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M. A. LIEBERMAN and S .  L. WONG 
Department of Electrical Engineering and Computer Sciences and the Electronics Research Labora- 
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Abstract-Axial feedback stabilization of the fiute mode in a mirror-confined plasma of density no is 
considered. The instability is described using the usual low frequency slab model. The instability 
potential 4 is sampled at various azimuths around the plasma circumference. The sampled potential is 
amplified, phase shifted in azimuth, and the resulting feedback voltage e is applied to a conducting 
endwall split into azimuthal segments. An external plasma of density n, is present in the region 
between the confined plasma and the endwall. The admittance between the endwall and confined 
plasma is modeled to include the external plasma impedance and the sheaths at the endwall and mirror 
throat. For typical mirror reactor conditions, stabilization is obtained for exactly 90" azimuthal phase 
shift provided (e/$)(nJno) is greater than 7pZa:/R?, where p is the azimuthal mode number, a, the 
ion Larmor radius, and R, the plasma radius. For p = 1, a,/R, -0.01, and nJn0- so as not to 
degrade the reactor Q, the required gain e l6  for stabilization is modest, of order unity. By sampling 
the potential and its derivative, feedback stabilization is obtained over a wide range of azimuthal phase 
shift angles. 

1. I N T R O D U C T I O N  
THERE HAS recently been renewed interest in the use of a simple mirror configura- 
tion for a fusion reactor (MOIR, 1975). However, it is well known that a simple 
mirror is unstable to the flute mode (COENSGEN et al., 1966). Various means of 
stabilizing this mode in a simple mirror reactor have been considered. Finite 
Larmor radius stabilization can stabilize the higher order angular modes, but is 
ineffective in stabilizing the p = 1 mode (ROSENBLUTH et al., 1962). Line tying 
stabilization due to the presence of external plasma is ineffective due to the 
external sheath impedance at the end walls (BABYKIN et al., 1965; KUNKEL and 
GUILLORY, 1966). Feedback stabilization by means of voltages applied to plates 
radially surrounding the plasma (ARSENIN and CHUYAKOV, I968 ; THOMASSEX, 
1971) and by means of variation of the confining magnetic field (GRAD and 
WEITZNER, 1969) has also been considered. We here consider the combination of 
line tying and feedback stabilization of the fiute mode by means of currents which 
are injected at the conducting end wail sheath of a mirror confined, fusion piasma. 
The end wall is split into a number of pie-shaped segments, with feedback 
voltages applied to each segment. We show that with this technique, the require- 
ments of feedback gain and external plasma density are modest for stabilization of 
the flute mode in simple mirror geometry. 

2 .  D I S P E R S I O N  E Q U A T I O N  W I T H O U T  F E E D B A C K  
Figure 1 shows the axial distribution of electron and ion densities and the 

ambipolar potential which are considered here. The mirror-confined region of 
length lp contains a hot plasma of density no, with ion and electron temperatures 
T, and T,. The external plasma extends for a length 1, on either side of the hot 
plasma, has a density n,, an electron temperature T,, = T,, and an ion tempera- 
ture Ti,. Both the mirror-confined and the external plasma electrons and ions are 
assumed to be Maxwellian. We treat the flute instability in a slab model as shown 
in Fig. 2, in which the effective acceleration g = vth2/R,; where R, = lB2/R, is the 

145 



746 M. A. LIEBERMAN and s. L. WONG 

Electrons Hot  ions 

n 

I 
I 

Mirror 
region I 

-Distance along a x i s  

FIG. 1.-(a) Schematic of ion and electron densities near axis of mirror confined plasma 
with cold externa! plasma and sheaths at mirror throat and end plate. (b) Corresponding 

potential distribution. 

field line curvature, Z'th is the mean square velocity, and lB is the mirror scale 
length. The wave is taken to vary as exp j(ot- ky).  The guiding center approxi- 
mation is used €or the particle motion in the mirror region: 

m g x B  ExB m 1 dE v =  --+-+--- 
q B 2  B2 q B 2 d t '  

The continuity ecjustion for esch species in the mirror is written as 

anldt+Q (nv)= S, (2) 

where the source term S gives the current flow from the external plasma into the 
mirror region along field lines in response to the perturbed potential 4. The 
potential satisfies 

i7 2 

a 

X 

FIG. 2.-Slab model showing orientation of B field direction, density gradient, and 
gravitational force. 
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The effect of the external plasma appears only in the source term S.  Letting 
y ( o )  be the admittance per unit area of the external density region, and 
integrating (2) over the mirror volume, we find 

where I ,  is the confined plasma length. Linearizing (lj-(4), we obtain the 
dispersion equation 

where wpa2 = q2n,/(Eoma), Cl, = q,B/m,, o, = kgJfl, and RC1 = -fie-' dn,/dx is 
the plasma radius. The usual flute instabiiity for an electron-ion plasma with 
Ti >> T, is obtained by putting y, = 0, we << wi, and 1 + o p ~ / O ~ < <  w,?/a? in (5 ) :  

which has the solution 

For small k we find 

which is the usual result. 

E, = EiTelTi, p = kR,, 0 = w l f l i  and the normalized sheath admittance 
We put 1 + wpe2/i2;<< w,:/a? and introduce = a?/lB2, where a? = KTJ(MS~?):  

where K is Boltzmann's constant and all temperatures are given in units of 
degrees Kelvin. We then obtain the normalized dispersion equation 

3.  EXTERNAL PLASMA ADMITTANCE 

The a.c. voltage drop across the external plasma is the sum of three effects: (a) 
the sheath impedance at the mirror; (b) the sheath impedance at the external wall; 
and (c) the impedance of the bulk of the external plasma. The sheath potential at 
the mirror is fixed by equating electron and ion currents 

re = ri +r,. (10) 
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Assuming Maxwellian electrons with T,, = T,, we have 

12021, -e+/KT,  e re =- 4 , 

ri = no-, 1, 
7m 

and 

where 

v, = [ 8 K Te/( nm>]1’2 

and T,  is the mean ion-scattering loss time. The sheath conductancehnit area g, 
is given by 

Even though n, << no, v, >> 1,/~,, such that the first term in (12) dominates. 
The external impedance can be modelled by a lumped circuit as in Fig. 3, 

where R, is the resistance at the mirror; R,, L, are respectively the resistance 
and inductance due to the external plasma; and G,, C, are the conductance and 
capacitance at the wall sheath. The circuit element modelling of the external 
plasma and wall sheath has been treated by KUNKEL and GUILLORY (1966) and is 

FIG. 3.-Equivalent circuit model for the mirror sheath, external plasma and endwall 
sheath. 
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given by: 

and 

where 1, is the external plasma length, v is the effective collision frequency; wpx, 
AD,, vix are respectively the plasma frequency, electron Debye length and ion 
thermal speed in the external plasma; j o  is the electron emission current at the 
endwall; j e  and j i  are the random electron and ion currents at the wall. For a 
non-emitting wall, j o  = 0. 

4 .  STABILIZATION CRITERIA WITHOUT FEEDBACK 
If the sheaths are neglected (R,+O, G,+m), and the external plasma is 

assumed collisionless (w >>U), then the treatment of BABYKIN et al. (1965) is 
recovered. The external plasma resists the shorting of the instability potential only 
by the effect of finite electron inertia, represented by the inductor & in Fig. 3. 
Putting 

se << si (T, << Ti) and ye = - j e o w p ~ / ( w l , )  

into (9) and expanding, 

where 

M E, Rp2 G=--- 
m no LI, 

In the usual case si = a:/lB2<< 1, and mode number p not too large, the condition 
for stability of (17) is si < G/p2, or 

which is the result obtained by BABYKIN et al. (1965). This criterion is very 
favorable for stabilization, since is typically 10-2-10‘4. Thus nJno h lo-’- 

for stabilization, a condition easily met in a reactor with very little degrada- 
tion in Q. The experimental results of BABYKIN et al. (1965), and of COENSGEN et 
ai. (i966), were reported to be in agreement with ( i8) ;  however, the external 
plasma densities supposedly present seem much too iow in view of the high 
neutral gas pressures and wall bombardment rates for both experiments. In 
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addition, the sheath impedance is not negligible and in fact dominates over the 
external plasma impedance. 

KUNKEL and GUILLORY (1966) have treated the case in which a wall sheath is 
present in addition to the external plasma bulk impedance. They neglected the 
sheath at the mirror. The sheath conductance G, at the wall is much larger than 
the sheath susceptance wC,, provided w << wpix, a condition usually met in prac- 
tice. If R, is compared to (vJlB)Lx,  we see that the sheath resistance dominates 
provided 

a condition which is usually met in practice, even for an emitting wall. Except for 
very long connection lengths, and a highiy collisional plasma, the resistance of the 
wali sheaths is the dominant source of voltage drop between the confined plasma 
and the wall. Setting ye = $ E ~ Q ~ ( ~  + jO/j i ) /AD: in (8), we find 

Dropping terms quadratic in E (PE << 1 for (1) to be valid), and noting 4EAlp  << 
A 2 / p 4  + 8 E for 0 < A <CO, we obtain the unstable root in equation (9) 

a= - i p ( ~ i  -&) - p E A ( A 2 +  8Ep4)-1’2- j4p-’[(A2+ 8Ep4)1/2- A]. (21) 
The growth rate for zero sheath admittance A = 0 is, from (21 ) ,  Im R = -a-. For 
a reduction in growth rate by factor of F, ( 2 1 )  requires 

( 2 2 )  
A = J Z ( F - I F ’ > p  2 2 112 , 

or 

which is in agreement with the result of KUNKEL and GUILLORY (1966). This result 
is discouraging, since F must generally Se very large. For j o  = 0 (non-emitting 
wa!!j 23d typic21 Z i F i G i  reactor coiiditions, it is necessary that F Z  io5 and this 
condition cannot be achieved with n, 5 no unless aJRp is or less. 

5 .  AXIAL PROPORTIONAL FEEDBACK STABILIZATION 
The possibility of stabilizing or greatly reducing the growth rate of the flute 

instability by applying feedback signals at the external end wali is now considered. 
Let w,?/a? >> 1 and yi = 0 in ( 5 ) ,  the dispersion equation can be put in the form 

j o C + Y N L + 2 Y e = 0  ( 2 4 )  
where 

C= ~ o k 2 1 p A , w p ? i ~ ? ,  

we w i - o e  YNL = jsok2E A wpil (-+ 
Ri Ri k R p ( w + o i )  
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1 I I - - 

FIG. 4.-(a) Circuit model of the flute instability, including line-tying. (b) Circuit model 
for feedback stabilization of the flute mode at the ends. 

Ye is the admittance shown in Fig. 3, and the factor of two in (24) has been 
inserted to account for the sheath at both ends of the plasma. Equation (24) is 
modeled by the circuit shown in Fig. 4(a). 

Let us consider using one end of the system to sense the instability potential @I 
and the other end to apply a feedback voltage e proportional to 4. The potential 
is sampled at a number of different azimuthal positions around the circumference 
of the plasma. The end wall is 2lso split into a number of azimuthal segments. The 
sampled potential is amplified, phase shifted in azimuth, and correspondingly 
applied at the various azimuthal positions around the end wall Circumference. We 
note that in principle, to control a flute mode with azimuthal mode number 
p = kR,, it is necessary to sense the potentials on only two field lines spaced at an 
angle not commensurate with 271-1~ around the circumference of the external end 
wall. A circuit model including the sampling and feedback voltages is shown in 
Fig. 4(b). 

For the feedback voltage e we are considering, we have 

e = pb = / p /  eje4 (27) 

where is an amplification factor and 19 is the azimuthal phase shift. The effect 
of the feedback voltage is to modify the source term S in the continuity equation 
(2). In place of (4), we now have for the electrons 

Proceeding as in Section 2, we obtain the same dispersion equation (9), with A 
repiaced by 

A'= (1 - P)A. (29) 
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Using the transformation R = U -p(ci - ce)/2, and E = (ci + cJ2, we have the 
dispersion equation 

The two roots of (30) are: 
112 

In general Ye(@)  and thus jA’ is complex, but we can phase shift the feedback 
signal in azimuth such that jA‘ is pure real. Choosing that value of 8 which does 
this, we have the condition for stability 

2 

( $ + 2 4  > S E .  

This shows that marginal stability depends only on the mean driving force seen by 
ions and electrons. In the limit PE<< 1, which is necessary for the validity of ( l ) ,  
stability is obtained for 

IA‘/p21 > (33) 

As mentioned previously, the wall sheath conductance term is dominant 
compared to the mirror sheath or the external plasma admittance in the external 
admittance Ye. Thus we can take the admittance as the wall sheath conductance 
(15). Theii Using (20) and (E), the required gain-density ratio product for 
stability is 

The stabilization mechanism is similar to the purely line tying result obtained 
by BABYKIN et al. (1965), in which the resistance of the sheaths was neglected and 
only the inductive impedance of :he exteinal plasma due to finite eiectron inertia 
wzs cscside:ed. I: was foiiiid that a siifklcientiy iarge inductive admittance would 
stabilize the flute mode. In the present case, for a resistive sheath with \PI  >> 1, an 
azimuthal phase shift of +90° for the feedback signal produces an effective sheath 
admittance as seen by the mirror-confined plasma which is purely reactive (no 
resistive component]. This admittance is proportional to the feedback gain, and 
for sufficiently high gain, the flute mode is stabilized by either an inductive or 
capacitive connection to the endwall. 

To get a feeling for the stability requirement, consider stabilization of the 
p = 1 mode with a non-emitting wall. For simplicity we take Te = Ti = Ti, and 
lp i= EB. For a typical low density mirror reactor, one has ai/% i= in which 
case (34) yields Ip - l ( ( n , / n o ) ~ 7  x Since analysis has shown (MOIR, 1975, p. 
14) that the reactor Q is not significantly degraded provided n J n o ~ 1 0 - 3 ,  it 
appears that modest values of the gain Ip - 11 are sufficient to stabilize the p = 1 
flute mode. For the higher order modes, the required gain increases as p2. As an 
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example, for n J n o 5  and Ip - 1(= 100, mode numbers up to p = 12 could in 
principle be stabilized. 

For long, high density, linear mirrors, such as two-component (POST et al., 
1973) or multiple mirror (LOGAN et al., 1974) systems, aJRp is typically of order 
0.1 and 1JlB may be as high as 100. This leads to the requirement Ip - 11 (nJno>> 
7 for stability. However, the reactor Q for these systems is not significantly 
degraded even if nx /no= l ,  so that the gain requirement for stabilization is still 
modest. 

A drawback of proportional feedback stabilization is that complete stabiliza- 
tion is obtained only for azimuthal phase shifts of *7r/2. To see this we consider 
the limit 1 >> I jA’/p2I2 >> 8 E ,  for which IjA’/p2( >> 2pE. Putting jA’ = /A’/ and 
expanding the square root in (3P), we obtain 

2Ep2 
IAIl 

Im $2, = +- COS e. 

Thus one of the two roots is always unstable. Instability of the first root (35) is a 
consequence of positive feedback applied to the capacitor C of Fig. 4(a). 
Although unstable for f3# *77/2, by choosing ~ / 2 <  8 <37r/2 and lA‘I sufficiently 
large, root (35) is stabilized and the growth rate of (36) can be reduced to a very 
low level. 

6.  PROPORTIONAL AND DERIVATIVE FEEDBACK 
We now consider a situation where the feedback signal e is proportionai to the 

sum of the perturbing potential and its time derivative, each phase shifted in 
azimuth. In the frequency domain 

e = ( p  +jus)+ = (jp/ eie + jo (61 eiY)+ (37) 

where IpI and 161 are amplification factors and 8 and y are respectively the 
azimuthal phase shifts for proportional and derivative feedback. In place of (4), 
the electroil Souice te rn  is then 

(PKp - 1) + j 4 .  (38) Y k . 4  Se =- 
q e  4 

For simplicity, we assume the sheath impedance is purely resistive. From the form 
of the source term Se, we see that derivative feedback corresponds to a reactive 
term although ye is resistive, and this should have a stabilizing effect on the 
plasma. Proceeding as in Section 2, we obtain the modified dispersion equation: 

A’E~ 2 
R2(1 -W)+fl[p(ci - se)  - j l - p i H  + 2E-j--p sise = 0 

A‘ P 1 p 

where A‘ is given by (29), 

H = Aai6/p2 

(39) 

is the normalized derivative gain, and A is the normalized sheath impedance (8). 
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The two roots of (39) are: 

- [p(si - E, )  -j(A'/p2) -piH] &{[(-jA'/pz) - 2pZ fpsiHl2 + 8Z(H- 1))'" 
2(1- H) sz= 

(41) 

The interesting limit of (41) is IpI >> 1, Iff1 >> 1 and PE /HI<< lA'/p2/. In this case 
we have 

= a'[-1 f (1 - R)1'2] (42) 

where a' = jA'/(2p2H) and 

R = 8Zp4H/A'2. 

For IRI<<l, we find 

2p2Z 

I A'I 
Im a2 = f- cos 8. 

(43) 

(45) 

The two roots are stable in a finite diamond shaped region centered about 
f3 = 0 y = 0, as shown in Fig. 5. There is a wide range of phase shifts over which 
complete stability is achieved. 

FIG. 5.-Stability map in -y, 0 space with R as a parameter. 
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In the other limit ]RI>> 1, we find 

Im .cZ1,2 = (E/ ] H I  ) ' I 2  [*sin ( y /2 )  i- /R[- ' '~  cos (e - y ) ]  (46) 

which shows complete stability only for y = 0 and - ~ / 2  9 e 5 r / 2 ,  as shown in Fig. 
5 .  The variation of the stable phase region for finite values of ]RI is also shown in 
the figure. 

Derivative feedback acts se that, by secsicg the ;ate of chaiige of the 
perturbing potential, we anticipate its effect. By using both derivative and 
proportional feedback, we are applying two independent stabilizing feedback 
voltages to the plasma. Both derivative and proportional feedback are separately 
susceptible to instability due to small phase shifts in the feedback circuit or small 
reactive components in the line-tying admittance. Thus if we drop the derivative 
feedback term, or  if we make the derivative feedback term too large, the plasma 
is stabilized only along a line in the 6-y phase space, where the total admittance 
appears as a pure reactance. However, there is a region between these extremes 
where the plasma can be stabilized, with both modes decaying, and this stabiliza- 
tion is not adversely affected by small reactive components in the line-tying 
admittance or by small phase shifts in the feedback circuit. 

As a design example, consider stabilization of the p = 1 mode and assume that 
4' is obtained by means of an RC differentiator, for which 6 = RC and H =  Aili& 
For a conventional low density mirror reactor, we take TiTiJT?- 1, Rp/b - 1, 
Rp/ai - 100 and nJno -2  x to find from (8) that IAI - lov2. At BO = 20 kG, 
ai - loss-'. A time constant 6 of s is easily achieved, yielding [Hi - 100 
from (40). For E - and lR] = 1, the required feedback gain is found from (29) 
and (43) to be \PI-30, which is easi!y ~ ~ k l s ~ e d .  
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