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Abstract
Online dose monitoring in proton therapy is currently being investigated with
prompt-gamma (PG) devices. PG emission was shown to be correlated with
dose deposition. This relationship is mostly unknown under real conditions. We
propose a machine learning approach based on simulations to create optimized
treatment-specific classifiers that detect discrepancies between planned and
delivered dose. Simulations were performed with the Monte-Carlo platform
Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera
prototype currently under investigation. The method first builds a learning
set of perturbed situations corresponding to a range of patient translation.
This set is then used to train a combined classifier using distal falloff and
registered correlation measures. Classifier performances were evaluated using
receiver operating characteristic curves and maximum associated specificity
and sensitivity. A leave-one-out study showed that it is possible to detect
discrepancies of 5 mm with specificity and sensitivity of 85% whereas using
only distal falloff decreases the sensitivity down to 77% on the same data set.
The proposed method could help to evaluate performance and to optimize
the design of PG monitoring devices. It is generic: other learning sets of
deviations, other measures and other types of classifiers could be studied to
potentially reach better performance. At the moment, the main limitation lies
in the computation time needed to perform the simulations.

(Some figures may appear in colour only in the online journal)
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1. Introduction

In the last few years, proton therapy became an increasingly used modality for cancer treatment
with more than 83 000 treated patients over the last 30 years worldwide (Durante and Loeffler
2009, PTCOG 2012). The proton depth-dose profile, with the so-called Bragg peak, leads to
improved dose conformation to the tumor, compared with state-of-the-art intensity modulated
radiation therapy (Lomax 1999, Mock et al 2004). Proton therapy allows tumors to be exposed
to higher doses while limiting the energy deposited in healthy surrounding tissues (Smith
2009, Chera et al 2009), particularly after the distal falloff. However, the full potential of the
proton ballistics cannot be fully exploited yet as uncertainties remain in the proton range, that
could in some cases reach up to 5–15%, 5–6 mm according to (Andreo 2009, Smith 2009,
Paganetti 2012). Clinicians generally avoid placing organs at risk behind the Bragg peak.
Range uncertainties are notably due to the stoichiometric calibration of the planning CT scan,
to organ motion, to inter-session anatomical changes and to patient mispositioning (Paganetti
2012).

Protons undergoing nuclear reactions with target nuclei create radioisotopes as well as
high-energy secondary particles. As there is no transmission of the primary beam through
the patient as is the case with x-rays, the secondary radiation going out of the patient is the
only direct source of information to monitor the treatment. It has been shown that the spatial
distribution of the secondary particle production is correlated with the dose distribution and
the ion range inside the patient (Parodi and Enghardt 2000, Testa et al 2008). It was first
proposed to exploit the annihilation gamma-rays originating from positron emitters (11C, 15O
and others) produced by nuclear interaction along the beam path. Conventional PET imaging
can be used but counting statistics has to be accumulated for as long as 2–30 min due to
the rather low activity and positron emitters half lives (∼20 min for 11C and ∼2 min for 15O)
(Parodi et al 2002). During this time, patient motion and biological washout occur, which
intrinsically limits PET monitoring (Attanasi et al 2011, España et al 2011, Moteabbed et al
2011). Developments are in progress to try to circumvent these issues by using time of flight
(TOF) techniques (Karp et al 2008).

Prompt radiation monitoring is another option investigated to overcome the above-
mentioned limitations. Depending on the particle used in the incident beam (proton, carbon
ion, etc), the use of different types of secondary particles have been studied: (i) Prompt gamma
(PG) (Stichelbaut and Jongen 2003, Min et al 2006, Testa et al 2008) and (ii) secondary protons
with the so-called interaction vertex imaging (IVI) (in carbon-ion therapy) (Henriquet et al
2012). The present paper focuses on PG imaging only, although the proposed method could
probably be applied to IVI as well.

PG monitoring is also being studied to overcome PET monitoring limitations. PG are
photons created by inelastic interactions between incident proton and target nuclei. Unlike
annihilation photons, PG are emitted quasi-instantaneously (decay time much smaller than
1 ps), with a very broad energy spectrum (from a few 105 eV to a few 107 eV). Most of
them have enough energy to escape the patient. Typically for a 480 × 480 × 234 mm3 water
phantom and a 182 MeV proton beam, we observed that 80% of PG escape the target, whereas
only 48% of generated gamma do (49% for neutron related gamma, 26% for bremsstrahlung,
64% for positron annihilation). Their use for treatment monitoring faces two main issues:
(i) efficiency issues due to their high energy and (ii) discrimination of the PG signal from an
intense background noise caused by secondary neutrons.

Testa et al propose a PG collimated camera design with multiple slits perpendicular to the
beam axis and scintillating crystals coupled to photomultiplier tubes (Testa et al 2008). Using a
beam-tagging device (hodoscope), one can estimate the position of the emission of a detected
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PG as the intersection of the beam axis and the slit plane. TOF and energy windows can
be used to discriminate prompt PG from neutrons, thus improving the signal-to-background
ratio. Other collimator geometries such as knife-edge slits are investigated by several research
groups (Bom et al 2012, Jongen and Stichelbaut 2009, Smeets et al 2012). Richard et al
(Richard and Chevallier 2010, Roellinghoff et al 2011, Richard 2012) proposed a Compton
camera with a scatterer consisting of a stack of silicon strip detectors and a position-sensitive
scintillating absorber. Events consisting of a Compton interaction in the silicon detector and
subsequent absorption of the scattered photon in the scintillator make it possible to reconstruct
the emission point of the PG as the intersection of a cone (using the Compton kinematics) and
beam axis (Frandes et al 2010, Richard and Chevallier 2010). Spatial resolution was estimated
by Monte-Carlo simulations to be about 7 mm full width at half maximum with a detection
efficiency of 3 × 10−4 (Richard 2012). In this paper, we considered as a test case a multi-slit
collimated camera coupled with a hodoscope, however the proposed method can be applied
to other types of camera.

Two principal proton beam delivery techniques have been investigated under clinical
conditions: passive spreading and active delivery systems. For passive delivery, spread out
Bragg peak are formed by superimposition of shifted pristine Bragg peaks using range
modulation wheel. For active delivery, magnets deflect and steer pencil beams (Lomax et al
2004) that are delivered by successive layers of decreasing energy. According to the production
yields and an estimation of the camera detection efficiency (Testa et al 2008, Roellinghoff
et al 2011), this delivery technique could potentially allow dose monitoring for the whole
treatment, for a given energy layer, or even for a single spot. In this study, we investigated
spot-by-spot monitoring.

PG dose monitoring aims at detecting deviations from TPS by using measured PG depth
profiles and reference data from TPS. Those deviations impair dose delivery and change
characteristics of detected PG profile. Several authors (Min et al 2006, Moteabbed et al 2011,
Testa et al 2008) proposed to use PG profile falloffs to detect them. Indeed, a change of
density or a shift along the beam path generally results in a shift of the PG profile falloff
and can be detected with the camera. However, some deviations have no influence on falloff
positions (see section 4). Therefore, we propose using other measures as well, such as the
registered correlation of PG profiles. We also propose a machine learning methodology based
on simulations to build classifiers during the planning stage that could then be used during a
treatment session. The classifiers are specific to the treatment plan of a given patient and can
potentially detect more deviations compared with the use of distal falloff alone. The method
is generic: other measures and types of classifiers can be used. Kuess et al proposed a similar
approach using in-beam PET data, using activity map as direct input of the machine learning
algorithm, deviations are purely in-beam as the authors add material between the nozzle and
the patient to change the beam penetration depth (Kuess et al 2012).

This paper is organized as follows. The section 2 presents simulations of a realistic
setup combining proton delivery and monitoring. The section 3 presents the proposed
machine learning approach to detect discrepancies between planned and delivered treatment.
The proposed framework is evaluated in section 4 with receiver operating characteristics
(ROC) curves and a leave-one-out (LOO) study. Advantages and limitations are discussed in
section 5.

2. Simulations of treatment and dose monitoring

We describe in this section the simulation setup used by the machine learning approach
described in section 3. The setup is intended to be as realistic as possible. It includes a
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spot-scanning proton treatment plan of a prostate cancer patient and the complete description
of a two-head collimated PG camera around the patient.

2.1. Treatment plan

We considered a prostate cancer treatment plan created with XIO TPS (Elekta). The
stoichiometric calibration of the patient’s CT image was performed as in Schneider et al
(2000). The plan was composed of two laterally opposed fields, 2300 spots and 25 energy
layers from 143 to 187 MeV. This corresponds to a conventional treatment of 2 Gy by
fraction in the target area (PTV), 80 Gy in total. Each spot is described as proposed in
Grevillot et al (2011): the optical and energy parameters of the beams were modeled using
measured depth-dose profiles and spot sizes obtained from a clinical facility. As the number
of protons in each spot (pencil beam) is given in Monitor Units in the treatment plan, we
made a first low statistic simulation (5 × 106 protons) of the whole plan to determine the
link between the dose in the PTV (1.7 × 10−4 Gy) and the number of incident protons. In
general, distal spots are associated with larger weights than the ones of proximal spots. In the
following we consider a single spot going through the center of the prostate with the Bragg
peak near the distal part of the prostate. This spot has 50 × 106 protons and an energy of
182 MeV.

2.2. PG monitoring system

The online dose monitoring device simulated in this study is an extrapolation of a current PG
camera prototype being investigated in Testa (2010). It is a two-head cylindrical collimated
multi-slit detector. Each head is composed of 91 tungsten septa with thickness of 2 mm,
interleaved with 2 mm air gaps, forming a 360 mm field of view. The collimation length is
100 mm, the distance from collimator to axis is 300 mm and detectors are placed 600 mm away
from the beam axis to allow TOF measurement. The collimators spanned 50◦ around the beam,
allowing the patient to rest on the treatment table. The detectors are BGO scintillators located
after the collimation blades. They span 40◦ for each head and have a thickness of 50 mm. The
spacing between the collimator and the BGO crystal is such that secondary radiations emitted
by the collimators and impinging on the crystal are minimum (i.e. half-way which is a matter of
solid angles). A beam-tagging device (hodoscope) is used to perform TOF filtering. This setup
has roughly the same dimensions as the PET head used in the literature (400×360×375 mm)
(Moteabbed et al 2011) and is illustrated in figure 1.

The PG camera is used to estimate the positions of the PG emission points inside the
patient. Using the beam structure measured with the hodoscope, one can trigger the TOF
window around the time PG are expected to arrive. When the TOF window closes, if the
integrated energy deposited in a crystal lies in the acceptable energy window, the event
is recorded. The position of the event in the crystal is considered as the energy weighed
barycenter of all interactions in the crystal, plus a random value taken from a 5 mm FMHM
Gaussian noise to simulate the electronics and the detector resolution (Richard and Chevallier
2010). More advanced model could be used but we observed that this noise is small compared
to the one due to low statistic. Hence, the reconstructed PG profiles are histograms filled with
event positions. Following (Testa 2010), events are selected if the deposited energy is above
2 MeV and TOF is in the range [3–6 ns] after the proton impacts in the hodoscope.

2.3. Monte-Carlo simulations

Simulations were carried out with GATE, a Geant4-based Monte-Carlo code (Jan et al 2011).
We used GATE V6 and Geant4 V9.4p01. We used the physics list proposed in (Grevillot et al
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Figure 1. Simulation setup with schematic description of the PG two-head camera. Protons coming
from the nozzle trigger the beam-tagging device and enter the patient on the patient’s right side
to form a Bragg peak in the patient’s prostate. PG are collimated by the tungsten blades (in light
gray), located in two heads above and below the patient. Dark gray represents the BGO crystals that
detect gamma rays in an Anger-like fashion. Each head measures 360×300×400 mm3, similar to
the PET head used in Lomax et al (2004). Sizes are given in millimeters. The z-axis is the spatial
axis along the camera field of view.

2011). Simulated and measured PG yields were shown to match around 10% in the case of
protons (Polf et al 2009) and at a factor of 2 in the case of carbon ions (Dedes et al 2012), but
we do not study carbon beams here.

Due to the lack of room geometry and beam structure simulation, background neutron
noise is lower than in experimental data. However, this does not influence significantly detected
PG profiles since most of the noise is rejected by TOF filtering. As simulation precision is
not the main purpose of this paper, we consider it is sufficient to show the feasibility of
the proposed methodology. The simulation of the spot we chose took about ten days on a
single CPU 2.6 GHz Intel Xeon (60 p s−1). We used the GateLab system (Camarasu-Pop et al
2010) to reduce this time to about 5.2 h (average speed up of 45, including queuing time and
the merging of partial results). The GateLab is an open-source system that allows to submit
Gate simulations on a large computing infrastructure such as the EGI grid from a simple
web page. It can be used from www.opengatecollaboration.org/GateLab. It took less than
five days to complete all simulations needed to apply the machine learning approach described
in section 3. Note that no particular effort to reduce the computation time has been performed.

2.4. Observables

In addition to PG profiles, simulations also stored the deposited energy and the emission
PG profiles as 1D distributions inside the patient, along the proton beam and perpendicular

http://www.opengatecollaboration.org/GateLab


4568 P Gueth et al

(a) PG emission (b) detected PG

Figure 2. For the pencil beam we chose, (a) PG emission profile (left axis, plain curve) and (b)
detected PG profile (left axis, plain curve). The depth-dose profile is shown along with the two
profiles (right axis, dashed curve). The histogram bins are 0.45 mm wide for energy deposition and
PG emission profiles and 2 mm wide for detected PG profiles. Events are selected by the camera
if the deposited energy is above 2 MeV and TOF in the range [3–6 ns]. The origin of the z-axis
corresponds to the center of the camera.

to the PG camera collimators. Figure 2 illustrates the output of the simulation for a given
treatment spot. As shown in several studies (e.g. Moteabbed et al 2011), one can observe that
the PG falloff and the Bragg peak are distant from few millimeters. PG emission rate is around
10−3 PG/p/mm, increases rapidly before the Bragg Peak and decreases dramatically after. The
counting rate of the detected profile is about 10−6 count/p/mm, with high level of statistical
noise and a reduced contrast around the Bragg peak. 1 out of 1000 PG is detected in the
camera. Detectors should be segmented to avoid the saturation of individual photomultiplier.

3. A machine learning approach

3.1. Principle

Given a training data set of known situations, composed of a set of input cases Xi (i.e.
PG detected profiles) with corresponding output Yi (e.g. patient displacements), a machine
learning algorithm aims at building a function F able to infer outputs from inputs. If the output
is discrete the function is called a classifier, and if it is continuous, it is called a regression
function. This process is called supervised learning in the sense that output is known in the
training set (TS). The function F , once tuned to the relationship between input and output, can
be used to predict the correct output for any input. The main objective and difficulty of this
stage is the generalization: the ability to accurately predict correct output from input that does
not belong to the initial training.

We intend here to investigate the contribution of such a concept to the issue of detecting
deviations using PG monitoring. We define a TS, build a regression function based on practical
considerations and test the generalization with a LOO approach. Numerous methods exist
in the literature (Kotsiantis et al 2007), such as decision trees, neural networks, genetic
programming, support vector machines (SVM), Bayesian networks, etc. We decide here to
focus on a simple threshold-based approach, based on ROC curves, but more advanced methods
could be investigated.
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3.2. Training set

To build the TS {(Xi,Yi)}, we considered deviations in the form of patient translations. Other
types of deviations could be studied, such as patient rotations, anatomical changes or errors
in the delivery of the planned beam. Each element of the TS corresponds to a difference
between two simulations S j and S j′ . The output Yi is the patient translation between S j and
S′

j, and the input Xi is a measure of a distance between detected PG profiles, described in the
next section. Alternatively one could use gamma-index ratio for Yi. We simulated 20 patient
positions, S1, . . . , S20, and considered unordered pairs of situations (( j, j′) = ( j′, j)), without
self reference ( j �= j′). We thus obtain (20 × 19)/2 = 190 elements in the TS. This approach
provides a TS with a reasonable size and a limited number of simulations.

Patient positions were generated in order to get a uniform distribution of Yi in-beam
and off-beam components in the range [2–22 mm]. This ensures that the machine learning
method is not biased by an unbalanced representation of certain events in the TS. As we
consider unordered pairs of positions, uniform distribution cannot be easily generated: to
reach that goal, we randomly generated candidate positions until the distribution was uniform.
It was performed by an optimization process that minimizes the distance between the target
uniform distribution and the in-beam and off-beam histograms built from the randomly chosen
positions. We used the Nelder–Mead optimization algorithm (Nelder and Mead 1965). The
lower bound of the range [2–22 mm] has been chosen because too low distances lead to poorer
classifier performances. The upper bound was chosen as a reasonable upper displacement
value. Further studies on the TS definition are needed but are beyond the scope of this paper.

3.3. Distance measures on PG profiles

Having definedYi, we now need to define Xi. The simulated deviations between situations Sj and
S j′ will induce changes in the PG profiles that may be quantified with measures between the two
profiles. If the patient is translated along the beam axis (in-beam deviation), the Bragg peak will
be shifted but the profile will roughly keep its shape. On the other hand, if the displacement is
perpendicular to the beam axis (off-beam deviation), the falloff will not be shifted significantly,
however the shape of the profile will probably be affected. We thus investigate two measures:
distal falloff position difference and registered correlation. Distal falloff position difference
has already been used in the literature (Parodi et al 2007) but is known to fail predicting
off-beam deviation components (Bom et al 2012). The proposed second measure, registered
correlation, has been introduced to overcome distal falloff limitations and predict off-beam
deviations.

The distal falloff position is measured using the following algorithm (see figure 3). A
quadratic spline is fitted on a 100 mm Bragg peak window centered at the maximum amplitude
(value) of the PG profile. The minimum amplitude is the mean PG value on the tail window,
located after the Bragg peak region. The 50% distal falloff position, represented by the range
(S j) operator, is the position of the point located on the spline that has an amplitude equal to the
mean value between the maximum and the minimum amplitudes. The measure �range(S j, S j′ )

is defined as the absolute difference between the range values of the reference and observed
PG profiles as in equation (1).

�range(S j, S j′ ) = ‖range(S j) − range(S j′ )‖ (1)

The second measure, registered correlation, is built to be both correlated with off-beam
deviation and not correlated with in-beam deviation. The decorrelation with the in-beam
component of the deviation ensures an easy interpretation of the measure and facilitates the
training process of the combined classifier defined in 3.4. Ideally, registered correlation must
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Figure 3. Measure of the distal falloff position on the detected profile of figure 2(b). The blue
curve is the detected PG profile. It is split into three windows with fixed size, positioned relative to
the maximum amplitude of the profile. The green dots depict the Bragg peak window used to create
the spline. The red curve is the corresponding fitted spline. The tail window is used to compute
the minimum amplitude. The plateau region is used while calculating the registered correlation
measure.

be taken between profiles expressed in the patient coordinate system to cancel the in-beam
deviation influence on the measure. To decorrelate with in-beam deviation, the estimated
falloff position, range(S j), is used since it proved to be much more robust with fitted spline
than with the maximum of correlation. Once the registration is performed (with curves shift),
the correlation coefficient is computed on windows taken from the plateau part (before the
Bragg peak) of PG profiles. Registering the images ensures a greater decorrelation with the
in-beam deviation since a small residual shift between Bragg peak positions has a large effect
on the correlation value. For 182 MeV protons, plateau windows are 120 mm wide and end
50 mm before the Bragg peak. Their upper bound is the same as the lower bound of the spline
used to define range(S j) (see figure 3). Equation (2) defines the registered correlation operator
corrreg(S j, S j′ ), where Xj(z) (resp. Xj′ (z)) is the PG profile of simulation S j (resp. S j′ ). z is a
continuous spatial coordinate along the camera axis as defined in figure 1. Xj(z + range(S j))

and Xj′ (z + range(S j′ )) are the registered PG profiles so that z = 0 corresponds to the PG
profile falloff for both profiles.

corrreg(S j, S j′ ) = corr(Xj(z + range(S j)), Xj′ (z + range(S j′ ))) (2)

corr is the correlation operator restricted to the plateau window and is defined by equation (3).

corr(X,Y ) =
∫ z=−50 mm

z=−170 mm
(X (z) − X̄ )(Y (z) − Ȳ ) dz (3)

X̄ is the mean value operator with support limited to the plateau window and is defined
by : X̄ = ∫ z=−50 mm

z=−170 mm X (z) dz.
Other off-beam detection measures can be defined as long as they measure changes in

profile shape in the patient frame of reference. For example, we could have used the sum of
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absolute differences between Xj(z − range(S j)) and Xj′ (z − range(S j′ )) instead of correlation,
but the initial results were less good. As the purpose of this paper is not to provide the best
possible discriminant observable, but rather to study the overall procedure, we did not further
investigate other variables

3.4. Building the classifiers

Once the TS is defined, we train a classifier that predicts the displacement amplitude from
the measures on PG profiles. We propose to use threshold classifiers. This type of classifiers
uses a tolerance parameter that we call here deviation threshold (DT), defined by the user.
For simplicity, we considered here the maximum tolerated patient translation. More generally,
another tolerance could be defined, such as a value related to the gamma-index ratio between
the two compared dose distributions.

Training a classifier is the process of finding the measurement threshold (MT) that gives
the best performance. It must be repeated for each treatment plan. Using the TS and a fixed MT,
one can determine the cardinality of the four following cases: true positive (TP) when deviation
and measure are greater than, respectively, DT and MT; true negative (TN) when deviation and
measure are below both thresholds; false positive (FP) when something is detected (measure
greater than MT), but the deviation is still within tolerance (deviation below DT) and false
negative (FN) when the treatment goes wrong (deviation greater than DT) but nothing is
detected by the measure (measure below MT). FN represents the worst case, because it means
that the patient will undergo dose discrepancies, without these being detected by the system.
One would also want to reduce FP, because they trigger false alarm and reduce the patient
throughput of the treatment machine. Based on the four cases, Equation (4) defines the true
negative rate (TNR, also known as specificity) and the true positive rate (TPR, also known as
sensitivity).

TNR = TN

TN + FP
TPR = TP

TP + FN
(4)

When training the classifier, one wants to maximize both TNR and TPR to minimize FP
and FN. The ROC curve displays TPR versus 1-TNR for a range of MT and a fixed DT. We
thus define the associated specificity and sensitivity (ASS), as in equation (5), to be maximized
during the training process. This is equivalent to finding the most upper/left point on an ROC
curve. It is called maximum associated specificity and sensitivity (MASS) (Waghorn et al
2011) and its value is a classifier performance measure. The associated MT is the optimal
threshold that gives the best classification performance.

ASS =
√

TNR2 + TPR2 MASS = max
MT

ASS (5)

4. Results

Experiments were conducted for the TS composed of 190 elements as described below, with
three classifiers. The first two ones use the proposed measures separately: CFO uses �range and
CRC uses corrreg. The last one Ccomb combines both measures. It is triggered when an in-beam
component, predicted by �range, or an off-beam component, predicted by corrreg, are higher
than DT. To train it, one needs to find two MT, one for �range and one for corrreg, that give the
best ASS. This is done by performing an exhaustive search on the measurement space.

We evaluated the prediction ability of the classifiers by a LOO procedure. This method
allows assessment of how the results of a classifier will generalize to data independent from
the TS. One element is removed from the TS. The 189 remaining elements are used to train
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Figure 4. Performance (MASS) of CFO, CRC and Ccomb according to different DT values. The left
figure corresponds to case A and the right figure to case B.

Table 1. Performance of the three classifiers CFO, CRC and Ccomb evaluated with the LOO method,
for cases A and B. DT was set to 5 mm.

TP FN TN FP TNR TPR MASS

Case A: production yields (ideal case)

CRC 86.8% 8.4% 4.2% 0.5% 91.2% 88.9% 90.0%
CFO 80.5% 14.7% 4.2% 0.5% 84.5% 88.9% 86.7%
Ccomb 91.6% 0.0% 4.7% 3.7% 96.1% 100% 98.1%

Case B: PG profiles measured with the camera
CRC 60.0% 35.3% 2.9% 1.8% 63.0% 61.1% 62.1%
CFO 78.9% 16.3% 3.7% 1.1% 82.9% 77.8% 80.4%
Ccomb 81.8% 0.8% 3.9% 13.4% 85.9% 83.3% 84.6%

classifiers, which then predict the class of the removed element. This evaluation is performed
190 times, by successively removing all elements, and the results are averaged. This evaluates
the performance and the robustness of the classifier. Finally, the procedure is repeated two
times: one time with PG emission profiles, which correspond to an ‘ideal case’, referred to as
case A, and one time with the PG profiles detected by the simulated camera, much closer to a
real situation, referred to as case B.

Table 1 presents the LOO prediction results (TPR, TNR and MASS) obtained with the
three classifiers for DT = 5 mm. Figure 4 shows the influence of the DT on the performance
of the classifier (MASS) for cases A and B. Figures 5 and 6 depict ROC curves obtained from
the TS by decomposing the deviation into in-beam and off-beam components. Three values of
DT were used: 5, 10 and 15 mm. This range is chosen to ensure that each class is significantly
populated.

We observed in table 1 and figure 4 that the combined classifier leads to better results
compared with the others, for both cases. It is possible to detect discrepancies of 5 mm with
TNR and TPR of around 85%, whereas using only distal falloff leads to 80% on the same
TS. CRC leads to the poorest results because it is designed to detect features other than the
falloff differences. The TPR of Ccomb increases when compared with CFO alone. It shows that
the combination of the two measures helps to detect deviations having combined in-beam
and off-beam components. This is particularly the case for case A and less pronounced with
case B. Case A should be interpreted as a reference to strive toward. As shown in figure 2,
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(a) CF O , in-beam component (b) CRC , in-beam component

(c) CF O , off-beam component (d) CRC , off-beam component

(e) CF O , total deviation (f) CRC , total deviation

Figure 5. ROC curves for the two classifiersCFO (first column) andCRC (second column), according
to in-beam (first row) and off-beam (second row) components of the deviation, and the total
deviation (third row). Corresponding DT are given in the legend. MASS points are represented by
stars. Classifiers were trained with PG emission profiles, case A.

the statistics are three orders of magnitude lower in case B than in A (10−3 count/p/mm to
10−6 count/p/mm). An improved camera design or better statistics using several spots instead
of a single one, could help to improve prediction.
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(a) CF O , in-beam component (b) CRC , in-beam component

(c) CF O , off-beam component (d) CRC , off-beam component

(e) CF O , total deviation (f) CRC , total deviation

Figure 6. Same figure as 5 but classifiers were trained with detected PG profiles, case B.

Figure 4 shows that the DT has a relatively low influence on the performance in the range
[5–15 mm]. The combined classifier shows a great interest in the ideal case A, while the
increased noise in the detected PG profiles leads to only slightly better results than using CFO

alone for case B. Note as well that performance is degrading while DT is increased. This may
seem counter-intuitive, but this is due to the fact that above a certain deviation, profiles tend to
decorrelate completely from one another and classifiers cannot make the difference between
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highly and very highly perturbed setups. For DT < 6 mm in case A or DT < 8 mm in case B,
performance stabilizes because of the intrinsic noise of the profile.

Finally, the ROC curves in figures 5 and 6 provide an insight on the performance of
the classifiers. On these curves, poor performance corresponds to a MASS value close to
50% and the corresponding ROC curve is close to x = y. On the other hand, classifiers
having good performance lead to a higher MASS value and, ideally, should tend toward a
value near the upper left corner of the graph. The curves illustrate that the two measures
try, by design, to capture the two main components of the deviation, the in-beam and the
off-beam parts. In the ideal case A, CFO almost perfectly predicts the in-beam component
(TPR and TNR close to 100%), while it is close to a random prediction (50%) for the off-beam
component. Predicting the total deviation, as happens in practical situations, leads to decreased
performance, in particular in terms of TPR. Conversely, CRC fails for in-beam component but
leads to interesting performance for the off-beam one. Of course, it is much more difficult to
detect such deviations and the performance is lower than CFO with the in-beam component.
In case B, performance largely decreases due to the low statistics (TPR and TNR around
60–70%). The CRC measure seems to be more degraded than CFO. However, as currently there
is no dose validation during proton therapy, obtaining 84% is already quite promising, and in
any case better than nothing.

5. Discussion and conclusion

The proposed method investigates the potential of a PG-based dose monitoring device in
clinical conditions by a machine learning approach. To our knowledge, no PG camera has
been used in a clinical situation, so we used simulations that combine dose deposition in a
patient CT image and profiles measured with a PG camera. The main test case characteristics
were the following: (1) the whole PG camera design was an extension of the prototype proposed
in Testa et al (2008), still in development, (2) a realistic prostate treatment plan was considered
with a patient CT description, (3) the considered treatment deviations were translations only,
along the beam direction and in the transverse plane (4) a simple classifier was used, with
two proposed measures: difference of falloff positions and correlation between the registered
profile plateau regions.

Building a classifier highly depends on the TS but it is unclear how to optimally build
a representative and minimal size TS. Of course, it is not realistic to simulate all deviations
that can potentially occur during a treatment together with all spots in the treatment plan.
The proposition here was to consider a single spot and a set of random translations equally
distributed in the predefined range [2–22 mm]. By doing this we cover a certain part of the
deviation space with a minimal amount of simulations. Further studies should be performed
to investigate the impact of the construction of the learning space. Moreover, deviations of
types other than translations (e.g. rotations, errors in stoichiometric calibration, anatomical
changes) could be included in the TS. Then, one should use patient dose gamma index ratio as a
consolidated input for classifiers. DT would then be the minimum gamma index ratio tolerable
during patient treatment. Gamma index would be computed on dose distributions obtained
from the simulations. Also, this method does not distinguish the origins of the deviations
(translations, anatomy changes, ...) but only their consequences on the PG profiles, according
to a tolerance threshold.

We observed that the number of PG detected by the camera (case B) should be improved
when observing a single spot, whereas case A works fine. We can expect a substantial increase
of the camera efficiency thanks to further optimization in progress. Besides, a combined
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classifier could be trained with multiple spots to reach better statistics and increase classifier
performances.

CFO and CRC classifiers were combined with a ‘or’ operator to give priority to a low
number of FN. Other types of combinations could be proposed together with other types of
classification methods, such as the SVM, with potentially higher generalization capabilities.

As a conclusion, we think that the proposed method could help to evaluate the performance
of PG monitoring devices and to improve their design. It is generic: other TS, other measures
and other types of classifiers could be studied to potentially reach better performance. It
could also potentially be applied to other types of monitoring technologies, such as Hadron-
PET or IVI (Henriquet et al 2012), and provide a standard framework for comparing
performance. Future clinical use will require simulating PG profiles with improved accuracy.
The simulations, which are the most consuming part of the method, will have to be part of the
treatment planning. Alternatives to Monte-Carlo methods could help reducing the computation
time.
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