully applied to describe two-body reactions at high 
energy and small momentum aansfer. Comprehensive reviews (see for example Collins 
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1977) exist on the subject of Regge phenomenology. Here we only mall the basic concepts 
and the most useful formulae of the model. 

The amplitude corresponding to the exchange of a single ’Regge pole’ has the form 

~ ( s ,  t )  - p ( t ) ( ~  & exp[-irror(t)]~s”“) (28) 
where or@) is known as the trajectory function while the quantity p ( t )  is the residue function 
and the term in curly brackets is called the signature factor. 

The exchange of a Regge pole in the t-channel actually corresponds to the exchange 
of an infinite series of particles (or resonances) with quantum number such that they may 
be formed in the crossed t-channel, a + 6 -+ b + 6 .  In fact at any given value of t ,  
the contribution of a Regge pole with bajectory a(t)  has the same s-dependence as the 
exchange of a particle whose spin is equal to a(t) .  Information on the trajectory function 
a(t)  is inferred from the plot of the spin of known resonances versus the square of their 
mass. The trajectories appear to be approximately linear in f and therefore one may write 

The contribution of a given Regge pole to the total cross section is determined by the 
a(t)  N (Y(0) + (Y‘t. 

value of the intercept ( ~ ( 0 )  of the trajectory at t = 0, 

z su(o)-l , (29) 
The differential cross section corresponding to the amplitude (28) can be written as 

(30) 

where H ( t )  is a slowly varying function o f t .  
Equation (30) shows that Regge exchange with h e a r  trajectory predicts an exponential 

fall-off of the t-distribution, i.e. a form eB’, with a slope parameter B which increases 
logarithmically with energy. In the ’60s these simple predictions were found to be 
approximately verified in all hadron-hadron scattering processes thus making Regge theory 
very popular. 

At that time the total cross sections were observed to flatten off or to be slowly decreasing 
with energy, so it was clear that the exchange of ‘normal’ Regge poles, while quite effective 
to explain inelastic two-body reactions, could not be sufficient to describe elastic scattering. 
In fact Regge trajectories corresponding to the known resonances, have intercept a(0) of 
about f (or less) which implies the energy dependence utol - s-’/*. 

This led to the introduction of a special Regge trajectory called ‘Pomeron’ with the 
quantum numbers of the vacuum and with intercept (~(0) N 1. It was assumed that the 
exchange of the Pomeron would describe, in a compact phenomenological fashion, the very 
complicated effect of absorption, i.e. the shadow on elastic scattering of the many inelastic 
channels which are open in high-energy collisions. The discovery that all hadron-hadron 
total cross sections grow with energy implies, within the Regge picture, that the Pomeron 
trajectory has an intercept which is slightly above 1. 

Regge theory is able to provide a rather good description of the total cross sections as 
shown by Donnachie and Landshoff (1992) who fitted available data on all hadron-proton 
reactions for f i  

(31) 
where the first term corresponds to Pomeron exchange and the second to normal Regge 
exchange. Because the Pomeron has the quantum numbers of the vacuum, its coupling to 
a particle and to its antiparticle are equal so that the value of the coefficient X is the same 
for utot(eb) and for qOt(6b). In this model a single effective trajectory with LYR(O) N f was 

- do ~(r)sZa(D)-2e(Za‘logs)r 
dr 

6 GeV with the simple expression 
urot = Xs~PO-‘ + ys41(W 
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PP: 21.70a'"+58.0&~." 

8 10 100 1000 
4, ( C a )  

Fiyre 3. Regge model fit by Donnachie and h d s h o f f  (1992) 10 the to ld cross sections of (a )  
$ p  and pp ( b )  n - p  and n+p. Numerical values for the contributions of Pomeron and n o r d  
Regge exchange are also given. 

used for normal Regge exchange while the intercept of the Pomeron was derived from an 
overall fit to the data. A good description of the total cross section data for j p ,  pp. r * p ,  
K * p  was obtained with mp(0) = 1.0808. The results for pp, pp and R*P are shown in 
figure 3. 

It is remarkable that reasonably good fits can be obtained with a small number of 
parameters. This study shows that the growth of the total cross sections occurs at the same 
rate for different channels and therefore is not connected to an intrinsic property of the 
hadrons but rather to the property of the exchanged system, the Pomeron. 

It must be noted, however, that (31) with a(0) > 1 is asymptotically not correct because 
it contradicts the Froissart-Martin bound and therefore violates unitarity. One may escape 
the contradiction by observing that this violation of the Froissart-Martin bound would only 
appear at enormous energies (& - lon GeV) and consider ap(0) as an effective parameter 
with a slow energy dependence. Then the usual Regge picture would remain valid and useful 
in the present energy regime which is so far from 'asymptotia'. 

The Regge model becomes more sophisticated by reinterpreting the Regge amplitude 
of (28) as a kind of 'Born approximation'. In that case higher-order terms corresponding 
to multiple Pomeron exchange will take care of restoring unitarity. An example of this 
approach is offered by the model of Covolan et ul (1992 and 1993) where the Regge 
amplitude FR.~~~(s, t )  is 'eikonalized' using the impact-parameter representation. 

The procedure consists of expanding the exponential in (lo), ePn E 1 - Q, retaining 
only the first term which is linear in the eikonal Q. One then obtains a first-approximation 
amplitude which is identified with the standard amplitude of the Regge theory, 

F ~ & s , 9 )  = ~ ~ m J o ( 9 b ) Q ( s , b ) b d b .  (32) 

The eikonal, which is obtained by inverting the previous equation, 

W, 6) = 4 J0(9b)~'%&, 414 dq (33) 
1s 0 

is then inserted back into (10) in order to provide the full 'eikonalized' amplitude. 
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Figure 4. Contributions of single and double Pomeron exchange 
to the differential cross section of elastic sutlering (Donnachie and 
Landshoff 1986). The m o w s  indicate how they change as the 

-t energy increases. 

In this approach, terms corresponding to higher order Regge exchange have different 
energy and momentum-transfer dependence as shown in figure 4. The inclusion of these 
high-order amplitudes allows elastic scattering to be described not only near the forward 
direction where the differential cross section has a simple exponential shape, but also at 
larger values of the momentum transfer where a structure is observed. 

5. Diffraction models 

Hadron collisions at high energy exhibit the typical features of diffraction in the sense that 
at low momentum transfer the differential cross section of elastic scattering shows a sharp 
forward peak. 

Diffraction theory applies when the wavelength of the wave being scattered is much 
smaller than the typical dimensions ro of the scattering system, i.e. when 

kro >> 1 . 
With ro m 1 fm, this requirement is already satisfied at CMS energies of a few GeV. At these 
energies many inelastic channels are open and the absorption cross section is an important 
h-action (of the order of 80%) of the total cross section. Elastic scattering appears to be 
essentially the ‘shadow’ of the inelastic processes and the diffracted waves will add up 
coherently in the forward direction giving rise to a sharp forward peak. 

Various diffraction models have been constructed with specific assumptions on the phase 
shift 61 or, equivalently, on the impact-parameter dependence of the opacity function a. 
Without additional input, however, these models cannot describe the energy dependence of 
the scattering process. 

5. I .  The geometrical picture 

Historically, the first model which incorporated the basic ideas of diffraction theory was the 
geometrical picture proposed by Yang and collaborators (Chou and Yang 1968). 

Starting from the remark that high-energy scattering is essentially the shadow of 
absorption, the two colliding hadrons are described as extended objects of some kind 
of ‘hadronic matter’ which fly through each other. At each space point the interaction 
probability will be proportional to the local density of hadronic matter which is assumed to 
have the same shape as the distribution of electric charge which is measured in electron- 
scattering experiments. 

These ideas are naturally expressed in the impact-parameter formulation. The opacity 
(or eikonal) function G(s, b) defined in section 2 is assumed to be real, which implies a 
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purely imaginary scattering amplitude, and is written in the factorized form 

G(s. b) = K ( s )  T ( b ) .  

The function T ( b )  describes the space distribution of the overlap of the two colliding 
particles projected on the impact-parameter plane. It is obtained from the Fourier-Bessel 
transform of the square of the electromagnetic form factor G(q2): 

The energy-dependent parameter K ( s )  which measures the strength of the interaction is the 
only free parameter of the model. Its numerical value is adjusted to reproduce the measured 
total cross section. 

The geometrical picture (Chou and Yang 1968, Durand and Lipes 1968) predicted that 
the differential cross section of elastic scattering would show a kind of diffraction pattern 
with sharp minima. Afterwards a dip was in fact observed in proton-proton scattering at 
the ISR for -t - 1 GeV2. Experimentally the dip is much less sharp than predicted by the 
model, which is expected, however, because in the model the real part of the amplitude is 
neglected. 

Some simple scaling rules hold as direct consequences of the basic assumptions of 
the model: the momentum transfer of the dip is expected to vary as l/uml while the 
forward-slope parameter B should increase proportionally to ula. These rules are in fact 
approximately verified experimentally. 

The geometrical picture cannot predict the energy dependence of the parameter K. It 
predicted, however, a link between the total cross section, the ratio ue~/uIot, and the value 
of du/dt at the second maximum, just beyond the diffraction minimum (Chou and Yang 
1979). As shown in figure 5, these predictions are qualitatively in agreement with later 
observations at the SPS coUider and at the Tevatron. 

and the amplitude would take the form 
In the asymptotic limit (Chou et al 1982). if utOl + CO, then ue~/ulol would approach 

which is just the familiar Fraunhofer formula for diffraction by a completely absorbing disk 
in optics. 

The geometrical picture is a simple model and does not claim to be able to fit the data 
quantitatively. It was able, however, to evidentiate fundamental features of high-energy 
scattering and was seminal for further developments. The underlying physical concepts of 
the geometrical picture are shared by more elaborate diffraction models. 

5.2. The impact picture 

The impact picture is based on the original work of Cheng and Wu (1969) on quantum 
electrodynamics (QED), performed when QCD had not yet been developed. They assumed 
that some understanding of high-energy hadronic collisions could be obtained from the 
study of the asymptotic behaviour of high-order Feynman graphs in QED. The motivation 
was that relativistic quantum-field theory (which incorporates relativity and absorption, i.e. 
particle production) should be able to provide the basic clues for the right description of high- 
energy scattering, independently of the specific interaction, whether it is the electromagnetic 
interaction of electrons or the strong interaction of hadrons. The study of a special class of 
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Figure 5. The predictions of &e geomehi- 
cal picture by Cbou and Yang (1979). repre- 
sented by the full lines, ax compared to the 
experimental data. 

‘tower graphs’ led Cheng and Wu (1970) to predict that the hadronic cross sections would 
grow with energy and asymptotically would saturate the Froissart-Martin bound. 

More recently Bourrely et a1 (1984 and 1988), inspired by these results on QED, have 
developed a phenomenological model which has been quite successful in describing high- 
energy pp and j i p  scattering. 

Their model is formulated in the impact-parameter formalism. The opacity function is 
written as 

(35) 

where the first term represents the diffraction component which is relevant at high energy 
while the second term is a Regge contribution that decreases quickly with energy. The first 
term is assumed to factorize to the product of a function of energy times a function of the 
impact parameter. The energy-dependent term is taken from the study of Cheng and Wu 
(1970) on QED. It is written in the crossing-symmetric form 

Q(s, b) = S(s) T(b)  -b R(s,  6)  

SC U= 
S(s) = - +- 

(log sY’ (log U)? 

where U is the Mandelstam variable introduced in section 2 and c and c‘ are constant. 
The function T(b) which describes, as in the geometrical picture, the density distribution 

of the two overlapping hadrons, is derived from the charge density. With only four free 
parameters the model is able to correctly reproduce the experimental results on arorot. p and 
on the differential cross section of elastic scattering (Bourrely et al 1990). 

The distinctive feature of the impact picture, when compared with other diffraction 
models, is the explicit use of an energy dependence which is obtained from quantum-field 
theory. The power term se in the opacity function leads asymptotically to the saturation of 
the Froissart-Martin bound. 
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Figure 6. Graphical illustration of the ‘expanding protons’ 
in the impan picture of Cheng and Wu (1987). 

Figure 7. The shadow profile function Gi. at J; = 53 
GeV (tsn) and J3 = 546 GeV (sps collider) as derived 
from the data by Henzi and Valin (1983). The inset shows 
the change of Gin 

The model predicts that asymptotically U,,, 0.1 and the slope B will all increase as 
R(s)* where R(s )  is a typical interaction radius which grows logarithmically with energy, 
R(s )  = Ro logs. The ratio ~ ~ l / o , ~ ,  is predicted to approach f asymptotically. 

The prediction that the total cross section would grow with energy together with the 
ratio of the elastic to the total cross section is a remarkable achievement of this model 
which has generally been demonstrated to possess a considerable predictive power (Cheng 
and Wu 1987). 

The picture that emerges in this model is illustrated in figure 6. At high energy the two 
colliding hadrons have a ‘central core’, almost completely absorbing, with a radius growing 
as logs, and a peripheral region, a ‘gray fringe’, only partially absorbing, whose width is 
energy-independent. 

This prediction can be compared with the data by examining the energy variation of the 
shadow profile function Gj.(b). We note that the function G,.(b) can be extracted directly 
from the i-dependence of the measured differential cross section of elastic scattering if that 
is known in a sufficiently wide interval o f t .  The procedure requires some assumption on 
the real part of the amplitude but it is almost model-independent (Amaldi and Schubert 
1980). 

Results on the shadow function at the ISR energy, ,b = 53 GeV, and at the SPS collider 
energy, ,6 = 546 GeV, as derived from the data by Henzi and Valin (1983 and 1985) 
are presented in figure 7. The observed change from the ISR to the SPS is consistent with 
the predictions of the impact picture. Both the interaction radius and the central ‘opacity’ 
increase with energy. It is clear, however, that even at the large energy of the present 
accelerators, the central, ‘opaque’ region does not extend more than the ‘gray edge’. This 
may give an idea of how far present energies are from the so-called ‘asymptotic regime’ 
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discussed in the theory. 

5.3. The multiple-diffraction model 

The multiple-diffraction theory was developed several years ago by Glauber (1959) to 
describe elastic scattering of hadrons by nuclei at high energy. The two basic ingredients 
of the theory are the amplitude of hadron-nucleon scattering and the nuclear-density 
dismibution. Once these quantities are given, the amplitude for nuclear scattering can be 
calculated. It turns out that the nuclear amplitude can be expanded in a series in which the 
first term corresponds to single scattering of the incoming hadron by one nucleon of the 
target nucleus while the second term describes the sequence of two successive scattering 
processes by two nucleons and so on. 

In view of the success obtained in describing nuclear collisions (Glauber 1969) the 
multiple-diffraction theory was recently extended by Glauber and Velasco (1984 and 1988) 
to high-energy hadron-hadron scattering. In this picture the two colliding hadrons are 
viewed as two clusters of interacting partons and the calculation of the hadron-hadron 
amplitude proceeds essentially in the same way as for nucleus-nucleus collisions. 

For elastic scattering of hadron a against hadron b, the opacity function is written as 

where q2 = - t .  N.  and Nb are the number of partons present in the two hadrons. The 
elementary interaction between the hadronic constituents is described by the parton-parton 
scattering amplitude f,,(s, t ) .  The spatial distribution of partons in the hadrons a and b 
is assumed, as in the geometrical model, to be the same as the electric charge distribution. 
As a consequence the electromagnetic form factors G,(t)  and G&) appear in (37). 

The hadron-hadron scattering amplitude F ( s ,  t )  is obtained by inserting the opacity (37) 
into the general form (10) of the amplitude. By expanding the exponential e-n(s,b) in (10) 
in powers of Q, the series expansion of the multiple-diffraction model can be written down 
explicitly. Retaining only the first term one gets 

F ( s ,  t )  = Ga(f)Gb(t)fpan(S, t )  (38) 

which represents the contribution of single parton-parton scattering. Higher-order terms of 
the series correspond to multiple parton-parton scattering processes. 

It can be shown that the geometrical picture of Chou and Yang (section 5.1) corresponds 
to a particular case of the multiple-diffraction model, when the elementary parton-parton 
amplitude is taken to be isotropic. 

Other models which make use of an approach very similar to the multiple-diffraction 
theory have been discussed by Menon (1992) and by Pumplin (1992). With a reasonably 
small number of free parameters all these models are able to reproduce the general features 
of elastic scattering at high energy. 

The shape of the shadow profile function Gj,(b) as extracted from elastic scattering 
data at different energies by Glauber and Velasco (1988) is shown in figure 8. Previous 
results (section 5.2 and figure 7) on the increase of the central ‘opacity’ and of the effective- 
interaction radius with energy are confirmed by the multiplediffraction analysis. In addition, 
this study reveals that in the peripheral region the shadow function has a dependence on 
the impact parameter which is very close to an exponential. 
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Figure 8. The shadow profile function Gin obrained in lhe 
multiple-diffraction model at different energies by Clauber 
and Velasco (1988). 

5.4. A model withfluctuations in the eikonal 

Several years ago it was recognized (Barshay 1972) that there is a connection between the 
opacity, or eikonal, function Q(s, b) and the number distribution of particles produced in a 
collision, n(s ) ,  which is a function of energy and fluctuates about the average (T I ($ ) ) .  

In an intuitive manner, central collisions occurring at low values of the impact parameter 
b are associated with large multiplicities while peripheral collisions which occur at large 
b lead to low-multiplicity events. Within this intuitive framework, the well known W O  
scaling of the multiplicity distributions, first noticed by Koba et al (1972). was related 
(Dias de Deus 1973) to the notion of ‘geometrical scaling’ (section 3.1). 

Afterwards, at the SPS collider energy, violations of both the geometrical scaling 
(increase of u&,~~) and of the W O  scaling (Ward 1989) were observed. These two 
experimental facts were again considered as correlated. 

In this context one is naturally led to the notion of a ‘distribution’ for the eikonal in the 
sense that specifying s and b fixes an average value (Q(s, b)) but significant fluctuations are 
expected about this average value (Barshay and Goldberg 1987). The probability distribution 
of the eikonal is assumed to have the same form which describes the multiplicity distribution 
of produced particles 

where U = Q/(Q) and k is a parameter slowly decreasing with energy. The factor (1 -e-*) 
which appears in the expression of the scattering amplitude (11) is now replaced by 

Once the impact-parameter dependence of the eikonal is fixed by the electromagnetic form 
factor, the model becomes specific and able to reproduce the data on high-energy scattering 
(Barshay et a1 1992). 
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6. QCD models 

The review article of Levin and Ryskin (1990) contains a rather general discussion of the 
attempts to formulate a theory of low-momentum-transfer processes based on perturbative 
QCD. Here we mention only a few important and representative developments in this field. 

Various models of high-energy scattering fall in the class of the so-called ‘QCD- 
inspired’ models (Halzen 1993). They often lack mathematical rigour but have the merit of 
reformulating old concepts in a modern language with the aim of preparing a bridge toward 
a future theoretical decription based on QCD. 

A typical ‘QCD-inspired’ model was proposed by L‘Heureux et ai (1985) and developed 
by Margolis et al (1988) and Block et al (1990). In  this model each of the two colliding 
protons is regarded as a collection of partons (quarks and gluons) each carrying a fraction x 
of the proton momentum. The transverse size of the proton is described by a profile function 
T(6)  derived from the proton form factor, as in the diffraction models. The opacity function 
is written as the sum of two terms 

Q(s, 6) = Q v v ( ~ ,  b) + Qgg(s, b) 
where QVv accounts for the interaction of the valence quarks and Q,, describes the gluon- 
gluon interactions. The gluon term is responsible for the rise of the total cross section. It 
is written in the following form: 

which describes the interaction probability of a gluon with momentum fraction XI in the 
first proton colliding with a gluon with momentum fraction x2 in the second proton. The 
quantity 6 is the collision energy in the gluon-gluon system and is given by j = ~ 1 x 2 s .  

The gluon-gluon cross section U,, is assumed to be constant above a certain threshold value 
which is of the order of 1 GeV. The distribution function of the gluons inside the proton, 
g ( x ) ,  is written in the usual form as 

The number of gluons present at low x .  i.e. the number of gluons carrying a small 
fraction of the proton momentum is determined by the parameter J which also controls the 
energy dependence of the opacity, 

Q&, b) - T,@) SI-’ . 
Clearly the parameter J is related to the intercept of the Pomeron trajectory q(0) of the 
Regge model. If J > 1, the total cross sections grow with energy. Inserting Q, in the 
general expression (1 1) of the scattering amplitude gives at high energy the following result: 

Utm - (J - 1) 
which is formally similar to that obtained in the ‘eikonalized‘ Regge model and in the 
‘impact picture’. 

The main physical point of this model is the connection between the fast rise of the 
gluonic content of the proton at low x and the growth of st,,, with energy. This same 
connection has been discussed by other authors (Durand and Pi 1989 and Jenkovszki et al 
1992). 

It has been suggested that a related physical process should be the ‘semi-hard’ collisions 
which occur with increasing probability in the energy interval 200 < & < 900 GeV as 
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signalled by the fast rise of the cross section for production of ‘minijets’ (Ellis and Scott 
1989). 

Jets having relatively low total transverse momentum ( p ~  - 5 GeV) have been called 
‘minijets’. In the parton model, jets with sizeable transverse momentum result from 
the elementary process of parton-parton collisions where a transfer of the longitudinal 
momentum into a transverse component takes place. After the collision the partons ‘dress’ 
themselves into observable jets of hadrons. Low-x partons give rise to low-p~  jets. The 
observed rise of the ‘minijet’ cross section and of the total cross section, at similar rates in 
the same energy interval, can be associated to the fast rise of the number of gluons at low 
x (Dias de Deus and Kwiecinski 1987). 

A rather unconventional model which depicts the nucleon as a ‘topological soliton‘, and 
its applications to high-energy scattering, has been discussed by Islam (1992). 

A central issue of present theoretical research (Halzen 1993) is the calculation of the 
phenomenological properties of the Pomeron within QCD. An important result was obtained 
by Lipatov (1986 and 1989) who studied a special class of diagrams with multi-gluon 
exchange and concluded that the Pomeron corresponds to a complicated singularity which 
may be visualized as a series of poles in the complex angular momentum plane with 
intercepts becoming higher as the energy increases. This result may he written approximately 
in the form 

a p ( 0 ) = 1 + 8  8 ~ ( 1 2 / ~ ) c ( ~ l 0 g 2 ~ 0 . 3  

where us is the strong-interaction coupling constant. 
A similar calculation was recently performed by Gauron et a1 (1993) for the ‘odderon’, 

which plays for the odd signature amplitude F-, the same role as the Pomeron for the even 
signature amplitude F+. The result is 

aodd(O) - 1 > 0.13[0lp(O) - 11 . 
It should be stressed, however, that these calculations are perturbative. They refer to the 

region of relatively large momentum transfer (presumably a few GeV2). As a consequence 
no definite conclusion can he drawn at present from these results on the low-t region and 
particularly on the energy dependence of the total cross section and of the total cross section 
difference between particle and antiparticle, 

Among recent developments in the direction of QCD non-perturbative calculations we 
mention the interesting approach by Nachtmann (1991) and by Dosch et al (1992). The 
interaction of two quarks which is due to the exchange of gluons is actually replaced by the 
interaction of each quark with an external gluonic field. This effective gluonic potential is 
supposed to be slowly varying over distances of the order of the effective quark wavelength 
which is very small because one is dealing with high-energy interactions. This justifies the 
use of the WKB approximation with the quarks following paths similar to the light-ray paths 
of the eikonal approximation in optics. The basic quantity of the theory is the vacuum 
expectation value of the gluon field. Actual calculations of the total cross section and of 
the slope parameter of forward elastic scattering were performed for meson-meson, meson- 
baryon and baryon-baryon interactions by Dosch and Ferreira (1993) with encouraging 
results. 

7. Experimental methods 

Before discussing the experimental results from the high-energy hadron colliders it is worth 
describing the experimental techniques used at these machines to measure elastic scattering 
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Figure 9. The ‘Roman pot’ system used at the CERN SPS collider by experiment UM. A section 
of the accelerator vacuum chamber is shown together with an exploded view of the detectors. 

and the total cross section. These techniques are quite different from those employed with 
secondary beams at the conventional fixed-target accelerators. 

7. I .  Elastic scattering 

At the hadron colliders the CMS coincides with the laboratory system and measuring elastic 
scattering is straightforward in principle. One has to detect the two scattered particles 
demanding back to back angular correlations and requiring no other particles to be present 
in the final state. Typical scattering angles are, however, quite small (a fraction of mrad) 
so that the detectors have to be placed very close to the circulating beams. 

In practice this is achieved by placing the detectors into movable sections of the vacuum 
chamber of the accelerator, which have become known as ‘Roman pots’ and were first used 
at the CERN ISR (Amaldi et a/ 1973). In its normal position the ‘Roman pot’ stays in a 
retreated position leaving the full aperture of the vacuum chamber free for the beam, as 
required at the injection when the beam is much wide. Once the right energy is attained 
and the circulating beams are stable, the ‘Roman pot’ is moved toward the machine axis 
by compressing the bellows, until the inner edge of the detector reaches a distance of only 
a few millimeters from the beam. A sketch of the ‘Roman pot’ system used at the SPS 
collider is shown in figure 9. 

Hadron colliders are usually operated at high luminosity for the search of rare events. 
To obtain high luminosity, the transverse size of the beam at the crossing point is reduced 
by the focusing action of quadrupoles. As a consequence the angular divergence of the 
beams is correspondigly increased so that a large fraction of the scattered particles remain 
inside the acceptance of the machine itself and are not accessible to detection. 

To measure elastic scattering, the opposite scheme is actually required. The beam size 
at the crossing point is made relatively large while the beam divergence is very small. In 
practice nearly parallel beams are used. The corresponding loss of luminosity is not a 
problem because the differential cross section of elastic scattering is large at small f. 
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The best arrangement is obtained by placing the detectors at a distance from the crossing 
point equal to one quarter of the period of the betatron oscillations (Haguenauer and Matthiae 
1984). In that case optics with parallel-to-point focusing from the crossing point to the 
detectors is achieved. This has the very convenient property that measuring the particle 
position at the detector allows the scattering angle to be reconstructed in a straightforward 
way. 

The optical analogue is of course the classical technique of measuring the direction of 
light rays by means of an optical system with a screen placed at the focal plane. 

The detectors which are inserted in the ‘Roman pots’ are usually designed to accept 
high rates and have good spatial resolution (about 100 Nm). In recent experiments (Amos et 
nl 1990a. Augier et al 1993b, Abe et nl 1993) combinations of drift chambers, hodoscopes 
of scintillating fibres and silicon detectors were used. As an example, the detectors used by 
Augier et al (1993b) at the SPS collider are shown in figure 9. 

7.2. Total cross section 

At the fixed-target accelerators total hadronic cross sections are measured with the classical 
transmission technique. The secondary beam is allowed to strike a liquid hydrogen target 
and from the observed attenuation of the beam itself one obtains the total cross section. 
Trasmission measurements are usually very accurate, at a level of 0.2-0.3%. 

At a colliding beam machine, however, different methods have to be used. They are 
discussed below. 
(I) The first method is based on the definition of total cross section. If the machine 

luminosity L is known, one makes use of the relationship 

Ne] + Nine, = L ctot (39) 
where Ne, and Nine] are the rates of the elastic and inelastic interactions, respectively. 
This method was used at the ISR (Amendolia et al 1973). 

(2) Again if L is known, one may use the optical theorem which relates the total cross 
section to the imaginary part of the forward amplitude according to (5). The elastic 
scattering rate dNd/dt is measured at small t and extrapolated to t = 0, i.e. to the 
so-called ‘optical point’ (Amaldi et al 1973). The total cross section is then obtained 
from the following expression: 

The parameter p is small at high energy, about 0.1-0.2, so that it does not have to be 
known with high precision to get an accurate value of alM. 

The main difficulty with methods (1) and (2) is the need of knowing the luminosity. 
In a fixed-target experiment the effective ‘luminosity’, defined as the product of the beam 
intensity (number of incident particles per second) times the number of atoms per square 
centimetre of the target, can be accurately measured. On the contrary, at a colliding beam 
machine the measurement of the luminosity is more difficult. In fact what is required is the 
knowledge of the number of circulating particles and the effective area of the beams at the 
crossing point. At the ISR the effective beam size was measured with a method invented by 
Van der Meer (1968) which essentially consists of an ‘autoscan’ of the beams and reaches 
a precision of about 1% (Amaldi et al 1978). 

At the high-energy p p  colliders, where the beams collide head-on, this method cannot 
easily be used. The beam size is then measured by a ‘wire scan’ system (Bosser et al 
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1985) and the luminosity is obtained with a precision of the order of 5%, but the intrinsic 
systematic errors of the method are difficult to estimate. 

(3) In order to circumvent the problem of measuring the luminosity, the two methods (1) 
and (2) were combined in a single one, the so-called ‘luminosity-independent method’. 
Combining (39) and (40), the luminosity drops out and we get the following expression: 

This ‘luminosity-independent’ method allows in principle a better control of the 
systematic effects. It was used at the ISR by Amaldi et al(1978), at the SPS collider by 
Bozzo et al(1984c) and at the Tevatron by Amos eta1 (1990a) and by Abe et a1 (1993). 

(4) The last method relies on the measurement of Coulomb scattering (a process whose 
cross section is well known) to normalize the observed t-distribution dN,l/dt and get 
the differential cross section do/dt. Because of its 1/04 distribution, Coulomb scattering 
becomes dominant over hadronic scattering only at very small momentum transfer. In 
fact the two processes have the same probability when the momentum transfer is 

where 01 is the fine structure constant. Numerically, at high energy, to 2 

These four methods for measuring the total cross section are not straightforward. As 
a consequence the results are affected by errors of few percent, quite larger than for the 
fixed-target experiments. 

GeV’. 

7.3. The real par? in the forward direction 

The real part of the hadronic amplitude is obtained by observing the interference with 
the Coulomb amplitude which is known. This standard technique, however, provides a 
measurement of the real part only for those values of the momentum transfer where the 
two amplitudes are comparable in magnitude, i.e. for f % b. Thus in practice the real part 
can be measured only in the forward direction. To account for both, hadronic and Coulomb 
scattering, the differential cross section is written as 

du 16n 2 - = - 1 dt sz + ph I (43) 

The Coulomb amplitude FC is given by 

where G(t) is the proton electromagnetic form factor. The upper and lower sign refer 
to pp and p p  scattering, respectively. For the hadronic amplitude the following low-t 
parametrization is normally used: 

where p is the ratio of the real to the imaginary part in the forward direction. The interference 
term in (43) is proportional to the quantity (p  &a@). 

The relative Coulomb-hadronic phase a@, first calculated by Bethe (1958) for a potential 
scattering model, was afterwards discussed by various authors‘west and Yennie 1968, 
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Buttimore et ai 1978, Cahn 1982, Kundrat and Lokajicek 1993). A reasonably good 
approximation for B = 15 GeV-' is ~~ / 

0.07 6 = log - - 0.577. 
I f  I 

Numerically a$ 2: 0.027 at t = to. 
As an example, recent data in the Coulomb region from the SPS collider (Augier el ai 

1993b) are shown, in figure 10. The rise at very low I is due to Coulomb scattering. The 
best fit which gives p = 0.135 is represented by the full curve while the broken curve 
indicates the result which would have been obtained for p = 0. These data supersede a 
previous, less accurate measurement (Bernard et a1 1987b). 

S. Experimental results on ubt and du/dt 

Results from fixed-target experiments are limited to CMS energies less than about 20 GeV. 
The data at higher energies are from the colliding beam accelerators. The CERN ISR have 
provided p p  and j j p  collisions in the energy interval 2/; N 20-60 GeV. The sPS collider at 
CERN and the Tevatron at Fermilab provide j jp  collisions in the range 2/; N 0.5-1.8 TeV. 

8.1. Total cross section and real part 

Measurements of the total cross section and of the parameter p are discussed together in 
thii section because they are correlated by the dispersion relations. 

It has been observed that the @ p  and p p  total cross sections tend to become equal as 
the energy increases. Data on the total cross section difference Autotot = a&p) - ulot(pp) 
from the ISR (Amos et al 1985 and Carboni et a1 1985) are shown in figure 11 together with 
measurements at lower energy. The full line in figure 11 represents the result of a power-law 
fit which gives Auml - s-'.'~. A power law with exponent close to is indeed expected 
in the Regge model for exchange of the dominant odd-signature trajectories. Clearly the 
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Figure 12. The pmton-antipmtnn total cross section as a function of energy. 

experimental results on Aubt are consistent with the assumption that the amplitude which 
is odd under crossing becomes negligible at high energy at least in the forward direction. 

A compilation of the data on the proton-antiproton total cross section is presented in 
figure 12. The cross section grows by nearly a factor of two from the ISR up to the Tevatron 
energy. The experimental results in the high-energy range, 0.546 < ,h < 1.8 TeV are 
collected in table 1.  

The recent data of the CDF experiment at f i  = 546 GeV agrees well with the earlier 
UA4 measurement at the same energy. However, the CDP result at 1.8 TeV is definitely 
higher than the previous measurement by the E710 experiment. Both experiments have 
employed the same technique, the luminosity-independent method, so that the origin of the 
discrepancy is at present unclear. 

The energy dependence of the total cross section can be studied in a model-independent 
way with the help of the dispersion relations. The energy dependence of utOt is described 
by a suitable function containing free parameters which are determined by fitting the ,5p 
and p p  data on utot and p. A simple but effective parametrization, first used by Amaldi et 
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Table 1. Data on the j p  total cross section from the highenergy colliders. 

.,& r e v )  rwl (mb) Experiment 

0.546 62.2 k 1.5 U A I  (BOZZO e t d  1984C) 
61.3 I 1.0 CDFfAbeetd 1993) 

0.90 65.3 f 1.7 u1s (Alner er 01 1986) 

1.8 12.8 j: 3.1 RIO (Amos era1 1992) 
80.0 j: 2.2 CDF (Abe er nl 1993) 

0 .,," ' ' ' , . - . - '  ' ' , l l . . L '  ' ' * 1 * , , "  ' ' " ' L  

4 s  (GeV) 

Figure 13. Total cross sections of j p  and p p .  The result of the dispersion relation fit of Augier 
er a1 (1993a) is also shown. The broken curves indicate the uncertainlj region of the fit. 

al (1977) is the following: 

otot = A I (s/so)-"' F A~(s/so)-"' + CO + CZ OOg S/SO)' (44) 
where the upper and the lower sign refer to p p  and p p ,  respectively. The power terms in (44) 
are needed to reproduce the low-energy data while a logarithmic form is taken for the high- 
energy behaviour. The amplitude odd under crossing is assumed to vanish asymptotically 
in accordance with present data. The scale factor $0 is usually taken equal to 1 CeV2. 

The principal aim is to derive from the data the value of the parameter y which controls 
the high-energy behaviour of the cross section and to make predictions at energies above 
those of the present accelerators. Earlier fits (Amaldi et al 1977, and Amos et al 1985) on 
data up to = 53 GeV gave the result y x 2. This conclusion is confirmed by a recent 
and similar analysis by Augier et a1 (1993a), using a data sample in the range of energy 
5 < 4 < 546 GeV which includes a new, accurate measurement of p at the SPS collider 
(Augier et a1 1993b). The result of the best fit which gives y = 2.2 * 0.3 is shown in 
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Figure 14. Measurements of the p parameter for pp and p p  saltering are shown together wilh 
the result of the dispersion relation fit of Augier et a1 (1993a). The broken C U N ~ S  indicate the 
uncertainty of the fit. 

figure 13 together with the experimental data. 
In spite of the large error which is due to the strong correlation existing between 

the different parameters in (44). the result of this analysis clearly favours the (logs)’ 
dependence. This behaviour has been often referred to as ‘qualitative’ saturation of the 
Froissart-Martin bound in the sense that it corresponds to the maximum rate of rise with 
energy which is allowed by analyticity and unitarity, but numerically actual data lie much 
below the absolute value of the bound itself. 

The fit by Augier er al (1993a) provides predictions at higher energies, in particular at 
the future accelerator LHC (& = 16 TeV). The numerical values obtained from the fit are 
given in table 2 together with the corresponding uncertainties. 

The experimental results at ,b = 546 GeV are well reproduced by the best fit. The 
prediction of the fit at ,b = 1.8 TeV lies in between the results reported by the two Fermilab 
experiments E710 and CDF. 

Table 2. Results of the dispersions relation fit of Augier et 01 (1993a) . 
fi (TeV) oiat (mb) 

0.546 61.8 I 0.7 
0.90 61.5 i 1.3 
I .8 76.5 f 2.3 

16.0 111.0 I 8.0 
40.0 130.0 f 13.0 
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Figure 15. Cosmic-rays resulu are shown together with the rotl l cross sections measured at 
lhe accelerators. Full and broken curves refer to the dispersion relation analysis as in figure 13. 
The dolled curve indicates the linear rise with logs. 

A compilation of data on the parameter p for j p  and p p  scattering is presented in 
figure 14 together with the dispersion relation fit of Augier et nl (1993a). The energy 
dependence of p clearly follows the expected trend, discussed in section 3, with a broad 
maximum in the few TeV region followed by a gentle decrease at higher energy. 

Information on the total cross section of protons at very high energies, above those 
accessible with present accelerators, is provided by the study of the interactions of primary 
cosmic rays in the atmosphere. From the measurement of the absorption length of the 
incoming protons in air, the total cross section of protons on nucleons can be derived 
by means of the Glauber model (1959). In spite of their large systematic uncertainties, 
these results are meaningful because extend up to CMS energies as large as 30 TeV. The 
data reported from the 'fly's eye' detector (Baltrusaitis et al 1984) and from the Akeno 
observatory (Honda et Q I  1993) are shown in figure 15 together with the accelerator results. 
The cosmic rays data support the conclusion of the dispersion relation analysis by Augier 
et al (1993a) favouring the (logs)' behaviour with respect to the linear rise with logs. 

8.2. The ratio of the elastic to the total cross section 

The ratio of the elastic to the total cross section, ac~/uml, is known to decrease at low 
energy and then reach a constant value in the range of energy of the ISR. For p p  interactions 
accurate measurementS are available which give as average value ael/umc = 0.175 between 
f i  = 23 GeV and f i  = 62 GeV. The p p  data at the same energies have larger errors 
but are consistent with this value. These results led to the notion of 'geometrical scaling' 
(section 3.1) which predicted that the ratio u,~/u,,,~ would be energy-independent. 
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However, more recent results from the SPS and the Tevatron colliders (Bozzo et a1 
1984c, Amos et af  199Oa and Abe et a1 1993) have shown that at energies above those 
of the ISR, this ratio increases although at a very slow rate. This means that the colliding 
particles become effectively more 'opaque' at high energy in agreement with the prediction 
of the 'impact picture' (Bourrely et a1 1990). A compilation of data on the ratio of the 
elastic to the total cross section for p p  scattering is shown in figure 16. 

8.3. The folward peak 

At high energy the r-distribution of elastic scattering exhibits a forward peak, often called 
the 'diffraction peak', with an approximately exponential form which is followed, at --t - 
1 GeV2, by a structure with a dip-bump or dipshoulder shape. At still higher momentum 
transfer the differential cross section falls o f f  much more gently. This general behaviour is 
illustrated in figure 17 where data on p p  elastic scattering in the energy region of the ISR 
are presented. 

At low momentum transfer, --f < 0.1 GeV2, the differential cross section is well 
described by the simple exponential eB'. As already noted in section 3.1, this implies that 
the relation, atoJB = 1 6 7 1 ~ ~  fatot, is approximately correct. Therefore, if the ratio ae,/atot 
is constant, the forward-slope parameter B will have the same energy dependence as the 
total cross section. 

The ratio u~~/o;,~ is actually increasing, although slowly, with energy, and we then 
expect the forward slope 5 to increase with energy at a rate which is slightly less fast than 
that of the total cross section. This is indeed the case as shown in figure IS. The data are 
consistent with a logs rise which is in fact expected in the Regge model (section 4) which 
predicts a forward slope of the form B(s)  = BO f 2 a )  logs. Numerically the effective slope 
of the Pomeron trajectory turns out to be a> = 0.25 GeVZ.  

A direct comparison of p p  and p p  elastic scattering in the region of the diffraction 
peak was performed at the ISR measuring both reactions with the same experimental 
apparatus (Breakstone et al 1984a). As shown in figure 19, the ratio of the slope parameters 
B ( p p ) / B ( p p )  decreases with energy and, within the (small) experimental errors, becomes 
equal to 1 at f i  = 62 GeV. This indicates that the theorem (27) on the asymptotic equality 
of the slopes for p p  and p p  scattering is already verified at the 1% level at the top ISR 
energy. 

A closer look at the shape of the forward diffraction peak reveals that in general it is 
not a simple exponential. Accurate measurements on proton-proton scattering at the ISR 
(Barbiellini et a1 1972), have shown that the t-dependence of the differential cross section 
is steeper near the forward direction, i.e. the t-distribution shows a positive curvature 
(figure 20). The local slope parameter B(- f ) ,  derived by fitting the data with the exponential 
eBr in different regions o f t ,  decreases by about 2 units of GeV-' when one moves away 
from the forward direction. 

A similar effect was also observed at the SPS collider (Bozzo et al 1984b) as shown in 
figure 21. At the Tevatron collider, on the contrary, the data by Amos et al (1990b) show 
a simple exponential shape down to -t = 0.5 GeV2 (figure 22). 

A summary of the experimental information on the shape of the forward peak is 
presented in figure 23 where the local slope parameter B(t) is plotted as a hnction OF 
f for p p  and p p  scattering at different energies. The horizontal bar in figure 23 indicates 
the interval in t where the exponential fit was actually performed. 

This change with energy of the shape of the diffraction peak is actually expected in 
the diffraction models discussed in section 5 (Bourrely et al 1988 and Barshay et al 1992). 
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Figure 17. Proton-proton erastic scattering as measured al ule CERN ER. The differential cross 
section at different CMS energies from 23 GeV up to 62 GeV is shown as a function of the 
momentum transfer. 
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region of the ISR (Breakstone et a1 1984a). 
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Figure 20. The shape of he forward peak in p p  
elastic scattering a( lhe ISR energies (Bxbicllini 
er nl 1972). 

Asymptotically these models predict for elastic scattering a form equal or similar to the 
Fraunhofer formula (34) which has a negative curvature. At low energies the shape of the 
t-distribution is determined by the proton electromagnetic form factor which has a positive 
curvahlre. Therefore the curvature will change from positive to negative at some finite 
energy. This feature of the data can also be reproduced in the Regge approach, as due to 
the interplay of the two amplitudes for single and double Pomeron exchange which have 
different energy and momentum-transfer dependence. 

8.4. The dip-shoulder region 

The proton-proton data from the ISR show a clear structure in the momentum-transfer region, 
I< --t < 2 GeV2, with a shape of a dip followed by a broad maximum, which is typical 
of a diffraction pattern (figure 17). Such a structure had in fact been predicted (Chou 
and Yang 1968) several years before the measurements could actually he performed. The 
momentum transfer at the position of the dip varies proportionally to l/umt, as expected in 
the diffraction models. 

The depth of the minimum is not the same at the different energies. Formally, the 
minimum of the diffraction pattern corresponds to a zero of the imaginary part of the 
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Figum 22 The fonvard elastic peak of p p  
scattering at f i  = 1.8 TeV from the €710 
experiment at the Fermilab Tevatron (Amos 
et a1 1990b). 

scattering amplitude, so that the level of the cross section at the dip is determined by the 
value of the real part which varies with energy. 

Current models are able to reproduce the proton-proton scattering data quite well. As 
examples we show in figure 2A the results of the Regge model of Donnachie and Landshoff 
(1986) and in figure 25 the results of the impact picture of Bourrely et al (1984). It should 
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Figure W. The local slop parameter B ( t )  is plolted as a function off  for p p  Scattering at 
f i  = 53 GeV and for j p  scattering at Js = 546 GeV and fi = 1.8 TeV. 

be noted that in the impact picture there is no basic difference between bp and p p  in the 
dip region at hi& energy. 

Figurr 24. The differential cross section of p p  
elastic scattering at 4 = 23 and 31 GeV is 
shown together with the results of the Regge 
model of Donnachie and Landshoff (1986) 
represented by the full curves. 

In fact, when measurements on p p  scattering were performed, it was found that there 
is a difference between ,5p and pp in the region of the dip as shown in figure 26 where the 
pp data at f i  = 53 GeV by Breakstone et al (1985) are plotted together with the earlier 
results on p p  scattering by Nagy et al(1979) at the same energy. The j p  data do not show 
a dip but only a break followed by a shoulder. 

This effect is explained by the model of Donnachie and Landshoff (1983 and 1986) as 
due to the presence of the threegluon exchange mechanism which will be discussed in more 
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Figure 25. The differential cross section 
of pp elastic scattering at three different 
energies is shown together with the mu1t.s of 
the impact picture of Boumly el a1 (1984) 

j represented by the full curves. The brolen 
curve is a predinion for j p  scattering. 

detail in section 8.5. The amplitude of this process has different signs for pp and for p p  
scattering. Its interference with the complex amplitude which describes the diffraction peak 
is destructive in p p  scattering, thus producing a dip, but, on the contrary, is constructive 
for p p  giving rise only to a break. The experimental results on the ratio of the p p  to p p  
differential cross section at f i  = 53 GeV in the region of the dip are shown in figure 27 
together with the prediction of this model. 

The measurements of c p  elastic scattering at the SPS collider by the UA4 experiment 
(Bozzo et al 1985) are shown in figure 28 together with previous p p  results at f i  = 53 
GeV. Also, these j p  data do not show a dip but only a break followed by a shoulder in 
agreement with the expectations of the three-gluon interference model. 

An interesting feature of the uA4 results is that the level of the differential cross section 
on the shoulder is more than one order of magnitude above the ER data. This effect was 
qualitatively predicted by the ‘geometrical model’ as shown in figure 5. More elaborate 
models as the impact picture of Bourrely etal(1988) or the ‘eikonalized’ Regge models are 
able to reproduce this feature of the data quite accurately. In these models the asymptotic 
limit of the differential cross section corresponds to the Fraunhofer diffraction by a fully 
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Figure 26. Differential cross section of proton-prot6n and prolon-anliproton elastic scattering 
a1 fi = 53 GeV. 

Figure 27. The ratio of the differential cmSS sections 
of j p  to p p  elastic scattering a 6 = 53 GeV in the 
region of lhe swchlre is compared with lhe prediclion 
of the three-gluon interference model (Landshoff 1991). 

absorbing disk (34). In this limiting case the ratio 
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Figure 28. Differential cross section of p p  elastic scattering at f i  = 53 GeV and of j p  
scanering at Js = 546 GeV. 

would take the value 0.0175. Experimentally the ratio (45) is about at the ISR and 
about 

The ‘eikonalized’ Regge model of Covolan et al(l992) is able to reproduce the shape 
of the differential cross section quite well up to the maximum energy of the Tevatron. The 
results of this model for j p  scattering at ,b = 53.546 and 630 GeV are shown in figure 29 
together with the experimental data from Breakstone et a1 (1984a and 1985), Bozzo et al  
(1985) and Bernard eta1 (1986b). The Tevatron data from Amos er a1 (199Ob) and the 
result of the model at 4 = 1.8 TeV are shown in figure 30. 

8.5. The large-momentum-transfer region 

In the region of momentum transfer beyond the structure, the differential cross section 
shows a rather gentle fall off, much less fast than in the forward peak. This is particularly 
evident in the p p  data at f i  = 53 GeV (see figure 17) which extend up to - f  -10 
GeVZ. Unfortunately no data are available for the p p  channel at these high values of the 
momentum transfer because of the limited luminosity of the p p  colliders. 

The analysis of the large-t results shows that at fixed t the cross section is a fast 

at the SPS collider energy. 
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Figure 29. The results of the Regge model by Covolan er d (1992) on j j p  elastic scattering at 
the ISR and SPS collider energies are shown together with the experimental data. 

103 

Figure 30. The resdt of the Regge model by Covolan er nl (1992) at the Tevahon energy 
(fi = 1.8 TeV) is shown together with the experimental data. 

decreasing function of the collision energy up lo f i  -10 GeV and then seems to flatten 
off and remain constant. When energy and momentum transfer are sufficiently large, the 
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pbsam (GeVW dependence of the differential cross section at fixed t. 
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Figure 32 The lhree-gluon exchange diagram for large-r protobproton x elastic scattering in the model of Donnachie and Landshoff (1979). 

differential cross section becomes only a function of t and no longer of s, as shown in 
figure 31. 

This feature of the data suggests the onset of a specific dynamic mechanism which, 
according to Donnachie and Landshoff (1979), is provided by the exchange of three gluons 
between the valence quarks of the two colliding protons (figure 32). In this model the 
proton is regarded as a three-quark state. In the elastic collision each quark in one proton 
scatters on one of the quarks of the other proton so that after the three elementary scattering 
processes of the constituent quarks, each triplet of quarks is again moving almost in the 
same direction and may thus recombine to form a proton. 

The cross section of the three-gluon exchange diagram can be approximately calculated 
and in the limit of large s and t ,  but --t < s, is independent of s and decreases as the 
eighth power of r ,  

do 1 
- =  C -  
dt t* 

Unfortunately the theory at present cannot provide a reliable estimate of the normalization 
factor C. 

The t-dependence of the data at fixed energy indeed follows the theoretical expectation 
quite well as shown in figure 33 where p p  data at f i  N 25 GeV and 53 GeV are plotted. 
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Figure 33. Proton-pmton elastic scattering at large I fmm F&sler et a1 (1981) and Nagy el 
nl (1979) (a) Data at fi rz 7.5 CeV (b) Data at f i  = 53 GeV. The full lines correspond to 
da/dl = 0.09/18. 

The full lines in figure 33 correspond to the numerical value C = 0.09 mh GeVI4, 
It is interesting to note that the spin of the gluons plays a crucial role in this context. In 

fact if gluons had spin 0 instead of 1, the s and t dependence of the differential cross section 
would be completely different. The theory predicts do/dt - sd-’, which is clearly in 
disagreement with the experimental results. 

If the dominant mechanism at large momentum transfer is again the three-gluon 
exchange at higher energies, the t-distribution should he smooth, without structure. The 
‘impact picture’, on the contrary, predicts the appearance of a new structure with at least a 
new diffraction minimum. 

9. Diffraction dissociation 

9.1. General features 

The process of diffraction dissociation is closely related to elastic scattering. It may he 
regarded as a two-body reaction 

a + b + X + b  (47) 

where particle a is excited to a system X which then decays, or fragments, in a certain 
number of stable particles. Reaction (47) is also known as ‘single diffraction’ while the 
name ‘double diffraction’ is reserved to the process where particle b is also excited. 

To be diffractively produced the system X must have the same intrinsic quantum 
numbers as the incoming particle a, i.e. same charge, isospin, strangeness, etc, while spin 
and parity may be different because some orbital angular momentum can be transferred to X 
in the collision. In the exclusive reactions where X is experimentally identified as a known 
resonance, it has always been observed that if the previous condition is verified, then the 
differential cross section exhibits a sharp forward peak with a slope parameter similar to 
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that of elastic scattering. In addition, the production cross section of these resonances has 
energy dependence similar to that of the elastic cross section. 

In a high-energy collision the mass M of the system X may take quite large values 
with a limitation which is imposed by the coherence condition as was first remarked by 
Good and Walker (1960). If po is the laboratory momentum of the incoming particle a ,  the 
momentum p of the system X ,  when produced in the forward direction, is 

P PO - (M2 - m 3 / 2 p o .  

Coherence between the outgoing and the incoming waves can be maintained as long as the 
change of momentum, po - p ,  is smaller than the inverse of the size R of the target. For 
R = 1 fm, one finds MZ/s < 0.2 which represents a kind of upper limit. High-energy data 
indeed provide clear evidence for diffractive production up to MZ - 0.05 s. 

At high energy it becomes very difficult to isolate specific exclusive channels where X 
is a known resonance. Most studies of diffraction dissociation in the exclusive channels 
were done at CMS energies less than 20 GeV and only a few in the energy range of the ISR 
(Amaldi et al 1976, Alberi and Goggi 1981). 

At the high-energy colliders, experimental activity was limited to the study of inclusive 
diffraction where only the mass and the fragmentation properties of the system X are 
measured. In the process 

p + p + p + x  (48) 

(or in the equivalent one p 4- p + X + p )  the momentum vector ky of the p (or p )  in the 
final state is measured in coincidence with the decay products of the system X which are 
emitted in the opposite hemisphere. It is usual to define the variable x = ky f k ,  where k 
is the initial momentum in the CMS. The momentum transfer to the antiproton can then be 
written as 

--I = m2(i - x ) ~ / x  + 2p;x(i -case) 

where 0 is the F scattering angle and m is the proton mass. The mass M of the system X 
is given by M Z  = (1 - x ) s .  

The coherence condition which sets a limit on the mass of the system X ,  also implies a 
special kinematical structure for the diffractive events with the existence of a large 'rapidity 
gap' between the 'leading' antiproton which is scattered in a quasi-elastic way and the decay 
products of X. We recall the definition of the rapidity y of a particle having energy E and 
longitudinal momentum p~ 

1 E + P l  
2 E - P I  

y = -log - . 

Diffractive events have the typical rapidity configuration shown in figure 34. The 
scattered p having lost in the collision only a small fraction of its momentum emerges 
with rapidity very close to the beam rapidity yo = log(.,G/m). The system X has rapidity 
yx = l o g ( G / M )  and its decay products will have rapidities which cluster around yx. It has 
been shown (Albrow et al 1976a, Bemard et al 1986a) that this cluster has elongated shape 
in phase space. Particles produced have limited transverse momentum ( ( p J  E 400 MeV/c ) 
and spread out in rapidity by the amount Ay = &log(&/M). The average multiplicity of 
the diffractive cluster of invariant mass M was found to be the same as in hadronic collision 
with CMS energy equal to M (figure 35). 

The identification of diffractive events at the high-energy colliders relies heavily on 
these distinctive kinematical features. 
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9.2. Differential distributions 

Data on the inclusive reaction (48) are expressed in terms of the invariant differential cross 
section 

where MZ = ( I  - x)s .  When plotted as a function of x ,  at fixed t ,  the cross section (49) 
exhibits the quasi-elastic peak at x - 1 which is typical of the diffractive process. 

In the CHLM experiment at the ISR (Albrow et al 1976b), it was observed that the cross 
section (49), at fixed I, scales with the CMS ene r3  with respect to the variable x ,  i.e. at 
fixed t and M2/s, the invariant cross section does not change with energy. This property 
was found to remain valid up to the SPS collider energy as shown in figure 36 where the 
UA4 data at q'? = 546 GeV (Bozzo et ai 1984a) are presented together with earlier ISR, 
results (Albrow et al 1976b). The scaling property only breaks down at very low masses 
because the minimum mass that can be excited, A 4 ~ "  rr m + m,, is independent of s. 

Diffraction dissociation was recently observed at the Fermilab Tevatron by the CDF 
collaboration (Abe et a1 1993). At these large energies, diffractive excitation of quite heavy 
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Figure 36. Scaling of the invariant differential cross 
section from Js = 23 GeV up to Js = 540 GeV for 

O' '-0.01 0 0.02 0.04 0.06 two values ofthe momentum transfer t.  The quasi-elastic 
peak of di8iactive events emerges at M 2 / s  < 0.03. 

1, t , -:=0,75 G e y  , , , 1 
M2/s 

systems may take place. At f i  = 1.8 TeV, in fact, the mass corresponding to x = 0.98 is 
as large as 250 GeV. 

In the Regge model the dominant contribution to the cross section of diffraction 
dissociation is given by Pomeron exchange which can be written as 

where ap(t)  is the Pomeron trajectory. 
For (~~(0) = 1 the mass distribution du/dM2 at low t would have the form l/MZ. This 

behaviour of the mass spectrum was found to hold, at least approximately up to the ISR 
energies (Goulianos 1983). Recently, however, Abe et al(l993) have reported that at the 
Tevatron energy the spectrum is slightly steeper. They fitted the measured distributions with 
(50) using for the Pomeron trajectory the expression 

c Y p ( t ) = 1 + c + ( I ; t  

which implies for the mass spectrum at t M 0 the form 

They assumed cib = 0.25 G e V 2  as suggested by the Regge analysis of the elastic scattering 
data (section 8.3). From the best fit it was found that t = 0.125 k 0.015, a value which 
compares reasonably well with the intercept of the Pomeron trajectory obtained directly 
from the rate of growth of the total cross sections (section 4). 

A new approach to the study of the properties of the Pomeron was proposed by Ingelman 
and Schlein (1985). Such a study involves observation of jets in diffractive events at large 
momentum transfer and was performed by experiment U A ~  at the SPS collider prandt et a1 
1992). 
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9.3. The integrated cross section USSO 

The extraction of the integrated cross section of single diffraction dissociation osD from the 
observed differential distribution d20/dxdt is affected by several uncertainties and is partly 
model dependent. 

Results on OSD from the CHLM (Armitage et al 1982), the UA4 (Bernard et al 1987a) 
and the CDF experiment (Abe et nl 1993) are presented in figure 37, already multiplied by 
a factor of two to account for the symmetric process. These data refer to the kinematical 
interval, x > 0.95, i.e. MZ/s < 0.05 where the peak of the diffractive events dominates 
over the continuum (figure 36). 

These measuremen- were performed by detecting in a magnetic spectrometer the 
‘leading’ particle recoiling against the system X in coincidence with the decay products 
of X, observed in a large acceptance vertex detector. The results from CHLM and CDF were 
obtained directly by integrating the observed mass spectra while the result from UA4 relied 
on an analysis of the ‘rapidity gap’. This may be the reason for the discrepancy between 
the two results at ,,G = 546 GeV. 

It is evident, however, that the cross section of diffraction dissociation grows with energy 
much less rapidly than the elastic and the total cross section. This is clearly demonstrated 
in figure 38 where the ratios oel/olol and asD/oto, are plotted as a function of energy. 

can be understood within the general 
picture of Good and Walker (1960). In their discussion of the interaction of hadrons with 
nuclei they noted that a hadron, being a complex system, can be described as a linear 
combination of eigenstates having the same quantum numbers. If these eigenstates are 
absorbed differently in nuclear matter, the diffracted wave will have a composition different 
from the incoming wave. The consequence is the appearance of new physical states with the 
same quantum number as the proton, i.e. diffractive dissociation. If, however, all different 
hadronic components are equally affected by the interaction, no diffractive dissociation will 
occur. This would happen in the limiting case when there is full absorption. 

The trend of the present data, as illustrated by the energy evolution of the shadow 
function Gin@) in figures 7 and 8, is indeed in this direction. It appears, therefore, that 
the rise of the ratio oel/oror and the decrease of osD/otoot are correlated, as discussed, for 
example, by Banhay et al(1992). 

The different behaviour of USD with respect to 

SINGLE DIFFRACTION DISSOCIATION 

CHLM (1%) 
x UA4 CDF 

Figure 37. The cross section of single 
diffraction dissociadon, defined by the 

500 1000 2000 kinematiwl condition M2/s < 0.05, is 
shown 8s a function of energy. 

5 6u 
2o 50 loo VE(GeV) 
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t 

0.151 

Figure 38. The ratio of the elastic to the total 
m s s  section ae~/ocot, and the ratio of the single 

5oo ,ooo 2ooo diffraction dissociation to the total cross section 
USO/O,~~, are shown as a function ofenergy. 

O . l O L  20 50 100 

6 (GeV) 

10. Conclusions and outlook 

We have at present a good phenomenological understanding of hadron-nucleon scattering 
up to the maximum energy explored by existing accelerators. The data are successfully 
described by two competing approaches. 

(1) The Regge model, a t-channel approach which evolved from the original simple 
formalism, adequate only at small momentum transfer, to the present rather sophisticated 
form with ‘eikonalization’ of the amplitude. 

(2) The diffraction models, a typical s-channel approach which relies on intuitive 
motivations. 

These two approaches are to some extent complementary and both useful as a general 
framework for the understanding of the large amount of experimental results. 

The ‘QCD-inSpired‘ models try to establish a connection between the old notions as 
‘Pomeron trajectory’ and ‘hadron opaqueness’ and the new concepts based on the elementary 
interaction of quarks and gluons which represents the underlying structure. 

Calculations performed within perturbative QCo seem to be of only limited relevance 
for the understanding of low-momentum-transfer processes. The first steps in the direction 
of non-perturbative calculations are still partly qualitative but appear to be rather promising. 

On the experimental side it should be stressed that the measurements of the total cross 
section and of the real part at the high-energy colliders are technically difficult. Some efforts 
should still be spent to reduce systematic errors and improve the reliability of the results. 

In perspective, new information will be gathered at the future hadron colliders. 

(1) The ‘relativistic heavy-ion collider’ (RHIC) at BNL will produce proton-proton collisions 
at 4 = 500 GeV with high luminosity. The comparison of pp measurements from RHIC 
to the existing j p  data from the SPS collider which are practically at the same energy 
will be quite interesting and instructive. In addition, RHIC allows measurements of 
elastic scattering to be performed in the large-momentum-transfer region, not accessible 
at the p p  colliders because of their intrinsic limitation in luminosity. 

(2) The ‘large-hadron collider’ (LHC) at CERN will provide proton-proton collisions at 
= 16 TeV with very high luminosity. This new accelerator, probably operational 
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at the very beginning of the next century, will open a new energy domain and perhaps 
bring unexpected changes to our present ideas. 
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