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Recent advances in the study of wind waves 

T P BARNETT AND K E KENYON 
Scripps Institution of Oceanography, La Jolla, California, USA 

Abstract 

The field of wind-generated ocean surface gravity waves is reviewed for the period 
covering the last fifteen years. Theories and observations relevant to understanding 
the physics of wind waves are discussed, as well as techniques for measuring and 
forecasting waves. 

It is found that although a great deal of recent progress has been made on certain 
aspects of the wind wave problem, there are still important aspects which are poorly 
understood. In  particular, the central problem of how the wind generates waves in the 
ocean has not yet been solved; the primary physical mechanism(s) by which the wind 
makes waves has not been found. When the wind blows how much energy and 
momentum goes into waves and how much goes into currents? At the present time it is 
not possible to give a very definite answer to this important question. However, wave 
generation theories are available which perhaps can be modified to give better agree- 
ment with observations than they do now. New wave measuring techniques developed 
recently and/or under development now may provide the badly needed field observa- 
tions necessary for future advances in understanding wind waves. 

Very little is known about the dissipation of wind waves, either in the open ocean or 
near coastal boundaries. Relevant theories and observations are not sufficient for 
understanding wave dissipation at present. Relatively little work has been done in the 
general area of the interaction of wind waves with currents. Some preliminary theoreti- 
cal work suggests that this interaction could be quite important in the particular 
problem of the propagation of wind waves into major ocean currents, but an experi- 
mental test of the theory is lacking. 

Present methods of wave forecasting incorporate more physics than the earlier 
empirical methods. However, these methods still require a set of ‘engineering 
approximations’ in order to produce decent forecasts. With proper tuning the 
numerical forecast models produce good estimates of the one-dimensional wave 
spectrum. 

This review was completed in October 1974. 
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1. Introduction 

This article is an attempt to summarize recent developments in the field of wind- 
generated ocean waves. The entire field was last reviewed comprehensively in a 
stimulating article by Ursell (1956). Shorter but more recent reviews of the subject 
are included in the papers by Longuet-Higgins (1961), Miles (1967), Stewart (1967)’ 
and Hasselmann et aZ(l973). Longer discussions useful for review are contained in the 
works of Roll (1957) and Phillips (1966). The tone of the present article is set by 
Ursell’s often quoted opening sentence: ‘Wind blowing over a water surface generates 
waves in the water by physical processes which cannot be regarded as known.’ 
Although the same statement can still be made today, it must be understood against a 
broader background which includes extensive recent theoretical and experimental 
efforts to understand how the wind makes waves. 

Of all the various types of wave motion that are possible in the ocean, wind waves 
are one of the most energetic and easily observed and, therefore, one of the most 
studied. Wind waves are generally considered to be surface gravity waves which are 
caused by the wind and propagate under the restoring force of gravity. Their wave 
lengths range from about 10 cm to about 1 km, with maximum energy density typically 
centred at wave lengths of about 150 m. These water waves have maximum particle 
motion right at the air-sea interface, the particle motion decreasing rapidly with 
depth. The waves are dispersive over most of the ocean, with the long wave lengths 
travelling faster than the short wave lengths. Popular names for wind waves include 
‘sea’ for the rough, irregular waves in and near a storm area, and ‘swell’ for the 
smooth, sinusoidal waves at some distance from the storm area. 

An important distinction is made in this article between ‘wind‘ and ‘capillary’ 
waves. Capillary waves or ‘ripples’ are surface waves with wave lengths less than 
about 1 cm which propagate under the restoring force of surface tension. Typically, 
the energy density of capillary waves in the ocean is orders of magnitude less than that 
of gravity waves. Capillary waves are also generated by the wind, and the generation 
of the longer gravity waves may depend intimately on the presence of the capillary 
waves, which may effect the coupling between the turbulent air boundary layer and the 
sea. Although the term ‘wind waves’ could logically include capillary waves, we 
choose to reserve it for the longer, more energetic gravity waves. Thus work specifi- 
cally on capillary waves will not be reviewed here. 

Other types of wave motion are outside the scope of this review but will be men- 
tioned here briefly to give some perspective to wind waves. Tsunamis, also (im- 
properly) called ‘tidal’ waves, are surface gravity waves with wave lengths much 
greater than the total depth of the ocean (4km) and are caused by earthquakes. 
Internal waves are gravity waves which owe their existence to vertical density gradients 
within the ocean, and they have their maximum expression between the sea surface and 
sea floor (it is very difficult to detect them at the air-sea interface); their cause is largely 
unknown. Very large-scale wave motions include the tides which are forced by the 
gravitational attractions of the sun and moon, and Rossby waves which propagate 
under a restoring force associated with the variation with latitude of the local vertical 
component of the earth’s rotation. In addition there exist several types of waves which 
are confined to the vicinity of continental boundaries and are trapped by bottom 



670 T P Barnett and K E Kenyon 

topography effects. The names of some of these are edge waves, continental shelf 
waves, and Kelvin waves. 

A review, today, of wind-generated waves cannot be done in the detailed manner of 
Ursell because of the large amount of work which has taken place in the meantime. 
Therefore we have had to make our own judgments as to which works to include, and, 
unfortunately, we have had to exclude reference to many recent papers. Although less 
detailed, this article will be more comprehensive, for not only will the process of wave 
generation be covered, but also we will summarize results on wave propagation, dis- 
sipation of wave energy, and techniques for measuring and forecasting waves. How- 
ever, we will not cover in depth the large amount of work which has been done on wave 
breaking (surf) in shallow water. 

The  reader wishing to obtain a more detailed description of the fundamental 
properties of wind waves is referred to Kinsman's (1965) very readable book. The  
monograph of Phillips (1966) will provide the more advanced reader with a concise 
summary of the major aspects of wave theory. The  more classical aspects of wave 
theory are provided by Lamb's (1932) hydrodynamical treatise. A rather unique 
summary of an exciting conference on ocean wind waves exists in book form under the 
name Ocean Wave Spectra, published in 1963. Some of the earlier oceanographic 
work on wind waves is summarized by Defant (1961, vol 2)) and a few articles also 
appear in The Sea (ed N M Hill 1962, vol I). 

The  outline of the remainder of the article is as follows. Section 2 will be back- 
ground material intended to give the reader familiarity with the state of knowledge 
through the Ursell article. Following this will be sections on theoretical considera- 
tions, measurement techniques, observations and how they compare with theory, 
prediction of wind waves, and finally a summary section. 

2. Background 

At the time Ursell reviewed the field, the body of theoretical work exceeded that of 
the experimental work, but both were in an unsatisfactory state. Today the same ratio 
holds in that the theoretical ideas are still ahead of the experimental testing. In  
particular, field observations relevant to wave generation and dissipation in the ocean 
in 1955 were nearly non-existent. Today they are simply very scarce. 

2.1. Theory 

The  first theoretical idea applied to the generation of water waves by wind was the 
classical Kelvin-Helmholtz instability mechanism (see Lamb 1932, p462). In  this 
theory the air pressure is 180" out of phase with the surface elevation, and for a 
sufficiently large wind speed the pressure distribution over the surface due to the 
Bernoulli effect can cause an infinitesimal-amplitude sinusoidal wave to grow against 
the restoring forces of gravity and surface tension. The  theory assumes a wind speed 
which is a constant (independent of height above the water surface) and it leads to the 
prediction of a minimum wind speed necessary to make the waves grow. This mini- 
mum is an absolute minimum for waves which travel in the same direction as the wind. 
However, common experience shows that waves exist at wind speeds much lower than 
the predicted (absolute) minimum speed of 6.5 m s-1. 

The next major idea was put forth by Jeffreys (1924, 1925) and is known as the 
'sheltering hypothesis'. Jeffreys made the plausible suggestion that a turbulent wind 
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blowing over a pre-existing wave crest would act like air blowing past a blunt body in 
that boundary layer ‘separation’ would occur on the downwind side of a wave crest (the 
boundary layer would presumably ‘re-attach’ itself on the upwind side of the next wave 
crest). The  resulting asymmetrical properties of the wind relative to the wave would 
cause a pressure distribution which could feed energy into the wave, provided the wave 
moved slower than the wind. The  component of air pressure in phase with the wave 
slope (the vertical velocity of the water surface) does work on the wave and can make 
the wave grow if frictional dissipation can be overcome. This theory lost support when 
laboratory measurements of air flowing over stationary solid waves showed that the 
pressure forces produced were too small for Jeffreys’ mechanism to be effective. 
However, Ursell pointed out that different sets of laboratory measurements were 
conflicting and the experiments were not relevant to evaluate the generation of moving 
water waves. Jeffreys’ theory may yet emerge as being important since more recent 
theories (though not completely evaluated yet) based on perturbation techniques have 
not yielded the major growth mechanism for wind waves. I t  is still not known, 
though, whether or not air flow separation does in fact occur over wind waves. 

Another early model of wave generation is due to Eckart (1953). Eckart repre- 
sented the wind by a random distribution of normal pressures in the form of idealized 
circular gusts over a finite storm area. He calculated the resulting waves at distances 
large compared with the storm diameter. The normal pressures were assumed to be 
independent of the waves already produced. Although reliable measurements of the 
air pressure had not been made, Eckart concluded that what evidence there was 
suggested that his theory was not a very effective generation mechanism. I t  has been 
suggested since (Phillips 1957) that Eckart’s representation of the wind field was a little 
too specific to be realistic. 

Next, Lock (1954) (also Wuest 1949) developed a boundary layer instability model 
which in some ways is analogous to flow past a semi-infinite flat plate. These authors 
examined the case of air flowing over water wherein the boundary layer between the 
two media is laminar and viscous, and is assumed to start at a definite point on the 
interface and grow in thickness downstream. The  problem then is to determine the 
stability of the motion when it is perturbed by a small sinusoidal oscillation with a wave 
length assumed to be much smaller than the thickness of the boundary layer, and also 
much smaller than the distance from the boundary layer origin. The equations describ- 
ing the flow then reduce to a pair of ordinary differential equations of the Orr- 
Sommerfeld type. The solution of these equations shows zones of amplification and 
decay of the (water and air) waves in wave number and coordinate phase space. The  
solutions are, however, somewhat complicated and difficult to visualize and interpret. 

By stressing the unsatisfactory state of knowledge about the nature of wind wave 
generation, Ursell’s review sparked two major independent and complementary 
theories by Phillips (1957) and Miles (1957) (discussed in $3.2) which stimulated a new 
period of advancement in wind wave research. Phillips’ theory was an improvement 
over Eckart’s theory of wave generation by normal pressures, and Miles’ theory was an 
advance over the previous shear flow instability theories of Kelvin, Helmholtz, Wuest, 
and Lock. 

One additional conceptual advancement was developed around the 1950s which has 
flavoured research in the field of wind waves ever since. This was the realization that 
the best first-order description of the sea surface was in terms of average or statistical 
quantities. The  statistical approach leads naturally to the concept of the energy 
spectrum as the most important statistic for describing the rough sea surface. The  
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appreciation of the statistical nature of the ocean surface started with the application of 
the work of Rice (1944, 1945) and Wiener (1960) in the fields of communication and 
time series analysis, and developed slowly through the work of several investigators, 
including Barber and Ursell(1948), Longuet-Higgins (1950, 1952), and St Dennis and 
Pierson (1953); longer summaries are given by Longuet-Higgins (1962a), Cartwright 
(1962), and Kinsman (1965). 

2.2. Measurement techniques 
Prior to the mid-1950s most wave measurements were obtained visually. This 

procedure usually involved a ‘calibrated eyeball’ or some simple arrangement of fixed, 
graduated staff and optical recording device. I t  was perhaps for this reason that the 
concept of the significant wave (the mean of the highest third of all waves present) 
arose. The  visual measurement techniques were clearly a hindrance to the progress of 
ocean wave research. 

A major contradiction to the above statements may be found in the early work of 
Barber and Ursell(l948) and Snodgrass (1958). These authors were among the first to 
utilize pressure transducers mounted on the sea floor to obtain time histories of sea 
surface elevations. The  low-pass filter effect of the overlying water column was both 
convenient for sampling purposes and easily correctable via linear theory (Kinsman 
1965). 

Another technique for measuring waves just coming into its own in the early 1950s 
was the use of an accelerometer. Double integration of the acceleration time history of 
the sea surface yields a record of the sea surface displacement. Alternatively, the 
acceleration spectrum can be directly related to the height spectrum through linear 
theory. Tucker (1956) was among the first to utilize this technique in the development 
of a ship-borne wave recorder for British weather ships. 

For historical interest it should be mentioned that Barber (1949) described a photo- 
graphic technique for measuring wave direction. As we shall see in 94, a variant of the 
method has recently been applied to estimating the directional wave spectrum via 
optical Fourier transform techniques. Barber’s work is most remarkable because it 
preceded the invention of the laser, an instrument vital in the optical Fourier transform 
process. 

2.3. Observations pertaining to wave generation 
Stanton et a1 (1932) and Motzfeld (1937) investigated the distribution of normal 

pressure induced by air flow over a fixed solid wave profile. The observed pressure 
differences along the ‘wave’ profile, which would induce growth, were too small to 
support the sheltering coefficient called for by Jeffreys’ (1924) theory. Thijsse (195 1) 
obtained observations in contradiction to the above, but the methods and scaling 
problems associated with his experiment leave considerable doubt as to the applica- 
bility of the results to the wave generation problem. Prior to 1955 (for that matter, 
1966) these were virtually the only measurements with which to test theories of wave 
generation by wind. 

A number of other measurements designed to provide information on the effect of 
wind on the sea surface had been made prior to 1955. Many notable works can be 
cited in this regard, although none of the data was used to investigate the processes of 
wave generation, Some studies, based on many years of observations, are reported by 
Barber and Ursell (1948) and Darbyshire (1952, 1955). A set of quite remarkable 
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observations was obtained by Roll (1951) in the tidal flats off the Frisian coast. The 
works of these authors have been summarized by Ursell (1956) and mentioned here 
only for historical interest. 

2.4. Methods of wave prediction 
A practical application of wind wave research is obviously wave forecasting. The 

earliest method of forecasting seems to have been that developed by Sverdrup and 
Munk (1947). Using basic hydrodynamic theory and a tiny amount of observational 
evidence, these authors were able to construct a reasonable wave prediction method. 
In particular, they combined theory and observations into a set of nomographs so that 
a relatively skilled meteorologist/oceanographer using weather maps could derive 
several simple parameters with which to predict wave heights. Surprisingly enough, 
the method worked with some accuracy, although it was not particularly reliable in 
complex geophysical situations. Bretschneider (1952) made some improvements on 
the basic method in later years which enhanced its accuracy and utility. At about the 
same time in Britain, Darbyshire (1952, 1955) was developing similar prediction 
techniques. 

A major advance in methods of wave prediction was made by Pierson, Neumann 
and James (1955). Like Darbyshire, these authors introduced the concept of the wave 
spectrum (53.1.2) into the forecast where the previous work had only considered 
significant wave height. The PNJ method, as it was called, developed a large set of 
complex rules that required rather sophisticated interpretation in order to produce a 
reasonable wave forecast. Tests of the forecast method were not as satisfactory as 
might have been desired. Nevertheless, the authors had made the giant stride of trying 
to predict the spectrum of the sea surface. 

One of the prime difficulties with both of the methods mentioned above was that 
they were largely subjective. Therefore their success or failure was highly dependent 
upon the skill of the person using the method. Also, the methods tried to handle an 
extremely complex problem through rather simple manual techniques. It is not 
surprising that both techniques left much to be desired. 

2.5. Summary 
In the year 1955, knowledge concerning the mechanics and properties of the wind 

wave field was quite unsatisfactory. There were several theories that purported to 
describe wave generation by the wind, yet none of the theories could be substantiated. 
Observations of wave growth needed to verify the theories were almost non-existent. 
Methods of obtaining observational data were in even worse condition. Considering 
these drawbacks, it is not surprising that a reliable wave prediction method did not 
exist. I t  is against this background, then, that the advances to be described in the 
following sections have been made. 

3. Theoretical considerations 
3.1. Basic formulation 

3.1.1. The equations of j u i d  dynamics. Theoretical studies of surface gravity waves 
begin with simplified forms of the basic equations of fluid dynamics, the Navier- 
Stokes equation (conservation of momentum) on a rotating earth 

pDu/Dt = - Vp - pg- 2pO x U + p V 2 ~  + ipV('7.u) (3 * 1) 
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and the continuity equation (conservation of mass) 

Dp/Dt + pV. U = 0 (3.2) 
where U is the velocity vector relative to the earth’s frame, p is the fluid pressure, 
p is the fluid density, g is the gravitational acceleration vector, ,U is the coefficient of 
viscosity, S2 is the angular velocity of the earth, and the substantial derivative operator 
D/Dt = a/at+ (u.V). 

When these equations are applied to the water motion associated with wind waves, 
several simplifications can be made. First, because the frequency of wind waves is 
more than three orders of magnitude larger than the earth’s angular velocity, the 
Coriolis term ( - 2pS2 x U) can usually be neglected compared with the acceleration 
term (pDu/Dt) in equation (3.1). Backus (1962) showed that the effect of the earth’s 
rotation on the trajectory of small-amplitude surface gravity waves, even over great 
distances on the earth, is one or two orders of magnitude smaller than could be observed 
by the measurements of Munk et aZ(1963). However, Ursell (1950) pointed out that 
the Coriolis force could have a significant effect on the motion of fluid particles in 
finite-amplitude waves, as discussed in $3.7. 

Since the Reynolds number, based on wave length, wave period, and laminar 
viscosity coefficient, is very large for wind waves (of order 105 for a wave length of 
order 1 m and period of order 1 s), the friction terms in equation (3.1) are negligible 
compared with the acceleration term. Phillips (1959) showed that the effects of friction 
on wind waves should be small in the ocean even when the much larger turbulent 
‘eddy’ viscosity coefficient is considered. 

Next, both density gradients within the water and the compressibility of water 
have negligible effects on wind waves for typical ocean conditions, so that the density 
can be considered constant in equations (3.1) and (3.2). I n  other words, surface 
gravity waves are well separated from both internal gravity waves and sound waves in 
frequency and wave number space (Eckart 1960). 

An idealization usually made is that the water motion is irrotational, which means 
that the curl of the velocity vector is zero everywhere. This allows the velocity to be 
written as the gradient of a scaler ‘velocity’ potential. The main justification for 
making this assumption comes from Kelvin’s circulation theorem which says that the 
fluid will be irrotational if the motion is started from rest by conservative forces. 
Finally, the effects of surface tension can be neglected for wave lengths greater than 
about 10 cm (Lamb 1932), so that gravity is the only restoring force acting on the free 
surface. 

With these assumptions the basic equations reduce to 

V2$ = 0 (3.3) 
which satisfies (3.2), where $(x, t )  is the velocity potential (u=V$). Therefore 
Laplace’s equation for the velocity potential is to be satisfied in the interior of the fluid 
subject both to initial conditions and to boundary conditions at the air-sea interface 
and the sea-sediment interface. The two boundary conditions at the air-sea interface 
are 

a[/at+v[.v$= a4/az at z=f (3.4) 
a$/at+gg+g(V$)z=O at z=f .  (3.5) 

The first condition, equation (3.4), is the kinematical constraint that at the free surface, 
z=[(x, y, t), the velocity of the fluid must equal the velocity of the air-sea interface. 
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The second condition, equation (3.5), is the dynamical constraint that the pressure be 
constant (zero in this case) at the free surface and results from a first integral (Bernoul- 
li's equation) of equation (3.1). The coordinate system is chosen so that the horizontal 
coordinates x, y lie in the plane of the equilibrium free surface ( x = O )  and the x axis 
points vertically upward (antiparallel to gravity). 

The bottom boundary is normally taken to be rigid, flat, and parallel to the un- 
disturbed free surface, the total depth being h. Then at the bottom (x= - A )  the 
vertical component of the fluid velocity must be zero: 

The fluid is also usually taken to be horizontally infinite, so that no further boundary 
conditions are required. 

Once the initial conditions are specified, equations (3.3)-(3.6) completely describe 
the fluid motion, which can then be studied in terms of wave solutions. Two major 
difficulties must be overcome immediately. The first difficulty is that although 
equation (3.3) is linear, the boundary conditions (3.4) and (3.5) are nonlinear. The 
second difficulty is that the boundary conditions (3.4) and (3.5) are to be applied at the 
free surface z = 6, which is not known apriori but is to be found as part of the solution. 
The second difficulty is overcome by expanding equations (3.4) and (3.5) in a Taylor 
series about z = 0. The terms of increasing order in the expansion become increasingly 
small provided the (nondimensional) wave slope is small. This procedure, however, 
creates more nonlinear terms. The nonlinearity is handled by again assuming small 
wave slopes and expanding equations (3.4) and (3.5) in perturbation series 

a+iaz=o at x =  -h .  (3 ' 6) 

where E is a small nondimensional parameter proportional to the wave slope. It is to be 
noted that the wave slope is not the only relevant nondimensional parameter; the ratio 
of the wave length to the water depth is another one. However, this ratio is very small 
for most ocean situations, except near coastal boundaries. 

The resulting linearized problem is then 
V2#, = 0 - h < x < O  

a + l / a Z = o  X =  -h.  
Elimination of between the second and third equations of (3.8) gives a boundary 
value problem to be solved for 41. Once solved the velocity is given by ul=V41 and 
the perturbation pressure bypl/p= - a+l/at. The linear equations can be satisfied by a 
velocity potential which has a sinusoidal dependence on time and the horizontal co- 
ordinate vector x= (x, y), and a hyperbolic depth dependence 

+(x, y, z, t )  = A  cosh k(x + h) exp [i(k.x - u t ) ]  ( 3 . 9 )  
where A is a constant, provided that the frequency w and the magnitude of the 
horizontal wave number vector k = lkl satisfy the dispersion relation 

d = g k  tanh Ah. (3 .10)  
In general, long (low-frequency) waves travel faster than short (high-frequency) 

waves, and the energy travels slower than the wave crests. The wave crests move with 
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the phase speed c=  w /k ,  whereas the energy moves with the group speed cg= awlak, 
the signal speed. When the depth is large compared with the wave length, (3.10) yields 
c = 2cg =g/w, which is the dispersive ‘deep water’ limit. When the wave length is large 
compared with the water depth, (3.10) yields c =  c g =  ( g h ) W ,  the familiar nondispersive 
‘shallow water’ limit. In  the deep water limit for linear waves the fluid particles orbit 
in circles whose radii decrease exponentially with distance (depth) from the surface, 
and the particle speed is much smaller than the phase speed, The average energy per 
unit area for a linear sinusoidal wave of amplitude ‘a’ is equal to $pg& and is half 
kinetic and half potential. 

A very simple and useful physical picture which explains the existence of surface 
gravity waves was discussed by Einstein (1916) (see also Defant 1961, vol 2, p74, 
Rayleigh 1876). By considering the motion of a semi-infinite fluid flowing under a 
stationary solid wavy wall, he showed how the fluid speed can be adjusted so that there 
is a balance between the static and dynamic pressure forces along the wall, and then the 
wall can be taken off without disturbing the fluid. By observing the fluid from a 
reference frame moving with the speed of the fluid far away from the wall (which 
equals the phase speed), one has the usual picture of water waves propagating along the 
surface. 

The  basic fluid equations (3.1) and (3.2) can also be applied to the air, and then the 
air and water motions can be coupled by modifying the boundary condition (3.5) to 
include the air pressure. However, the main difficulty in describing the air motion 
mathematically, which has caused progress on the coupled problem to be slow, is 
associated with the fact that the air motion is intrinsically turbulent. 

3.1.2. Statistical representation of the wave field, Although some aspects of wind wave 
generation, propagation, and decay can be discussed with single sinusoidal wave 
components, a more fruitful approach for a general formalism starts with a statistical 
description of the wave field. There are good reasons for starting with such a descrip- 
tion of the sea surface. Within a storm area the forces which generate the waves 
involve the turbulent wind and are too complicated to be described in detail. Therefore 
the resulting surface displacement cannot be predicted exactly. Even outside the storm 
area the surface displacement may be a superposition of waves which have been 
generated by many independent storms throughout the ocean basin. Most wave 
records do not at all look like a single sine wave. 

The configuration of the sea surface varies irregularly in both space and time. In  
the linear approximation it is useful to assume that the sea surface irregularities are 
locally homogeneous, stationary, and Gaussian (Longuet-Higgins 1952, 196213, 
Pierson et al  1955, Hasselmann 1962a). This implies that average quantities are 
invariant under translations of space and time and that the first-order amplitudes are 
statistically independent for different wave number vectors. The  Gaussian property 
follows from an application of the Central Limit Theorem to a sea surface which is a 
superposition of a large number of statistically independent wave components, pro- 
vided that the processes which are changing the sea state have scales which are large 
compared with the wave scales. This is generally true since the time and space scales 
associated with the generation by storms and with energy variations within the wave 
field are large compared with the wave scales. Attempts to avoid the Gaussian assump- 
tion have so far not been very successful. For further discussion of the Gaussian 
assumption in the nonlinear case see Hasselmann (1966, 1967, 1968). 

The  usefulness of the Gaussian assumption is that the sea state can be described by 
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a single statistical moment, the second moment. All higher moments can be related to 
the second moment, which in turn is directly related to the wave energy spectrum. 
The  main theoretical result is then a statistical description of the energy balance of the 
wave field in terms of the energy spectrum. Certain forms of the energy spectrum can 
be computed from time series observations by using standard spectral analysis tech- 
niques. Thus, in principle, theory and observations can be brought together through 
the energy spectrum. 

The  formalism is as follows. Regard the wave field as a superposition of free waves, 
The displacement of the free surface f ( x ,  t )  is then represented by a Fourier-Stieljes 
integral, or more conveniently by the summation 

f ( x ,  t)=C{qkexp [i(k.x-wt)]+q: exp [-i(k.x-wt)]) (3.11) 

where q k  is a random Fourier amplitude whose complex conjugate is q;, and w and Ikl 
are related by (3.10). 

k 

A homogeneous, stationary wave field has the properties 

(3 * 12) 

where the angle brackets denote an ensemble average, Ak is the wave number incre- 
ment of the Fourier sum, and F(k) is the continuous energy spectrum. The total 
mean wave energy per unit surface area is then 

E=pg((z)=JJ F(k) dk. ( 3 . 1 3 )  
In  observational work the constant factor pg is often left out, which only changes the 
units of the energy spectrum. 

It should be noted that ensemble averages and the energy spectrum F(k) are not 
the most natural descriptions of the sea surface from the point of view of observations. 
Ensemble averages cannot be carried out in practice and must be replaced by either 
space or time averages. According to the Ergodic Hypothesis, space and time averages 
are equivalent to ensemble averages for stationary and homogeneous fields. 

The  full two-dimensional wave number spectrum F(k) has never been measured in 
the ocean, although various approximations to it or projections of it have been obtained. 
By far the largest number of wave observations have been made by a single instrument 
which measures, as a function of time, the wave elevation (or some parameter directly 
related to it) in a frame of reference fixed to the ocean bottom. From a time averaging 
operation on such a wave record one obtains the one-dimensional energy spectrum 
Fl(w) as a function of frequency alone with no directional information. 

If the autocorrelation function-f R(r)  is defined by 

R(7) = <f(t)Kt + 7)) (3 .14)  

then the relationship between the energy spectrum F1( w )  and the observable wave 
amplitude at a point [ ( t )  is given through the Fourier transform pair (Wiener 1960) 

( 3 . 1 5 )  
R(r )=(1 /27~)  JZm Fl(w) exp (iw.) dw. 

+ There is a method of computing spectra, called the ‘fast Fourier transform’ technique, 

Fl(w) = J f m  R(r) exp (- iw.) d r  

which avoids the use of the autocorrelation function (see eg Bendat and Piersol 1971, p299). 
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The relationship between F1 and F is obtained from the definition of the total 
energy (equation 3.13) and is 

J Fi(w) dw=Jf F(k) dk=JJ F ~ w ,  8) dw dB (3.16) 
where Fz(w, 0) is another form of the energy spectrum which uses 8 to indicate the 
angle of energy propagation in a selected coordinate system. 

3.1.3. The radiative transfer equation. The radiative transfer equation (3.17) describes 
the energy balance of the wind wave field in terms of the energy spectrum of surface 
gravity waves. This equation, which formally summarizes all the various physical 
processes which can change the wave energy, is given by 

(3.17) 

where the spectrum F(k, x, t )  is locally a function of the wave number k, but is allowed 
to vary slowly as a function of x and t. The characteristic equations are 

i= aw(k, x)/ak 
k =  - h ( k ,  x)/& 

(3.18) 

where the dot denotes the time derivatives. Equations (3.18) are equivalent to Hamil- 
ton’s equations for a particle. 

In  (3.17) DF/Dt is the Lagrangian rate of change of the spectrum relative to a 
wave group moving along the ray paths determined by (3.18). If the equilibrium 
depth ‘h’ is a slowly varying function of horizontal position x, the frequency w in 
(3.18) is then a function of position as well as wave number (through equation 3.10). 
When the water depth is large (deep water limit) compared with all wavelengths, 
the frequency is no longer a function of position and the term k.  (aF/ak) in (3.17) 
vanishes and the rays are straight lines (in the absence of variable currents). When the 
depth is small (shallow water limit) compared with a wave length, the waves are refrac- 
ted by the bottom topography and the rays are generally curved lines. The term 
.t.(aF/2x) in (3.17) vanishes if the spectrum is not a function of position. The  term 
W / a t  is the local time rate of change of the spectrum. Equations (3.17) and (3.18) 
apply to a plane ocean and were given originally by Gelci et al (1956) and in their 
present form by Hasselmann (1960); Groves and Melcer (1961) and Backus (1962) have 
given the generalization for propagation on a spherical earth. 

The  source function S in (3.17) represents the net transfer to or from the spectrum 
at the wave number k due to all interaction processes which affect the component k. If 
S were zero the spectrum F would be conserved following a ray (Longuet-Higgins 
1957). This situation is closely approximated for swell propagating across the ocean 
far outside storm areas and away from currents and coastal boundaries. In  storm areas 
and near coasts S is not zero but contains a number of different terms which include 
linear and nonlinear processes of wave growth, dissipation, and redistribution of wave 
energy in wave number space. In  general the source term is a function of the spectrum 
itself, so that equation (3.17) cannot be solved analytically for the spectrum except in 
certain special cases. 

Following Hasselmann (1968) we assume that the source function S can be written 
as a superposition of a number of individual source terms St: 

?a s= si. 
i-1 

(3.19) 
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The first two terms in (3.19) are the best known and have the form 

& = a  

Sz = BF(k) 
(3 * 20) 

where the functional dependence on the spectrum is explicitly exhibited. The coeffi- 
cients a and /3 depend in a known manner on the properties of the wind field according 
to separate theories. 

The source function SI represents the constant energy transfer to the wave field 
through turbulent atmospheric pressure fluctuations according to the theory of 
Phillips (1957). This wave generation mechanism is uncoupled in the sense that the 
developing wave field is assumed not to change the atmospheric pressure fluctuations 
which are forcing it to grow. If this mechanism operated alone the wave spectrum 
would grow linearly with time. 

The source function S2 represents the increasing transfer of energy to the wave 
field due to an instability in the coupling between the wave field and the mean boun- 
dary layer flow in the air according to the theory of Miles (1957). This is a coupled wave 
generation mechanism which would lead to an exponential growth of the spectral 
energy were it to act alone. 

The  source terms S3 and Sq have the form 

S3= F(k) S y(k, k’)F(k’) dk‘ 
S4= -GF(k)+J E(k, k’)F(k’) dk‘. 

(3.21) 

The  term S3 is a nonlinear correction to Miles’ (1957) theory, and the term 5’4 repre- 
sents the energy transfer due to interaction between waves and turbulence in the 
atmosphere. These terms were given by Hasselmann (1968) as part of his general 
weak interaction theory which includes all expansible interactions derivable from 
perturbation theory. 

The source function S g  is better known and has the form 

S 5 = J  (TlF(k’)F(k”)F(k-k’ - k”) - TZF(k)F(k’)F(k’’)) dk’ dk”. (3.22) 

This term represents the energy transfer among the various wave number com- 
ponents due to weakly nonlinear wave-wave interactions according to the theory of 
Hasselmann (1962a,b). The coupling takes place between groups of four wave 
components whose wave numbers and frequencies satisfy certain resonance conditions. 
The integration over all resonant groups leads to a redistribution of wave energy in 
wave number space and eventually tends to smear out energy peaks. The coupling 
coefficients TI and Tz depend on algebraic combinations of the interacting wave 
numbers and frequencies. 

The various other source terms are discussed more fully by Hasselmann (1968). 
One term represents the dissipation in shallow water due to turbulent bottom friction, 
and the functional form was given by the theory of Hasselmann and Collins (1968). 
Another term represents the dissipation of wave energy due to wave breaking, which is 
at present a poorly understood process and no functional form for it has been given. 
There may be other processes, as yet unknown, which will contribute to the total source 
function S. 

Equations (3.21) and (3.22) show that the source functions depend on the entire 
wave spectrum and not only on the wave component k. In  particular S3 and S g  are 
nonlinear in the spectrum. Thus, in general, all components of the wave field are 
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coupled. In  order to determine the wave spectrum at some point in the ocean, the 
spectrum must first be determined simultaneously over the entire region of the ocean 
in which S is nonzero. This makes the wave prediction problem very difficult in 
principle, but in practice satisfactory predictions can be made by incorporating some 
empirical relationships. 

3.2. Linear theories of wave generation 

As mentioned in the introduction, Ursell’s (1956) review sparked two independent 
and complementary theories of wave generation which both appeared one year later, 
one being Phillips’ (1957) theory and the other Miles’ (1957) theory. These two 
theories received a considerable amount of attention in the fields of oceanography and 
fluid dynamics, and a great deal of additional work was based on them. Summaries 
and discussions of these theories can be found in Phillips (1966), Kinsman (1965), and 
Hasselmann (1967, 1968). 

3.2.1. PhillZps’ theory. Phillips’ (1957) theory considers the generation of waves on 
initially still water by normal pressure fluctuations due to the onset of a turbulent wind. 
It is assumed that the waves do not modify the pressure force which generates them. 
Phillips found that the waves grow by a resonance mechanism when the speed and 
length of the atmospheric pressure fluctuations match those of the water waves. The  
waves continue to grow by this mechanism until the wave slopes become large enough 
that nonlinearities, which are neglected in the theory, become important. 

In constructing his theory Phillips had Eckart’s (1953) wave generation theory 
before him ($2.1). However, where Eckart had represented the pressure fluctuations 
as a specific collection of pressure spots of a given size and duration which moved with 
constant speed over a finite storm area, Phillips allowed the pressure field to evolve in a 
random way as it was being convected over the water surface by the mean wind. 

Phillips’ (1957) theory can be divided into two parts by considering the time from 
the onset of a turbulent wind to be either much less than (initial stage) or much greater 
than (principal stage) the time scale for the development of the pressure fluctuations. 
In  the initial stage the most prominent waves generated are shown to be ripples 
(capillary-gravity waves) of wave length 1.7 cm which move in the two directions 
cos-1 ( c /U)  to that of the mean wind and thereby produce a rhombic pattern on the 
surface (c is the phase speed of the 1.7 cm waves, and U is approximately the mean 
wind speed at a height of one wave length above the surface). 

The major growth of the gravity waves takes place in the principal stage of develop- 
ment. Here it is shown that the energy grows linearly with time and is proportional to 
the spectrum of the pressure fluctuations, which in Hasselmann’s (1968) notation is 

( 3  -23) 

where Fp(k, - w) is the three-dimensional spectrum of the pressure fluctuations. 
Although the waves grow by a resonance mechanism, the energy grows linearly, not 
quadratically, with time. This is due to the fact that the pressure fluctuations are not 
phase locked to the waves, but the amplitude and phase of a pressure component 
wanders randomly relative to a wave component which has the same speed and wave 
length as the pressure component. Equation (3 .23)  is the main result of Phillips’ 
theory. 
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Phillips arrived at the equivalent to equation (3.23) by starting with the linearized 
equations of motion (3.8) for the water, with the addition of the pressure term p/p in 
the dynamic boundary condition (the third equation in 3.8) to bring in the coupling with 
the air. The water is assumed to be inviscid, and since the waves are generated from 
rest by the action of normal pressures, the motion is irrotational. 

If the surface displacement [(x, t )  and the pressure p(x ,  t )  are given the Fourier 
representation 

(3.24) 

then the h e a r  response of the wave component [k to the forcing pressure component 
p k  is determined by the following equation (obtained from the elimination of the 
velocity potential in the second and third equations of 3.8): 

(3 .25) 

By considering the pressure component pk(t)  to be a stationary random function of 
time, equation (3.25) is the classical problem of an undamped harmonic oscillator 
driven by a random forcing function. The asymptotic solution to (3.25) for large 
times gives the result that the mean-square displacement of the water surface increases 
linearly with time. The solution also shows that a particular wave component grows in 
response to that component of the turbulent pressure which has the same wave number 
and frequency and moves at the same speed as that of the free wave. Equation (3.23) 
expresses these results in spectral form, assuming further that the fluctuations in 
pressure and surface displacement are statistically homogeneous with respect to 
horizontal position. 

Phillips’ theory is not considered to be the mechanism to explain the major growth 
of wind waves, because the observed pressure fluctuations are too small and because 
observed energy growth rates are more nearly exponential than linear. Subsequent 
measurements (Longuet-Higgins 1961) showed that the turbulent pressure fluctuations 
in the air are much smaller than Phillips originally assumed in evaluating his theory. 
However, Phillips’ generation mechanism may be important in bringing the energy 
level of the waves from zero to the point where other mechanisms, such as an instability, 
can take over. Phillips’ theory cannot explain the observed damping of waves which 
propagate against the wind. 

3.2.2. Miles’ theory. Miles’ (1957) theory considers the generation of water waves due 
to shear flow instability in the coupled air-water system. The  original theory was 
extended and developed in a series of papers by Miles (1959, 1960, 1962, 1965, 1967). 
Contributions to this theory were also made by Benjamin (1959) and Lighthill (1962). 

Miles (1957) improved on the Kelvin-Helmholtz model (92.1) by assuming that, in 
the absence of wave motion, the mean wind speed had a prescribed continuous varia- 
tion with height above the water surface, in better qualitative agreement with observed 
wind profiles. Miles considered the mean shear flow in the air to be produced by 
turbulent processes, but except for this fact, neglected all effects of the turbulence on 
the interaction between the wind and the water. The motion of the air was then taken 
to be laminar, inviscid and incompressible. In addition to these assumptions the water 
motion was assumed to be irrotational as in previous studies, and the wave slope was 
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assumed to be small enough to justify neglecting the nonlinear terms. I n  addition, any 
mean motion in the water, which might be induced by the traction of the shear flow in 
the air, was neglected. A pre-existing water wave induces a disturbance in the shear 
flow, and that part of the induced pressure disturbance which is in phase with the 
wave slope does work on the wave and causes it to grow. This coupled mechanism then 
results in an exponential growth rate for the wave energy. 

The  main result of the theory is summarized in Hasselmann’s (1968) notation by 

(3.26) 

where pa is the air density. The  derivatives of the mean wind profile U(z) are evalu- 
ated at the critical layer defined by U, - c= 0, ie the height at which the wind speed 
equals the phase speed of the water waves. W ;  is the response of the boundary layer to 
a periodic unit amplitude surface displacement of phase velocity w/k.  

The exponential growth rate of the energy spectrum is apparent from the form of 
equation (3.26). The  growth rate is positive since normal wind profiles have negative 
curvature and positive slope. An essential feature of the solution is the ratio of the 
curvature to the slope of the mean wind profile evaluated at the critical height. This 
result comes from the solution of the inviscid Orr-Sommerfeld equation for velocity 
perturbations induced in the air by the waves. Since normal wind profiles are approxi- 
mately logarithmic, the energy transfer decreases with increasing height of the critical 
layer (ie decreasing profile curvature). The  larger the wave length, the faster the waves 
travel and the higher the critical layer is, and therefore the less effective their growth 
rate is by this mechanism. On the other hand, if the critical layer lies very close to the 
water surface in a laminar sublayer with a linear velocity profile, then the energy 
transfer would vanish according to (3.26). According to Miles’ theory, waves neither 
grow nor decay if they travel either faster than the maximum wind speed or at angles 
greater than 90” to the wind (waves are not damped if they propagate against the wind). 
The  Miles’ mechanism is most effective for waves which travel in the same direction as 
the wind, which is expected from general stability considerations (Lin 1966, p27). 

The  mathematical details of the Miles’ mechanism are somewhat difficult and the 
physical picture is not as clear as in the Kelvin-Helmholtz theory. The  exact solution 
of the governing differential equation, the inviscid Orr-Sommerfeld equation, for 
typically observed wind speed profiles does not appear to be possible, and numerical 
methods must be used to evaluate the energy growth rate, It turns out that the energy 
and momentum are transferred to the wave entirely from the critical layer, at some 
distance above the wave, as a result of a singularity in the governing equation at the 
critical layer. A physical explanation of the energy transfer has been given by Lighthill 
(1962) in terms of vortex forces acting on fluid particles near the critical layer. Un- 
fortunately, in contrast to Miles’ (1957, 1959) original evaluations of his theory, later 
observations showed the growth rate of wind wave energy in the ocean to be much 
larger than could be accounted for by Miles’ theory ($5.2). However, it is possible that 
some modification of Miles’ original theory may yet yield better agreement between 
theory and observation (53.8). 

3.3. Nonlinear wave-wave interactions 
As gravity waves continue to grow in an active wind field, the average wave slope 

continues to increase. The  average wave slope is a measure of the nonlinearity of the 
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waves, for the larger the slope, the larger the nonlinear terms in the basic equations (ie 
the surface boundary conditions in equations 3 .4  and 3.5). Under continued wave 
growth the nonlinear terms will ultimately become so important that the linear 
theories of Phillips and Miles will no longer apply. 

Work on the nonlinear wind wave problem expanded rapidly after a discovery 
made by Phillips (1960). By carrying out the conventional perturbation expansion 
(the wave slope being the small parameter) about the linear solution of a single sinu- 
soidal wave, Phillips found that under certain conditions unsteady perturbations were 
possible at the third order in the expansion. The  conditions for unsteady perturba- 
tions to exist, called resonance conditions, are 

(3.27) 

where the frequency and wave number pairs (ut, ki) are those of free (primary) waves 
which individually satisfy the dispersion relation (3.10). The  unsteady perturbation is 
interpreted to mean that there is a continuous flow of energy among four primary waves 
when (3.27) is satisfied. 

The  reason that the unsteady perturbation occurs at third and not second order in 
the expansion is that the resonance conditions (3.27) cannot be satisfied in general for 
only three primary waves, which is due to the functional form of the dispersion 
relation (3.10). The  conditions (3.27) can be satisfied by three primary waves in certain 
trivial cases, but in these cases it turns out that the energy transfer vanishes. For some 
other types of waves with different dispersion relations a resonant energy transfer can 
take place among three wave components, such as for capillary waves (McGoldrick 
1965), internal gravity waves (Kenyon 1968)’ Rossby waves (Kenyon 1967), and edge 
waves (Kenyon 1970). 

Phillips’ (1960) discovery was extended by the theoretical work of Longuet- 
Higgins (1962b), Benney (1962)’ Ball (1964)’ Bretherton (1964), and Benjamin (1967). 
The  resonant interactions were verified for a few particular cases by laboratory meas- 
urements (95.4). The  effect of the resonant interactions on the entire energy spectrum 
of wind waves was derived by Hasselmann (1962a). 

Hasselmann’s statistical theory is summarized by (Hasselmann 1968) equations 
(3.17) and (3.22) as 

DF(k)/Dt =J (TlF(k’)F(k”)F(k - k’ - k”) - TzF(k)F(k’)F(k”)) dk‘ dk” (3.28) 

where the coupling coefficients TI and TZ contain the resonance conditions (3.27) as 
well as rather complicated algebraic expressions involving the wave numbers and 
frequencies of the interacting waves. Equation (3.28) expresses the time rate of change 
of the energy density at wave number k due to all possible interactions involving wave 
number k which satisfy the resonance conditions (3.27). The  fact that the ‘resonant’ 
interactions produce a linear change with time in wave energy is due to incorporation 
into the theory of the classical response of a harmonic oscillator to stationary random 
forcing. 

The  energy transfer given by (3.28) conserves energy over the entire spectrum 
(there are also other invariants). If at some starting time a fixed amount of energy is 
present in the form of an initial spectrum, then the total energy will remain constant as 
the resonant interactions slowly redistribute the energy in wave number space. It can 
be shown that the energy transfer vanishes identically if the initial energy is distributed 
46 
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equally over all wave numbers (white spectrum), and it can be proved (Hasselmann 
1966) that the interactions will tend irreversibly toward this distribution. Early 
numerical calculations (Hasselmann 1963) showed unexpectedly that in some cases 
the resonant interactions in a peaked spectrum can initially transfer energy to the 
spectral maximum. However, more recent calculations (Hasselmann et a1 1973) show 
that if the starting energy spectrum has a very narrow peak, the wave-wave inter- 
actions will initially tend to broaden the peak. 

The  characteristic time scale T obtained from (3.28) for a significant energy trans- 
fer to take place is of the order of magnitude 

T N TO+ (3.29) 

where To is a characteristic wave period, and U is a typical wave slope. In  an active 
wind field wave slopes may be of order 10-1 or smaller. Thus the interaction time is 
large compared with the wave period, showing that the nonlinear interactions are 
indeed weak (ie perturbation theory is justified). It is significant that the interaction 
time is of the same order as the development period of the waves or the duration period 
of storms, which is one way of indicating the possible importance of the resonant 
interactions for the total energy balance of the waves. 

The  resonant interactions by themselves cannot serve as the basis for a theory of 
wave generation (or dissipation), since they do not change the total wave energy. 
However, it is thought that these resonant interactions may play an important role in 
wave growth by redistributing to low frequencies the wave energy supplied by the 
wind to the high-frequency portion of the spectrum ($5) .  If the wind continues to feed 
energy into the waves and the resonant interactions cannot redistribute the energy fast 
enough, then the waves will ultimately break, as discussed further in $3.6. 

3.4. Wave propagation 

After being generated by a storm, wind waves can propagate for great distances 
over the surface of the earth, their travel being largely uninterrupted until they break 
and dissipate upon reaching a coast (almost no wave energy is reflected from the coast 
in the wind wave frequency range). The observational studies of Barber and Ursell 
(1948), Munk et aZ(l963) and Snodgrass et a1 (1966) have shown that wind-generated 
waves outside storm areas can travel as far as halfway around the world with very little 
attenuation. Molecular viscous dissipation is utterly negligible, and the level of 
turbulence in the ocean does not appear to affect the waves (Phillips 1959). Also the 
waves do not appear to be affected by propagating through zones of high wind such as 
the Trade Wind Belt. Nonlinear interactions do not appear to be important in 
scattering surface wave energy more than a few storm diameters outside an active 
generating area (Hasselmann 1963b). Finally, the conversion of surface wave energy 
into internal gravity wave energy by wave-wave interactions does not seem to be 
important for the energy balance of surface gravity waves (Kenyon 1968). 

In  fact, for propagation over large distances the waves seem to obey the linear 
theory of wave propagation from a limited initial disturbance, which was developed by 
Cauchy and Poisson in the early 1800s (see Lamb 1932, p394). This theory considers 
the elevation of the free surface at large distances and a long time after a disturbance, 
which is limited in space and time, has occurred on an otherwise still ocean. The  
theory leads quite naturally through the method of stationary phase to the concept of 
group velocity as the signal velocity of the wave energy. In  practice, one can predict 
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the arrival time of waves at the shore using the group velocity by knowing the position 
and time of the storm. Alternatively, by monitoring the directional arrival of waves at 
the shore one can deduce the space and time origin of the storm which produced the 
waves by using linear propagation theory. What one sees at the shore as the result of a 
single distant storm of short duration is the arrival first of low-frequency waves 
followed by waves of higher and higher frequency at successively later and later times, 
which is what one expects because the group velocity decreases with increasing 
frequency according to (3.10). The  rate at which the wave frequency increases with 
time at the shore is inversely proportional to the distance to the storm. 

Munk et aZ(l963) and Snodgrass et aZ(l966) recorded the arrival of waves off the 
California coast, inferred the origin of the storm, then checked the weather maps to see 
if the storms were where the waves said they should be. In  most cases the agreement 
was satisfactory. However, one slight but systematic discrepancy was noted in both 
studies with regard to the direction of the storm as determined by the wave arrivals at 
the shore in California. They found that the direction of the storm as inferred from 
the measurements was typically a few degrees to the left of the storm position as 
inferred from the weather maps, and in fact some of the inferred storm positions were 
on land (Antarctica). This discrepancy cannot be explained by the effect of the earth's 
rotation (Backus 1962) nor by the earth's oblateness (Snodgrass et al 1966). An 
explanation of the discrepancy was offered by Kenyon (1971) in terms of wave 
refraction by ocean currents. Most of the waves recorded by Snodgrass et aZ(l966)  
and Munk et aZ (1963) were generated by storms in the region near Australia, New 
Zealand and Antarctica and therefore had to pass through the Circumpolar Current, 
which is a major ocean current flowing eastward around Antarctica. 

Wave rays can be bent by ocean currents which vary in space by classical refraction 
laws (equation 3.18). The amount of bending predicted can be surprisingly large in 
certain ocean situations. In  fact, waves which propagate toward a current with a phase 
velocity component in the same direction as the current can be totally reflected by the 
current if a certain critical angle is exceeded. The  Gulf Stream is chosen as an example 
of the strongest of ocean currents to illustrate the effect. The  Gulf Stream has a 
maximum speed of about 2 m s-1 and the speed decreases to zero on either side of the 
maximum, the total width of the current being about 100 km. If the critical angle to be 
exceeded for total reflection is defined as the angle between the wave ray and the 
normal to the current, then for the Gulf Stream refraction theory predicts that waves of 
period 8 s will have a critical angle of 50" and waves of period 16 s will have a critical 
angle of 60". Since waves with these periods are well within the wind wave frequency 
range and these critical angles are not very large, the example shows that major ocean 
currents could have a significant effect on the propagation of surface gravity waves. 
Another result of the theory is that waves propagating against a shear current, such as 
the Gulf Stream, can be trapped inside the current (total internal reflection) provided 
the initial conditions are right. Unfortunately, as yet there are no ocean observations 
available to verify these rather remarkable predictions of classical ray theory. 

Many of the properties of wave-current refraction can be summarized by the 
approximate formula for the radius of curvature R of the wave rays in a steady shear 
current (Kenyon 1971): 

R = cgl5 (3.30)  

where 5 is the vertical component of the vorticity of the current, and cg is the group 
speed of the waves relative to the current. Equation (3.30) shows that the magnitude 
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of the radius of curvature decreases with increasing wave frequency (decreasing group 
speed) and with increasing current vorticity. In  other words, the refraction effects are 
largest for high frequencies and large current shears. The sign of the radius of curva- 
ture is given by the sign of the vorticity, which determines which way the rays bend for 
given current shears. 

In  contrast to the refraction of waves by currents the refraction of waves in shallow 
water due to variations in water depth is well known and easily visualized near beaches. 
As waves propagate into water of decreasing depth they reach the nondispersive 
shallow water limit in which the phase speed is given by c= (gh)1/2. Considering a 
beach that has offshore bottom contours which are straight and parallel, a wave crest 
which is not initially parallel to the bottom contours will tend to become so due to the 
depth dependence of the phase speed. The swinging of wave crests parallel to the 
shore line as waves approach shore is nicely illustrated in aerial photographs (see eg 
Stoker 1957, p353). Two-dimensional variations in bottom topography act like lenses 
in focusing the wave rays and produce observable effects. A submerged hill or ridge 
will focus the wave energy on the beach, whereas a submarine canyon will have the 
opposite effect. Complicated topographic effects can be easily visualized by a con- 
ceptual analogue computer devised by Eckart (1950) which makes use of the ray- 
particle analogy. Surface gravity waves also can be trapped along coasts due to repeated 
reflections from the shore line and refraction due to increasing offshore depth, and 
these are known as edge waves (Eckart 1951). Edge waves have been observed in the 
ocean (Munk et aZ1964), but little is known about their cause. 

3.5. Wave dissipation 

In  the life history of ocean wind waves, dissipation is thought to occur mainly by 
wave breaking and primarily in two periods near the waves’ birth in a storm and death 
on a beach. As mentioned in 93.4, measurements have shown that wind waves can 
propagate over great distances in the ocean with very little attenuation, indicating that 
frictional dissipation is negligible for the most part. Dissipation due to wave breaking 
takes place along with generation in a storm, and waves are ultimately destroyed by 
breaking on the beach. Wave breaking is probably a strong nonlinear process which is 
not open to attack by standard mathematical (perturbation) techniques. So far the 
effects of wave breaking on the energy spectrum under conditions of overall wave 
growth have been discussed only by means of empirical relationships as mentioned in 
$3.6. 

The  weak interaction of short and long gravity waves leads to an attenuation of the 
long waves according to the theories of Phillips (1963) and Hasselmann (1971a) (see 
$3.8). These theories are the only available ones which can explain the observed 
damping of swell in an opposing wind. The  generation theories of Phillips (1957) and 
Miles (1957) do not work in reverse. 

Dissipation could also occur as waves propagate into shallow water, before they 
break, due to interactions with the bottom and the turbulent currents in the bottom 
boundary layer. Hasselmann and Collins (1968) give a theory for the dissipation of the 
wave spectrum caused by the interactions of the waves with the turbulent bottom 
currents. Observations by Hasselmann et al (1973) are not in agreement with this 
theory, however. More recently Long (1973) has looked at the interaction of waves with 
an irregular bottom and has suggested that the scattering of surface waves by bottom 
irregularities may be important for the decay of swell near coasts. 
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Wave dissipation can also occur under certain conditions when waves encounter 
strong currents (Phillips 1966). 

3.6. Empirical relationships 

3.6.1. The equilibrium range. An empirical relationship was derived by Phillips 
(1958) which has been useful for describing the high-frequency range of the wind wave 
spectrum. The  relationship predicts that at high frequencies the one-dimensional 
energy spectrum Fl( U )  should decrease with increasing frequency as the inverse fifth 
power of the frequency. Observations have apparently confirmed this relationship 
over a broad range of frequencies (Phillips 1966). The  range of frequencies for which 
the relation holds is known as the ‘equilibrium range’. 

The  inverse fifth power law for frequency was derived by Phillips (1958) on the 
basis of dimensional analysis assuming that the only two relevant parameters are the 
acceleration of gravity and the wave frequency. The  physical reasoning behind this is 
as follows. In  an active wind field the high-frequency waves grow so rapidly that their 
amplitude is ultimately limited by the stability of the water surface (ie when the 
downward acceleration of the water surface at the wave crest is comparable with the 
acceleration of gravity). When this occurs the waves have reached equilibrium under 
the given wind conditions in the sense that they cannot grow any higher without 
breaking. White capping and breaking waves are, of course, observed in a storm. The  
weakly nonlinear wave-wave interactions (93.3) are apparently not very important 
during periods of rapid growth of the high-frequency waves. Phillips’ frequency law 
is meant to hold for frequencies larger than that of the peak in the energy spectrum 
and lower than frequencies for which surface tension is important. There is a sizable 
frequency band which satisfies these conditions. 

Although Phillips’ concept of an equilibrium spectrum has some observational 
support, it can be criticized on theoretical grounds. One of the characteristic features 
of a wind wave spectrum is that the direction of propagation of the waves has a broad 
angular spread about the mean wind direction. The  angular dependence, which may 
be a function of the wind speed, could be an important parameter in addition to the 
two parameters upon which Phillips based his spectral law. Also for waves generated 
by an offshore wind the wave spectrum might be expected to depend on the distance 
(fetch) of the waves from the shore ($5.2). 

3.6.2. Fully developed spectrum. The idealized concept of a ‘fully developed spectrum’ 
is an old one and an appealing one, for it leads to useful empirical forms for the entire 
energy spectrum, including Phillips’ equilibrium range. The  basic idea is simple. 
Consider an ocean initially at rest. A steady wind suddenly commences to blow and 
continues to blow forever over an infinite ocean. Waves of short wave length and high 
frequency will grow fast and reach equilibrium quickly. Waves of successively lower 
and lower frequency will then grow to equilibrium, filling in Phillips’ equilibrium 
range. The  waves of very low frequency will grow to a certain extent, but since they 
travel faster than the wind, it is difficult for the wind to transfer energy to them (and in 
practice they outrun the storm anyway). One expects, and observes, a low-frequency 
cut-off as well as a high-frequency cut-off with a peak in the energy spectrum at about 
the frequency for which the wave phase speed equals the wind speed. Therefore one 
anticipates that after a sufficient length of time the entire energy spectrum will reach 
steady state. 
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Observed spectra show a much more rapid cut-off at low frequencies than at high 
frequencies, and this is modelled by a super-exponential form such as in the fully 
developed spectrum proposed by Pierson and Moskowitz (1964) : 

F1( w )  = ag2w-5 exp [ - p( w 0 / ~ ) 4 ]  (3.31) 

where wo=g/U,  U is the mean wind speed measured 19.5 m above the sea surface, 
a=8.1 x 10-3, and p=0.74. A discussion of other empirical spectra can be found in 
Walden (1963) (see also $5.5). 

Empirical spectra such as that of Pierson and Moskowitz (1964) are useful both for 
summarizing observations and for estimating the importance of various physical 
effects on the energy spectrum. However, the concept of an equilibrium spectrum can 
also be challenged on theoretical grounds. For example, why could not the waves of 
very low frequency continue to grow, be it ever so slowly, as long as the wind blows, 
thus making a steady-state spectrum impossible? Arguments as to whether a fully 
developed spectrum is possible or does occur still go on. I t  has recently been sug- 
gested (Hasselmann et aZ1973) that the existence of a peaked spectrum could be due to 
a self-stabilizing process associated with wave-wave interactions. However, as yet 
there is no simple physical explanation for why one might expect the wave-wave 
interactions to produce a peaked spectrum. 

3.6.3. The directional spectrum. Much less is known about the two-dimensional or 
directional energy spectrum than the one-dimensional (frequency) spectrum. Present 
knowledge is based on a very few attempts to measure the directional spectrum, and a 
few empirical forms for the spectrum have been put forward to summarize these 
observations. So far theoretical guidance for the empirical forms of the directional 
spectra has been minimal. 

Arthur (1949) first noticed that waves leaving a storm have quite a broad ( _+ 45") 
directional distribution relative to the mean wind direction. The first empirical form 
for the directional spectrum Fz(w, 0) was proposed by Pierson et a1 (1955): 

Fz(w,  q = F l ( w ) H ( @  (3.32) 

where the angular spreading function H( 0) was independent of frequency and nor- 
malized such that 

J?& H (  0) dB = 1, H(B)=O for 101 > ~ / 2  

(0 = 0" is in the direction of the mean wind). A functional form for H (  0) based on more 
recent observations is given in $5.5. 

At present there are no theories which predict the shape of the rather broad 
directional spectrum. The  form of the directional spectrum should follow from the 
nature of the physical processes of wave generation. Of course, the wind itself does 
not blow constantly in one direction but can have rather large angular variations about 
the mean direction. The extent to which the directional variability of the wind 
contributes to the beam width of the waves is not known. 

However, if the wind did blow steadily in one direction, one would expect certain 
qualitative features of the directional spectrum based on the theory of Phillips (1957). 
The prediction is that the spectral density will be high in two narrow ranges of azimuth 
centred on the theoretical resonance angles _+ cos-1 (c /U) ,  where, as before, c is the 
wave phase speed and U the mean wind speed, At the resonance angle the component 
of wind velocity in the wave direction equals the wave velocity, a condition which is 
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optimum for wave growth by random pressure fluctuations. As the wave phase speed 
approaches the wind speed (ie for decreasing frequencies), the angular separation 
between the two narrow beams should decrease to zero. However, these predictions 
are not easy to observe because normally the resonance effects would be swamped by 
the exponential growth rate associated with the major wave generation mechanism, the 
theory of which has still to be found. 

3.7. Wave momentum 

Most of the theoretical development of ocean wind waves has been cast in terms of 
the wave energy and particularly in terms of processes affecting the energy spectrum. 
However, another important property of surface gravity waves is that they also have 
momentum. The  wave momentum is an observable quantity and is associated with a 
velocity called the Stokes drift velocity (Stokes 1847). The  Stokes drift velocity is the 
fourth characteristic velocity associated with the propagation of surface gravity waves. 
For waves which are not too steep (slope less than one), this velocity is smaller than the 
velocity of the fluid particles, which in turn is smaller than the velocity of propagation 
of wave energy (group velocity), which in general is smaller than the velocity of 
propagation of the wave phase (phase velocity). 

Stokes (1847) discovered that in a second-order perturbation expansion of equa- 
tions (3.3)-(3.6) the fluid particles do not return exactly to their initial position at the 
end of a wave period, but are displaced slightly in the direction of wave propagation. 
This finite-amplitude effect can be expressed as a small, steady velocity which is 
directed parallel to the phase velocity. The  Stokes drift velocity can be defined 
formally as the difference between the time-averaged Lagrangian (fixed particle) 
velocity and the time-averaged Eulerian (fixed position) velocity (Longuet-Higgins 
1953). This second-order motion decreases much more rapidly with depth than the 
‘linear’ particle motion for wave lengths much less than the water depth. 

The  Stokes drift velocity for a complete energy spectrum has been given by 
Kenyon (1969) as 

(3.33) 

The  mean momentum per unit surface area M is related to the Stokes drift velocity 
and the energy spectrum by 

k 0 

- h  w 
M = /  pU(z) dx= F(k)  - dk 

by equation (3.33). This relation reduces to 

for a single sinusoidal wave component, showing that the momentum and energy are 
related through the phase velocity as noted by Starr (1959). 

An evaluation of equation (3.33) using the empirical spectrum of Pierson and 
Moskowitz (equation 3.31) shows that the ratio of the Stokes drift velocity at the 
surface to the wind velocity 19.5 m above the surface could be between one and three 
per cent, depending on the exact form of the spectrum used (Kenyon 1969). Although 
the Stokes drift velocity has been measured in the laboratory (Longuet-Higgins 1960, 
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Chang 1969), as yet there are no measurements which have satisfactorily isolated its 
existence in the ocean. Ursell (1950) and Hasselmann (1970) have pointed out that a 
steady Stokes drift velocity cannot exist in the ocean because there is no force which 
could balance the Coriolis force acting on the translating fluid particles. However, it is 
still possible that the Stokes drift velocity could exist in the ocean over a time scale 
which is small compared with the time scale associated with the Coriolis force 
(2n/21Ql sin 0, where Q is the angular velocity of the earth and 6’ is the latitude), but 
yet large compared with a wave period. 

3.8. Recent developments 

The field observations of Snyder and Cox (1966) and Barnett and Wilkerson (1967) 
made it clear that there might be serious difficulties in trying to apply Miles’ (1957) 
generation theory to explain the major growth rate of ocean wind waves (see $5.2). 
There were two main reactions to this news. One reaction was to point out that the 
major inadequacy in the Miles’ theory was the neglect of any interaction between the 
waves and the turbulence in the air. Attempts were then made to overcome this 
inadequacy, but so far these attempts have not been fully evaluated. The second reac- 
tion was to try either to come up with an entirely new theory to explain the major 
growth mechanism, or to re-examine older alternative mechanisms. No new complete 
theory has yet appeared, although a few new suggestions have been put forward. 

One of the new possibilities began with the examination of the interactions between 
waves of widely different scales. The  basic idea was to find out what energy exchanges 
could take place in a situation in which waves of small wave length were superimposed 
on waves (or currents) of much larger wave length. Since the wind generates waves of 
short wave length (ripples) very quickly, one could imagine short waves continuously 
feeding energy into the longer waves thus providing a generation mechanism for the 
longer waves. 

In  a series of papers Longuet-Higgins and Stewart (1960, 1961, 1962, 1964) had 
already explored the interaction between short gravity waves and long gravity waves 
(and currents). Working mainly from second-order perturbation analyses for particular 
cases they developed expressions, in terms of a quantity called ‘radiation stress’, for the 
energy and momentum exchanges for situations in which the interactions are weak 
(small wave slopes). An alternative approach was taken by Whitham (1967) using an 
averaged Lagrangian method (see also Bretherton and Garrett 1968, Bisshopp 1969, 
Whitham 1962). An asymmetry in the distribution of wave slope arises from the 
interaction such that the short waves become shorter and steeper at the crests of the 
long waves and longer and flatter at the troughs of the long waves. Unfortunately the 
weak interaction does not lead to energy transfer rates for the long waves which are 
comparable with those observed. 

By using the radiation stress concept, Phillips (1963) predicted that the breaking of 
short gravity waves on the crests of long gravity waves would extract energy from the 
long waves and cause their energy to attenuate at a linear rate with time. On the other 
hand, Longuet-Higgins (1969a) came to the opposite conclusion that the breaking of 
short waves on the crests of long waves would cause the long waves to grow. However, 
Hasselmann (1971a) showed by considering both mass and energy transfer that the 
interaction of short and long gravity waves will always lead to a slow attenuation of the 
long waves. It appears, therefore, that the interaction between short and long gravity 
waves cannot explain the major growth rate of the long waves. On the other hand, the 
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theories of Phillips (1963) and Hasselmann (1971a) are the only ones available which 
might be able to explain the observed decay of ocean swell under an opposing wind. 

Another approach was taken recently by Stewart (1967) and Longuet-Higgins 
(1969b) to try to assess the importance of the tangential wind stress on the generation 
of gravity waves. Earlier Sverdrup and Munk (1947) were able to account for the order 
of magnitude of observed wave heights by assuming that all the energy communicated 
to the water by the tangential stress appeared in waves and none in currents. In  later 
work (eg Phillips 1957) it seemed intuitively clear that tangential stresses could not be 
very effective in setting up the irrotational water motion of gravity waves. The  basic 
idea explored by Stewart (1967) and Longuet-Higgins (1969b) is that the tangential 
stress of the wind acts unequally over the wave surface and causes vertical velocities 
due to convergences within a thin boundary layer in the water close to the surface. 
These vertical velocities then have the right phase relation to feed energy into the 
irrotational wave. The  theory gives a linear time rate of increase in the wave amplitude 
which is proportional to the variable component of the wind stress divided by the 
product of the phase speed of the wave and water density. For normal ocean conditions 
the rate of increase of wave amplitude appears to be too small to account for the major 
input of energy to the waves, but nevertheless the tangential stress could make some 
contribution to the growth of wind waves. 

A relatively large effort has recently been directed toward trying to modify Miles’ 
(1957) theory to include interactions between the waves and the air turbulence. Miles 
(1967) was one of the first to attempt such improvements to his own theory and sug- 
gested that further progress would require some ad hoc hypothesis for the specification 
of the wave-induced turbulent Reynolds stresses. This suggestion was taken up by 
Davis (1969, 1970, 1972), who investigated the nature of the turbulent flow over a 
wavy boundary and how the flow could do work on the waves. Hasselmann (1947, 
1968) had already included the interaction between waves and turbulence as part of his 
general weak interaction scheme. A more recent attempt to tackle the wave-turbulence 
interaction has been made by Manton (1972). 

The  evaluation of the wave-turbulence interaction is still going on, and it is not 
appropriate to critically review the work on this programme at this time. Numerical 
calculations of Hasselmann’s (1967, 1968) interaction coefficients are still needed. The  
results of recent calculations of the wave-turbulence interactions by Long (1971) and 
Townsend (1972) are not in complete agreement, and the differences between them 
need to be resolved. One of the future hopes is that the interaction between turbulence 
and waves will lead to the explanation for the major growth rate of ocean wind waves. 
Although the evaluation of this difficult problem is the first priority, it is also likely to 
take some time. Therefore it is not out of place to encourage the development of some 
new theoretical ideas (57.1). The  wave-turbulence interaction may not be the only 
physical feature of possible importance for wave growth which has been left out of 
Miles’ (1957) theory. 

4. Techniques for measuring the wave field 

Understanding the physical processes that effect wind waves requires adequate 
methods of quantitatively observing the wave field. The  purpose of this section, then, 
is to describe modern observational methods, their advantages and drawbacks. 

An observation and qualification are in order before we proceed. As we saw in 
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$2.2, there were few reliable methods of observing the sea surface prior to the early 
1950s. This section indicates a virtual renaissance in our abilities to quantify the wave 
field. The  qualification we wish to apply is the fact that only wave measuring methods 
are discussed. No attempt has been made to catalogue the great advances made in 
devices for sensing the turbulent atmospheric flow field-the ‘other’ part of the wave 
generation problem. 

4.1. Measurement of the one-dimensional spectrum 
4.1 .l. Methods using sea surface elevation. Many different techniques have been 
developed to obtain the time history of sea surface elevation at a single point in space, 
the quantity required to compute the one-dimensional spectrum PI( U ) .  Perhaps the 
most common method that is used is to insert a pole or rigid staff into the water and use 
it as one component of an electric circuit. This makes it possible to transform varia- 
tions in sea level into fluctuating electrical currents. One such device is called the 
resistance wire wave staff. It is basically a length of insulated cable that has been 
wound with a fine, bare wire. The wire represents a resistance which can be shorted 
out by sea water. The  result is a variable resistance inversely proportional to the depth 
of probe immersion. 

Another type of staff in common use is the capacitance staff. This is simply 
insulated wire sealed at one end and inserted into the sea water (a conducting fluid). 
The  insulator on the wire acts as a dielectric. The central conductor of the wire and the 
sea water form the two plates. Changes in sea surface elevation then lead to a variable 
capacitance that is directly proportional to the probe immersion. An excellent account 
of capacitance probes and the problems one can get into by using them has been given 
McGoldrick (1971). As one might expect there is also an inductance staff that works 
on much the same principle as the two described above. 

The  basic problem with all of these devices, however, is that they require a fixed 
platform to which they must be attached. This implies that they can only be used in 
shallow water or in the laboratory. Attempts have been made to use wave staffs in 
deep water, but the effort is difficult logistically. 

Newer techniques for obtaining time histories of the sea surface profile involve the 
use of remote sensing devices, eg a radar, laser or acoustic beam. An infrared profiler 
has been mounted on a ship and used by DeLeonibus et aZ(l973) to obtain reasonably 
good estimates of the one-dimensional wave spectrum. However, since the ship is 
generally moving relative to the actual wave field, the induced Doppler problems make 
this a difficult technique to use. The method does, nevertheless, allow a direct 
measurement of the time history of sea surface elevation in the deep ocean. 

More exotic techniques of measuring the same quantity involve the use of a laser 
or radar. Both devices have been mounted in aircraft (Barnett and Wilkerson 1967, 
Schule et a1 1971) thereby providing the opportunity for measurement anywhere in the 
ocean, Using the time history of sea surface elevation that is obtained from a rapidly 
moving aircraft, one can compute the apparent spectrum of wave encounter Fapp, which 
is related to the two-dimensional spectrum by 

where U is the apparent frequency. The relation between real frequency w and ap- 
parent frequency U is 

a = w - ( w W / g )  cos $h 
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where V is the speed of the aircraft and t,h is the angle between the direction of aircraft 
motion and wave propagation. Since the speed of the aircraft is known, the trans- 
formation indicated above should be straightforward. The catch is, however, that one 
must know the directional properties of the wave field or be able to estimate them in 
order to carry through the transformation. I t  turns out that the estimate of the one- 
dimensional spectrum obtained from the aircraft is not particularly sensitive to the 
directional properties of the wave field. The spectral estimates obtained from aircraft 
compare quite well with more conventional ground-based observations. 

4.1.2. Methods based on other properties of the wave $field. There is a second class of 
devices that can obtain an indirect estimate of the time history of sea surface elevation. 
We will discuss two devices in this class; namely, pressure transducers and accelero- 
meters. The former was discussed briefly in $2.2. I t  has been brought to a high state 
of perfection by Frank Snodgrass (eg Snodgrass et a1 1966). The  device is basically a 
vibrating wire attached to a rigid diaphragm. The diaphragm is exposed to the 
external sea water. Changes in pressure induced by wave motion then act differentially 
upon this diaphragm, changing the tension in the wire slightly. The resulting fre- 
quency changes are used to modulate a voltage which is then transmitted to shore via 
cable for recording. The pressure fluctuations at depth p ( z ,  t )  are transformed into 
estimates of sea level fluctuation t ( t )  by the relation from linear theory ($3.1 and Kins- 
man 1965) 

In  its early history the ‘vibratron’, as this device is called, was rather sensitive to 
changes in sea water temperature. These difficulties have largely been taken care of in 
the intervening years by Snodgrass and his co-workers. Another of the major diffi- 
culties with the vibratron, however, has been that it must be linked to shore by a cable 
that leads through the inhospitable surf zone. This difficulty has been largely cleared 
up recently with a pressure transducer/telemetering buoy combination (Brown and 
Gaul 1967, Barnett 1971). The transducer works on much the same principle as 
described above, only now the frequency-modulated voltage is used to modulate radio 
transmission which is received on shore and converted eventually to estimates of sea 
surface elevation. 

Pressure transducers have generally been used to measure waves in shallow water 
where the sensor could be fixed to the sea floor. In  this circumstance the user must 
beware, for the conversion from pressure to sea surface elevation requires the applica- 
tion of some theoretical transfer function (equation 4.1). Linear theory is most often 
used. Unfortunately, reasonably large waves in relatively shallow water are not linear 
phenomena. 

Accelerometer devices have also found some application as wave measuring devices 
since the vertical acceleration in a wave field, ( (z ,  t) ,  is related to the surface elevation 
by linear theory such that 

sinh k(z + h )  
sinh Kh * 

g(z, t ) = t ( t )  U 2  (4 2) 

The most recent, and perhaps most exciting, advance in using an accelerometer as a 
wave measuring device has been made by a firm in Holland. Their buoy, called the 
‘Wave Rider’, is an arrangement of an accelerometer, a radio telemetry link and a 
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moored buoy. The buoy may be easily deployed in any place the scientist might wish. 
The key to their system is a clever mechanical arrangement that isolates the accelera- 
tion sensing device from the outer shell of the buoy and from lateral accelerations. 
The only vertical motions remaining to be sensed by the accelerometer are those due to 
waves. 

4.1.3. Intercomparisons. With all of the different techniques of measuring the one- 
dimensional spectrum that have been described above, the inquisitive scientist might 
well ask: 'Do they give the same information ? A more sophisticated question would 
be : 'Since different techniques may measure different properties, can something new 
about the wave field be learned from the comparisons (assuming the instruments work 
properly)?' The ideal circumstance would be to put all of the instruments together in 
one spot and then compare their estimates of the one-dimensional wave spectrum. 

VI 

L 

% 
0 0- 

Figure 1. 

dave r i d e r  

~~~ .)itch-roll 

...- I ,<" - , . ,  1 I 
0 0.2 0.4 0.6 

0 . 4 0 r  + Pi tch-rol l  
Resistance wire 

Frequency (Hz) 

Intercomparison measurements of frequency wave spectra from JONSWAP. The 
instruments compared are the resistance wire wave staff, the pitch and roll buoy, the 
wave rider buoy, and the subsurface pressure transducer. 

Just such an experiment has been carried out during the Joint North Sea Wave Project 
(JONSWAP, Hasselmann et aZ1973). Simultaneous measurements of the wave field were 
made with pressure transducers, wave staffs and acceleration sensing systems. 

The intercomparisons are illustrated in figure 1. I t  will be seen that over the main 
range of frequencies where significant energy occurs, the instruments compare well. 
At the lowest frequencies, the acceleration sensing devices experience the familiar and 
not unexpected 'red catastrophy'. This results from the double integration of the slow 
DC drift of the signal (equation 4.2). At high frequencies the pressure transducers 
experience a similar difficulty. This is due to the fact that they were far enough 
beneath the surface that they could not sense the higher-frequency waves (equation 
4.1). The small amount of system noise that was present in conjunction with large 
correction factors resulted in erroneous spectral values. 
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4.2. Methods of estimating the two-dimensional spectrum 
The two-dimensional spectrum (F(k), Fz(w, e), $3.1.2) is to first order a complete 

description of the wind wave fields. Its measure is thus of prime importance to 
research in wind waves. Unfortunately it is not a simple task to obtain either F o r  Fz. 

One method of obtaining estimates of the two-dimensional spectrum is by using 
the British National Institute of Oceanography ‘pitch and roll’ buoy. This doughnut- 
shaped buoy, about 1 m in diameter, carries instrumentation capable of measuring its 
vertical acceleration, its pitch, roll and heading relative to geographic north. These 
four time histories are transmitted from the buoy to a nearby ship by means of hard 
line connection. It has been shown by Longuet-Higgins et a1 (1963) that the spectra 
and cross spectra of these time series can be related to the Fourier expansion of Fz, 

such that the Fourier coefficients (a,, b,) are explicit functions of the spectra. 
The  buoy does have some drawbacks, however. While it is useful in obtaining mean 

wave direction, its estimate of mean wave spread (ie the second directional moment of 
the two-dimensional spectrum) is hampered by a lack of resolution, for only five 
Fourier coefficients are available to define the directional spectrum. A narrow ‘beam’ 
of wave energy is not well defined by so few components?. Also the buoy requires a 
nearby ship and rather delicate handling of that ship so the hard line connection 
between the two does not interfere with the buoy’s pitch and roll. Finally, the buoys 
have the unfortunate habit of capsizing when the wind gets much over 25 knots 
(12 m s-1). 

A second way of estimating directional properties of the wave field is through the 
use of an array of sensors. This work was first pioneered by Barber (1954), who con- 
sidered the array from the viewpoint of linear antenna theory. His work was expanded 
upon by Munk et a1 (1963). The array is used to provide simultaneous time histories 
of sea surface elevations from a number of different spatial locations. These time 
series are then cross-correlated to give estimates of the covariance function in both 
time and space. The  Fourier transformation of this covariance function provides an 
estimate of the two-dimensional spectrum. This measurement technique has been used 
almost exclusively in shallow continental margins of the world’s oceans and also wave 
tanks. The  beauty of the method is that one can design the antenna (array) to be 
sensitive to particular components of the two-dimensional spectrum (cf Barber 1963). 

Arrays of sensors are not without problems, however. Shortcomings include 
potential ambiguities in wave direction, resolution windows that are rather narrow in 
both frequency and direction space, and the requirement to have all of the sensors 
working simultaneously if one is to avoid serious degradation of the direction finding 
abilities of the array. It can also be shown that the response of the array to various 
incoming wave components is dependent not only upon the direction of approach of 
those components but also on the nature of the spectral beam width. 

The  performance of an array of wave sensors and the pitch and roll buoy have 
recently been compared. The  occasion was the JONSWAP (see $5) during which a pitch 
and roll buoy was placed within an array of six wave staffs. The  resulting comparisons 
of mean direction and RMS directional spread are shown in figure 2. The  mean direc- 
tions agree quite well. The  variations in estimates of mean-square spread are almost 

f The ‘cloverleaf’ buoy (Cartwright and Smith 1964) is a development of the ‘pitch and roll’ 
buoy that allows several more harmonics to be determined and hence theoretically allows better 
resolution. 

a,+ib,=(l/.rr) Jp Fz(w, e) exp (in0) dB n = O ,  1 , 2  
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precisely those expected from theoretical calculations. It is thus possible to correct 
spread estimates obtained by the array and in such a manner that they would be 
compatible with the estimates of the pitch and roll buoy. 

A number of other methods have also been tried for obtaining estimates of the two- 
dimensional spectrum. Some appear quite promising, but none is in common use at 
this time. One successful technique was the SWOP experiment in which two aircraft 
flying at the same altitude obtained a stereographic photo of the sea surface. The 
laborious job of picking off sea surface elevations on a spatial grid in x space was 
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Figure 2. Intercomparison of frequency spectrum and directional parameters from a pitch and 
roll buoy and a linear array. Data taken during the JONSWAP experiment. 

accomplished by hand. The  Fourier transform of this two-dimensional field of relative 
wave height is essentially an estimate of the directional wave number spectrum F(k) .  
Considering the amount of work involved, this technique will probably not see wide- 
spread use. An excellent account of the experiment and the pitfalls of attempting to 
take  stereomanhic nhotos of the sea surface has been piven bv Cote et al(1960). 

0 _I__ - - - - - - - ~- .__ r-.- _ _  _ _  , \ I 

Another technique of estimating F ~ ( w ,  0) has involved the use of single photo- 
graphs of the sea surface. The  method was pioneered by Cox and Munk (1954), who 
used photos of the sun's glitter pattern to estimate fundamental properties of the 
surface wave spectrum. Stilwell(l969) has recently carried the analysis of such photos 
to a high level of sophistication. Under the proper light conditions the slopes of the 
various component waves have different effective reflectances. Therefore the negative 
of the sea surface photograph is composed of a number of light and dark areas related 
to the wave slopes. Using the optical Fourier transform methods, Stilwell was able to 
obtain from a photo the directional properties of the wave field. With extreme care, he 
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reports being able to estimate the magnitude of the two-dimensional spectrum, eg the 
amount of energy that is on the sea surface. 

Unfortunately, present optical techniques all have the drawback that they must be 
done under almost ideal atmospheric conditions (clear sky, no white caps) or in a 
laboratory. The  methods, while promising, may be some time into use on an opera- 
tional basis. 

Perhaps the most exciting method of obtaining high-quality estimates of the two- 
dimensional wave spectrum is through the use of radar or microwave scattering from 
the wind waves. Crombie (1955) found experimentally that Bragg scattering is a 
primary mechanism involved in radar scattering by wind-generated waves. A large 
amount of theoretical work in the last several years by Wright and Keller (1971), 
Hasselmann (1971a,b), Barrick (1972) and a group at the Scripps Institution, eg 
Stewart (1971), has made it clear that the theoretical understanding of backscatter is 
sufficiently advanced to allow this electromagnetic technique to be used to measure 
Fz(w, e). The theory essentially considers the interactions of the radio wave (i) as it 
scatters from an ocean wave (0 )  producing a backscattered wave (s). The relation 
between the wave numbers is 

ks= ki i ko 
with the side condition being simply the application of the Bragg law 

ko= +2ki. 

The  second-order interaction involves the incident radio wave and two ocean waves 
interacting to produce a backscattered radio wave. Similar relations presumably exist 
at higher order. 

Using these relations and others, Munk and Nierenberg (1972) have determined 
that the directional spectrum can be estimated with a single radar frequency looking 
over a relatively large patch of ocean. Considering the vector interaction rules stated 
above, it becomes clear that each small section of ocean in the large patch will provide 
information about one particular ko. A composite picture of F(k) in a region can thus 
be constructed. 

4.3. Joint air-sea measurements 

As we shall see in the following section, there is a distinct need for simultaneous 
measurements of wave field and atmospheric field parameters in the region just above 
the wave surface. This clearly cannot be accomplished with fixed instruments for they 
will be submerged half the time by the waves themselves. With this in mind, then, there 
is a definite requirement for a platform that follows the wave surface enabling scientists 
to measure certain parameters of both fields simultaneously. 

The  first effort in this direction was apparently made by Dobson (1971a,b). 
Working in a very shallow area off Vancouver Island, Dobson constructed a small 
surface following device that enabled simultaneous measurements of atmospheric 
pressure and wave height. There were some instrumental difficulties, however, parti- 
cularly when a white cap inundated the surface float. A somewhat similar system has 
been developed in the laboratory by Shemdin and Hsu (1967). Their system involves 
a wave measuring device hooked into a servosystem which in turn moves a pressure 
sensing device up or down, attempting to keep it a constant distance above the sea 
surface. Improved versions of both of these are presently being developed at Johns 
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Hopkins University (M Peep 1971, private communication). The  next breakthrough 
in obtaining information on the interaction of the atmospheric and the ocean wave field 
will almost certainly come from devices of this nature. 

5. Observations and their relation to theory 
5.1. Introduction 

I n  this section we examine the data available to test the theories discussed in 93. 
A distinction will be made between observations taken in the laboratory and those 
obtained in the natural environment. The  distinction is made since different ranges of 
c / U  and turbulent intensity are generally encountered in the two environments. As 
we saw in $3, different generation and dissipation mechanisms may act selectively 
depending on the environment. Also it may be noted that the laboratory conditions 
are generally more controllable than standard geophysical experiments, and therefore 
it is possible to address, more precisely, discrete physical problems. 

The amount of sophisticated instrumentation that has been brought to bear on the 
wind wave problem has increased tremendously in the last decade. It is perhaps for 
this reason that most of the significant experimental results have surfaced in the last 
five to seven years. This section will concern itself with the highlights of the program- 
mes that gave rise to these results. 

5.2. Observations of wave generation 
5.2.1. Oceanic observations. There are few observations of wave generation in nature, 
and even fewer observations of wave/atmosphere fields during wave generation. In  
this section we divide the discussion into three segments: observations of wave growth; 
energy input to the wave field; and modification of air flow by the waves. 

Wave growth. The first set of significant measurements of wave growth under the 
action of a known wind were reported by Snyder (1965) and later Snyder and Cox 
(1966). In  this experiment a directional wave recorder (accelerometer) was towed at 
constant speed downwind from Eleuthera Island, Bahamas. This low-lying island 
essentially blocked all waves from affecting the measurement area except those waves 
being generated by wind blowing off the leeward coast. A singularity in the spectral 
transformation, relating the true frequency and direction of a wave component to its 
apparent frequency and direction observed from the towed platform, allowed Snyder 
and Cox to estimate the spectral intensity of that component having a group velocity 
equal to the towing velocity (about 3 m s-1). 

They obtained spectral growth curves for a single wave component ( W O  = 1.9 rad 
s-1) over a range of wind speeds between 4 and 10ms-1. From these data they 
quantitatively evaluated the relative importance of the wave growth theories of 
Phillips (1957) and Miles (1957). This was thought possible since only the initial wave 
growth was examined and thus nonlinear effects were assumed to be small. It was also 
assumed that the two mechanisms were the only ones operative. The  results were thus 
expressed as two parameters ‘a’ and ‘p’,  where from $3.2 

The  linear part of the growth (a )  was shown to agree reasonably well with the theory of 
Phillips (1957), in spite of a lack of knowledge regarding the atmospheric turbulence 

aFl(Wo)/at= (a+ pFl),o. 
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field and the uncertainties in evaluation of the theory. However, the major portion of 
the growth (p) was shown to be an order of magnitude higher than that predicted by 
Miles’ theory alone. Assuming the observed growth rates were due entirely to a linear 
input from the atmosphere, Snyder and Cox inferred a momentum transfer from the 
atmosphere to the wave field which was several times greater than the known total 
momentum loss from the atmosphere to the ocean. 

A second and complementary set of measurements of wave growth came almost 
immediately from Barnett and Wilkerson (1967)t. These authors observed the growth 
of the entire spectrum off the east coast of the United States during conditions of strong 
(15 m s-1)) steady offshore wind. The airborne radar (laser) wave profiler ($4.1.1) was 
the instrument used to obtain the basic data. Only one storm was sampled on one 
upwind and one downwind flight path. However, the wind blew long enough to 
achieve a steady fetch-limited condition, ie aF/at= 0, under which equation (3.17) 
reduces to (assuming no refraction) 

Downwind I. Upwind I 

I I I 
0 08 0.10 0.12 0.14 0 08 0.10 0.12 0.14 

True frequency (Hz) 

Figure 3. Exponential growth parameter data. Measurement versus theory. Curves marked 
‘M’ are predicted by Miles (1957), while the curves SC are from the empirical rela- 
tions suggested by Snyder and Cox (1966). The data points are from Barnett and 
Wilkerson (1967). 

The  source function was again linearized (S= a+ j3F& and the values of a and were 
compared with theory and the results of Snyder and Cox. The  data generally con- 
firmed the results of the latter authors: Phillips’ (1957) theory seemed reasonable with 
several provisos, but the Miles’ (1957) theory did not agree with the observations 
(figure 3). 

Barnett and Wilkerson also discovered a previously unsuspected phenomenon 
which they termed the ‘overshoot effect’. It had earlier been believed that a wave 
component grew first linearly with time (distance) then exponentially until it gradually 

t This same type of experiment was later repeated by Schule et al (1971) and Ross et aE 
(1970) with basically the same results. 

47 
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Figure 4. Schematic growth curves for selected frequency component of the wave spectrum. 
(U) Conventional growth curve based on early theories of wave generation, and 
(b) the observed growth curve clearly demonstrating the overshoot effect (after 
Barnett and Sutherland 1968). 

reached an equilibrium value (figure 4a). However, the authors found that actual wave 
growth experienced a history shown in figure q b ) .  The energy assoCiated with the 
peak of the spectrum was found to be consistently higher by factors between 1.2 and 2 
than the asymptotic, equilibrium level approached by the same frequency at larger 
fetches. This feature of wave growth indicated that nonlinear mechanisms might be 
active in the generation process. 

L 

5 

5 

Figure 5. Locrtion mop for the Joint North Sea Wave P m M  ~ONIWAP). 
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( H z )  

Figure 6.  Evolution of the wave spectrum with fetch for offshore wind. Numbers refer to 
JONSWAP stations at which measurements were made (see figure 5). 

The most complete set of measurements of wave growth thus far obtained in nature 
resulted from the JONSWAP experiment (Hasselmann et at 1973). Scientists from four 
countries cooperated to operate an array of up to 13 wave stations quasi-continuously 
for 10 weeks during 1968 and 1969. The  array extended 160 km to the west of the 
Island of Sylt in the North Sea (figure 5) .  Under conditions of offshore (east) winds, 
the array provided excellent one- and two-dimensional fetch-limited spectra with 
which to investigate wave growth. The  data from the best cases (well-defined, quasi- 
stationary offshore wind conditions) gave over 300 spectra from which the following 
results were derived. 

0 4 -  
A”\ Mean JONSWAP spectrum 

- I  5 - \ -Observed spectrum and source funct ion 1 
(for similarity law) i g  

- 1 0  E 
1 2  
I -  
0 5  $ 

\ 0 Theoretical nonlinear source funct ion 1 = 

-1 3 --- 

0 0 2  0 4  0 6  0 8  I O  
( H z )  

Figure 7. Mean JONSWAP similarity spectrum. Source function S computed from theory and 
similarity laws versus the theoretical prediction of nonlinear source function (after 
Hasselmann et al 1973). 
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(i) The source functions of growing wave spectra exhibit a characteristic plus/ 
minus signature associated with the shift of the sharp spectral peak towards lower 
frequencies (figures 6 and 7). This two-lobed distribution is predicted quantitatively 
by the nonlinear energy transfer due to resonant wave-wave interactions (second-order 
Bragg Scattering, figure 7 ) .  This result seems to confirm the theory of Hasselmann 
(1962) and indicates that the wave-wave interactions play a major role in wave growth. 
Thus the evolution of the sharp spectral peak is found to be a self-stabilized feature of 
this process. 

(ii) At short fetches the energy balance of the main part of the spectrum is governed 
by undetermined energy inputs from the atmosphere to the central part of the spectrum 
(Sin), the nonlinear transfer from this region to higher and lower frequencies (Snl), 
and advection (figure 8). Dissipative processes (Sds) apparently play a minor role in the 

S,,, input from atmosphere 
S,,, nonlinear wave-wave transfer 
S,,,dissipation 

Frequency 

Figure 8. Schematic energy balance for the case of negligible dissipation in the main part of the 
spectrum from the JONSWAP. 

region of maximum spectral energy. The  nonlinear process accounts for the major 
portion of growth at the low-frequency spectral face via a redistribution of energy 
originally put in by the wind to the mid range of the spectrum. At longer fetches the 
situation is not as clear because of the unknown dissipation in the low-frequency part 
of the spectrum. In  general, the data suggest that the scales of the spectrum adjust 
such that the wave-wave interactions continually balance the energy input from 
the wind. 

(iii) For small fetches, approximately 80 h 20% of the momentum transferred 
across the air-sea interface goes into the wave field. This general result is in agreement 
with Dobson’s (1971a,b) direct measurements (below), although the frequency depen- 
dence of the input was not determined by JONSWAP. But the wave field acts as a ‘sieve’, 
for about 80-90% of the wave-induced momentum flux presumably passes directly 
into currents, perhaps via the nonlinear transfer to higher frequencies and subsequent 
dissipation; the rest remains in the wave field and is radiated away. 

These estimates, and the importance of wave-wave interactions in wave generation 
partially remove the paradox introduced by Snyder and Cox (57.2). It can now be seen 
that much of the observed growth could be accounted for by a redistribution of energy 
within the wave field rather than excessive energy inputs from the atmosphere. 
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At large fetches the assumption of zero dissipation in the lower-frequency regions 
yields a minimal atmospheric momentum flux to the waves of order 20% of that 
imparted to the ocean. However, up to 100% is possible if dissipation is important. 

Energy input to waves. The above set of experiments gives rather clear estimates of the 
rates at which the energy spectrum grows. However, there are few estimates of the 
amount of energy actually being put into the wave field by the atmosphere. It is this 
latter information which is required to fully test the wind wave generation theories of 
§3 * 

The  rate at which the atmosphere does work on the wavy sea surface is 

w= <pa5/at> 
where p is the atmospheric pressure and ( is the distortion of the sea surface from its 
mean position; a consistent phase difference between the two signals results in net 
work on the wave field. The  goal, then, is to obtain estimates of bothp and f as func- 
tions of time ($4.4). I n  a rough wind sea this is a formidable task. 

Early attempts at the difficult task of obtaining the necessary data (eg Longuet- 
Higgins et al 1963) were partly successful and stimulated future work. However, it 
was nearly ten years later that the first convincing estimates of (pa[/at> were obtained 
by Dobson (1971a,b). He mounted a sensitive pressure transducer on a small buoy, 
constrained to move vertically up and down a wave staff. Considerable care was taken 
to see that this ‘Lagrangian’ measuring system did not physically interfere with the 
atmospheric flow field thereby introducing extraneous pressure signals. Apparently 
good data were obtained for six different situations with wind speeds ranging between 
3 and 8 m s-1, 

The experiment provided measurements of the phase relation between p and 5 at 
the sea surface over a wide range of c /U.  The measured phase shifts from 180” greatly 
exceeded those predicted by Miles’ (1959) theory. The  discrepancy is displayed in 
figure 9 in terms of the parameter ,!I. Also shown for comparison is a curve summariz- 
ing the results of Snyder and Cox. This introduces an apparent paradox into the wave 
generation problem. Snyder and Cox’s estimates describe the rates of wave growth, and 
Dobson’s data indicate that all of this growth is accounted for by direct atmospheric 
inputs. But what of the JONSWAP data that suggest the major growth is due to wave- 
wave interactions redistributing to lower frequencies energy input to the spectrum at 
‘high’ frequencies? A clear answer to this dichotomy does not appear possible with 
present data. 

Dobson’s data indicated that most of the atmospheric energy input to the wave field 
occurred for frequencies at or slightly above the spectral peak. This observation is 
consistent with the conclusion of JONSWAP inferred from wave growth data alone, 
although as mentioned above it is not consistent with the idea of principal generation 
due to wave-wave interactions. I n  addition, Dobson also found that approximately 
SO% of the available atmospheric momentum flux to the sea was going to the wave field, 
a result again supported by JONSWAP for short fetches. But is the momentum used in 
direct generation of the waves or input to relatively high frequencies for subsequent 
redistribution to lower frequencies? 

In  a complementary study, Elliott (1972) made measurements of pressure and wave 
height in which the pressure sensor was fixed to the wave staff at a constant elevation 
above the mean sea surface. The  data showed phase differences between pressure and 
waves during active generation of about 135” as opposed to the 180” value expected 
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from potential theory alone. The  phase relation extended to a height of at least one 
wave length for each frequency considered. 

There is an important discrepancy between the Dobson and Elliott experiments 
which is yet to be resolved. Dobson finds active generation occurring for waves 
travelling at, or slightly slower than, the local wind speed. Elliott found that active wave 
generation appears to occur only when the wind is greater than about twice the wave 
phase speed. This disagreement, viewed in the light of the paradox described above, 
dictates the need for additional field observations of the rate at which the atmosphere 
inputs momentum to the wave field. 

Frequency (Hz) 

Figure 9. Exponential growth parameter data from the direct measurements of Dobson (open 
circles) compared with the observation of Snyder and Cox (SC) and the theory of 
Miles (M). 

Air $ow ovey a wavy surface. Recent theories of wave generation ($3.8) involve 
interactions between the mean air flow, the air turbulence and the wave field. Their 
verification will require extensive measurements of the three-dimensional spectrum of 
atmospheric turbulence at different levels above the rough sea surface. The tech- 
nology to  do this is being developed (eg Shemdin 1969). 

However, initial measurements of the turbulence field suggest that theoretical 
verification may not come from field measurements. A group working under Mollo- 
Christensen at M I T  has obtained data which indicate that the field of turbulent 
atmosphere flow is characterized by intermittency which itself is related to the wave 
field (Dorman 1971, Ruggles 1970, Mollo-Christensen 1970, Merceret 1972). Thus 
the act of wave generation may be intermittent to first order, and the generation of 
waves and turbulence is inseparable. These latter statements generally apply to small- 
scale features of both the atmospheric and wave fields. Hence one's view of wave 
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generation may be critically dependent on the type of time-space averaging techniques 
employed in data analysis, for the averaging of nonlinear processes poses serious 
difficulties. On the brighter side, one can hope that the overall influence the processes 
the M I T  group are studying is not of first-order importance to the energy balance of 
the spectrum at mid to low ranges of c / U ,  where the maximum energy is found. 

5.2.2. Laboratory observations of wave growth. Laboratory studies of wave growth 
during the last fifteen years could almost justify a review paper by themselves. How- 
ever, in the following section we attempt to state succinctly the sense of the results in 
three major areas, including several references and pointing out areas of potential 
disagreement. The  three areas are: estimates of wave growth; attempts to validate 
theories of wave generation; and studies of the nature of air flow over a free water 
surface. 

Wavegrowth. Well-defined measurements of spectral development have been obtained 
by Sutherland (1968), Mitsuyasu (1968) and Hidy and Plate (1966), among others. 
The  first two authors obtained estimates of sequential growth that are in satisfying 
qualitative agreement with field observations discussed in the previous section. The  
major portion of the growth is exponential in nature, and the spectrum is limited at 
high frequency by an equilibrium form. The  overshoot effect also is a prominent 
feature of the data (figure 10). The presence of a nonlinear generating mechanism is 
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Figure 10. Power spectra of fetch-limited waves at different distances downwind (after Suther- 
land 1968). Note the pronounced overshoot effect, 
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thus strongly suggested. The  latter authors, however, display sequential spectra that 
do not exhibit significant overshoots. This conflict does not appear to be caused by 
experimental set-up or data analysis. An explanation of this discrepancy, while in 
order, has not been offered. 

VeviJcation of theory. The major focus of the laboratory work over the past decade has 
been to verify Miles’ (1959, 1962) theories of wave generation. The results have been, 
until recently, remarkably disparate. 

Hidy and Plate (1966) observed waves generated by a fan blowing air over a large 
tank of water. Using wind velocity profiles measured with Pitot tubes and taking 
account of Doppler effects due to wind-induced water currents, they concluded that 
the combined Miles-Phillips theories could be used to predict observed wave growth 
to within a factor of two. The authors find numerous reasons to explain the factor of 
two, perhaps the most crucial of which is the fact that the wind profile is not that as- 
sumed in Miles’ theory. Sutherland (1968), on the other hand, conducted essentially 
the same experiment with the opposite conclusion: ‘The viscous Reynolds’ stress 
theory. . . (Miles 1962) . . . is thus inadequate for predicting growth rates in situa- 
tions where a spectrum of waves is involved.’ His experimental wind profiles were 
found to differ slightly but significantly from the expected logarithmic profile, and it 
also seemed highly unlikely that the viscous sublayer called for by theory existed in the 
study. 

Another approach to checking theory was adopted by Shemdin and Hsu (1967). 
Using a pressure sensor that followed the water surface?, they obtained measurements 
of aerodynamic pressure distribution at the interface between a wind field and a simple 
progressive wave$. The instability theories for shear flow past a wavy boundary predict 
a phase shift such that 

<pat/at> # 0. 

The  authors found a phase shift that was in rather good agreement with Miles’ predic- 
tions, although they too had difficulty in defining the details of the air flow required for 
an evaluation of theory. 

However, Bole and Hsu (1969), working also with mechanically generated waves 
(in the same wind wave facility), conclude that the instability theory predicts rates of 
growth that are typically a factor of three less than actually observed. The latter 
authors attribute the discrepancy between their results and those of Shemdin and Hsu 
to instrumental and analytical difficulties experienced by the latter authors. The  list of 
potential errors is impressively indicative of the difficulty of the measurement. 

Other experimental studies by Hires (1968) and Wilson (1971) seem to substantiate 
the fact that even under specifically designed experiments the instability theory fails to 
account for the observations. 

The  problem of experimental verification of (linear) instability theories has been 
put in perspective by Stewart (1970). Working in a small, but carefully designed wind 
wave tank, Stewart measured the mean velocity field over monochromatic deep water 
waves with a hot-wire anemometer for a range of Ulc between 0.4 and 3.0. The wave- 
induced perturbation velocity field and its associated Reynolds stresses were also 
measured. These observations were compared with the several linear theories which 

t Recall Longuet-Higgins et  aZ(1963) and Dobson (1971a,b) used a similar technique in the 
field. 

1 In the preceding paragraph the authors worked with a full spectrum of waves. 
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purported to predict the wave-induced perturbation velocities (Miles 1959, Davis 1970). 
The  basic conclusion was that while the theories could predict the qualitative nature of 
the results, they could not consistently and quantitatively reproduce the observations. 

Numerical experiments in evaluating the theories (Stewart 1970, Davis 1970) 
showed the results to be highly sensitive to flow field uncertainties ; uncertainties com- 
parable with experimental errors in the previously mentioned works. The  experi- 
mental data also clearly demonstrated the importance of viscosity to the wave genera- 
tion process. This factor, plus the resulting wave-induced Reynolds stresses, indicates 
rather strongly that the process of wave generation cannot be explained by a linear 
(shear flow) instability theory. 

The  major problems raised in this section thus seem explained by a combination of 
experimental inaccuracy, difficulty in evaluating theories, and the fact that wave 
generation must be explained by a more detailed theory than has heretofore been 
tested. 

Air jow  over a wavy surface. The basic problem now facing experimentalists is to 
determine how the atmospheric turbulence spectrum interacts with the mean flow field 
and the surface wave field. 

Previous workers (eg Hidy and Plate 1966, Sutherland 1968) present data which 
suggest that the mean velocity profile over the rough wavy surface is logarithmic, 
although others disagree (Shemdin and Hsu 1967, Shemdin 1969). However, more 
recent work (Wu 1968, Stewart 1970) seems to confirm the logarithmic profile at least 
above the viscous sublayer that lies very close to the water surface. In  other words, the 
wavy, free surface appears to the wind as a rough, unmoving surface (the ‘law of the 
wall’ applies). 

An important contribution of Wu’s work is the fact that the ‘roughness’ parameter 
(zo) necessary to the logarithmic profile, ie U(z) - U1 In (also), is a function of surface 
wave height. As the waves increase to the point where wave breaking (white capping) 
occurs, the dependence of zo on wind undergoes a radical change. At higher wind 
velocities the surface roughness is proportional to the average height of the principal 
gravity waves. This result, plus the observations by Shemdin and Stewart that the 
profile over a wave crest differs from that over the trough, indicates an inseparable 
interaction between the two media. 

All theories to date (except that of Jeffreys) require continuous flow above the wavy 
surface. Under conditions of high, short-crested waves and wave breaking this 
idealization seems unlikely to hold. Indeed, separation of the air flow to the leeward of 
a wave crest may explain the marked change in xo observed by Wu. A similar situation 
may account for the intermittency observed by Ruggles in nature (95.1.1). 

Laboratory data for the occurrence of separationt come from Shemdin (1969). The  
air flow in a reference frame travelling with his (mechanically generated) wave exhibited 
vortex motion. At wind speed less than the wave speed a high-pressure zone led the 
wave crest, indicating negative momentum transfer. The  situation is just reversed for 
U > c .  If this result can be confirmed, it suggests that wave generation is a strong 
interaction (as opposed to Hasselmann’s weak interaction theory) that will be difficult 
to treat theoretically. 

In  summary, available data suggest that the wave-induced Reynolds stresses 

-f Any experienced sailor who has encountered high seas in a smallish boat could also attest 
to the occurrence of something like flow separation. 
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contribute significantly to the momentum budget of the wave field. Hence the inter- 
action of surface waves with the turbulent flow above them appears to be an important 
force in the generation of the waves themselves. This process is at least partially 
represented by 5’4 in the energy balance equation of $3.1. 

5.3. Observations of wave dissipation 

In  this section we consider the mechanisms that dissipate wave energy in the open 
sea and in shallow water. The open ocean mechanisms can include wave breaking 
(white capping aided by nonlinear wave-wave interactions) and adverse wind action. 
Dissipation in shallow water is generally thought to be due to bottom friction, al- 
though, as we shall see, this assumption may not be valid. In  view of the dearth of 
observations of wave dissipation, we combine results from both nature and the labora- 
tory in the following discussion. 

White capping. Anyone who has seen an aroused sea under the action of a 10-20 m s-1 
wind would agree that white capping is a most obvious means of wave dissipation. Yet 
this mechanism has not yet been accounted for theoreticallyt or experimentally. The 
best we can do now is to maintain faith in the effectiveness of the mechanism and 
invoke it to explain the high-frequency characteristics of the wave spectrum. This is a 
deplorable state of affairs. 

Opposing wind. Another obvious mechanism for wave attenuation is the action of an 
opposing wind field. Theoretical estimates of this effect are only now being made 
($3.8). Observations with which to check the theory, while not numerous, are ade- 
quate to set some limits on the magnitude of the process. Dobson (1971a,b) used 
essentially the field experimental set-up described in $5.2.1 to make simultaneous 
observation of p ,  af ja t  and U for waves propagating against the wind. With a very 
limited number of data, he found rates of attenuation comparable with rates of genera- 
tion and 104 times greater than viscous damping alone. The sense of the momentum 
flux was such that the wind was receiving momentum from the waves. The  observed 
values of wave attenuation were only 30% less than those predicted by Phillips (1963), 
who developed his theory by considering the interaction of turbulent and wave-induced 
Reynolds stresses. Yet Dobson seems to discount this agreement with theory on the 
grounds that ‘turbulence levels were so low’. 

Shemdin (1969) and Dobson (1971b) also observe attenuation for waves travelling 
with, but faster than, the wind. The former author, using laboratory data, attributes 
this effect to flow separation; the latter offers no explanation. Both authors show the 
generation-dissipation process to vary rather smoothly through the range of c /U$ l .  
Unfortunately the attenuation measurements are generally closely confined to the 
region ci U N 1. 

The  most complete set of measurements of waves propagating against a wind field 
has been provided by JONSWAP. Several situations occurred where a quasi-stationary, 
onshore wave field was being opposed by offshore winds up to 13 m s-1. The estimates 
of observed wave attenuation rates (I?) as functions of wind speed are shown in figure 
11. It was concluded that I? was insensitive to either wind speed or the component of 
wind velocity parallel to the swell propagation direction. 

.f. Hasselmann (1974) has recently offered a theoretical explanation of white capping and its 
effect on the energy balance of the wave spectrum. 
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Figure 11. Decay parameter I? versus wind speed and component of wind speed parallel to 
swell propagation direction. The stepped lines denote 95 % confidence limits 
within which the data fall. These confidence limits are based on approximately 
80 data points. 

In  summary, the effect of an opposing wind on a wave field is uncertain. The  
apparent difference between the results of Dobson and Shemdin must be reconciled 
with the voluminous JONSWAP data. 

Swell attenuation. A unique set of wave attenuation observations has been provided by 
Snodgrass et a1 (1966) via their swell attenuation study (SAS). Waves (swell) were 
observed with pressure transducers along their great circle propagation path from New 
Zealand to Alaska. The  decrease in energy along the path was expressed in terms of 
dB/degree of latitude. For frequencies below 0.07 Hz the attenuation was negligible 
(<0*02 dB deg-1). At 0.08 Hz the rate was 0.15 dB deg-1, and at higher frequencies 
the rate was too large to be accurately estimated with the station spacing used in the 
experiment. The  results indicated that once outside the generating area, low- 
frequency wave energy (swell) travels the length of the Pacific (through all types of 
wind-wave conditions) with virtually no attenuation. The  fact that several theories 
(Hasselmann 1962, Phillips 1966) predict this negative result is encouraging but 
hardly substantiation for their validity. Further, the results seem to refute the idea 
(Phillips 1963) that preferential white capping on a swell crest can lead to substantial 
wave attenuation, since no measurable attenuation occurred as the swell passed 
through the Trade Wind Zones. 

Another major finding of SAS indicated that the rates of wave dissipation in the 
near-storm region were not inconsistent with that predicted by Hasselmann's wave- 
wave interaction theory. However, the experimental design precluded a substantiation 
of the theory. SAS did establish the fact that the attenuative effect of wave breaking and 
wave-wave interaction were roughly comparable. 

Additional support for the potential dissipative effect of wave-wave interaction has 
been provided indirectly by Mitsuyasu (1964), and Mitsuyasu and Kimura (1965). 
A spectrum of waves was generated by wind in the first half of a large wave tank. The  
latter half of the tank experienced no wind. The  redistribution of energy within the 
spectrum as the waves propagated through the calm area was measured and found to 
be dependent on the characteristics of the initial wave field. The  shape of the 'attenu- 
ation' curves when plotted against wave frequency was in qualitative and quantitative 
agreement with approximate theoretical calculations. However, the wave-wave 
scattering theory requires that the integral of the source function over the frequency 
range 0 to 00 be zero, ie energy be conserved. This condition was not obtained in 
Mitsuyasu's experiment. Evidently the theory has some shortcoming, or, equally 
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likely, other energy transfer processes were operative in addition to the wave-wave 
mechanism. More will be said about the wave-wave interactions in $5.4. 

Shallow water ejfects. Wave dissipation mechanisms of increasing practical importance 
are those which occur in shallow water, for it is well known that they actively effect the 
wave spectrum as it propagates on to the continental margins. Early estimates of this 

( H z f  

Figure 12. Examples of swell peaks observed during selected JONSWAP dissipation case. 
Numbers refer to wave stations (see figure 5). Note that the swell energy decreases 
towards shore with the exception of station 1 where the energy is presumably 
enhanced by shoaling effects. 

mechanism were obtained by assuming a quadratic friction law and a friction co- 
efficient of the order 10-2. Hasselmann and Collins (1968) developed a theory of 
attenuation due to friction associated with turbulent bottom boundary currents which 
seemed in accord with the small number of data available to them (eg Walden and 
Ruback 1967). 

< -0.z1- 
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V(m s-') Hours relative t o  high tide a t  Heligoiand 

Figure 13. Swell decay parameter r versus current speed V and tidal phase. 95% confidence 
intervals are as before. The Hasselmann-Collins' (1968) theory calls for a decay 
rate that is linear in V (straight line in left-hand panel). The attenuation should 
experience modulation at tidal frequencies. This is not observed in the right-hand 
panel. 
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However, detailed analysis of the JONSWAP data, while in order-of-magnitude 
agreement with the previous observations, contradicts a significant prediction of the 
Hasselmann and Collins theory. A quadratic friction law should lead to a strong 
modulation of swell decay rates by tidal currents. Experimentally no such variation is 
found. 

The JONSWAP observation stations were situated as shown in figure 5 .  The energy 
content of long waves moving onshore and feeling bottom could be monitored regu- 
larly with this experimental set-up. Other significant geophysical variables (eg current, 
wind, etc) were monitored simultaneously. A typical case study is shown in figure 12, 
where sequential spectra for six different stations are presented. The rate of attenua- 
tion (r) was computed for this and numerous other cases. The  results are summarized 
in figures 13 and 14. The  illustrations show that I' had no first-order dependence on 
bottom current, tidal phase, swell direction, or swell frequency. There was some 
indication of a dependence on swell energy itself. 

Figure 14. Decay parameter r versus wave frequency and energy flux I. The 95 % confidence 
lines are defined as before. Note the apparent relation between decay r and energy 
I. Illustration after Hasselmann et a1 (1973). 

The most plausible explanation for the above result has been offered by Long 
(1973), who shows that the observed attenuation could be produced by backscattering 
(Bragg interactions) with bottom irregularities of scale comparable with the wave 
length of the swell. The  information on the spectra of bottom irregularities and swell 
field are not presently adequate to test this theory. 

5.4. Nonlinear properties of the wave field 
As the previous sections have shown, the nonlinear aspects of surface waves hold 

one of the keys to future progress in the field, even though the nonlinearities are quite 
weak. Experimental verification of nonlinear theories is generally not easy, but several 
wave studies have, nevertheless, apparently confirmed theoretical predictions. 

Many authors (eg Phillips 1960, Hasselmann 1962, Longuet-Higgins 1962a,b) have 
considered the interaction between four intersecting waves. Under certain conditions 
($3.3) a resonance and energy interchange can occur. Following an earlier suggestion 
of Longuet-Higgins (1962a,b), both Longuet-Higgins and Smith (1966) and McGold- 
rick et a1 (1966) performed a set of detailed laboratory experiments designed to test the 
interaction theory. Two different wave trains were generated mechanically along the 
adjacent walls of a square wave tank. By adjusting the wave frequency ratios to that 
required for resonance the authors were able to generate a third wave train whose 
original amplitude had been zero (two of four interacting waves required by theory 
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were identical). The  experiment confirmed the theoretical requirement for the 
existence of this third wave, while simultaneously confirming its expected growth rate 
and dependence of the growth rate on the amplitude of the original waves. McGold- 
rick (1970) has extended the study of nonlinear wave interaction to the case where both 
gravity and surface tension are important restoring forces. The  theory was again found 
to be generally valid. 

Complementary experiments reported by Benjamin (1967) also clearly suggest the 
applicability of the nonlinear theory for simple plane waves. The  authors showed that 
a classical Stokes solution to the basic wave equations are, in a sense, unstable in the 
presence of small perturbations. The  resulting ‘wave-wave’ interactions lead to a 

r3 

0.2 

Frequency (Hz)  

Figure 15. Wave spectrum and rate of energy transfer (after Mitsuyasu 1968). Theoretical 
transfer rates are calculated from nonlinear wave-wave interaction theory. 

degeneration of the original wave form into a series of groups. The  energy density 
associated with these groups may become so concentrated in physical space that wave 
breaking actually occurs. 

In  a fully aroused wind sea the nonlinear theory is more difficult and must be 
approached from a statistical point of view (cf 93.3). Attempts to directly verify the 
theory under these circumstances are difficult at best; however, two successful studies 
indicate that the weak wave-wave interactions do exist in the presence of a spectrum 
and that they are of first-order importance to the energy balance of the wave field. 

The  many experimental results discussed in the previous sections have all suggested 
that wave-wave interactions were operative. Barnett and Sutherland (1968) showed 
that the features of spectral development in both nature and laboratory could be scaled 
according to properties of the observed wave fields so as to be virtualfy identicaI. This 
result further suggested the existence and activity of nonlinear interactions. 
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Laboratory results on growth and decay (95.3) of a random, wind-generated wave 
field by Mitsuyasu (1968) give additional though not conclusive proof of the generalized 
theory of Hasselmann (93.3). Mitsuyasu obtained source functions that had the same 
characteristic plus/minus signature as those obtained by JONSWAP. He used a para- 
meterization of the theoretical nonlinear source function to compare theory with his 
observations. An example of the agreement he obtained is shown in figure 15. The  
agreement is at first remarkable, for the parametric approximation to theory was done 
for energies and frequencies 1-4 orders of magnitude removed from those studied by 
Mitsuyasu. The  self-similar nature of the wave-wave interactions, however, allows 
such a scaling to be successful. 

The  JONSWAP data previously discussed in 55.2.1 gave rather convincing proof of the 
efficiency and accuracy of the wave-wave theory (see figure 7 ) .  Until an equally 
appealing, alternative explanation for the above results is developed, the wave-wave 
interaction theory must be assumed to be approximately valid. 

5.5. Major features of the wave$eld 
Over the years, great attention has been focused on the description of certain 

aspects of the wave field. We have selected three of these features to review here briefly. 
These areas are: the directional properties of a wind sea; the asymptotic shape of 
the spectrum at high frequencies; and the shape of the spectrum at various stages of its 
evolution. Study in these areas, while not always directly applicable to understanding 
wave energy transfer process, has provided a set of background information which has 
helped to guide the selection of areas of research on wind waves. Unfortunately, 
perhaps too much effort has been devoted to these and other associated areas of study, 
thereby avoiding some of the more crucial questions that have been lying around 
unanswered for fifteen years (see 97). 

Directional properties. The distribution of wave energy in k space for a fully aroused 
wind sea was first estimated with some accuracy during the SWOP project by Cote et a1 
(1960) (see $4.2). Using several aircraft the authors obtained stereo photos of the 
rough sea surface under the action of a steady wind. After a tremendous effort the 
authors finally obtained two estimates of E(x,y) over a small area of ocean. The  
resulting Fourier transformation gave an angular spreading function H of the form 

H(8)= 1 + ul exp ( - b )  COS 28+ a2 exp ( - b )  COS 48 

where 8 = 0" is the direction of the wind, a6 are constants, and b = +(U U/g)4. Basically 
the equation says that the waves are distributed as cos2 near the spectral peak, with the 
beam width broadening at higher frequencies. 

A substantial advance in estimating H(  8) was made by Longuet-Higgins et a1 (1963) 
and Cartwright and Smith (1964). Using the measured tilt and acceleration of a 
floating buoy (§4.2), the authors fit the observations with a spreading function of the 
form 

H(B)=cos8(8/2); --T<O<T and s=s(w).  (5  a 1) 

The  values of s ranged from 1 at high frequencies to 10 at low frequencies. Sub- 
sequent measurements by Ewing (1969) with the same instrument have confirmed the 
general pattern. 
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A recent experiment by Tyler et aZ(l972) has used a unique measurement tech- 
nique to further confirm the form of H. Radio waves in the 2-30 MHz frequency 
band were scattered off ocean waves with the back scatter signal being interpreted with 
first-order Bragg theory (Barrick 1972, $4.2). By moving the radio receiver the authors 
synthesized an antenna with an angular resolution of 5 3". The directional spread 
estimates were obtained and checked against a pitch and roll buoy of the type used by 
Longuet-Higgins et aZ(l963). 

The resulting spread was fit by a function virtually identical to cos8 (ej2). The 
resulting estimates of s are plotted in figure 16 against p( = U/cK), where K is von 
Karman's constant and the other symbols are as before. The data essentially confirm 
the results of Longuet-Higgins et al. 

0 Tyler et U/ (1972) 
Radio est imates  

16 

v Longuet-Higgins et o/ (19631, pitch and 
roll buoy 12 

cc 
Figure 16. Summary plot of wind wave spread estimates. Pitch and roll buoy measurements 

of Tyler et aZ(l972) are shown by open circles. The Longuet-Higgins et al (1963) 
measurements (triangles) are connected by a line, and the radio measurements are 
indicated by full circles. See 95.5, equation (5.1) for definition of parameters S 
and p .  

Less accurate estimates of spread made under generation conditions during 
JONSWAP show distributions of wave energy with 8 that are in agreement with the 
preceding results. The  JONSWAP data also indicate that the spread could be scaled 
relative to the local spectral peak such that H=H(B,f l fm),  wherefm is the true fre- 
quency of the peak (= w , / 2 ~ )  and f = w/2n.  

In  view of the above, we may conclude that the direction properties of a growing or 
fully aroused wind sea are roughly known to first order. 

High-frequency shape. The  slope of the spectrum for frequencies higher than that of 
the peak has attracted much attention, principally because the quantity is easy to 
measure and because there was a dimensional argument that predicted that the form 
of the spectrum in this region should be proportional to frequency to the inverse fifth 
power ($3.6). Burling (1959), Kinsman (1960) and numerous others have estimated 
the slope of this high-frequency tail and found it to be approximately - 5 as predicted 
by Phillips (1958). However, the authors of these studies always find it necessary to 
invoke diferent values of the constant of proportionality, in order to obtain agreement 
between theory and observation. 
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Figure 17. Upper panel: Frequency of maximum energy (spectral peak) versus fetch scaled 
according to Kitaigorodskii. Illustration after Hasselmann et al (1973). Lower 
panel : Phillips’ ‘constant’ versus fetch scaled according to Kitaigorodskii. Small 
fetch data are obtained from wind wave tanks. Illustration after Hasselmann et aE 
(1973). 

The results of JONSWAP, illustrated in figure 17 with those of other workers, put the 
matter in perspective. The proportionality ‘constant’ is clearly variable, being depen- 
dent on nondimensional fetch ( = xg/ U2). The full line is the theoretical prediction of 
Kitaigorodskii (1962) which will be discussed shortly. 

The failure of the original theory stems from the fact that wave breaking was 
thought to be the only dissipative mechanism controlling wave growth. Within the 
frequency rangefm to 3fm it was found that the energy balance results principally 
between the atmosphere energy input and the nonlinear energy transfer to higher and 
lower frequencies. Only at higher frequencies ( > 3fm) does wave breaking come to the 
fore. Under these conditions a simple dimensional argument could not succeed. 

Spectral shapes. In the mid and late 1950s it seemed that each worker in the field of 
ocean waves had proposed a different functional form for the ‘fully developed’ 

48 
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spectrum. This was the maximum or steady-state spectrum that characterized a 
particular wind speed. Once reached, the fully developed spectrum was independent 
of x or t provided the wind did not change ($3.6). 

Neumann (1953) first proposed a ‘fully developed’ spectrum of the form 

F ~ ( w )  = constant x W-6 exp ( - 2gZ/Uz~z) (5 4 
from visual observations of wave height taken aboard merchant ships. Darbyshire 
(1955, 1959), Roll and Fischer (1956), Burling (1959) and Bretschneider (1959) all 
followed with different forms. The  arguments that fill the literature over the func- 
tional forms, magnitude of constants and analysis methods used to estimate the fully 
developed spectrum make amusing reading (cf Ocean Wave Spectra 1963). In  
summary, it is fair to say that most authors were dealing with poorly defined data, 
analysed by then new techniques. Much of the confusion resulted from these 
sources. 

Determined to settle the many disagreements, Willard Pierson set about a spectral 
analysis of wave data measured at British weather ships ($2.2). Great care was put into 
the data analysis and even greater care into the analysis of weather maps describing the 
wind fields that gave rise to the observed waves. These maps were a prime means of 
determining what was or was not a ‘fully developed’ spectrum. The functional form 
eventually arrived at (Pierson and Moskowitz 1964) after examining over 400 cases was 
given in equation (3.31). A key item in this definition is that the wind be measured at 
19.5 m above the sea surface. The  fact that other authors used winds at different levels 
of a logarithmic profile was found to be the source of some of the past discrepancy$. 
The  reader should beware, however, for there has been no convincing demonstration 
that a ‘fully developed’ spectrum should exist. 

As has been hinted in $5.2.1, the process of wave generation produces a self- 
similar spectrum that depends only on fetch, local friction velocity (wind speed), and 
gravity, This was predicted on dimensional grounds by Kitaigorodskii (1962) and 
confirmed by Mitsuyasu (1968, 1969), Liu (1971) and JONSWAP, among others. The 
field measurements suggest a functional form set forth by JONSWAP : 

f2 = constant (see figure 18). 

Note that true frequency f ( = w/277) has been used in (5.3). 
The  dependence of y on fetch has been discussed (figure 17, lower panel), while the 

dependences of fm, etc are shown in figures 17 (upper panel) and 18 along with the 
results of other authors. A schematic of the spectrum is shown in figure 19. Under 
simple wind conditions it is evidently now possible to specify the form of the spectrum 
from knowledge of fetch and wind speed alone. 

The  fetch-limited spectral form is quite similar to the ‘fully developed’ form 
(equation 3.31) labelled E P M  in figure 19 except for the shape function (second square 

.f. Which brings up several points we have carefully avoided in this article so far: At what 
elevation should the wind be measured? How does one define the ‘mean’ or ‘effective’ wind? 
See $7. 
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Figure 18. Shape parameters for the similarity spectrum observed during the JONSWAP project 
versus nondimensional fetch. The scatter in the parameters seems real and is most 
likely accounted for by variability in the wind field inducing similar variability in the 
wave field. See $5.5, equation (3.28) and figure 20 for definition of variables. 

brackets in equation 5.3). This exception introduces a discrepancy between the avail- 
able data that is presently unresolvable. If a fully developed spectrum exists, then 
there must be an attenuation mechanism that extracts energy from waves moving faster 
than the wind. This dissipative mechanism could balance the positive energy contribu- 
tion by wave-wave interactions to the low-frequency region, thus allowing a fully 
developed spectrum. Such a condition is hinted at by a small number of data (eg 
Dobson 1971a,b); however, it is by no means established. 

Frequency f m  

Figure 19. Schematic view of the best-fit fetch-limited spectrum obtained during the JONSWAP 
project. Definition of the free parameters and the functional fit is illustrated in the 
figure. 
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6. Wave prediction-the combining of theory and observation 
6.1. Introductory remarks 

Since 1955 progress in the prediction of wind waves has gone in two main directions. 
One group has attempted to establish prediction methods based on a concept of 
significant wave height? and easily observable properties of the spectrum. A second 
group has attempted to predict waves using the concepts of wave spectrum and the 
theories and observations that have been discussed in the last sections. The divergence 
between these groups, particularly in the last ten years, is remarkable. The €ormer 
group, seeking to predict the significant wave height, has made virtually no use of the 
theory and observations described above. Their goal has been a simple, fast method of 
estimating the gross properties of the wave field. The present authors will devote their 
entire attention to wave prediction methods based on the concept of a wave spectrum 
and the more recent advances in theory and observations. The ‘significant wave’ 
prediction methods are seen to be simplifications of the more complex spectral 
methods. 

Within the spectral school there have been two major areas of approach. These 
have recently coalesced so that it is now probably safe to say that those interested in 
predicting wind wave spectra have agreed on a general approach. In  the late fifties and 
early sixties, however, such agreement was far from common. One group, led by 
Willard Pierson and members of his staff at New York University (NYU), took the 
philosophy that available theory was inadequate to describe wind wave processes and 
that the most fruitful approach would be to build prediction models based on data and 
a few ‘solid’ concepts such as the spectrum, group velocity, etc. Another group, led by 
the work of Gelci et a1 (1956), Groves and Melcer (1961) and Hasselmann (1960), took 
the approach that the wave prediction problem should be founded on firm theoretical 
ground. It was this latter work that led to the introduction of the radiative transfer 
equation as a basic framework around which to build a wave prediction model. As the 
reader might expect, the data-based models needed the theory to make them coherent, 
while the theoretical models needed considerable ‘empirical brushing up’ to make 
them produce reasonable results. Present wave forecasting models are, therefore, a 
combination of theory and observation. These two ingredients have been blended to 
provide reasonably good hindcasts (after-the-fact predictions) of the wave spectrum 
under a number of different and complex geophysical situations. 

6.2. Numerical forecasts of wave spectra 
First efforts along these lines were made by Baer (1962), who took the work of 

Pierson, Neumann and James (PNJ), $2.4, and programmed it for a large digital 
computer. Baer took on the then ambitious task of attempting predictions for the 
entire North Atlantic Ocean. For verification data he proposed to use spectra obtained 
from British weather ships some 300 miles off the English coast. Baer’s problems were 
many, but two are most important in the context of this review. These are: the 
methods by which wave energy propagated over the surface of the ocean; and the 
methods by which the wind was allowed to generate waves. 

In  the Baer model, and later NYU models, a grid network was established over the 
North Atlantic with a spacing between grid points of approximately 200 nautical miles. 

f The ‘significant wave height’ is proportional to the total energy of the spectrum (Longuet- 
Higgins 1952). 
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At each grid point a two-dimensional energy spectrum was defined by a discrete series 
of frequencies and directions of wave propagation. The  approach to the propagation 
problem was simple and is best described in Baer’s own words: ‘In principle what was 
done was to keep track of how far past and to the side of an average gridpoint the wave 
components were. Then when the component had moved far enough to reach an 
adjacent gridpoint, the energy was jumped (to the adjacent gridpoint). Thus if it takes 
say three time steps for a particular component to travel to the adjacent gridpoint, on 
every third step the entire field will be jumped. That is to say, the energy from a grid- 
point upstream replaces the energy at the adjacent gridpoint downstream.’ This 
technique can lead to substantial errors in the rectangular coordinate system that was 
used in the Baer model. Nevertheless, it was a first approximation to solving the 
energy propagation problem. 

*Or c 

Frequency (Hz) 

Figure 20. Comparison of the observed and hindcasted one-dimensional wave spectrum 
produced by the Baer (1962) model. The full curves represent the observed wave 
spectrum, while the speckled areas represent the hindcasted spectrum. 

Wave growth was based on the concept of the Neumann spectrum (equation 5.2, 
55.5) and on a table which described the maximum allowable growth of the spectrum 
in a selected time interval (two hours in this case). In  practice the method worked like 
this: Given a partially developed Neumann spectrum and a given wind speed, the 
computer would enter the table and determine the total amount of energy to be added 
to the spectrum over the next time step. This energy would be distributed in both 
frequency and direction space so that the following criteria were satisfied: first, that the 
highest frequencies were fully developed before any energy was given to the low 
frequencies; and second, that when adding energy at a fixed frequency, the energy 
would be spread over direction in a method similar to the directional energy distribu- 
tions observed during the SWOP experiment (55.5). Such a generation technique led to 
a power spectrum that grew from high frequencies to low frequencies. It possessed a 
sharp, steep, forward face which is a common feature of most observed wave spectra. 

The  Baer model was used to hindcast wave spectra observed at the British weather 
ships. A typical comparison of hindcast and observation is shown in figure 20. These 
results obviously leave something to be desired. Nevertheless they represent the first 
attempt to forecast the wind wave spectrum numerically. 

Over the next years, Pierson with numerous co-workers spent much effort in 
developing a better estimate for the fully developed spectrum (see 55).  Also, the 
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growth tables used by Baer were at first refined and then discarded in favour of one 
form of the radiative transfer equation (3.17),  namely 

aFz(w, 8)/at=sl+Sz+S4-S& (6.1) 
This transition to the theoretical frame provided by the radiative transfer equation 

is best described in the works of Pierson et aZ(1966) and Inoue (1967). The  first three 
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Figure 21. A comparison of the observed and hindcasted one-dimensional wave spectrum 
produced by the NYU model (Inoue 1967). The symbols I and I1 represent 
observations bracketing the time of the hindcast. The observed wind speeds are 
also given. 

terms of equation (6.1) were to represent the combined theories of Phillips and Miles 
as amended by Phillips (1966). The numerical values used in equation (6.1) bear little 
resemblance to these theories, however, and the resulting wave predictions would be 
poor if the growth were not limited by the functional form of the fully developed 
spectrum (Sa). Effects of wave-wave interactions were explicitly neglected. Wave 
breaking and other dissipation processes are implicitly included by assuming a 
limited form for the fully developed spectrum. 

The  hindcast verifications found by Inoue are considered rather good (figure 21). 
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Unfortunately the comparisons are not entirely independent, since some of the 
verification data were used in construction of the model. Other independent checks, 
however, have given results in reasonable agreement with the numerical predictions. 

6.3. Prediction models based on the radiative transfer equation 

Realizing that the radiative transfer equation (3.17) described the energy balance 
of the wave spectrum, Gelci et a1 (1956) and a succession of his collaborators attempted 
to use it to hindcast ocean waves. This initial suggestion, augmented by Groves and 
Melcer (1961) and put in perspective by Hasselmann (1960), has eventually been 
adopted as the rational framework for ocean wave prediction. 

The  early prediction efforts of Gelci were hindered by lack of knowledge concern- 
ing the source function, and thus did not produce good results. However, the propaga- 
tion problem was addressed using standard finite-difference techniques to solve the 
characteristic equation governing the spatial transfer of energy. This approach 
allowed the first rigorous account to be taken of energy propagation. 

Barnett (1966, 1968) used finite-difference methods to solve the radiative transfer 
equation over the entire North Atlantic Ocean under the following assumptions: 

atiaF+ V.V,F= s1 + sz s5 - s6 
where SI is a version of Phillips resonance theory modified by the observations of $5.1, 
Sz is an exponential growth term based entirely on the observations described in $5.1, 
S5 is paramaterizations of the wave-wave interactions (the simplification was needed 
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Figure 22. Predicted power spectra versus measurement. The full curves are observed, while 
the dotted curves are hindcast (after Barnett 1968). 
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since the full theoretical form of S5 requires computational time that far exceeds 
feasibility), and Sa is a representation of wave breaking (limiting growth) based on the 
equilibrium ideas of Phillips (95.5). No assumption of a fully developed spectrum was 
made ! 

Solution of the resulting nonlinear integral differential equation was carried out for 
the same time period as the earlier hindcasts of Inoue and Baer. The  results are shown 
in figure 22. It should be noted that the verification demonstrated in the figure are 
truly independent, as none of the verification data went into the model. 

The  same approach has been followed by Ewing (1971). His formulation utilized a 
more accurate parametric version due to Cartwright of the term S5, and a higher-order 
finite-difference approximation for the advective term of (3.17). Ewing’s comparisons 
were against the two-dimensional spectrum, the first such verifications attempted. 
The results (not shown) gave, in Ewing’s words: ‘. . . adequate estimates of the signifi- 
cant height and one-dimensional wave spectrum. The  standard deviation of all the 
computed estimates of Hi13 compared to measurements is about 0.6 m. Reliable 
estimates of the two-dimensional wave spectrum were only achieved in a limited 
region at the high-frequency end of the spectrum.’ This latter discrepancy was 
attributed to inadequate specification of the wind field. 

6.4. Prediction in shallow water 

Extension of the previous deep water models to shallow water has not progressed 
rapidly. Barnett et a1 (1969) successfully predicted the wave spectra for the shallow 
margins of the South China Sea. The effect of shallow water dissipation was added to 
the source terms described in $6.2 via the Hasselmann-Collins theory (9s3.5 and 5.3). 
Propagation and refractive effects in shallow water were included, with the assumption 
of parallel bottom depth contours. This allowed easy solution of the characteristic 
equations (3.18) governing propagation, and immediately eliminated the occurrence of 
caustics (ray path intersections) which greatly complicate the shallow water problem. 
The  resulting hindcasts (not shown) compared well with both measured wave heights 
and spectral estimates from pressure recorders. 

6.5. Summary 
A basic framework for wind wave prediction has been found in the radiative 

transfer equations. The  propagation of wave energy is properly accounted for in this 
framework by either of several schemes, each with differing amounts of error. Specifi- 
cation of the source function is a blend of theory and data, but generally leads to a non- 
linear integral form of (3.17). However, forms of S so far proposed are certainly in 
need of improvement. The differing specifications of S seem to produce equally good 
hindcasts, indicating that at least a rough quantitative estimation of S is available 
under many different geophysical situations. 

The  basic problem now appears to lie in a better specification of the wind field, for 
the total energy in the wave field is known to be roughly proportional to the square of 
the local wind speed. A small error in wind (eg 10%) can thus lead to a 20% error 
in the total predicted energy. 

The prediction of waves in shallow water and/or for hurricane conditions is just 
beginning. Much of the future advances in the area of wave prediction can be expected 
in these areas. 
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7. Summary and need for additional research 

Great advances have been made over the last twenty years in understanding and 
observing the physical processes effecting wind waves. Yet, in spite of these results, 
we do not yet know the mechanism(s) by which the wind generates waves. The  present 
state of knowledge, while light years ahead of that described by Ursell (1956), is in 
need of considerable improvement. In  this section we will briefly summarize the 
previous sections and offer suggestions for future work in areas that appear to us to be 
particularly needy. 

7.1. Theory 

There are now several theories that can describe wave growth. Earlier theories, 
which did not account for the interaction of the atmospheric turbulence and wave fields, 
have been unable up to now to explain the observations of wave growth. Recent 
theories involving atmospheric turbulence in the wave generation process need to be 
evaluated numerically and tested experimentally. The  nonlinear wave-wave inter- 
action theory, while able to describe the observed growth of the wave spectrum over 
part of the frequency range, does not account for the manner by which the wind 
transfers energy to the wave field. There is also the strong, and apparently growing, 
feeling among some wave researchers that the generation process may be either inter- 
mittent or a ‘strong interaction’ involving separation of the air flow to the leeward of a 
wave crest. The  theory of Jeffreys (1924) offers the only analytic description of the 
latter process. Additional theoretical work is badly needed to consider both the 
‘separation’ and ‘intermittancy’ hypotheses. 

The  theory of wave dissipation is seriously defficient. Wave breaking is undoubtedly 
one of the primary mechanisms of dissipating wave energy. Wave breaking occurs 
during active wave generation and is visible through white capping. So far it has only 
been possible to include the effects of white capping on the energy spectrum by means 
of an empirical expression which is based on dimensional analysisj-. The resulting 
frequency to the minus fifth power has been useful for describing the high-frequency 
range of the wave spectrum, but no further progress in our understanding of this 
process has occurred in the last fifteen years. Any attempts to describe the energy 
budget of the wave spectrum will surely be unsatisfactory until this situation is 
remedied. 

As waves propagate into shallow water near coasts, before they break on the beach, 
there is a very short period of time in their life cycle in which dissipation can occur 
through interactions with irregularities of bottom topography and also through inter- 
actions with turbulent currents near the bottom. Theories for both of these processes 
have been formulated recently (Long 1973, Hasselmann and Collins 1968) and are still 
in the process of being evaluated through comparison with observations. 

A theory for the propagation of wave energy has been available since the 1800s: 
the linear theory of propagation from a limited initial disturbance. This theory has 
been shown to work quite well for propagation of wind waves over great distances in 
the ocean. Once wind waves have left the storm area, their propagation is virtually 
undisturbed until they approach a coast, where the water depth becomes comparable 
with the wave length and the wave rays bend according to known refraction laws. 

.f. An exception to this statement is the recent work of Hasselmann (1974). 
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Ultimately the waves break and dissipate their energy on the beach. However, over 
most of their propagation path, there are very few physical processes which can 
significantly alter the waves according to the observations which are available. For 
example, none of the following processes appears to be important outside of storm 
areas and away from coasts: the effect of the earth’s rotation; molecular or turbulent 
viscous dissipation ; propagation through strong wind belts ; interactions with internal 
gravity waves ; interactions with other surface waves; contamination of the surface by 
films or oil or other material. However, there is one process which can drastically alter 
the propagation of wind waves in the open ocean, and that is the interaction of the 
waves with major ocean currents. The  simple theory describing this phenomenon in 
terms of well-known refraction laws is available. Waves can be totally reflected or 
internally trapped by currents under situations which would seem to be not very 
uncommon in the ocean. As yet there are no observations with which to check these 
rather remarkable predictions of refraction theory. 

In  general, relatively little work has been done on the interaction of waves and 
currents. In  particular, there is no satisfactory theory available which can describe the 
observed simultaneous generation of waves and currents by the wind. The  two prob- 
lems of how much energy and momentum goes into waves and how much goes into 
currents when the wind blows still need a great deal of attention. Perhaps the two 
problems are intrinsically coupled and should not be studied separately. 

7.2. Observation and instrumentation 

Observations and instrumentation have been adequate to provide, with one 
exception (below), reasonable estimates of the growth of the wave spectrum under the 
action of a ‘steady wind’. These relatively few sets of data have provided some crucial 
insight into the processes of wave growth and have been most useful in evaluating 
various wave generation theories. Some limited data are also available on the amount 
of energy and momentum put into the wave field under generation conditions. How- 
ever, these data demonstrate serious inconsistencies when interpreted in the light of the 
growth observations or when compared with each other. 

In  regard to dissipation we have evidence to describe, although not explain, the 
effects of shallow water on the spectrum. The effect of an opposing wind field on the 
wave spectrum is only partially documented for swell conditions, but not documented 
at all for a fully arisen sea. There are no direct observations of dissipation due to 
white capping. 

The characteristic shape and behaviour of the spectrum under generation circum- 
stances are known and qualitatively explained. The  high-frequency portion of the 
spectrum in most cases is well described, though not completely understood, in terms 
of a frequency power law. The  directional properties of an actively growing spectrum 
are also reasonably well documented but not well explained. 

In  the areas of observation (and instrumentation) the most critical need is for data 
on the energy input from the atmosphere to the wave field. It appears that such 
observations must be accompanied by a simultaneous, quantitative description of the 
statistical properties of both the wave field and atmospheric field immediately above 
the sea surface. These measurements must be carried out for a wide range of atmo- 
spheric stability. The instrumental difficulties of accomplishing these objectives in the 
field appear tremendous but not impossible, On the other hand, such measurements 
in the laboratory appear quite feasible, although of unknown representativeness. 
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Additional wave growth measurements, plus the type of observations called for 
above, are badly needed for: (i) High wind speeds ( > 20 m s-1) were blowing spray 
and foam transform the air-sea ‘interface’ into a ‘boundary layer’ of variable density. 
Under these conditions tangential forces (largely ignored to date) may contribute to 
wave growth via acceleration of spray which eventually returns differentiallyf to the 
wave field. (ii) Waves whose phase velocity is comparable with or faster than the 
‘local’ wind velocity. Such waves generally are associated with the spectral peak 
(maximum energy), yet most of the available growth data relate to waves for which 
c / U >  1. Better documentation of the growth and atmospheric energy input (out- 
flow?) at c /U> 1 will be vital to the testing of wave generation theories. 

Observations of wave dissipation due to white capping are desperately needed. 
They will probably require estimates of F(k)  in order to separate out the effects of 
wave-wave interactions. A measurement technique to accomplish this simply and 
practically over reasonably large areas is not available. Perhaps more effort in the area 
of mapping the rough sea surface with electromagnetic radiation would ameliorate this 
problem. Assuming this done, and the wave-wave effects accounted for, the experi- 
mentalist is left with the formidable problem of accounting for energy dissipation due to 
white caps. A good quantitative method of describing white caps does not exist, let 
alone a means of estimating the energy they might dissipate. Obtaining this informa- 
tion, however, is vital to further progress in wind wave research. 

The  behaviour of wave trains propagating through a caustic point has recently 
been described in the laboratory, but additional information would be welcome. 
Unfortunately, no data are available to confirm directly the potentially large effects of 
major currents on the directional properties of the wave spectrum. Also, no direct 
measurements of the wave momentum associated with the Stokes drift velocity are 
available in the ocean at this time. 

7.3. Wave  prediction 
In  view of the above advances it is not surprising that substantial progress has been 

made in the problem of wind wave prediction. A basic framework for prediction has 
been found in the radiative transfer equation. The  propagation of wave energy is 
properly accounted for in this framework by either of several schemes, each with 
differing amounts of error. Specification of the source function is a blend of theory 
and data, but generally leads to a nonlinear integral form of (3.17). However, forms of 
S so far proposed are certainly in need of improvement. The specifications of S, while 
somewhat different, seem to produce equally good hindcasts, indicating that at least a 
rough quantitative estimation of S is available under many different geophysical 
situations. 

The  basic problem now appears to lie in a better speczjication of the wind field, for 
the total energy in the wave field is known to be roughly proportional to the square of 
the ‘local wind’ speed. A small error in wind, say loyo, can thus lead to a 20% error in 
the total predicted energy. It seems also that a more sophisticated description of the 
wind field may be required. Perhaps wind stress determined from satellites or input 
information in the form of wind velocity, atmospheric stability/turbulent intensity will 
be required to improve predictions. 

The  prediction of waves in shallow water and/or for hurricane conditions is just 
beginning. Also, presently available wave prediction schemes do not account for the 

f That is, on the upwind side of the wave profile. 
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potentially important effects of the interaction of waves with major ocean currents. 
Much of the future advances in the area of wave prediction can be expected in these 
areas. 
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