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The measurement of the optical transfer functions 
of lenses 
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Abstract. After a short survey of the theoretical relations between the optical 
transfer function and the image aberrations and diffraction, the basic requirements 
for the measurement of optical systems are discussed. The necessary parts of such 
measuring devices are then described : these are the optical part, the electronics 
and data processing. The  large number of measuring methods described in the 
literature are considered in three groups, namely (i) direct methods, (ii) methods 
using the Fourier technique and (iii) indirect methods. 

After a description of some of the methods of each group, their common 
factors and their differences, their advantages and disadvantages as to costs and 
measuring time, and their sources of error as well as the attainable accuracy are 
discussed in detail. Further applications, which are strictly outside the theoreti- 
cally valid scope, for example partially coherent or polychromatic light, are 
treated. The application of the methods for testing photographic emulsions is 
then described. Finally, the problems of quality criteria derived from optical 
transfer function curves are discussed. 

1. Aberrations and resolving power 
The image-forming rays in optical systems do not meet at one point (i.e. they 

are not homocentric) because of aberrations, so that a point object does not form 
a point image but a diffusion patch. This patch is caused both by aberrations and 
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diffraction of light. The  aberrations occurring with monochromatic light are 
generally called spherical aberration, astigmatism, comatic aberration, curvature of 
field and distortion. There are also the chromatic aberrations which are distin- 
guished as (i) the chromatic aberration of single-image points, meaning that the 
foci or image points for the different wavelengths do not coincide, and (ii) the 
chromatic error of magnification caused by the different focal lengths of the various 
wavelengths producing different image sizes for the individual wavelengths 
(Herzberger 1958, p. 299). 

It is rather difficult to judge the combined effect of all aberrations from those of 
single aberrations. Moreover, the distribution of the energy over the entrance 
pupil of the lens is generally not considered. A measuring method which integrates 
over all aberrations is therefore preferred. The  known forms of optical test-bench 
represent such methods, and usually the resolving power of the optical system for 
selected objects is determined. Such test objects include two-line targets, three-line 
targets, sector stars, or other figures, isolated letters or gratings. The  resolving 
power for such objects can be observed directly by the eye, or photographed and 
then visually analysed. The  results then depend not only on the quality of the 
optical system but also on the particular properties of the observer’s eye and on 
the photographic material used (Reckmeyer 1934, Roeder 1941, Hansen 1942). 

2. Optical transfer function 
In  order to avoid this shortcoming, new techniques and measuring methods have 

been used in recent years. The  optical system can be compared to an electrical 
circuit where the object corresponds to the input and the image to the output. A 
sine wave, in the optical case a sine distribution of intensity, will appear again as 
a sine wave in the output if the transmitter is linear. As transfer theory was well 
developed for telecommunication systems, it was easily applied to optical systems. 
In  this way an objective measure for image quality was found for incoherently 
illuminated objects. I t  is, in principle, relatively easy to calculate and measure this 
function. The limits of application and the differences between transfer theory in 
telecommunications and in optics are described by Born and Wolf (1964, p. 459). 

An optical system cannot, of course, be characterized by only one transfer 
function, but requires several functions, the number of which depends on the 
parameters of the lens, for example, the f number, focus position, image angle, wave 
length of light, etc. The  measurement of the optical transfer function represents 
an appreciable step forward compared with the measurement of the resolving power, 
for this is a threshold value with no absolute significance. Moreover, it is generallq- 
not sufficient to consider only a pair of separated object points, but it is necessary 
to treat the image of the whole object. The  quality of an optical system has then 
to be defined in such a way that it specifies how far the image is similar to the 
object, not only geometrically but also with regard to the contrast between neigh- 
bouring points. The  optical transfer function is distinguished from the electrical 
transfer by the fact that, in the latter case, the signals to be transmitted are temporal, 
whereas they are spatial (in one or two dimensions) in optical transfer theory. 
With this change, one may consider any optical system as a transmitter, or filter, 
from the object to the image. 
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3. Qualities of the optical transfer function 
The  characteristic transfer qualities of an optical system are described by the 

so-called optical transfer function, sometimes called the frequency response 
function. It is determined by aberrations and diffraction ignoring the influence 
of stray light and often neglecting variations of transparency over the pupil. If 
there are further incoherent image processes, such as photographic emulsions, 
images on ground glass, projections, etc., the total transfer function can be deter- 
mined by the product of the functions of these linear processes. The  product 
function then determines the resulting image quality. 

Any distribution of intensity can be represented by a two-dimensional Fourier 
integral or series. This means that one can regard any given intensity distribution 
in the object plane as the superposition of sinusoidal intensity distributions. Vice 
versa, one can deduce the corresponding frequency spectrum from any intensity 
distribution. On these grounds one-dimensional periodic sinusoidal distributions 
of intensity are employed to find the transfer factors for the different sine-wave 
structures by calculation or experimentally. The  optical transfer function then 
indicates how the total frequency spectrum of the object, which is limited in all 
cases by a cut-off frequency, is transferred to the image, both as to amplitude and 
phase of modulation, by the optical system. 

The  bandwidth of spatial frequencies transferred by the optical system and the 
degree of contrast modulation are determined by the numerical aperture and the 
aberrations respectively. From Fourier analysis of images one knows which 
frequencies must be transferred for a particular use, and hence the required degree 
of correction of the aberrations. Herein lies the practical importance of transfer 
theory for the optical designer. 

The  mathematical bases of the transfer theory for optical systems have been 
known for some time, and will be reviewed briefly. Duffieux (1946) showed that the 
Abbe theory of the image formation of coherently illuminated objects may be 
usefully restated in terms of Fourier analysis. These bases were further developed 
by Schade (1948), MarCchal (1947) and Hopkins (1953). 

The  optical imaging process can be described by means of a convolution 
integral for the incoherent illumination. It is, however, required that the 
image formation be linear and isoplanatic. Linear means that there are linear 
mathematical relations between the intensity of object and image. The  so-called 
condition of isoplanatism appears to  be sufficiently satisfied for corrected optical 
systems. 

4. Basic principles of the theory of optical transfer 
Using normalized coordinates for object plane and image plane as well as for 

the entrance and exit pupil, the intensity distribution of the image B’(u’u’) can 
be written as a convolution integral of the object intensity distribution B(u, V) and 
the point spread function G(uv, u’v’) : 

B’(u’, U ’ )  = - V) G(u’ - U, U’ - V) dtl dV. 
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The form of the point spread function, determined by the aberrations, is propor- 
tional to the square of the amplitude distribution in the image of a point source: 

G ( d ,  U’)  = I F(u’, U’) 1 2 .  (2) 
Under certain conditions, the ampiitude distribution can be represented as a 
two-dimensional Fourier integral according to the diffraction theory of Kirchhoff. 
This takes the form 

F(u’, v’) = const.//j(x’, y ’ )  exp {277i(u’x’ + v’y’)} dx’ dy’ (3) 

O b j e c t  p l a n e  P u p i l  p l a n e  l m a q e  p l a n e  

U’, 0’ in image plane. 
Figure 1. Definition of coordinates: U ,  v in object plane; x’, y’ in pupil plane; 

where the functionf(x‘,y‘) is called the pupil function. Apart from a constant it 
is the inverse Fourier transform of the amplitude F(u’v’). The same relations 
define the Fourier spectra of the intensities. Thus 

G(u’, U’) = / /g(s’,  t’) exp {2ri(s’u’ + t’v’)) ds’ dt’ 

o\ vis’, t’) = / p ( u ’ ,  U ’ )  exp { - 27ii(s’u’ + t ’v’))  du’ du’. 

B’cu’, U ’ )  = I /g(s ‘ t ’ )  b(s’, t’) exp {2ri(s’u’ + t’v’)} ds’ dt‘ 

(4) 

( 5 )  

Putting these equations in the convolution integral, we obtain 

(6) 

(7) b’(s’, t’) = g(s’, t’)  b(s’, t’). 

The optical transfer frequency is now defined as the inverse Fourier transform of 
the point spread function G(u’v’): 

b‘(s‘, t’) 
b(s‘, t’) * g(s’, t’) = ~ 

Corresponding to the treatment of circuit theory one represents the object function 
and the image function by means of the Fourier transformation in frequency space. 
There are, however, fundamental differences between the two cases of incoherent 
image formation and electrical circuit theory. For incoherent objects, an optical 
system necessarily always acts as a low-pass filter with perfect response for zero 
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frequency. This follows from the fact that the input and output in the optical case, 
being intensities, are necessarily described by positive and real functions. 

It stands to the credit of Hopkins (1953) to have recognized that the so-called 
optical transfer function (8) is a measure of the image quality of extended objects, 
for this can be expressed as the autocorrelation of the pupil function: 

27T (x’,y’) f *(XI - s’,y’ - t’) dx’ dy’. (9) 

Figure 2. Region of integration: the hatched area, which is the overlapping part 
of the two sheared pupils, is the region of integration. 

For calculation of the optical transfer function from this formula, it is only necessary 
to know the wave function. This can be measured or calculated from the construc- 
tion data of the optical system. If the Fourier transformation is not used, one 
would first have to calculate the point spread function from the wave aberration, 
then calculate the image intensity by convolution, and only then determine the 
optical transfer function. It is now advantageous to introduce a relative transfer 
function normalized by the optical transfer function of zero frequency : 

The transfer function is generally complex and can therefore be expressed in a real 
and an imaginary part, or in modulus and phase. According to a formula due to 
Hopkins (1955), one can shear the pupil coordinates x‘ and y’ by an amount 3s‘ 
and i t ’  so that the normalized optical transfer function becomes 
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This integral means that the region of integration is the region common to two 
relatively displaced pupils, centred on the points (k+s’ ,  k i t ‘ ) .  If the system is 
free from aberration, W(x’,y’)  = 0, . and the optical transfer function is then 
equal to the area of the region common to the displaced pupils. For a circular 
pupil 

D(s’) = n(2 arccos 4s’ - sin (2 arc cos is’)). (12) 

\ \  

0 
S ’  

Figure 3. Optical transfer function for a lens with different amounts of defocusing. The  
values on the curves give the size of wave aberration; 0 gives the curve for a lens free 
of aberration. 

If we assume uniform amplitude over the wave fronts, the pupil function is then 
of the form 

where W(x’y’) is the aberration of the wave front from an ideal spherical wave 
centred on the image point. Using (13) equation (1 1) can also be written 

/jAesp(Z;ri/h) W(x’+ibR,y’)-  W(x’-&bR,y’)dx’dy’ 
D ( R )  = (14) s,T, dx’ dY ’ 

where X is the wavelength of light, b is the radius of the ideal spherical wave originat- 
ing from the image point, R is the spatial frequency in lines/“, s’ = XbR, 
14 is the integration area equal to the region common to two displaced pupils, 
centred on the point (h iXbR, 0), and a is the region of the pupil. For simplicity 
the direction of the spatial frequency is taken perpendicular to the direction of x’. 
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5. Methods for measuring the optical transfer function 
The main advantage of using the optical transfer function for the specification 

of image quality is that there are several measuring methods available for obtaining 
those functions rather easily. They can then be used to control the quality of 
practical optical systems. 

In  the last fifteen years many methods have been published of which only 
some can be described here. They have been selected for the very different 
principles used, in order to show the great variety of techniques. In  the references 
at the end of this article about thirty publications are cited which explain the 
different methods and contain detailed descriptions. 

5 .l. Mechanical and optical demands 
For measuring the optical transfer function a stable holding device is necessary 

for the test lens, permitting precisely defined adjustments and displacements, to 
allow measurements on the lens in the desired image planes at different field angles 
and in different azimuths. The  demands for precision and stability of the mechanical 
construction of the testing device are different according to focal length and aper- 
ture. For example, a displacement of the image plane by 3 pm causes a change in 
the optical transfer function of 0.10 for a lens with an aperture of fj2 equivalent 
to a numerical aperture of 0.25. For larger apertures the error increases. 

Since the theoretical basis of the optical transfer function is only valid for 
incoherent object illumination, this requirement must be satisfied in practice. This 
means that a sufficiently large aperture should be used for the illumination system 
by means of ground glass or other diffusers. X'loreover, the aberrations vary with 
the object distance so that the desired object distance must be employed, or simu- 
lated by an optical auxiliary such as a collimator with sufficiently long focal 
length. Using auxiliary optics, care must be taken not to disturb the conditions 
for incoherence nor to change the optical transfer function of the test lens by 
aberrations in the auxiliary system. Since calculation of the influence of such 
auxiliary devices on the measured result is often rather difficult, one should avoid 
them, or ensure that they are of such high quality compared with the test lens 
that they need not be taken into account. 

5 . 2 .  Basic components of the systems 
The fundamentals of all optical transfer function measuring methods consist of 

the light source, the test object, the test lens in its holding device and an image 
receiver with electronic detection devices. The  main difference between the various 
methods lies in the form of the test object and the extent of the role of the electronic 
devices. 

6. Direct measuring methods: grating test methods 
The optical transfer function is obtained in the direct measuring method using 

as the object a grating with sinusoidal transparency, which is illuminated incoher- 
ently and with the grating period variable over the spatial frequency region of 
interest. The test lens images the test object in the desired image plane. TEe 
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intensity distribution in the image, which is also sinusoidal, can be measured by 
means of a very narrow slit with a photomultiplier and electronic detection. From 
the intensity distribution J the contrast in the object or the image is defined as 

K =  Jmax ~ ~ ~ _ _ _  - Jmin 

Jmax + Jmin 

where J,,, is the intensity at the maxima, and Jmin the intensity at the minima of 
the test object. 

T 

Figure 4. Direct-scanning optical transfer function measuring method: IM, illumination 
unit with light source, condenser, filter and ground-glass plate; D, rotating drum with 
grating as test object; BD, beam splitter; T, test lens; MO, microscope objective; 
S, slit; PNI, photomultiplier; 0, ideal lens; A, amplifier; OG, oscilloscope. 

The  optical transfer function is the quotient Klnlage/Kobjeot. If we change to a 
different spatial frequency, different target gratings are required which are put on 
a drum in sequence (Rosenhauer and Rosenbruch 1957). In  this case the drum 
rotates and the scanning slit can remain stationary in the image field, the scanning 
movement being provided by the rotation of the drum. The spatial grating images 
are thus transformed by the photomultiplier into temporal electrical signals. The 
signal coming from the multiplier can be displayed on an oscilloscope and then 
be seen on the screen in its original spatial form (see figure 5 (plate)). In the linear 
transfer region of the multiplier, the envelopes of the oscilloscope images are the 
optical transfer functions, provided that Kobject has a constant value and that the 
number of periods of the different spatial frequencies and their succession around 
the drum are such that a linear scale of spatial frequencies is given. As the different 
spatial frequencies correspond to different temporal frequencies in the oscilloscope, 
the amplifier and multiplier are required to have sufficiently wide band charac- 
teristics. Greater difficulties, however, lie in producing a test object with sinusoidal 
transparency and different spatial frequencies with the contrast Kohject = 1. Since 
the test grating is scanned in only one direction, other methods are used in which 
masks of varying height in the direction perpendicular to the scanning direction 
are employed, which, integrated with a correspondingly long slit in the image plane 
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in this direction, produce effectively sinusoidal transparency (Shannon and 
Newman 1963, Herriot 1958, Ingelstam 1959). 

Figure 6. Temporal stretched display of the oscilloscope (see figure 5 ) :  upper curve, a good 
lens at 10" field; second curve, a low-performance lens at 10" field; the third and 
fourth curves give the results for the same lens at 14" field. 

S'  

Figure 7. Optical transfer function for an aberrationless lens for sine-wave (full curve) 
and square-wave (broken curve) test gratings. 

The  same test objects are also applied to test the quality of the sound tracks 
recorded on sound film. Instead of sine-wave gratings square-wave gratings are 
sometimes used. The  influence of harmonics on the results is taken into account 
by calculation, using a formula due to Coltman (1954). This calculation can be 



10 K.  Rosenhauer and K.-J. Rosenbruch 

avoided by using a star sector with light and dark sectors of equal distances. By 
scanning the image of such a rotating star on concentric circles using a small 
aperture, the spatial frequency increases in inverse proportion to the scanning 
radius, but the electrical voltage produced in the multiplier behind the scanning 
hole has a constant temporal frequency independent of this radius (Lindberg 1954). 

W F St  S L K  S t  P h  

/ 

Figure 8. Sector star optical transfer function measuring method: W, light source; 
F, collimating and filtering unit; S t ,  rotating sector with very low spatial frequency 
to normalize the optical transfer function; S, microscope objective to illuminate a 
small hole; L, test lens; K, collimator; St, sector star; Ph, photomultiplier (Ingelstam 
1959). 

The  higher harmonics can easily be filtered out by suitable electric filters, so 
that only the first harmonic wave of the signal is detected. This has precisely the 
same effect as if the test object were sinusoidal. The  same result can also be 
achieved by moving a test grating on which the different spatial frequencies are 
arranged side by side in inverse proportion to the spatial frequencies by means of 
a cam (Murata 1959). In  this case, the multiplier also receives a constant temporal 
frequency independent of the changing spatial frequency, which can easily be 
transformed into a sine wave. 

I U  RG 

Figure 9. Optical transfer function measuring method with moirC pattern : IU, illumination 
unit; RG, the two rotating gratings, which produce the moirC fringes; T, test lens; 
S, scanning hole; PM, photomultiplier. 

A nearly sinusoidal intensity distribution with continually changing spatial 
frequencies can also be produced by crossing two square-wave gratings with high 
spatial frequency. The  spatial frequency of the resulting moirC pattern depends on 
the angle of crossing. If we put the two gratings on two disks rotating in opposite 
directions, moirC patterns are formed at the middle of the plane of the crossed disks 
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(Lohmann 1957, Lohmann and Bothe 1959, Forstner and Kohler 1960). The  
spatial frequency changes according to the distance between the centre and the slit. 

Care must be taken to ensure that the spatial frequency of the test grating is 
suitably chosen with regard to the test lens. For the lowest spatial frequencies the 
optical transfer function factor should always be unity, and for the highest chosen 
spatial frequencies it should lie near to zero. If this is not possible with one test 
object, several test charts should be employed. Often, a special measurement is 
needed for the lower spatial frequencies in order to normalize the optical transfer 
function. 

7. Indirect measuring methods 
7.1. Slit and edge methods 

Besides the direct measuring methods, it is possible to obtain the optical transfer 
function using test objects of any form by Fourier analysis of the object and image, 

c 

W S  

‘M~TJ--17+-@ @+flH>> /- 
A F F A 

Figure 10. Optical transfer function measuring method by scanning the edge image with 
wide-band filters: IU, illumination unit; D, rotating sector disk; T, test lens; 
MO, microscope objective; S, scanning hole ; PM, photomultiplier; A, amplifier; 
F, wide band filter; V, voltmeter. Two modifications are available: (i) fixed disk 
frequency, changing filter frequency; (ii) changing disk frequency, fixed filter frequency. 

--- 

Figure 11. Optical transfer function measuring method by scanning the edge image with 
narrow-band filters : OG, oscilloscope ; OTF, electronic detector and plotter. Other 
symbols as in figure 10. 
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and hence obtaining the amplitudes and phases of the single Fourier components. 
Simple objects, easily constructed and frequently described, are slits and edges. 
The  frequency spectra of an edge, or a rectangular-wave grating of low frequency 
with a mark-to-space ratio of 1 : 1 and a bright-to-dark contrast ratio of about 

D 

Figure 12. Front and side view of sector disk (figure 11): M, driving synchronous motor; 
Y, radius of the scanning circle given by the position of the scanning hole. 

Figure 13. Block diagram of electronic circuit of figure 11 (two-channel analyser) : 1, quartz 
frequency generators; 2, preamplifiers; 3, mixing stage; 4, 60 kHz filter, followed by 
adjustable resistors ; 5 ,  amplifier; 6, logarithmic amplifier; 7, phase meter; 8, plotter. 

1 : 1000, are known. The  optical transfer function can also be obtained by elec- 
tronically analysing the image distribution which the test lens forms of an edge or of 
a very narrow slit; the amplitudes and phases of the output are then compared with 
those of the input (see figures 11, 12, 13 and 14 (plate)). These methods, which 
have been published with several modifications, avoid the use of complicated test 
charts but they need more complicated electronic systems for the Fourier analysis 
than the method described above (Rosenhauer and Rosenbruch 1957, Rosenbruch 



Figure 5.  Oscilloscope display. A square-wave test object, the spatial frequency of which 
becomes smaller stepwise, is imaged by the test lens 1' and an ideal lens 0 (see figure 4). 



Figure 14. Oscilloscope display (figure 1 1 )  of an edge image for a nearly ideal lens, 
and (a) a real focused and (h)  defocused lens. 



Figure 16. Shc;irctl pupil \\.it11 spherical alxwation ;ind rlcfocusin~ produced by a 
plane-parallel plate interferometer. 

Figure 17. Sheared pupil \vith comatic al~crration, synxnctric (sphcrical) aberration 
and astigmatism. 



Figure 21. 1Y;ivc a1xrr: i t ion  photogr:iphcd f rom ii ‘I’\v!.n?:m-(;rcci~ intcrfcromctcr. 
Spherical abcrration ;incl conxitic abcrration arc clue to slight decentring. 

1:igurc 22. ;\s in ticure 21, b ~ i t  \\it11 additional dcfocusing. 
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and Rosenhauer 1964, H. D. Polster 1955, Rep. Perkin-Elmer Co., No. 413, 
Birch 1958, Sayanagi 1958). 

7.2. Interference methods 
A third group of methods measures the optical transfer function not in the 

image plane but in an image of the exit pupil, as first proposed by Hopkins (1953). 
By means of a shearing interferometer, two wave fronts are sheared against each 
other by an amount S’ = hfR where h is the wavelength of the light, f is the focal 
length of the test lens, or the radius of the ideal spherical wave for finite image 

I U  
3+ 

S 

I r 
j? 

1 1  
I 
i t  
I ’  

t 

Figure 15.  Shearing interferometer as optical transfer function measuring device : 
IU, illumination unit; S, slit; Pol, and Pol,, polarizers; WP, Wollaston prism; 
0, ideal lens; T, test lens. 

distance, and R is the spatial frequency. The  overlapping region of the two sheared 
pupils has interference fringes determined by the path difference 

W ( x  ’ + hs’, y ’) - W(x ’ - is’, y ’) 
where W ( x ’ , y ’ )  is the wave aberration (see figures 16 and 17 (plate)). The  total 
intensity in the overlapping part of the pupils is found to be proportional to the 
transfer factor. 

Michelson’s interferometer was first applied to the measurement of the optical 
transfer function in this manner by Baker (1955) and was later further developed 
for automatic operation by Kelsall (1959). As shown in figure 18 the wave front 
to be tested is passed into the interferometer. The  mirrors in the two arms are 
fixed and the shear S‘ is introduced slowly by rotation of plane-parallel plates 
inserted in the optical paths. On the other hand, the phase difference is introduced 
quickly by moving the prism backwards and forwards. When the average bright- 
ness is normalized to unity, the output of the photomultiplier gives a record of 
D(d)  directly. The  phase difference between the photocurrent and the reference 
signal, which is electrically generated, is detected by a phase meter. 

2 



14 K. Rosenhauer and K.-J. Rosenbruch 

I U  S 0 

I t 
I 

c 1 I \  
IQ I 

PL  

PM 1 
Figure 18. Optical transfer function measuring interferometer of Kelsall : IU, illumination 

unit; S, slit; 0, ideal lens; T, test lens; PP, plane-parallel plate; P, prism; S, spnchro- 
nous motor to drive the prism to modulate the light and to drive the plane-parallel 
plate to vary the spatial frequency; PM, photomultiplier; PL, plotter. 

Figure 19. Optical transfer function measuring interferometer of Montgomery : MI and M,, 
mirrors; BS, beam splitter; SI and S,, shear plates; PI and P,, polarizers. Collimated 
beam from test lens enters from bottom left (Montgomery 1966). 
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Since interferometers with two arms are sensitive to mechanical shocks or 
vibrations which cause slight tilting between the wave fronts, a new shearing 
interferometer was developed by Montgomery (1964, 1966). It has a rigid inter- 
ferometric unit and a device for self-compensation tilting (figure 19). The  collimated 
light from the test lens enters the interferometer unit and is split into two beams 
at one end of the beam splitter. The optical path of one beam is changed by the 
linear displacement of the prism to give the phase difference between the two 
beams. The  shear of the wave front is introduced slowly by the rotation of the 

A 

Figure 20. Optical transfer function measuring polarizing interferometer of Tsuruta for 
testing microscope objectives: M, light source; 01, 0, and Os, lenses; B, and B,, 
identical Wollaston lenses; T, test lens; R, reference lens; C, coverglass; P, and P,, 
crossing polarizers; H, half-wave plate ; SB, Soleil-Babinet compensator; E, eyepiece; 
K, and K,, aperture diaphragms corresponding to the effective light source (if the light 
is not incoherent) ; L, and L2, light collectors ; PM1 and PM,, photomultipliers 
(Tsuruta 1963). 

plane parallel plates. Since both light beams in the interferometer are reflected 
from each of the side mirrors and also from the beam splitter, relative tilting between 
the two wave fronts leaving the interferometer is self-compensated even if the three 
mirrors are not perfectly adjusted to be parallel. 

Another type of interferometer which is used for measurement of the optical 
transfer function is the polarizing shearing interferometer. The wave front from 
the lens under test is split into ordinary and extraordinary beams by means of a 
birefringent double-image prism between two crossed polarizers. The  shear of 
the two beams is determined by the birefringence of the material and the geometry 
of the prism. As the two beams pass along a common path to produce the inter- 
ference fringes, the tilting between them is compensated. In  addition, this 
interferometer is extremely stable against shocks and vibrations, because the 
optical path difference is produced by retardation in the solid birefringent prism. 

In  these autocorrelation methods, a slit is imaged at infinity by the lens under 
test and the aberrated wave front is put into the interferometer, which then acts 
as a Fourier analyser of the slit image. On the other hand, interference fringes 
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produced by an interferometer can be used as a sinusoidal object for the measure- 
ment of an optical system (Tsuruta 1963). In  the latter case, the interferometer 
acts as a generator of sine-wave objects, that is the measurement is based essentially 
on the direct method described before. These two methods with interferometers 
are equivalent to each other and differ only in the direction of light travel. The  
advantage of these methods lies in showing the aberrations and the optical transfer 
function at the same time ; their disadvantage is the restriction to monochromatic 
light. 

The  method by which the shearing of the exit pupils is produced is not 
important for the measurement. However, any type of differential interferometer 
is well suited for this technique. Some methods are unsuitable owing to the 
introduction of more aberrations during the measurements compared with those 
occurring in normal use. For instance thick plane-parallel plates should not be 
allowed in convergent beams of light. 

7.3. Determination of geometrical and optical aberrations 
Finally, methods may be mentioned in which the geometric-optical aberrations 

are measured and the optical transfer function is calculated using the formulae 
mentioned above. The  aberrations may be measured by means of any of the well- 
known geometric-optical methods described by Hartmann (1908) and Wetthauer 
(1921) or the methods of Ronchi (1928), Vaisala (1922) and others. 

In  order to calculate the transfer function the image errors must be presented 
in the form of the wave-aberration function. Different procedures have been used 
to find this from practical methods. 

It is possible to find the wave aberration directly with the Twyman-Green 
interferometer or with a similar interferometric method (see figures 21 and 22 
(plate)). On the other hand, it is also possible to find the wave aberration by 
integrating the geometric-optical aberrations, which may be measured experi- 
mentally, or which may be found from ray tracing. Sometimes it is possible to 
establish some characteristics of the optical system, when the standardized wave- 
aberration coefficients are known, without having to calculate the transfer function 
in detail which involves a relatively large amount of calculation. It may then be 
possible to vary the aberrations systematically so that, for all regions of interest, 
these wave-aberration coefficients are known ; the form of correction of the system 
is chosen by linear interpolation between these coefficients to arrive at a suitable 
system for the purpose in hand. The  optical transfer function is chosen as z 
so-called ‘function of merit ’ for the corresponding spatial frequencies. Neverthe- 
less, systematic investigations of the relations between the aberrations and the 
image characteristics have then to be undertaken (Rosenhauer and Rosenbruch 
1965, Rosenhauer, Rosenbruch and Sunder-Plassmann 1966). 

8. Calculation of the optical transfer function (general solution) 
Several methods have been developed for the numerical calculation of the 

optical transfer function for any given spatial frequency, especially for computers. 
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An accurate method due to Hopkins (1957) has been employed by Goodbody 
(1958) whose results are used in some of the following examples. Barakat (1962) 
has proposed a method which employs the Gauss quadrature in conjunction with 
Legendre polynomials, and uses non-equidistant mesh size for the integration. 

The  methods mentioned above require digital computers, but these calculations 
have also been performed using analogue computers. These can be fast, and use 
exact mathematical relations without approximations. Such computers permit the 
study of the relation between the shape and magnitude of the spherical aberration 
and the optical transfer function (Rosenhauer, Rosenbruch and Siems 1963, 
Rosenhauer, Rosenbruch and Sunder-Plassmann 1966). There is the advantage of 
studying how to optimize a system in a short time by systematic variation of 
the values of the aberration coefficients set on a potentiometer. This method, of 
course, has a restricted mathematical precision, in a practical case, of about 1-274,. 

9. Comparison of the various methods 
The majority of the methods described for measuring the optical transfer 

function differ considerably with regard to the time required for the measurement, 
and the cost of electronic and other equipment. Very often, for example, a following 
data plotter can produce the optical transfer function curve directly on a linear 
spatial frequency scale. 

For use in laboratories and factories it is usually of importance to have either 
a relatively high accuracy of measurement irrespective of the time required or a 
rather quick measurement that can easily be made on a large number of test lenses. 
For this reason, the various methods mentioned and their variants, not mentioned 
here but described in the literature, are often suitable for the special circumstances. 
As the measurement of the optical transfer function is a kind of microphotometry, 
the precision of measurement is restricted by the highest spatial frequency and the 
lowest possible light intensity that can be measured. By the choice of intense 
light sources, sensitive photomultipliers and electronic amplifiers with large signal- 
to-noise ratios, the limits reached can be widely different. The  measurement of 
the optical transfer function of lenses in unusual spectral regions (e.g. in the infra- 
red and for the smallest lens apertures, say f/32) often requires a restriction of the 
spatial frequency range or a limited precision of measurement for the reasons 
mentioned. In  addition to the accidental errors, which are present in every method 
owing to variations in the special constants of the apparatus and which affect 
reproducibility, there are always systematic errors which falsify the measured 
result. These last may sometimes be known, for example, the width of the scanning 
slit used in front of the multiplier, the frequency response of the electronic amplifier 
and the spectral distribution of the light source. These may be taken into con- 
sideration completely in the calculation as corrections for errors in the measurement. 
Sometimes, however, such influences remain unknown, and comparison of 
measurements of the optical transfer function of the same lens by different methods 
shows differences greater than the limits of error for the measuring apparatus in 
question allow. Carefully designed equipment generally allows a reproducibility 
of the contrast measurement of the optical transfer function to about I 0.02. 
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Figure 23. Comparison of different measuring devices on a lens: 0 edge image scanned by 
narrow-band filter, + edge image scanned by wide-band filter, 0 square-wave grating, 
calculated for sine wave, * sine-wave grating, sector star method, x slit image, 
mechanically analysed, A calculated by analogue computer from spherical aberration, 
v calculated by digital computer from spherical aberration. (a) Optical transfer 
function curve of a lens, focal length f = 50 mm, aperture f/2, best axial focus; 
(b)  optical transfer function curve of the same lens as in (a) but -0.03 mm away from 
best focus; (c) optical transfer function curves of a lens, focal length f = 52 mm, 
aperture f/2, best axial focus O", and for this image plane the meridional optical transfer 
function curve for a 13" field. 
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On some lenses, which have been measured with eight different optical transfer 
function measuring methods (in different laboratories), the authors have discovered 
contrast variations of up to 0-07 at the same spatial frequency. The  greatest 
differences appeared in measurements of extra-axial image points, these being 
especially sensitive to slight inaccuracies of alignment. We are inclined to believe 
that the main sources of errors in measurements using well-designed equipment 
are not to be found in the optical and electronic part, but in the mechanical pre- 
cision, stability of alignment fixings, holding devices of the test pieces and the 
mechanical stability of the test pieces themselves. Optical transfer function curves 
have been observed which often give appreciably different values and are never 
reproducible. This variation resulted from moving parts, such as occur in zoom 
lenses and interchangeable lenses. Sometimes larger errors of centring in lenses 
may give a variation with direction between the test object, lens and image receiver, 
which can easily cause significant variations in the measured values when this 
direction is in error even by a few minutes of an arc. These effects are greater the 
more complicated and the more corrected the optical system is, as then even the 
very smallest error may often reduce the value of the optical transfer function 
considerably. For this reason, it is not surprising that the optical transfer function, 
which may be calculated from the lens data, deviates more from the optical transfer 
function measurements than the limit of error would seem to allow. 

In considering the errors of optical transfer function measurements, account 
has to be taken of which differences in optical transfer function may be recognized 
under normal conditions of use. Theoretical and practical research in connection 
with the criteria of image qualities has been carried out by many authors. Of 
course, this depends on the objects used, on the sharpness of vision and on the 
training of the observer, and on many additional factors for which a detailed 
explanation would be too lengthy here. But it may be concluded from the many 
studies published that the area under the optical transfer function curve, from 
zero up to the largest spatial frequency necessary for the observation and recognition 
of the object in question, must be modified by about 10% if any difference is to be 
seen as an image variation. If we bear this in mind, it can be said that the accuracy 
of the present optical transfer function measuring methods is sufficient, even under 
unfavourable conditions, to make the measured optical transfer function suitable 
for characterizing the image qualities of lenses. 

10. Application of the optical transfer function methods to other regions 
Measurement of the optical transfer function has become widespread in recent 

years, since it may be measured with sufficient accuracy by a variety of methods 
and because the final image of a cascade of imaging systems can be obtained simply. 
The  optical transfer function of two cascaded imaging systems is obtained by 
multiplication of the single optical transfer functions. This considerable advantage 
shows the superiority of the use of the optical transfer function in comparison with 
all other test methods. However, the application of this simple rule of multiplication 
is only valid if the following conditions are fulfilled: ( i )  linearity; (ii) isoplanatism 
of the image. Linearity in transferring the light intensities is accomplished if the 
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reproduced object is illuminated incoherently or self-luminously, that is by means 
of light waves having no stable phase relations. The  condition of isoplanatism, 
that is the independence of the transfer qualities with respect to the position of 
the objects in the space, is well realized using corrected optical systems for a 
sufficiently large region. 

Nevertheless, deviations from complete incoherence or from the condition of 
linearity may occur in some reproducing systems, and partially coherent illumina- 
tion is obtained (Steel 1958). However, when the illumination is partially coherent, 
the system is linear neither in amplitude nor intensity, and it has been customary 
to use both amplitude and intensity in the analysis and to treat the problem in two 
stages; amplitude theory is applied for each point on the source and the results, 
converted to intensity, are summed over the source. A further integration with 
respect to the frequency may be required if the source is not monochromatic. 

A theory of image formation which is linear for sources of any degree of 
coherence has been developed by Steel (1958). In  this treatment the condition 
of linearity is rescued and a large number of the optical transfer function measuring 
methods described may be used with only small variations to measure a function 
quite similar to the optical transfer function (Menzel and Haina 1964). Optical 
systems working under such conditions include microscope lenses, especially in 
phase-contrast microscopy, projection lenses and enlarging lenses. 

A further deviation from strict linearity which is important for the optical 
image of a cascaded system is given by the photographic emulsion. Owing to the 
advantages of using the optical transfer function in the estimation of the image 
quality of optical systems, the methods have been extended to treat the photo- 
graphic process linearly. In  a photographic emulsion, linearity has been achieved 
by separating the conversion of the incident light intensity into two steps of which 
the first one is linear. 

The  first step describes the scattering process which the light undergoes in the 
photographic layer. This scattering is linear with the incident intensity and may 
be described by a transfer function exactly analogous to the optical transfer function 
of lenses (Frieser 1955). The  second step, which is the conversion of this scattered 
light intensity into developed silver grains by chemical processes, is not linear. 
During the development additional physico-chemical effects appear which are not 
linear, for example the Eberhard effect and neighbourhood effect. The first step 
essentially describes the microdistribution of the image, but the conversion of the 
incident light intensity to a developed image in the photographic layer is described 
by the so-called Hurter and Diffrill curve in cases where neighbourhood effects 
do not play a part. 

Profiting by these considerations, it is possible to specify a transfer function 
curve for emulsions, also, and to determine this indirectly by the optical transfer 
function measuring methods. A test pattern is reproduced by a lens on the 
photographic emulsion which is to be tested, and the resulting image is scanned 
with a microdensitometer. Knowing the characteristic, or Hurter and Diffrill, 
curve, the transfer curve for the combined emulsion and lens is obtained, and 
from this, having measured the optical transfer function of the lens, the optical 
transfer function of the photographic emulsion is found (Ingelstam and Hendeberg 
1959). 
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11. Optical transfer function for polychromatic light 
I t  is often of interest to know how the overall optical transfer function of the 

image-forming system results from the monochromatic optical transfer functions, 
the spectral sensitivity of the receiver and the spectral distribution of the light 
source. Theoretically the optical transfer function is defined only for mono- 
chromatic light but there are various methods of combining these to calculate the 
polychromatic optical transfer function. Such a procedure is that described by 
Rosenhauer and Rosenbruch (1965). These calculations, although troublesome, 
are always necessary in those cases when the image system is to be used for spectral 
regions where suitable light sources and receivers are not available, as shown in the 
direct method of optical transfer function measurement described above. The  
polychromatic optical transfer function is then calculated from the data of the 
monochromatic optical transfer functions for given focal planes and wavelengths, 
and using the chromatic aberration, the spectral intensity distribution of the light 
source, the spectral sensitivity of the receiver and the spectral transmittance of 
the lens. 

I t  is, of course, possible frequently to accomplish this spectral integration 
process by measuring the optical transfer function itself using suitable light sources 
and appropriate filters and receivers. 

12. Different representations of the optical transfer function curves 
As shown above, the optical transfer function may be determined by many 

methods. Its physical and mathematical relation to the aberrations is used in 
some of the measuring methods. For this reason a number of measuring methods 
can give at the same time experimental proof of the exactness of the theoretical 
connection of image errors and the optical transfer function. Whereas the image 
errors themselves are useful for the optical designer in the analysis of an optical 
system, the optical transfer function gives an integral measure of how these errors 
and diffraction influence the images formed. Using Fourier analysis and synthesis 
it is easy in principle to determine exactly the image of any object desired. 

Even in a corrected optical system the isoplanatism condition holds only for 
small regions, the image quality changing with the angle of the field and with the 
image distance. Moreover, the optical transfer function, being an integral measure 
for all image errors, changes if any one image error is varied. Image errors which 
are easily varied in practice are defocusing and the dependence of the image errors 
on the azimuth. This naturally leads to the fact that for a complete description 
of the image qualities of a lens not only one function but a whole system of optical 
transfer function curves is necessary. Since a large number of curves is often 
difficult to comprehend, other methods of presenting the optical transfer function 
values are often adopted. For example, using a coordinate system, on the abscissa 
of which are recorded the field angles and on the ordinate the defocusing, the 
lines of the same contrast for a fixed spatial frequency and a fixed azimuth are 
registered. These figures are similar to the contours of mountains on a map and 
are sometimes called ‘contrast solids’. In  most cases such figures are made for 
some fixed spatial frequencies and one obtains at a glance a general view of how 
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the image quality varies as a function of the field angle and the focal plane. Such 
a diagram, easily derived from the optical transfer function curve, may be produced 
by a suitable device directly from the lens, as shown by Murata and Matsui (1956). 

[ b )  

Figure 24. ‘ Contrast solids ’ for spatial frequencies of (a )  20 lines/” and (b)  50 lines/mm 
for meridional and sagittal azimuths of a photographic lens. The numerical values on 
the curves mean the contrast transfer factor which is reached at this curve. The  hatched 
region in (b)  marks the reversal of sign of the contrast transfer. 

13. Image-quality criteria 
For some time it has often been attempted to derive image-quality criteria 

directly from the optical transfer function curves (Linfoot 1960). Generally an 
integrated average value for the system of the optical transfer function curves is 
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then given for standardized objects and receivers. Although clear and easily 
comparable, such a criterion gives only one value instead of a group of values, 
so that much of the specific information is lost by such a simplification. Such 
criteria can sometimes lead to wrong conclusions regarding the true image quality 
if they are inadmissibly generalized. Whereas the optical transfer function contains 
all the information on the image system, independently of the object and image 
receiver, all composite image-quality criteria are only convenient ratings if the 
actual object and the image receiver to be used in practice are considered. In  this 
connection it may be useful to summarize the various methods of specifying an 
optical system, each of them of special importance, insufficient in itself but indis- 
pensable to the required purposes. These are as follows: 

(i) The  constructional data of lenses include the radii of the lenses, the 
refractive indices and the dispersion of the glasses used, the glass thickness, the 
lens separations and the diameters of apertures. Using these data ray tracing and 
optical transfer function calculations are possible, but practice shows that the 
actual systems manufactured often show considerable deviations from their 
theoretical properties, especially on complicated systems where errors are unavoid- 
able in manufacturing. The  reliable comparison of systems of different construc- 
tion with respect to the image quality is not possible from the construction data 
directly. 

(ii) Image errors or aberration of lenses are experimental curves showing 
the measured values of, for example, spherical aberration, coma, astigmatism, 
curvature of field, distortion, chromatic aberration, etc. They render possible a 
direct comparison of systems of very different construction with respect to the 
image, but only when the values of one or two image errors are different. The  
optical transfer function and the image quality can be calculated from these data. 
The  adherence to the constructional data in manufacturing and production errors 
can be determined by comparing measured and calculated aberrations. 

(iii) Optical transfer function curves of lenses describe the imaging 
behaviour of the system. Equal values of different systems mean equal image 
quality. No information can be derived regarding the construction data or 
the amount of aberration. The  comparison between the measured optical transfer 
functions and those which result from calculation using the constructional data 
directly shows the influence of the errors of manufacture on the image. 

(iv) Criteria on quality describe the image behaviour of the lens with 
respect to specific objects and specific receivers. Equal values only allow conclu- 
sions regarding the two lenses used with the same objects and receivers. Informa- 
tion regarding the optical transfer function curves is generally impossible to obtain 
from such criteria. The  mathematical relations mentioned for calculating such 
criteria from optical transfer function curves, and with given objects and receivers, 
are frequently empirically tested for some special cases, but they are very often 
to a large degree arbitrary. 

This summary shows that the different indices used to characterize lenses, i.e. 
those given in (i) to (iv) above, can only be calculated in one direction, and that 
their significance increasingly departs from the primitive constructional data of 
the lens, but that they increasingly approach a description of the purpose of the 
system, that is to say the image. The  optical transfer function has a unique 
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experimental status as it is the last step of the description and is determined solely 
by the lens. 

The  development of the various methods of measurement described above 
indicates not only that new and convenient methods for testing are available, but 
that they have also deepened our understanding of the physics of image formation. 
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