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STABILITY OF GENERAL PLASMA EQUILIBRIA-I 
FORMAL THEORY 

J. B. TAYLOR and R. J. HASTIE 
Culham Laboratory, Abingdon, Berks. 

(Received 23 November 1967) 

Abstract-A method is described for the detailed investigation of electrostatic instabilities in real 
experimental geometries. These have frequently been discussed in the plane slab model, and modifi- 
cations of it, but the present work includes all geometrical effects from the outset. The starting point 
is the collisionless Boltzmann equation with the approximation that the scale length of the equilibrium 
is long compared to the ion gyro radius. The main interest is in perturbations of low frequency but 
of arbitrary wavelength, which may be comparable to the ion Larmor radius. Thus several 
instabilities such as drift wave, flute or trapped particle, come within the scope of the theory. 

Expressions are first obtained for the contribution to the charge density produced by an arbitrary 
electrostatic perturbation affecting particles whose unperturbed orbits are (i) trapped between 
magnetic mirrors; (ii) circulating around closed field lines; (iii) tracing out a magnetic surface. 
Together with Poisson's equation these expressions lead, via the appropriate Nyquist contours, to 
stability criteria valid for arbitrary equilibria. Finally it is shown how this method leads to a differen- 
tial equation whose solution will determine the stability of an experimental configuration such as the 
multipole. 

1. I N T R O D U C T I O N  
THE stability of a magnetically confined plasma has been thoroughly discussed in 
terms of the one-dimensional, plane slab configuration. The flute instability, with 
finite Larmor radius effects included, was investigated by ROSENBLUTH et al. (1962), 
and in the long wavelength limit drift wave instabilities due to temperature gradients 
and current along field lines were discovered (RUDAKOV and SAGDEEV, 1961; 
KADOMTSEV, 1963a). The investigation of these drift waves in the short wavelength 
limit (GALEEV er al., 1963; MIKHAILOVSKII and RUDAKOV 1963; KADOMTSEV and 
TIMOFEEV, 1963) revealed that such waves were unstable even in the absence of 
temperature gradients and parallel currents, provided only that there was a density 
gradient. Consequently the term 'Universal' was introduced to describe this mode. 
A review of the literature up to this time is given by KADOMTSEV (1963b). 

The next generation ofpapers on the subject studied possible stabilizing mechanisms, 
such as finite machine length, magnetic field shear, and gravity-simulated curvature, 
(GALEEV, 1963 ; MIKHAILOVSKAYA and MIKHAILOVSKII, 1964; KRALL and ROSENBLUTH, 
1965a), and more recently this trend has continued with investigations of the effect 
of sinusoidally varying gravity (to simulate $'(dl/B) properties) (COPPI et al., 1967; 
ROHLENA and JUKES, to be published). All these investigations of plasma stability 
are based on the plane slab model. 

However, real confinement systems are geometrically complex and introduce 
additional effects due to field gradients and curvatures, and to the fact that particles 
may be reflected at mirrors or circulate with varying speed round closed lines of 
force or over magnetic surfaces, rather than moving at uniform speed as in the plane 
slab. These effects as we have seen above, can be partially simulated in the plane 
slab, e.g. by a fictitious gravity, but in this paper we abandon the plane slab model 
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and investigate the stability of arbitrary plasma equilibria in a way which permits 
all the effects due to geometrical complexity to play their full r61e. The only restriction 
is that the Larmor radius must be small compared to the scale lengths over which the 
equilibrium (not the perturbation) varies. 

Thus, the present theory is applicable to any plasma equilibrium and at the same 
time provides a basis for the detailed investigation of microinstabilities in real 
experimental situations. The instabilities with which we are most concerned arc 
electrostatic modes of low frequency (compared to the ion gyro frequency) with a 
scale length longer than, or comparable with, the ion Larmor radius. These include 
the flute instability, and the drift wave instability-to which we devote most attention. 

The present method of studying stability is an extension of that used earlier to 
study equilibria in arbitrary magnetic field configurations, (HASTIE; TAYLOR and 
HAAS, 1967a; b), henceforth referred to as H.T.H. That is we expand in powers 
of A, the ratio of the Larmor radius to a scale length of the equilibrium, (but not 
necessarily to  the scale lengths of the perturbation). When studying equilibria, it was 
shown that each order of the calculation reduced the arbitrariness in F,, the first 
order correction to the zero order distribution Fo, until it was completely determined 
in terms of Po. It will be shown here that in a similar way each order of calculation 
also decreases the arbitrariness of any perturbation f, until it too is completely 
specified in terms of the perturbed electrostatic field and the equilibrium quantities, 
The form which the specification takes depends on whether the corresponding particles 
are trapped, circulating round closed field lines, or tracing out magnetic surfaces. 
Together with Poisson’s equation this expression for f determines the stability of 
general equilibria in an arbitrary magnetic field. 

Some immediate comparisons can be made with the plane slab model. For example, 
in the plane slab an important r6le is played by the resonance between the electrostatic 
wave and particles moving at  the wave’s phase velocity. In three-dimensional 
equilibria the velocity of a particle varies from point to point and there are no inde- 
pendent plane wave oscillations. However, our analysis shows that a corresponding 
resonance phenomenon still arises. This is because in any confined three-dimensional 
equilibrium the orbits of the particles must be quasi-periodic and the important 
resonance is between the period of this quasi-cyclic motion and the frequency of a 
normal mode of electrostatic oscillation of the system. 

A variety of sufficient criteria for stability of an arbitrary equilibrium can also 
be derived from our equation. For example, if one considers only perturbations with 
a long transverse wavelength, then a set of sufficient stability criteria are 

If perturbations of short perpendicular wavelength are also allowed, so that the drift 
wave instability is included, then the stability criteria are naturally more restrictive. 
In this case an equilibrium of the form F,, = F o b ,  K )  is stable a t  low density if 
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and is also stable at high densities if in addition, 

where z = u I / o ,  IVSol and VS,, is a measure of the scale length of the perturbation. 
The first condition was derived earlier on the assumption that the magnetic 

moment p was a constant (TAYLOR, 1963). The fact that a second inequality is 
involved was pointed out recently by WIMMEL and SAISON (1966), and its relation to 
the earlier results, and to the variation of p has been discussed by TAYLOR (1967). 
To demonstrate that this theory also leads to normal modes with a well defined growth 
rate the W.K.B. method is extended to deal with the present situation in which there is 
a small expansion parameter valid in two directions, (perpendicular to the magnetic 
field) but not valid for the third direction. This leads to a formal dispersion equation 
for the normal modes of any equilibrium in an arbi;trary magnetic field, and is in a 
form which can be compared in detail with the dispersion equations obtained for 
the plane slab model or for modifications of it in which a fictitious periodic gravity 
has been added to simulate geometrical effects. 

Finally, we show how, for a class of microinstabilities, the basic equations can 
be reduced to a simple form convenient for the detailed investigation of real experi- 
mental configurations. These applications will be discussed fully in a second paper. 

2 .  METHOD 
The method by which we analyse instabilities in an arbitrary geometrical situation is 

similar to that used previously for the study of equilibrium in general geometry, particu- 
larly in the mathematical manipulations. Accordingly, we shall omit the detailed 
algebraic steps and refer the interested reader to the earlier paper and report [H.T.H. 
(a), @)I. 

The starting point is the Vlasov equation 

?+ v .Vf+ e [E + v x B] af = 0 
at m 

linearized about an arbitrary equilibrium F. This equilibrium may include an electric 
field E = -V@ which gives rise to E x B drifts of the same order as the gradient B 
and curvature drifts. Details of the equilibrium are given in H.T.H. (a). In the study 
of equilibrium we expanded the solution of the Vlasov equation in the small parameter 
1, related to the ratio of the Larmor radius to the scale length over which the solution 
varies. If we were to do this in a straightforward way for the perturbation as well as 
the equilibrium we would exclude important classes of instability which have wave- 
lengths of the same order as the ion Larmor radius. These instabilities can be included 
if we expand only the equilibrium quantities in a simple power series in 1 and employ 
a different expansion for the perturbation. The perturbed potential is expressed as 

y = $J exp (iS(x)/rl) (2) 
and the perturbed distribution as 

f = h p  (im)/4 (3) 

where $,?and S are all expressed as simple power series in 1. This description of the 
perturbation allows us to include oscillations with wavelengths comparable to the 
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ion Larmor radius while still having to deal throughout only with functions which 
vary slowly on the scale of the Larmor radius and which have simple power series 
expansions in 1. 

Accordingly we write the solution of (1) as 

j = F +feiS(x)/le4wt 

where F is the equilibrium distribution and 1 is the expansion parameter proportional 
to rL/L (where r, is a typical Larmor radius and L the typical scale length of variation 
of the equilibrium F, and off, q and S). 

The linearized form of the Vlasov equation is then 

Now, bearing in mind that all functions in (4) vary over a length L,  large compared 
to the Larmor radius it is clear that, if equation (4) is divided by the cyclotron 
frequency CO,, then the operator v .  V/oc always produces a term of order rL/L - ;I 
and it is convenient to indicate this explicitly by introducing a factor 1 into the oper- 
ator. The equation is then 

in which the order of each operator is now explicitly indicated by the power of 1. 
which accompanies it and the solution can proceed formally, writing F = F, 4- 
AF,+ ..', @=CP0+1O.,+ . . . ,  f = f o f i l f i +  ..., $=yo+ ly l+  ..., s=  
so + ASl + . . .. 

The requirement that the equilibrium electric field -V@ be of order A (so that 
the second, or longitudinal, invariant J is preserved and long term equilibrium 
ensured) means that CP, = 0. Further, although S(x) appears as an arbitrary complex 
function it will be found later that only real So need be considered. 

To solve equation (5), order by order, it is first necessary to express it in the 
'natural' variables used in H.T.H. (a), (b). That is we express the velocity in terms 
of p, E ,  4 and U where 

and e2, e, are unit vectors orthogonal to e, = B/B. Position x is expressed in terms 
of a,  1, 1, where tl, label a line of force through B = Vtl x Vg and I is arc length 
along the line. It proves convenient to make a further change and replace E by 
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K = E + e$/m, then equation ( 5 )  becomes 

where 

CL = J(2PB) 
cl = cl(ez cos 4 + e3 sin 4) 

and D is an operator introduced and discussed in H.T.H. (a); 

+ sin 4 - p1 - cLu3 + $aq(T, - TJ cos 2 4  + auq sin 2+(pz - [p: 1 
where V = p(VB/B) + q2/B (el vel and the uI, pi, and T( are related to  the curva- 
ture, shear and torsion of the field lines and are defined in H.T.H. (a), (b). 

As yet no assumption has been made about the frequency of the perturbation 
and the method deals with both high and low frequency instabilities. However we 
shall concentrate on the low frequency modes for which 

The latter condition implies long, but not infinite, wavelength in the direction of the 
magnetic field and both conditions are appropriate to the drift wave instability-our 
main concern-and to flute and flute-like instabilities. 

i 

3 .  SOLUTION 

In lowest order equation (7) gives 

with solution 

where g is an arbitrary function. 
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In order to determine g we consider the next order in the expansion of (7) which 
provides an equation forf,, the first order correction tof,. This is 

WO Qc 

-fle-(l/mc)(cl a xst .0~0)  = e-(z/o,)(oLxet WO) 

a4 

iY0 1 aF, aF,  e, x cI aFl __  - B v s o ' [ F 1 ( ~ ~ t  E) + T@] 
- ~ ~ ~ , . [ q e , ~ + c , ( ~ ~  aFLl 1 aFo 

B 

i w1 - - (Ci ' VS,) - - 
B ( B  ap z)] 1 aF, 

(1 1) 

In order thatf, be periodic in 4 the right side of equation (11) must vanish when 
averaged over #J and whenf, is expressed by (10) this condition leads to an equation 
for g. After a great deal of algebra, this can be reduced to the relatively simple form 

ai 

e1 xVFo*VSo - 
0' c m 

where J, is the zero order Bessel function, and 

v, = e, x ( 4 2  2 + ~ V B )  

WC 

v,=-- VOl x B 
B2 

C I  z = /VS,I 
UJ e 

The general solution of (12) is 
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where we have written y = lyo e(ilA)(sotasl), and 

Thus, although the I dependence of g has been determined, it still contains an 
arbitrary function h. However this can be determined without going to higher order 
in the 1 expansion. Three separate cases must be considered which correspond 
physically to particles which 

(i) Circulate round closed field lines. 
(ii) Are reflected between magnetic mirrors. 
(iii) Trace out a magnetic surface with small rotational transform. 

(i) Closedjeld lines 
If in a toroidal confinement system, the field lines form closed curves, 1 is a 

periodic variable and the function g must be periodic in I ,  i.e. g(l) - g(1+ L) = 0 
where L is the length of the field line. Using this condition to fix the unknown 
function h one finds 

(15) 
where MO = $(o*/q) dl. We have taken the limit of integration Io in (13) a t  the same 
position as the independent variable I (sincef, and g are, in fact, independent of the 
choice of lo), in order to write (15) in its most concise form. 

(ii) Mirror containment 
If over part of the line of force p B  > (K - ejni 0) then the corresponding particles 

undergo mirror reflexion. This may occur for some particles in a toroidal system 
or for all particles in a mirror system. As discussed in H.T.H. (a), the distribution 
functions corresponding to U = +1 and a = -1 are then no longer independent 
and if particles of a certain p, K have turning points ZI and I, then 

g(P, K, I,, = +I) = g@, K, 4 , ~  = -1). 

This condition again determines h but it is now more convenient to identify the 
arbitrary lower limit of integration Io with one of the turning points l i ;  then 

(iii) Magnetic surfaces with small rotational transform 
In a toroidal confinement system the lines of force need not close on themselves: 

instead, if followed indefinitely, a line of force may trace out a magnetic surface. In 
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this case the periodicity condition on the distribution function of particles which do 
not undergo reflexion, must be reconsidered. 

First it is necessary to introduce a ‘cut’ in the torus to render the GI, ,B co-ordinate 
system single valued. Then in following a line of force across the cut there is a 
discontinuityin the (GI, p) value. In  fact it is convenient to make one of the co-ordinates 
(say p) a magnetic surface co-ordinate which does not change in crossing the cut; 
then the other co-ordinate GI changes by an amount 1-a generalized rotational 
transform, and we shall assume that this transform is “small” in the sense discussed 
in H.T.H. (a), i.e., is to be treated as O(1). Instead of the condition&) - g(l  -+ L) = 
0 we now have the condition 

lL+L = O ( 4  [ge“a’”l, - [geisali 
where 

(18) 
as 
ax S0(Z) - S0(Z + L) = 1 -O . 

These conditions determine the unknown function h and if we again identify the 
arbitrary lower limit Io with the running point I we find 

(19) 
This equation gives the generalization of (15) to the case of magnetic surfaces with 
small rotational transform. It is clear that when 1 -+ 0 (19) reduces to (15). 

Before proceeding further it is convenient to summarize the results of this section. 
These show that if an arbitrary equilibrium is perturbed by an arbitrary electrostatic 
potential 

~ = $(x)eis‘x’/Aeeiwf 

then the perturbed distribution function is given bypeiS(x)’a eiot where 

and g is defined by (15) for particles circulating round closed field lines, by (16) 
for mirrored particles and by (19) for particles tracing out a magnetic surface. Later 
we shall use these expressions to derive stability criteria and a dispersion equation 
which determines the normal modes of perturbation (i.e., the functions yo, So, SI 
and the corresponding complex normal frequencies U).  

The perturbed charge density 

(16) or (19) is needed. This is given in general by 
To obtain stability criteria the perturbed charge density corresponding to (1 5 ) ,  
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i.e. using (20) 

Because the expression valid for closed lines can always be obtained from the 
'magnetic surface' expression by putting L = 0 we need write down only the expression 
for the charge density valid in cases (ii) and (iii). 

Case(ii). Mirror containment. For mirrored particles the equilibrium necessarily 
has the important property that F0(o = +I)  = Fo(a = -1) so that the total charge 
perturbation is 

- l : y J o  sin M(I ,  l ' )  "1) (23) 
4 

Cases (i) and (iii). Closed lines and magnetic surfaces. 

4. STABILITY THEORY 
Some sufficient conditions for stability can be obtained directly from the perturbed 

charge density, expressed in terms of the perturbed potential y as described in the 
preceding sections, and Poisson's equation 

1 
457 - v2y + p(w, y )  = 0. 

If p is any solution of this equation then we can define the functional 

and if the system were unstable there would exist a function y for which the equation 
Q(o) = 0 has a solution 0, in the lower half of the complex plane (this being the 
unstable eigenvalue appropriate to the solution y). A Nyquist plot of Q(o) shows that 
Q(w)  = 0 can have no such unstable solutions if 
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for all realjnite w (approached from negative imaginary side) and if 

(ii) Limit Q(w) > 0. 
14-m 

The first of these conditions essentially states that the power transfer from the electro- 
static field to the plasma is positive, so that the oscillation is damped. This condition 
alone was used by &ALL and ROSENBLUTH (1965b) in their analysis of ‘Minimum-B’ 
type equilibria in plane slab geometry. The need to supplement this by a second 
condition was noted (also for the plane slab) by WIMMEL and SAISON (1966). 

From the expressions for the charge density given in section 111, one can show by 
a “stationary phase” argument, that when 1 is small the dominant contributions to 
(w J y*p) arise where VS,, is purely real and that the only imaginary contributions 
to (0 J y*p) come from the singular points of the integrand where p + CO. 

These singularities, or resonances, arise, for mirror trapped particles when 

dl 
4 

(w + v, ‘ VS0 + v, * VS,) - = 7711 

and in the closed line or magnetic surface case when 

dl as 
0 p (CO + v, VS, + v, .VS0)- + ’2 = 2nn 

4 au 

and are the generalizations of the resonance between a plane wave exp i(wt - kx)  
and a particle moving with uniform speed w/k ,  which occurs in the plane slab 
calculations. The resonance process in general geometry is that between an electro- 
static oscillation and particles whose motion is almost periodic (i.e. periodic when 
I, + 0) with quasi-period equal to an integer multiple of the period of electrostatic 
oscillation. 

The contribution to 9 (w y*p) arising from a singularity can easily be evaluated 
by writing 

and w = w - iy .  Then taking the limit y + 0 the integral becomes, for particles 
trapped between mirrors 

JW, 4) = + Tcu, K, E, B) (31) 

where 
d l  R =Jr yJo cos M(l,l,) - 
4 

(33) 

and where the integrand has to be evaluated at  those values of K for which T = 0. 

Y w J p*p is again given by (32) but with T now defined by 
For particles on closed field lines or on a magnetic surface the contribution to 

aso 
au T = aM, + 1- - 2nn (34) 
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and R by 

Some elementary criteria 
We can now use the basic stability criteria (i) and (ii) to derive simpler criteria 

expressed in terms of the equilibrium distribution above. The first example concerns 
the special Minimum-B equilibria (TAYLOR; 1963), F = F(p,  K).  For such equilibria 
a sufficient set of criteria for stability against all low frequency modes, including 
those of short perpendicular wavelength becomes 

The f i s t  is satisfied if aFo/aK < 0; the second could be satisfied if e.g. 

but this precludes the existence of a loss-cone which is essential for the confinement 
of simple Minimum-B equilibria. Accordingly it seems that (37) is already in its 
simplest and most useful form. Together with aF,/aK < 0 it is sufficient for stability 
of Minimum43 type equilibria a t  all densities against all low frequency instabilities 
of both long and short wavelength. 

At very low plasma density, where U," < a,:, the condition aF,/aK < 0 alone 
is sufficient for stability since Q(w) is then dominated by the positive term J IvSo12 
IyI2 d3x. 

For more general equilibria F o b ,  K ,  M, B )  there does not appear to be any 
particularly succinct expression guaranteeing stability against all low frequency 
instabilities, but in the limit of long wavelength (equivalent to VS, + Oin our expansion 
scheme) a concise discussion can again be given, In this limit Qm is essentially positive 
at all densities and if we write F, in the long term equilibrium form F,(,M, K, J) whereJ 
is the longitudinal invariant, then P can be written 

where the integrand in (39) has to be evaluated at  resonances, i.e. a t  those values of 
K for which 
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where r = ip (dllg) is the transit time along the field. In the long wavelength limit 
we distinguish between two types of instability: 

(i) Those whose phase velocity across the field is large compared to typical 
particle drift velocities, i.e. those for which 

I. wT 3 I e1 x V J  wl 
WC 

For such instabilities the n = 0 resonance can occur only for a small group of particles 
in the high energy tail of the distribution and gives a negligible contribution to P. 
Thus only the n # 0 resonances are important and for these the VS, term is negligible 
and P becomes 

(ii) Those whose phase velocity across the field is comparable to or less than 
typical particle drifts, i.e. for which 

W T 6 I e '  x ~ . o s , l .  
For these instabilities the 17 = 0 resonance is important and contributes 

1 a d  
while for typical particles the long wave limit VS, -+ 0 implies also cm -+ 0 so that 
n # 0 resonances involve only particles with anomalously long transit times. 

Thus a set of sufficient stability criteria for long wavelength instabilities, except 
those driven by a small class of long transit time particles is 

The first condition is the usual 'flute' instability criterion. The second condition is 
usually introduced as a justification for certain stages in the development of small 
m/e energy principles (KRUSKAL and OBERMAN, 1958; TRUBNIKOV, 1962; BROSSIER, 
et al., 1964), but is now seen to be connected with the n # 0 resonances and with 
instabilities which while slow compared to cyclotron frequencies do not satisfy W T  < 1. 
For this reason it does not arise in theories which assume W T <  1 from the outset 
(ROSENBLUTH and ROSTOKER, 1959) or invoke the second longitudinal invariant 
(ANDREOLETTI, 1963; TAYLOR, 1964). We note in passing that these instabilities 
with WT 

In the case of particles which trace out a magnetic surface the preceding results 
still apply, but in their derivation the longitudinal invariant J must be replaced by 
its modified form introduced in H.T.H. namely 

1 require a small component of electric field parallel to B. 

J** = f ( q q  f 5 BVE) dl, 
m 

(44) 
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and the equilibrium is in this case F(p, K, J**). There is thus no discontinuity in the 
stability criteria as one passes from closed lines to magnetic surfaces. However this 
is not to say that one situation may not be more stable than the other, for the resonance 
conditions are different. 

5 .  DISPERSION EQUATION 
This far we have used the expression for the charge density p to derive certain 

sufficient criteria for stability. It is not immediately apparent that it also leads to 
definite values of w .  In the plane slab model w is determined by a straightforward 
W.K.B. analysis; in the present case the eigenvalue w can in principle be determined 
by an extension of the W.K.B. method to the present situation in which a small 
expansion parameter is valid in two directions, perpendicular to B but not valid in 
the thrid direction. This also provides a dispersion equation for instabilities in 
arbitrary equilibria in a form which permits direct comparison with that for the plane 
slab model (MIKHAILOVSKII and RUDAKOV, 1963; GALEEV et al., 1963; KADOMTSEV 
and TIMOFEEV, 1963) and its extension (KRALL and ROSENBLUTH, 1965a; COPPI 
et al., 1967; ROHLENA and JUKES, to be published). 

We start from the Poisson equation, which in its lowest approximation in Iz can 
be written 

wheref, has already been expressed in terms of yo, So, SI. If we take the closed line 
situation as an example then all physical quantities are periodic in l so that we can write 

Not all quantities appearing in the theory are periodic in l however, and 
exp i M(lo, r )  increases by exp i MO in one circuit of the system. Nevertheless 

is periodic so we can write 
exp (i M(Zo, 0 - i 1IL MO) 

The functions an(a, ,!I) and b,,(a, 1, p, K,  a) are given by the usual inverse relation- 
ship; a,, depends on S, and b, on So. 

Using these expressions (46) and (47), Poissons equations is 

2 anQnn = 0 
n 

where 
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and the dispersion equation we are seeking is 

det lQ,J = 0. (50) 

In this equation only VSo(ol, b) and o appear apart from equilibrium quantities, and 
it therefore represents an appropriate generalisation of the usual one-dimensional 
W.K.B. equation. For each value of w a value of (VS,) is determined by (50) and 
must satisfy a two-dimensional ‘phase integral condition’ such as 

(VS,)2 dcr db = 4nn (51) ss 
which in turn determines o. In fact in symmetric, but entirely realistic configurations, 
such as the toroidal multipole, perturbations of different azimuthal mode number are 
independent and So can be written 

So = + &(w) (52)  

where y~ is the magnetic flux. Then the phase integral condition reduces to the usual 
one dimensional form. 

Each element of the matrix Q,, has a form similar to the dispersion equation 
itself in a plane slab. If the present general method were applied to the plane slab 
then we would have 

b, N @ Jo . Ss0 
4 

and Q,, is the diagonal matrix with 

Q,, = [(VS,)’ - I d J  f d p d K [ g  + (1 - J;)--  

Then the nth root of the general dispersion equation (50) corresponds to the usual 
plane slab solution with k,, = 2nn/L. In a similar way if the plane slab model is 
modified by a sinusoidal periodic gravity as in COPPI et al. (1967) the general dispersion 
equation reduces to  their tri-diagonal form. 

6 .  CONCLUSIONS A N D  FURTHER APPLICATIONS 
We have shown that the method used to discuss arbitrary plasma equilibria can 

be extended to deal with the stability of these arbitrary equilibria. It leads to an ex- 
pression for the charge density arising in any perturbation of an arbitrary equilibrium 
configuration and this in turn provides a framework for the stability analysis of 
realistic equilibria. 

The results we have described already allow a comparison of arbitrary equilibria 
with the plane slab model, both in terms of the physical processes and of the dispersion 
equation itself. We have shown that the important resonance in the plane slab model, 
between a plane wave and a particle moving uniformly at its phase velocity, is replaced 
in general equilibria by resonance between a normal mode of oscillation of the system 
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and the quasi-cyclic particle motion which must exist in general confined equilibria, 
A pair of basic criteria sufficient to ensure the stability of an arbitrary equilibrium 
against all low-frequency oscillations has also been derived. These lead to simple 
conditions on the distribution function F which will ensure stability; many of these 
have previously been obtained individually but our derivation emphasises their 
inter-relation. We have also derived a formal dispersion equation for oscillations 
in general equilibria in a form which allows direct comparison with, and reduces in 
the appropriate limit to, that obtained in simpler idealised models. 

To conclude this discussion of stability of general equilibria we describe briefly 
how the results of this paper will be used in a subsequent report to discuss micro- 
instabilities in real confinement systems. So far our results are not restricted to any 
particular shape of confinement system nor to any particular plasma distribution- 
both geometry and velocity distributions are arbitrary. However, if we specialise 
to an axisymmetric system, and to a near Maxwellian velocity distribution 

then the most important stability criterion (30), related to the power transfer, can 
be expressed in the form 

where 

v -2-- as0 T’ dn (e, x Vy Ve) and li = - 
e, n d y  ae * 

J -  

From this expression it is not difficult to determine the stability of the system if 
one knows what value to use for (real) U, and the appropriate value can be determined 
as follows. The expression (21) or (22), together with Poisson’s equation, leads to a 
complicated integro-differential equation for U, involving yo eisl and VS,, but this 
can be simplified by noting that for a wide class of microinstabilities the quantity 
MO is < 1 for electrons and > 1 for ions. Then a straightforward expansion in MO Q 1 
for the electrons yields 

For the ions one must deal with several rapidly oscillating functions of the form 
exp i M ,  but we again note that after one circuit round a closed field line exp i M 
increases by exp i MO; consequently if a partial integration in I is performed on the 
numerator then in the integrated parts the oscillating function (exp i MO - 1) is 
exactly cancelled and only slowly varying quantities remain. In fact in this way, 
by repeated partial integration, one generates a formal series in 

-- K h ,  a 
w* ai 
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where V,,, is the ion thermal speed. Thus the ion contribution to the perturbed 
charge is transformed to a differential expression 

so that w(rea1) is determined by 

whose coefficients are given in terms of the magnetic field and VS,, U, (l/n)(an/ay). 
Numerical solution of this equation is not difficult and forms the basis for a detailed 
investigation of the stability properties of a real confinement system. 

In principle, one computes V$(o, y) and o is then determined by the W.K.B. 
phase integral over y. However within our approximation of small A ,  the required 
result can be found by putting VS, = 0 and first computing a local eigenvalue 
w(y)-then the required value corresponds to a stationary value of ~ ( y ) .  

We have already carried out such calculations, in conjunction with D. L. Fisher 
and B. McNamara, for a simple octopole and a simple quadrupole. These, and other 
results, will be reported in a subsequent paper. 
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