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Abstract
This paper presents a row-action maximum likelihood algorithm (RAMLA),
in which the relaxation parameter is controlled in such a way that the noise
propagation from projection data to the reconstructed image is substantially
independent of the access order of the input data (subsets) in each cycle of the
sub-iterations. The ‘subset-dependent’ relaxation parameter λk (q) is expressed
as λk(q) = β0/(β0 + q + γ kM), where M is the number of angular views,
q (0 � q � M − 1) is the access order of the angular view, k is the iteration
number and β0 and γ are constants. The constant β0 deals with the balance of
the noise propagation and the constant γ controls the convergence of iterations.
The value of β0 is determined from the geometrical correlation coefficients
among lines of coincidence response. The proposed RAMLA using the subset-
dependent (dynamic) relaxation ‘dynamic RAMLA (DRAMA)’ provides a
reasonable signal-to-noise ratio with a satisfactory spatial resolution by a few
iterations in the two-dimensional image reconstruction for PET. Dynamic OS-
EM (DOSEM) has also been developed, which allows the use of a larger
number of subsets (OS level) Msub without loss of signal-to-noise ratio as
compared to the conventional OS-EM. DRAMA is a special case of DOSEM,
where Msub = M, and it is no more profitable to use DOSEM with a smaller
Msub (<M), because DRAMA provides similar performance with the fastest
convergence and smallest computer burden. This paper describes the theory,
algorithm and the results of the simulation studies on the performance of
DRAMA and DOSEM.

1. Introduction

Iterative statistical methods for image reconstruction in emission tomography have been widely
studied since Shepp and Vardi (1982) published their paper on the expectation maximization
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(EM) algorithm. To date, however, these methods have not been widely adopted for clinical
use, mainly due to the slow convergence rate and the high overall computational cost.
Several acceleration methods to reduce the computer burden have been proposed in the
literature, and a recent trend is the use of block-iterative methods. In the ordered subsets
(OS) EM algorithm (Hudson and Larkin 1994), projection data are grouped into a number of
subsets, and the EM iterative procedure is repeatedly adopted for each subset until all subsets
have been processed. The OS level is defined as the number of these subsets. A complete cycle
of the successive sub-iterations for all subsets forms a main iteration of OS-EM. Each subset
consists of projection views separated by some fixed angle about the object. In general, the
larger the OS level the greater the acceleration that is achieved, and the convergence rate can
be improved at least by an order of magnitude. The OS approach is not confined to EM. These
include a number of Bayesian or penalized likelihood extensions of EM (Hebert and Leahy
1989, Green 1990, Levitan and Herman 1987). For example, the OS-GP algorithm is the OS
extension of Green’s one-step-late (OSL) algorithm (Hudson and Larkin 1994). Excessive
acceleration by the use of a large OS level, however, results in the degradation in signal-
to-noise ratio (Hudson and Larkin 1994, Meikle et al 1994). To overcome this drawback,
Ogawa and Urabe (2000) proposed the modified OS-Bayesian reconstruction, in which the OS
level is successively decreased, although it still needs several iterations to obtain reasonable
images. Nevertheless, for the reconstruction of fully three-dimensional positron emission
tomography (3D PET) data, OS-EM combined with the Fourier rebinning algorithm (FORE)
(Defrise 1995) is now accepted as an attractive tool, where the 3D data are converted to a stack
of 2D sinograms by FORE. The direct application of OS-EM to the 3D data has also been
investigated (Xuan et al 2001).

A row-action maximum likelihood algorithm (RAMLA) has been proposed as a faster
alternative to the EM algorithm for maximizing the Poisson likelihood in emission tomography
(Browne and De Pierro 1996). In RAMLA, the reconstructed image is updated for each
projection view (rows of the system matrix) in a controlled way using a relaxation parameter
λ. Except for the existence of λ, RAMLA can be considered to be a special case of OS-EM
where the OS level is equal to the number of projection views. Browne and De Pierro (1996)
described a generalized RAMLA that utilizes the ordered subsets, which includes OS-EM
as the special case. RAMLA uses a special ordering of the sequence of projection views to
achieve a faster rate of convergence in a similar strategy to OS-EM. More recently, several
authors reported block-iterative algorithms and discussed sufficient conditions for the global
convergence. Kudo et al (1999, 2000) reported the block-gradient method that converges to
the true solution for a class of cost functions. De Pierro and Yamagishi (2001) presented
a block sequential regularized EM (BSREM) algorithm. They showed that, if the sequence
generated by this method converges, then it must converge to the maximum a posteriori (MAP)
solution based on the similar logic to that of RAMLA. Ahn and Fessler (2001) described the
modified BSREM and the relaxed OS-SPS (ordered subsets separable paraboloidal surrogates),
both of which are convergent to the true solution. Hsiao et al (2002a, 2002b) described an
‘OS-EM’-like algorithm that uses a kind of built-in relaxation.

In general, λ is fixed throughout a complete cycle of sub-iterations, and a problem is
that there has been no single choice for the ‘relaxation sequence’. The optimal relaxation
parameter depends on the particular task such as average structural accuracy, signal-to-noise
ratio, hot or cold spot detectability, average log likelihood, etc. The appropriate parameter
for a specific task can be selected by a training process (Browne and De Pierro 1996, Matej
and Browne 1996, Obi et al 2000). In general, the use of a large λ allows a fast convergence
when the data are consistent, but it tends to enhance the error due to inconsistent components
(statistical noise) when the data contain the Poisson noise. This property prevents the use of
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single iteration with a large λ, and several iterations are required with a small λ or with a
successively decreasing λ. This is generally true for 2D reconstruction in PET. In the direct
application of RAMLA to fully 3D PET data, on the other hand, the single iteration with a
small λ may be feasible (Matej and Browne 1996, Daube-Witherspoon et al 2001) where the
input data consist of a very large number of projection views and the image is updated for
every view.

The undesirable feature on the noise enhancement with a large λ is due to the fact
that the inconsistent components of data are propagated to the final image of the cycle of
sub-iterations with different efficiency, and the final image contains more of the noise of
the lately accessed views than those of the early views. The unbalanced propagation of the
noise degrades the signal-to-noise ratio. This drawback will be improved by controlling the
λ-value in the course of the sub-iterations in such a way that noise components of different
views are propagated to the final image with a nearly equal efficiency. The main objective of
this paper is to propose RAMLA using such a subset-dependent relaxation parameter, which
provides sufficiently fast convergence with good signal-to-noise ratio. We call the algorithm
‘dynamic RAMLA’ or simply ‘DRAMA’ in this paper. The word ‘dynamic’ refers to the
fact that the relaxation parameter changes during the sub-iterations. The same concept can
also be applied to the other block-iterative algorithms such as OS-EM or OS-GP. With the
‘dynamic OS-EM (DOSEM)’, we can use a much larger OS level without degradation of the
signal-to-noise ratio than the conventional OS-EM. The outline of this paper is the following:
in the next section, we specify the iterative image reconstruction algorithms (DRAMA and
DOSEM) used in the rest of the paper and the theory on the optimization of the dynamic
relaxation parameter. In the following two sections, we describe the method and results of
our simulation studies on the optimization of λ and on the imaging performance of DRAMA
and DOSEM. In the last section, we describe a brief discussion of the consequences of our
simulation studies and of our conclusions.

2. Theory

2.1. Iteration formula of dynamic RAMLA (DRAMA)

We consider the discretized 2D PET model. In the following, we assume that coincidence data
are obtained along I lines of response (LORs) and denote by yi (1 � i � I) the number of
detected coincidence events along the ith LOR. These data are arranged into M angular views
with the view indexm(1 � m � M). Each view consists of N parallel LORs, where I = M ×
N. We consider a square image matrix of N × N = J pixels, and photon emission from pixel
j is denoted by xj (1 � j � J ). Assuming that the image is updated sequentially for each
projection view, the proposed DRAMA is expressed as follows:

x
(k,0)
j = x

(k)
j (1.1)

x
(k,q+1)
j = x

(k,q)

j + λk(q)
x
(k,q)

j

Cj

∑
i∈Sq

aij

(
yi

〈ai, x(k, q)〉 − 1

)
(1.2)

where

Cj = max
q

∑
i∈Sq

aij (1.3)

x
(k+1)
j = x

(k,M−1)
j for j = 1, 2, . . . J, q = 0, 1, 2, . . .M − 1, k = 0, 1, 2, . . . (1.4)
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Figure 1. A model for geometrical correlation between two LORs.

where aij is the probability that a photon emission from pixel j is recorded in the ith LOR,
〈ai, x〉 = ∑J

j=1 aijxj denotes the forward projection along the ith LOR, q is the index of the
access order of views and Sq is the set of LORs (m(q)th angular view) accessed at qth order.
The index k refers to the main iterations, each of which corresponds to a complete cycle of M
sub-iterations using all input data, λk(q) is the relaxation parameter (0 < λk(q) � 1) and Cj is
the normalization matrix. We assume that the iteration starts with a positive image xj (0) > 0.
The view index m(q) is the permutation of the access order q, the two indices being related
by an ordering method described later. To regularize the reconstructed image, we apply the
post-smoothing with a Gaussian filter after the iterations are terminated (Snyder and Miller
1985).

We modified the iterative formula such that the normalization factor Cj is dependent on the
pixel j. This modification would help to accelerate the convergence in particular for the case
where the attenuation factor (averaged with respect to all angles) largely depends on the pixel j
because the pixel-dependence of the attenuation factor can be normalized by Cjat each iteration.
The rationale behind this modification is as follows: one of the key ideas of RAMLA is to use
the constant normalization factorCj = constant = maxq,j

∑
i∈Sq aij to avoid the convergence

to an incorrect (weighted Kuhn–Tucker) solution (appendix B of Browne and De Pierro 1996).
This good property seems to be still valid even if the normalization factor Cj is dependent on
the pixel j (but it is not valid anymore if Cj is dependent on q in the form of Cjq).

2.2. Noise propagation and dynamic relaxation parameter (DRP)

We now discuss the propagation of noise from projections to the final image of a main iteration,
and define the dynamic relaxation parameter (DRP) λk(q). We assume that attenuation of
photons is negligibly small or the projection data are pre-corrected for attenuation in this
section. Suppose a simplified model shown in figure 1, where we assume that projections y1

and y2 are accessed at orders q1 and q2 (>q1) along LOR-1 and LOR-2, respectively. The view
indices of LOR-1 and LOR-2 are related to q1 and q2, respectively, by a permutation m(q)
determined by an access ordering method described later. We denote by λ(q1) and λ(q2) the
respective relaxation parameters. We drop here the subscript k for simplicity, and consider
only a single main iteration. We assume that projection y1 has Poisson statistical noise, while
the projection y2 is noiseless. The noise component of y1 yields an error in the image density
along LOR-1 proportional to λ(q1). The error will be modified by the following correction
process for the other views at different angles. An analysis (see appendix A) shows that the
noise component of y1 is reduced approximately by a factor of λ(q1){1 − λ(q2)g

2(q1, q2)}
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after processing y2, where g(q1, q2) is the geometrical correlation coefficient between the two
LORs. Then, the noise component of any projection y accessed at qth order will appear in the
final image of the complete cycle of the sub-iterations with a propagation efficiency given by

ε(q) = λ(q)

M−1∏
r=q+1

{1 − λ(r)g2(q, r)}. (2)

The geometrical correlation coefficient g(q1, q2) is defined as

g(q1, q2) =
J∑
j=1

a1j a2j

/
 J∑
j=1

a2
1j

J∑
j=1

a2
2j




1/2

. (3)

In the practical algorithm, the reconstructed image is regularized by post-smoothing as
described before. The post-smoothing increases the geometrical correlation coefficient, as if
the system matrix includes the smoothing effect, even though the iteration is performed without
any smoothing. Therefore, when the geometrical correlation g(q1, q2) is evaluated, the system
matrix aij in equation (3) should include the response of the post-smoothing. In practice,
g(q1, q2) is calculated assuming that LORs have a Gaussian cross section corresponding to the
post-smoothing (see appendix B). Since the image is updated for each projection view Sq, the
correlation coefficient has to be averaged over all combinations of two LORs (i1, i2) such that
i1 ∈ Sq1 and i2 ∈ Sq2 .

Our intention is now to find λ(q) that yields a constant ε(q) defined by equation (2). We
refer to such λ(q) as the optimized dynamic relaxation parameter (ODRP). If m(q) and g(q,
r) are known, it is not difficult to obtain the ODRP by an iterative method based on equation
(2) as described later. However, if we can replace g2(q, r) in equation (2) by its average value
1/β0 defined by

1

β0
= 1

M − 1

M−1∑
�m=1

g2(�m) (4)

we can derive a simple analytical expression for the ODRP given by

λ(q) = β0/(β0 + q) (5)

because we have, from equations (2), (4) and (5)

ε(q) = λ(q)

M−1∏
r=q+1

{
1 − λ(r)

β0

}
= β0

β0 + q

M−1∏
r=q+1

β0 + (r − 1)

β0 + r

= β0/(β0 +M − 1) (= constant). (6)

We estimated the geometrical correlation coefficient g(�m) assuming the two LORs
model shown in figure 1, where the LORs have a cross-sectional response representing the
Gaussian post-smoothing. The coefficient is given by (see appendix B for the derivation):

g(�m) = 2

L cos θ

∫ L/2

0
exp

{
− (ψ sin θ)2

σ 2

}
dψ (0 � �m � M/2 and sin θ � 3

√
2 σ/L)

(7.1)

= 2
√
π σ/{L sin(2θ)} (0 � �m � M/2 and sin θ > 3

√
2 σ/L) (7.2)

= g(M −�m) (M/2 < �m � M − 1) (7.3)
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Figure 2. Geometrical correlation coefficient. M = N = 128, sFWHM = 2.0 pixels.

where 2θ = π�m/M is the angle between the two views, σ = FWHM/2.355 (FWHM
is the full-width at half-maximum) is the standard deviation of the Gaussian kernel of the
post-smoothing and L is the length of LORs intersecting the field of view. Figure 2 shows
an example of the calculated correlation coefficient assuming that M = N = 128, L = 128
(pixels), and FWHM of the Gaussian kernel is 2.0 (pixels).

To control the convergence of the main iterations, we modify the ODRP to include another
parameter γ as follows:

λk(q) = β0/(β0 + q + γ kM) (0 � γ � 1). (8)

Equation (8) was derived so as to yield balanced noise-propagation in each cycle of sub-
iterations. In fact, from equations (2), (4) and (8), we obtain ε(q) = β0/(β0 +M − 1 + γ kM),
which shows that ε(q) is independent of q. We now consider the convergence of our algorithm
intuitively. It is likely that if the relaxation sequence has the form c1/(c2 + k), where c1

and c2 are constants, the algorithm converges to the true solution (Kudo et al 1999, 2000,
Ahn and Fessler 2001), although the theoretical investigation is necessary because the above
iteration formula is not exactly the same as those in Kudo (1999, 2000) and Ahn and Fessler
(2001). Equation (8) is rewritten in the form λk(q) = A/{B(q) + k}, where A = β0/(γM) is
a constant and B(q) = (β0 + q)/(γM) is a function of q. During the cycle of sub-iterations
of the kth main iteration, λk(q) decreases with q, and the maximum change of λk(q) in the
cycle is given by �λk = λk(0) − λk(M − 1). We can easily show that, as k increases, �λk

approaches zero with a speed O(1/k2), while λk(q) diminishes with O(1/k). In other words,
we can neglect the change of B(q) during the cycle of sub-iterations for a sufficiently large
k. Therefore we can expect intuitively that the algorithm is globally convergent to the true
solution for xj (0) > 0. The rigorous theoretical issue on the convergence is beyond the scope
of this paper.

The speed of convergence will be controlled by choosing γ . If we set γ = 0, the value
of λk(q) is renewed at the start of each main iteration, and the ODRP is given by equation (5)
independently of k. The convergence rate is highest, but we may have a risk of convergence
to a limit cycle, which is different from the true solution, due to the inaccuracy in the balance
of the noise propagation. When γ = 1, on the other hand, the value of λk(q) continues to
decrease and the limit cycle can be eliminated, but the convergence is slow. We expect that the
intermediate value will give a reasonable speed of convergence without a risk of convergence
to a limit cycle.

2.3. Dynamic OS-EM (DOSEM)

In DOSEM, M angular projection views are grouped into Msub subsets, each consisting of
M/Msub views, where Msub is the OS level. The iteration formula for DOSEM is again
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Figure 3. Phantom for testing structural recovery. Numerals are the diameters (cm) and the
relative activities (parentheses).

expressed by equation (1) except that the access order index q ranges from 0 to Msub − 1, and
Sq is the set of LORs involved in the subset accessed at qth order. The geometrical correlation
coefficient g(q1, q2) between the two data accessed at different orders is given by the average
of the correlation coefficients for all combinations of two LORs (i1, i2) such that i1 ∈ Sq1

and i2 ∈ Sq2 . Then, the ODRP is also given by equations (5) or (8) independently of Msub.
DRAMA is a special case of DOSEM, where Msub = M.

3. Method of simulation studies

3.1. General descriptions

We performed simulation studies employing computer generated projection data using
mathematical phantoms. The projection data were obtained by forward projection of the
phantom image, assuming that the activity is uniform in the rectangular pixels. The projection
data were arranged into M angular views, each view consisting of N parallel LORs. We
controlled the spatial resolution by post-smoothing with a Gaussian filter, the FWHM of
which was expressed as sFWHM (pixels). Figure 3 shows the phantom that was used for testing
the structural recovery of the reconstruction. It consists of an elliptic uniform disc, a circular
hot area, a cold area and a sharp spot. The diameters and the relative activities of the elements
are shown in the figure. The size of the image matrix is 384 × 384 (mm). For comparison,
we reconstructed images with the filtered backprojection (FBP) method. In the FBP, we used
a ramp filter, and the obtained image was smoothed with a Gaussian filter (post-smoothing) to
control the spatial resolution.

We evaluated the performance of algorithms by the following four items.

• Structural error (SE). This item measures how the reconstructed image is close to the
phantom image. The value SE was calculated by taking the average of the absolute
difference between reconstructed pixel values and the phantom over the whole region of
interest, and expressed as the ratio to the mean density of the phantom. For this test, we
used the phantom shown in figure 3, and we smoothed the phantom with the same filter
as that used in the post-smoothing for the reconstructed image. Statistical noise was not
added in this test. Since the phantom has a cold area of zero-activity, the value of SE is
sensitive to the recovery of the border of the cold area and does not represent the structural
accuracy of the whole image.
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• Spatial resolution (RFWHM). We first generated the projection data of a uniform disc
phantom, and then we added a constant value to the pixels along a LOR to simulate a line
source (one pixel width) embedded in the phantom. We defined RFWHM as the FWHM of
the line-spread function of the reconstructed image evaluated by fitting it with a Gaussian
function. The value was expressed in terms of pixels.

• RMS noise (NRMS). Root mean square (RMS) noise of the reconstructed image was
evaluated with a uniform circular disc phantom. The value was calculated by taking the
average of the squared difference between reconstructed pixel values and its true values
over the central circular region having 80% of the phantom in diameter.

• Noise equivalent (Nequiv). We defined Nequiv as the RMS noise normalized by that of the
FBP image having a spatial resolution RFWHM equivalent to the image under test:

Nequiv = NRMS of the test image

NRMS of FBP image having equivalent RFWHM
. (9)

Note that, since the normalization is performed using data of a disc phantom, Nequiv is not
affected by the non-negativity of the reconstruction algorithm. The Nequiv value greater
than unity may imply the excessive noise, while a smaller value less than unity will imply
insufficient recovery of the spatial resolution.

3.2. Access order of projection data

In RAMLA, it is preferable to adjust the access order in such a way that projection
views at angles far apart are updated consecutively to keep the geometric correlation small
(Herman and Meyer 1993, Guan and Gordon 1994). We have tested three methods for the
access ordering. The first one is the method of the multilevel scheme (MLS) proposed by
Guan and Gordon (1994). The access order is that for the 1D FFT (bit reversal) and the method
is easy to implement if the number of projection views is a power of two. Herman and Meyer
(1993) proposed a similar method. The second method is a constant increment scheme (CIS)
based on the following recursive formula:

m(q + 1) = (m(q) + constant)modM + 1 (10)

where m(q) is the view number accessed at qth order. The ‘constant’ in equation (10) was
determined empirically as the integer number nearest to but not larger than M/2.7. The third
method is a random permutation scheme (RPS) generated by

m(q + 1) = (m(q) + random number)modM + 1. (11)

In the latter two methods, if m(q + 1) is already used, the value is increased by 1 until obtaining
a new value.

4. Results of simulation studies

4.1. Optimized dynamic relaxation parameter (ODRP)

The optimal value β0 defined by equation (4) is a function of M, N, L and σ in equation (7).
The typical values are listed in table 1, where we assumed that L = N (pixels) and
σ = √

s2
FWHM + 1.0

/
2.355, where sFWHM is the FWHM of the Gaussian post-smoothing.

The value 1.0 in the square-root mark was inserted to deal with the case of no post-smoothing.
Note that β0 is approximately proportional to M (when M = N ) and 1/sFWHM.

The ODRP λ(q) obtained with the three access ordering methods is shown in the top row
of figure 4, where M = N = 128 and sFWHM = 2.0 (pixels). The smooth curves (same for all
cases) in the figures are the simple ODRP expressed by equation (5), and the zigzag curves are
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Figure 4. ODRP λ(q) (top row) and noise propagation as a function of access order. Top row:
smooth and zigzag curves are simple and exact ODRPs, respectively. Second row: RMS noise
propagation with the simple ODRP. Third row: RMS noise propagation with the exact ODRP.

Table 1. Optimal values β0 for various imaging conditions.

M 128 128 128 128 256 256 256 256
N 128 128 128 192 192 256 256 256
sFWHM (pixels) 1.0 2.0 3.0 2.0 2.0 1.0 3.0 5.0
β0 92.7 46.5 29.7 84.6 63.8 184.3 59.2 33.7

the ODRP given by an exact solution based on equation (2) (computed by an iterative method).
We performed the following test to observe how the statistical noise of an angular view is
propagated to the final image of each main iteration cycle. We first prepared a set of noiseless
projection data assuming a uniform disc phantom. Next, we added Poisson noise only to
the projection view accessed at qth order (others were kept noiseless), and we reconstructed
the image and evaluated the RMS noise at the end of the main iteration cycle. We repeated the
test changing the access order q of the noisy view in the range from 0 to M − 1. The relative
RMS noise (normalized by the maximum value) is plotted in the second and third rows of
figure 4 as a function of access order q. The second row shows the noise propagation with the
simple ODRP, and the third row shows that with the exact ODRP by iteration. It is seen that
the stepwise changes in the curves with the simple ODRP are removed in the curves with the
exact ODRP, but the obtained noise propagation curves are not so flat as expected for both the
ODRPs. The reason for this observation may partly be unreasonable approximations involved
in deriving the ODRP, but another reason will be that the iterative correction process is not
only non-linear but also its frequency response is not uniform. The image updating is more
effective for the lower frequency component than for higher frequency component in the EM
algorithm (Tanaka 1987). (We confirmed by simulation that the image of an impulse noise
added to a projection is gradually differentiated as the iteration proceeds.) As a result, the
high frequency component of noise will not decrease as expected from equation (2).

We compared the reconstructed images with the three access orderings using the simple
ODRP. The computation was terminated after a single main iteration (after all input data were
accessed only once). The difference between the two permutations, MLS and CIS, was not
meaningful, but RPS was apparently inferior to the others. Structural error SE was 1.64% with
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DRAMA (CIS) DRAMA (RPS) EM

Noiseless

5 x 106

counts

Figure 5. Comparison of DRAMA (niter = 1) with two permutations, CIS and RPS, and EM
algorithm (niter = 100). M = N = 128, sFWHM = 2.0 pixels and the total counts (lower row) =
5 × 106.
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Figure 6. Performance of DRAMA with various β: M = N = 256 and sFWHM = 3.0 pixels.

CIS while 2.73% with RPS. Figure 5 shows the images of the phantom reconstructed with CIS
and RPS, and that obtained with the EM algorithm (100 iterations) for comparison. We did
not find any meaningful improvement by the use of exact ODRP instead of the simple ODRP.
Hence, in the following studies, we used CIS permutation and the simple ODRP.

4.2. Performance of dynamic RAMLA (DRAMA)

The main feature of DRAMA is the use of ODRP λ(q) expressed by equations (5) or (8).
Before optimizing the value of β0, we tested the performance of DRAMA of single iteration
with the DRP, λ(q) = β/(β + q), for various β-values. The results obtained with M = N =
256 and sFWHM = 3.0 (pixels) are shown in figure 6. Noise tests were performed with the
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Figure 7. Performance of RAMLA with various constant λ: M = N = 256 and sFWHM = 3.0
pixels.

total count of 1 × 107. Attenuation and scattering of photons were ignored. It is shown that
the performance is relatively insensitive to the value of β, and DRAMA provides satisfactory
performance in a range 40 < β < 100. The optimum value of β0 determined by equation (4)
was 59.5 (shown by an arrow in the figure). Similar data obtained with various fixed relaxation
parameters are shown in figure 7. It is seen that the performance is quite sensitive to the value
of λ, and that reasonable noise is attained at λ < 0.2, while RFWHM has reasonable values in a
range λ > 0.4. In other words, there is no λ-value that yields satisfactory performance for the
structural recovery, noise performance and reasonable spatial resolution simultaneously. Note
that Nequiv is larger than unity for the range λ > 0.2, which implies excess noise. A similar
test was performed with the EM algorithm. Figure 8 shows the results of the EM algorithm
(solid symbols) and those of DRAMA (open symbols) as a function of iteration number. The
data on DRAMA were obtained with the ODRP and γ = 0. We see that a single iteration of
DRAMA is equivalent to the EM algorithm with the iteration numbers of about 105 for SE,
220 for RFWHM and 170 for NRMS.

Figure 9 shows the results of an example of multiple iterations obtained with the two
extremes, the renewal mode (γ = 0) and the continual mode (γ = 1), with M = 128, N =
256, sFWHM = 3.0 (pixels) and niter = 3. It is shown that, in the renewal mode, NRMS increases
appreciably at the middle of each main iteration because the noise propagation is balanced
only at the end of each main iteration. In the continual mode, on the other hand, the noise
propagation is nearly balanced throughout the course of each main iteration, and hence we
can terminate the iteration even in the middle of a cycle of the sub-iterations without losing
signal-to-noise ratio.

We compared the behaviour of main iterations of DRAMA with those of RAMLA and
EM algorithm. In RAMLA, we temporarily assumed that the relaxation parameter is given
by λk = 0.48c/(c + k) (k = 0, 1, 2, . . .), where c is a constant. The factor 0.48 is equal to the
mean value of λk(q) for q = 0 –127 (k = 0), with which RAMLA yields a SE value nearly
equal to that of DRAMA with a single iteration. Figure 10 shows the plots of NRMS versus SE
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Figure 8. Comparison between EM algorithm (solid symbols) and DRAMA with ODRP and
γ = 0 (open symbols): M = N = 256 and sFWHM = 3.0 pixels.
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Figure 9. Comparison between renewal (γ = 0) and continual (γ = 1) modes on the main
iterations: M = 128, N = 256, sFWHM = 3.0 pixels.

(upper left), RFWHM versus SE (upper right) and NRMS versus RFWHM (bottom). We see that the
plots of DRAMA (γ = 0.1) and RAMLA (c = 5 or 2.5) approach those of the EM algorithm
as the iteration proceeds. It is also shown that DRAMA is superior to RAMLA in both of
NRMS and RFWHM for a given SE or niter (<5). It is worth noting that, in the NRMS–RFWHM
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Figure 10. Plots of NRMS versus SE (upper left), RFWHM versus SE (upper right) and NRMS versus
RFWHM (bottom). M = N = 128, sFWHM = 2.0 pixels and total counts = 1 × 107. Solid symbols
are DRAMA with 1, 2, 3, 4 and 5 iterations, open symbols are RAMLA with 1, 2, 3, 4 and 5
iterations and crosses are EM algorithm with 75, 100, 150, 200, 300 and 500 iterations.

relation (bottom figure), the plots of DRAMA approach to the EM curve from the lower noise
(or higher resolution) side, while the plots of RAMLA do so from the opposite side.

4.3. Performance of dynamic OS-EM (DOSEM)

We performed comparative simulation studies on DOSEM and the conventional OS-EM.
Table 2 shows the results obtained with M = N = 256, and sFWHM = 3.0 (pixels). The number
of main iterations niter was chosen in such a way that the total number of sub-iterations was
256. The iteration was performed with the renewal mode. NRMS and Nequiv increased with
increasing Msub in the conventional OS-EM, while these values were nearly independent of
Msub in DOSEM as expected.

We now define Tu as the sum of λ(q) over a cycle of sub-iterations (γ = 0):

Tu =
∑

q
λ(q) (0 � q � Msub − 1). (12)
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Table 2. Comparison of DRAMA, DOSEM, OS-EM and EM (M = N = 256, sFWHM = 3.0 pixels).

RFWHM

Msub niter SE (%) (in pixels) NRMS (%) Nequiv Tu SE × Tu × niter

DRAMA 256 1 1.141 3.15 15.02 0.940 99.4 113

DOSEM 128 2 0.825 3.18 15.26 0.968 68.5 113
64 4 0.658 3.15 15.72 0.984 43.7 115
32 8 0.583 3.14 15.93 0.992 25.8 120
16 16 0.511 3.11 16.08 0.988 14.3 113

OS-EM 128 2 0.475 3.05 21.63 1.292 128 122
64 4 0.466 3.08 17.71 1.073 64 119
32 8 0.494 3.09 16.58 1.009 32 126
16 16 0.458 3.09 16.37 0.996 16 117

EM 1 256 0.459 3.10 16.22 0.992 1 118

Since each image updating is performed in proportion to λ(q), Tu implies the effective time
of image updating through one cycle of the sub-iterations. The values of Tu and SE × Tu ×
niter are listed in table 2 . Note that the values of SE × Tu × niter are fairly constant for all
cases. This implies that the structural recovery is proportional to Tu × niter and DOSEM needs
a little larger niter than OS-EM to achieve the same SE. In other words, we can say that the
signal-to-noise ratio is guaranteed in DOSEM even for a large OS level at a certain sacrifice
of structural recovery or at the cost of convergence speed.

4.4. Attenuation correction

In the attenuation correction in PET imaging, we have two fundamental schemes. The one
is ‘attenuation pre-correction scheme (APCS)’, in which the projection data are pre-corrected
for attenuation and the image reconstruction is performed without attenuation correction. The
other is ‘weighted attenuation correction scheme (WACS)’, where attenuation correction is
incorporated in an iterative image reconstruction algorithm. For FORE + OS-EM in 3D PET,
we first pre-correct the 3D projection data for attenuation prior to FORE, and we usually apply
APCS. In this scheme, the 2D sinograms rebinned by FORE deviate greatly from Poisson
statistics, and are inadequate for iterative algorithms based on Poisson statistics. Comtat et al
(1998) showed that WACS using OS-EM improved noise-bias trade-off relative to the APCS.
To apply the WACS in FORE + OS-EM, we multiply the attenuation factors to the rebinned
2D singrams to restore the Poisson-like statistics to the data, and then apply the WACS.

We checked the performance of DRAMA for the two schemes in comparison with
the conventional OS-EM (OS level = 8). We assumed a circular disc phantom of 30 cm
in diameter having a uniform activity density for this test. The attenuation coefficient is
0.0958 cm−1 except an elliptic area of no-attenuation. The elliptic area has major diameters of
12 cm (x-direction) and 21 cm (y-direction) and is located 4 cm off-centre in the x-direction.
The matrix size N and number of views M were 128. The total number of counts was 1 × 107.
We evaluated the RMS noise NRMS and the uniformity (average of the absolute difference from
the mean) of the reconstructed image in the concentric circular area having 24 cm in diameter.
The reconstructed images were post-smoothed so as to yield the same spatial resolution
RFWHM = 2.0 (pixels). Table 3 shows the results. We saw a clear improvement in the signal-
to-noise ratio by using the WACS instead of the APCS in DRAMA as well as in OS-EM.



Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography 1419

Table 3. Performance of DRAMA and OS-EM for attenuation correction.

Scheme Algorithm Parameters niter NRMS (%) Uniformity (%)

APCS OS-EM OS level = 8 16 12.51 0.056
DRAMA γ = 0 2 12.56 0.060

WACS OS-EM OS level = 8 16 11.01 0.077
DRAMA γ = 0 3 10.69 0.115

Table 4. Effect of sFWHM on the structural error SE (M = N = 256, niter = 1).

sFWHM (pixels) 1.0 2.0 3.0 4.0 5.0

β0 184 92.6 59.2 43.1 33.7
Tu 161 123 99.4 83.9 72.9
SE (%) 1.15 1.07 1.14 1.21 1.26

5. Discussion and conclusions

We have proposed new block-iterative algorithms incorporating the optimized dynamic
relaxation parameter (ODRP), which controls the image updating of RAMLA in such a way
that the noise propagation from projection data to the final image is independent of the data
access order in each cycle of sub-iterations. The resultant algorithm DRAMA can provide
a reasonable signal-to-noise ratio with a satisfactory spatial resolution by a few iterations.
We expect intuitively that the algorithm is globally convergent to the true solution if we use
a suitable value of γ . The experimental results shown in figure 10 seem to support our
expectation on the convergence.

The key parameter of the algorithm is the constant β0 in equations (5) and (8). The
optimum value of β0 is affected by the following three parameters: number of views M, image
matrix size N and sFWHM of the post-smoothing (see table 1 ). We have developed the method
to determine the optimumβ0 from the geometrical correlation coefficientg(�m) among LORs
by equation (7). However, the evaluation of g(�m) has an ambiguity because equation (7)
contains the length L of LOR that may depend on the diameter of the region of interest and
on the location of LORs. In addition, we have made many assumptions in deriving the value
of β0. These may be the reasons why we could not obtain the uniform noise propagation in
figure 4. Fortunately, however, the performance of DRAMA is not sensitive to the value of β0

as shown in figure 6, and we have obtained satisfactory results with the ODRP determined by
the proposed method using equations (4)–(8).

For given M and N, a free parameter is the FWHM of the post-smoothing sFWHM that
balances the signal-to-noise ratio with the spatial resolution. It is interesting to note that, in
DRAMA, the structural error SE is nearly independent of sFWHM as shown in table 4. The
increase of sFWHM reduces β0 and Tu that matches the low-resolution reconstruction. This is
not the case for the conventional RAMLA or OS-EM, in which Tu is independent of sFWHM.
It should also be noted that sFWHM has to be determined before the iteration starts because it
affects the ODRP, although the iteration itself does not include any smoothing process. We
expect the usefulness of the FORE + DRAMA combination for 3D PET imaging. We have
also confirmed that DRAMA works in the weighted attenuation correction scheme as well as
the conventional OS-EM.

We have applied the same approach to the conventional OS-EM. The dynamic OS-EM
(DOSEM) can be operated with a larger OS level without losing the signal-to-noise ratio.
DRAMA is a special case of DOSEM where Msub = M, and it is no longer more profitable to
use DOSEM with a smaller Msub (<M ), because DRAMA provides similar performance with
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the fastest convergence and smallest computer burden. We have described the application
of DRAMA and DOSEM in the 2D image reconstruction in this paper, but the methods will
be widely applied to 3D reconstruction problem with some modifications. The concept of
dynamic relaxation will also be applied to other block-iterative algorithms such as OS-GP.

Another important application of DRAMA is the reconstruction of SPECT images with
non-uniform attenuation media. We have performed preliminary simulation studies under
the similar condition to that used in ‘4.4 attenuation correction’, except that the attenuation
coefficient was 0.15 cm−1 and the number of projection views was 256 in 4π angle (image
matrix is 128 × 128). Two conjugate projections in opposite directions were processed
simultaneously as the same LOR, and the apparent number of views was then 128 in 2π
angle as in the case of PET. The result showed that two iterations (γ = 0) with DRAMA
provide a satisfactory image (NRMS = 9.02%, uniformity = 0.261%), which is comparable to
that after 16 iterations (OS level = 8) with OS-EM (NRMS = 9.09%, uniformity = 0.141%).
The application to the SPECT is beyond the scope of this paper, and the details will be reported
elsewhere.

Appendix A

The analysis of the noise propagation is as follows. First, we modified equation (1.2) in an
approximate form suitable to the following analysis:

x
(k,q+1)
j = x

(k,q)

j + λk(q)x
(true)
j

aij

Cj

{
yi −

∑
j x

(k,q)

j aij

y
(true)
i

}
. (A.1)

We then performed the analysis in the following steps. The subscripts 1 and 2 refer to LOR-1
and LOR-2, respectively.

Step 1. Assume a true image xj
(true) as the initial image of the iteration.

Step 2. Access the noisy projection y1 = y1
(true) + e along LOR-1, where e denotes the

noise component. The error density in the image after accessing y1 is given by λ1a1j ex
(true)
j

/(
Cjy

(true)
1

)
.

Step 3. Access the noiseless projection y2 = y2
(true) along LOR-2, and estimate the corrected

image xj = xj
(true) + nj, where nj is the noise component. The noise component nj is given by

nj = λ1e
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ḡmn =
∑
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(
amjanjx
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j

/
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)
(m = 1 or 2, n = 1 or 2). (A.3)

The parameter ḡmn represents the correlation coefficient between y(true)
m and y(true)

n .
Step 4. Estimate the total noise in LOR-1 e∗ = ∑

j a1j nj , and calculate the ratio r = e∗/e,
the reduction factor of noise by accessing y2. Using ḡmn defined by equation (A.3), the noise
reduction factor r can be expressed as
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ḡ11ḡ22

}
. (A.4)

If we assume that ḡ11 ≈ y
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1 , ḡ22 ≈ y

(true)
2 and x(true)
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/
Cj ≈ constant, equation (A.4) is
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12

)
(A.5)
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where

g12 =
∑

j
a1j a2j

/(∑
j
a2

1j

∑
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2j

) 1/2
. (A.6)

The above assumption is approximately valid for a uniform disc source when the rows of the
system matrix are normalized. The parameter g12 is the same as the geometrical correlation
coefficient between LOR-1 and LOR-2 defined by equation (3).

Appendix B

The derivation of equation (7) is as follows. Consider a simplified model shown in figure 1,
where we assume that two LORs cross at the origin of coordinates. The angle between the
two LORs is 2θ(0 � θ � π/2), where θ = π�m/(2M). We assume that the LORs have a
cross-sectional response represented by a Gaussian function, the standard deviation being σ .
For 0 � �m � M/2(0 � θ � π/4), the geometrical correlation coefficient of the two LORs
is then given by

g(�m) = c

∫ L/2

0

∫ +∞

−∞
exp

{
− (ξθ − ξ)2

2σ 2
θ

}
exp

{
− (ξθ + ξ)2

2σθ 2

}
dξ dψ

ξθ = ψ tan θ, σθ = σ/cos θ

= c

∫ L/2

0
exp{−(ξθ/σθ )2}

∫ +∞
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exp{−(ξ/σθ )2} dξ dψ

= c

√
πσ

cos θ

∫ L/2

0
exp

{
− (ψ sin θ)2

σ 2

}
dψ (A.7)

where c is a normalization constant. Letting g(0) = 1 when θ = 0 in equation (A.7), we obtain
c = 2/(

√
πσL). Then we have equation (7.1), from equation (A.7). When sin θ > 3

√
2 σ/L,

we can execute the integration in equation (7.1) to obtain equation (7.2). By the symmetry,
g(�m) for M/2 < �m � M − 1 is given by equation (7.3). In the above derivation, we have
assumed that the two LORs cross at the origin of coordinates, but the equations will hold for
any two LORs that cross each other at an angle 2θ .
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