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Abstract. The implementation of biological optimization of radiation treatment plans is impeded
by both computational and modelling problems. We derive an objective function from basic model
assumptions which includes the normal tissue constraints as interior penalty functions. For organs
that are composed of parallel subunits, a mean response model is proposed which leads to constraints
similar to dose-volume constraints. This objective function is convex in the case when no parallel
organs lie in the treatment volume. Otherwise, an argument is given to show that a number of
local minima may exist which are near degenerate to the global minimum. Thus, together with the
measure quality of the objective function, highly efficient gradient algorithms can be used. The
number of essential biological model parameters could be reduced to a minimum. However, if the
optimization constraints are given as TCP/NTCP values, Lagrange multiplier updates have to be
performed by invoking comprehensive biological models.

1. Introduction

In inverse treatment planning, considerable effort has recently been directed towards treatment
optimization by biological parameters (Brahme 1995, Bortfeldet al 1996, Brahme and Lind
1997, Mohan and Wang 1996, Mohanet al 1996, Webb 1997, Peacocket al 1998). While
the pioneering efforts of Webb (1992), Källman et al (1992) and Gustafssonet al (1994)
demonstrated the feasibility of biological treatment optimization, the subject remains topical
mainly because of its dependence on semiempirical models and the clinical database.

The inadequacy of purely dose-to-volume based treatment objectives was indicated by
Mohanet al(1994). Subsequently, a great number of methods to express the basics of biological
and clinical knowledge in the language of physical quantities have been proposed for use in
inverse treatment planning (Webb 1997, Raphael 1992, Bortfeldet al 1997, Choet al 1998,
Hristov and Fallone 1997, 1998, Langer and Kijewski 1991, Rowbottomet al1997, Spirou and
Chui 1998, Wanget al1995, Preiseret al1997, DeWagteret al1998). With our development,
we aim to derive from a set of fundamental biological model assumptions an objective function
of numerical expediency.

Since the emphasis of this paper is placed on practical treatment planning, our development
reflects the quest for computational efficiency. For this to be achieved, it is of great importance
either to formulate the problem as a convex objective function or to devise efficient strategies to
deal with local optimal solutions if they arise. Usually, non-convex optimization problems have
to be dealt with by stochastic and rather time-consuming algorithms which have the capability
of escaping local minima. However, local minima do not have to result from non-convexity, and
if they do, they can be virtually indistinguishable from the global solution, which is often not

0031-9155/99/020479+15$19.50 © 1999 IOP Publishing Ltd 479



480 M Alber and F N̈usslin

unique in our setting. In the following, we call this property degeneracy. If a problem gives rise
to degenerate local minima only, the use of stochastic algorithms is not warranted and fast gra-
dient methods can be employed without the risk of getting trapped in far from optimal solutions.
Thus, the use of gradient algorithms can be placed beyond reasonable doubt if an objective
function can be devisedwithout loss of biological significance which is convex or degenerate.

In its most elementary form, optimization is the choice in favour of the better of two
alternatives; in our case this implies that the optimization algorithm has to induce a faithful order
on the set of treatment plans according to some biological considerations. This requirement
is a precondition, but is not equivalent to the capability of providing predictive assays of
treatment outcome. Usually, the latter creates the difficulty of needing to consider interpatient
heterogeneity.

Our concept of biological optimization relies on a classification of complications as
ultraparallel, serial and parallel. We derive expressions for the objective function for each
of these response types. Of particular importance for optimization is the result that in the
former two cases the optimization problem can be shown to be convex, whereas the latter case
gives rise to a degenerate non-convex problem.

2. Unconstrained optimization with interior penalty functions

From the point of view of numerics, the handiness of dose as an objective stems from one
single feature: dose is a mathematical measure, i.e. it is a density function. At the same time,
the local character of a measure is critical if non-local effects like the volume effect have to
be taken into account. If it can be proven that a complication mechanism is essentially local,
then a measure could be a good descriptor of biological effects. If the contrary is true, further
assumptions about the nature of radiation damage have to be made. This non-local volume
effect has been conjectured for a number of tissues such as lung, kidney or liver, where the
bulk of the organ comprises a reserve for partial failure (Emamiet al1991, Burmanet al1991,
Jacksonet al1995). It is commonly held that the inclusion of volume effects into optimization
leads to non-convex problems (Deasy 1997, Webb 1997, Niemierko 1996). The effects of
local minima have been reported to be of minor importance if dose-volume constraints were
employed (Bortfeldet al 1997, Choet al 1998, Langer and Kijewski 1991, Spirou and Chui
1998, Langer and Leong 1987, Langeret al 1990), suggesting a degenerate problem.

It is our aim to show that there is a biologically significant measure for each of the
common TCP/NTCP models which can be the basis of an objective function. Although there
is little doubt that biological response is intrinsically nonlinear and non-convex†, the situation
may be locally convex if one is chiefly interested in the low-NTCP limit. Ideally, the non-
local components of the complication mechanism can be dissociated from the local ones by a
separation of length scales.

Additional difficulties arise from taking into account the variability of radiation response
in the patient population. As we will demonstrate, the measures are invariant under inclusion of
interpatient averages. Hence, for the time being, we regard the integral complication probability
Pi as the probability of one given individual suffering some complicationi.

† Note that from the power law for partial homogeneous irradiation the effective dose

deff =
(

1

V

∫
V

d1/n dV

)n
n < 1 (1)

can be derived (Kutcher and Burman 1989) which does constitute a non-convex function of dose. However, the 1/nth
power ofdeff is a convex function! Non-convexity comes into play also by the sigmoid effective dose to complication
probability relation.
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Since we are chiefly interested in an order on the space of dose distributions, we introduce
the concept of a ranking function which can be tailored for the needs of optimization.

Definition. LetD be the set of all dose distributionsd. A function

W : D→ R+ (2)

is called a ranking function ifW is continuous and monotonic, and infd∈D{W(d)} = 0.

In the context of this paper, the dose spaceD is chosen to be the span of the dose
distributions of incident intensities8j, j = 1, . . . , n of a finite numbern of predefined beam
ports to ensure convexity ofD

D = span{T8j } 8j : R2→ R+ (3)

T being the TERMA operator. In practical computationd is sampled on some grid to become
the vector(d)Tj = (d1, . . . , dN).

In the limit of low NTCP, one way to establishW is by

P(d) = W(d)

1 +W(d)
. (4)

Ranking functions can be used to define constraints similar to minimum TCP or maximum
NTCP constraints. For constrained optimization, the result has to meet with all constraints
Pi(d) 6 pi , i = 1, . . . , n being the index of the complication. The constraints can also be
taken into account by creating a common objective function, where Lagrangian multipliers,
λi ∈ R+ mediate the competing treatment objectives.

F(d) =
n∏
i=1

(1− Pi(d))λi , 06 Pi < 1. (5)

The optimum dose distribution̂d maximizesF . If the Pi are given as NTCP and (1-TCP)
values respectively, the objective function takes the form of a maximum likelihood estimator.
The Lagrange multipliersλi may then be interpreted as the relative frequencies with which
complicationi occurs. In the context of this paper, we treat theλi as generic multipliers,
i.e. any constant may be absorbed inλi without further notice.

Practically, the logarithm of 1/F is minimized rather thanF :

− logF = −
n∑
i=1

λi log(1− Pi)

=
∑
i

λi log(1 +Wi)

≈
∑
i

λiWi (6)

in the limit of small complication probabilities, by virtue of equation (4).
If the intersection of all sets

Di = {d ∈ D : Pi(d) 6 pi} (7)

commonly called the feasibility space, is not empty, both approaches yield the same dose
distribution d̂ (save degeneracy) as the extremal value ofF . If the intersection is empty,
i.e. the problem is overconstrained, the latter method still delivers a result whereas the
former naturally does not. Although this result does not meet with all constraints, it is an
approximation to the final result which is obtained when the constraints are relaxed depending
on the treatment objectives. By altering the set of Lagrange multipliers, a sequence ofd̂j can
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be obtained which converges to the desired final result. Notice that although the objective
function is of the formλiWi , the multiplier updates can be performed using computations of
NTCP values if there exists a one-to-one relationship between these two treatment descriptors.
Hence, one can choose the most expedient ranking function which faithfully maintains this
order.

Commonly, Lagrange multipliers are used as ‘penalties’ or ‘weighting factors’ in
connection with exterior penalty functions, which are devised to penalize the violation of
some constraint. These functions are zero within the feasible region. One popular example
is the quadratic overdosage penalty function for some maximum dose constraint. Contrary
to this approach we deploy interior penalty functions which increase when the constraint is
approached from within the feasible region. This reflects the fact that any small dose is
potentially harmful.

3. Biological modelling: terminology and concepts

The available clinical data on NTCP makes it difficult to obtain reliable parameters for use
in biologically based objective functions. Our aim is to demonstrate that for a biologically
valid ranking function much less is needed than the comprehensive information necessary for
TCP/NTCP calculations.

A ranking function has to provide an isoeffect number† for a set of concurring dose
distributions for one particular set-up. The ranking of treatment plans need only be a faithful
one-to-one mapping onto NTCP, with the NTCP becoming a mere translation into a clinically
meaningful figure. Of course, this implies that a ranking function must be insensitive to
parameter uncertainties arising from interpatient heterogeneity.

For this to work, the ranking function has to model exactly those microscopic tissue
dynamics which are only considered by a bulk average in NTCP statistics. However, this does
not replace the need for sophisticated NTCP models for assays of treatment outcome. In fact,
our development relies on the future availability of these models. Whereas the algorithm can
evaluate a plan with the help of its ranking function, the multiplier updates and the evaluation
by the therapist has to be based on reliable NTCP figures.

The response of normal tissue to radiation is organized on a number of length scales.
Microscopically, repair mechanisms and apoptosis factors, as well as cell migration and
repopulation, among a multitude of further factors, have to be considered. Essential to our
development is the assumption that there also exists a distinct mesoscopic length scale, defined
by the interactions which take place within this range. This may be seen as the characteristic
volume, which can be repopulated without loss of structure, it may be identified with structural
functional entities like nephrons, or the volume to which a mesoscopic pathological process can
be confined. This interpretation is inspired by what was commonly termed a functional subunit,
and it includes the notion that for the same organ, yet different complications, there may be
different definitions of these mesoscopic units (Witherset al1988). We put forth the following.

Definition. A functional unit (FU) for the complication mechanismi is the smallest structure
with a sigmoidal (damage) dose response relationshippi(d)‡ which is essential to the
expression of the complication. The average size of a FU is calledlφ and defines the transition
from microscopic to mesoscopic interactions.

† Common dose-volume histogram reduction algorithms (Kutcher and Burman 1989, Kutcheret al 1991, Lyman
1985, Lyman and Wolbarst 1987, 1989) are a special case of a ranking function.
‡ pi(d) is a function of the chosen fractionation scheme.
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Note that inherent to this definition is the notion that the dose is uniform across the size
of the FU, and hencepi is a function, not a functional. The sigmoid dose response (with a
point of inflexion at positive dose) implies a certain degree of functional redundancy in the
organization of an FU. In some sense, an FU is the smallest essential volume with some reserve
towards partial damage.

It has to be assumed that there exist collective effects of FUs on a mesoscopic length scale.
For example, one might think of an FU for the endpoint brain infarction as capillaries where
the branching structure induces some non-locality to the effects of FU failure. Pneumonitis is
another example, since it certainly would not stay confined to the most heavily damaged FUs
and will spread. It is clear that there is a multitude of imaginable effects which couple the
reaction of individual FUs and influence the course of the complication. Nevertheless, we can
make the following distinction.

Definition. A normal tissue integral probability functionPi(d) is called serial, when for all
volumesv, diamv > lφ andd(x ∈ v) = ∞ , the relation

lim
diam v→lφ

Pi(d) = 1 (8)

is true. Likewise,Wi is serial if

lim
diam v→lφ

Wi(d) = ∞. (9)

All integral probabilities and ranking functions which do not conform to this definition are
called parallel.

Note that this definition extends to complications rather than organs. It is possible
that an organ can suffer both from parallel and serial complications (for example,
pneumonitis/fibrosis). This definition attempts to capture the clinical observation, that within
reason there are organs which could be irradiated to extremely high doses in very small volumes
without expression of complications, whereas there are also organs which will always suffer
from radiation no matter how small the volume destroyed. Candidates for the latter group are,
besides any kind of nerve or intestines, also bones and joints, skin or other membranes, and
blood vessels. It is obvious, regardless of the details of the objective function, that only for
complications identified as serial must there be a whole volume maximum dose constraint.

4. The ultraparallel model of tumour response

For the purposes of treatment optimization, it is sufficient for a tumour response model to
reproduce the correct volume and dose dependences of the tumour response. It can be
said that despite its simplicity, the Poisson statistics model offers plentiful opportunities to
consider intratumour variability and serves as a solid lower bound on the actual tumour
control probability if parameters are chosen on the safe side. It is not likely that the basic
volume dependency of this model will change with inclusion of clonogen density, variable
radiation sensitivity, time dependences, adjuvant therapies, secondary effects (such as necrosis
or hypoxia), dose inhomogeneity and interpatient heterogeneity. Even under consideration of
these effects, the Poisson assumption is sufficiently justified.

The FU for the complication endpoint tumour regrowth according to our definition is a
set of two clonogens; that is if the linear-quadratic law of cell kill is assumed. The standard
Poisson TCP function (Nahum and Tait 1992, Webb 1993, Webb and Nahum 1993, Brenner
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1993) is given by:

1− Pt = TCP(d) = exp

(
−
∫
V

σ (x) exp(−α(x)d(x)) dx3

)
(10)

where local inhomogeneities in cell densityσ and radiation sensitivityα are taken into
account†. For use in the log-objective function equation (6) one needs

λt log(1− Pt) = −λt
N∑
j=1

σj exp(−αjdj ) (11)

in the discretized form on a grid ofN boxes. If the cell density and radiation sensitivity are
assumed to be constant across the tumour volume, the expression can be simplified to

λt log(1− Pt) = −λt
N∑
j=1

exp(−αdj ). (12)

This function can be interpreted as the probability measure of clonogen survival. In the
appendix we show that interpatient heterogeneity does not change the functional form of this
measure.

Next we assume that a standard dose level ofdp was prescribed to the tumour. In the
ultraparallel model modest overdosage has no detrimental and only little beneficial effect (Suit
et al1992, Goitein and Niemierko 1996) if the TCP level is already high, whereas underdosage
greatly diminishes chances for tumour control. Hence we find under neglectance of overdosage
effects:

λt log(1− Pt) ≈ −λt
( ∑
dj<dp

exp[α(dp − dj )] − 1 +N

)
. (13)

This equation reduces to the well established quadratic underdosage penalty function when
the exponential is expanded to second order.

5. The critical element model for normal body tissues

One of the first models for normal tissue response was the integral dose model by Schultheiss
et al (1983), which was later termed the critical element model (Wolbarst 1984, Niemierko and
Goitein 1991). In our terminology, the critical element model is serial in that tissue damage
becomes manifest if one of a set of independent, identical FUs is destroyed.

The critical element model has the unique feature that the mesoscopic response can be
related to the macroscopic, so that in principle the FU dose response can be derived from
clinical patient data. After Schultheisset al (1983) and Niemierko and Goitein (1991) we
write

1− Ps =
∏
j

(1− p(1, dj ))νj (14)

whereνj is the volume fraction irradiated to dosedj andp(1, d) is the macroscopic probability
of organ damage after whole volume irradiation with dosed. Clearly, ifp(1, dj ) equals unity,
the complication is induced with certainty.

Since the volume effect of the critical element model is a consequence of the augmentation
of independent probabilities rather than some interaction between subvolumes of the organ,

† Notice that the influence of the fractionation scheme can be absorbed via the linear-quadratic model by an effective
dosed ′ = d + β/αd2.
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we term this avolume effect of the second kind. Equation (14) amounts to the assumption of
the existence of a log-probability measure.

Whereas for modelling purposes this equation is quite valuable, it should not be taken
for granted when clinical data are fed in for thep(1, d) function since this dose response is
naturally a population average. Furthermore, it is yet an open question to which degree the
prerequisites of identity and independence among the FUs are satisfied. However, for small
NTCP levels these effects are of little importance. In the limit of small NTCP,<0.2, the precise
shape of the FU dose response is virtually meaningless, because the lowest survival probability
of all FUs is an upper bound on the survival probability of the whole organ:

1− Ps =
∏
j

q(dj ) 6 min
j
{q(dj )} = q

(
max
j
{dj }

)
(15)

with q(d) = 1− p(d). Thus, under inhomogeneous irradiation, the NTCP of a serial type
organ is chiefly dictated by the volume receiving maximum dose, and accurate knowledge of
the FU dose response at or beyond the point of inflexion is irrelevant.

It is possible to derive an expression for the FU dose response in the limit of small FU
complication probabilities. For a single FU, there are a great number of possible pathways the
destruction can take, all of them equally improbable in the low dose limit. By Poisson statistics
we findq = exp(−µ), where the expected valueµ is dominated by those fatal mechanisms
which occur with the greatest probability. Since this probability must be linked to cell kill,
one has:µ ∝ [1− exp(−αd − βd2)]k, which in the low-dose regime becomesµ ∝ dk. The
parameterk takes the smallest possible value and is related to the number of essential structures
within the FU involved in the collapse. Hence we have

q(d) = exp

[
−
(
d

ds

)k]
(16)

whereds is some proportionality factor.
Thus, for the ranking function we find (equation (6)):

λsWs ≈ −λs log(1− Ps) (17)

= −λs
∑
j

logqσj (dj ) (18)

= −λs
∑
j

log

{
exp

[
−
(
dj

ds

)k]}
(19)

= λs
∑
j

(
dj

ds

)k
(20)

whereσ is the number of FUs per dose grid cube. The last expression is equivalent to the
dose-volume histogram reduction technique proposed by Kutcher and Burman (1989) (see also
equation (1))†. The constantds can also be absorbed in the Lagrange multiplier, hence

λsWs = λs
∑
j

dkj . (21)

This is thekth order moment of the dose distribution. We find thatWs is convex as a
consequence of the existence of a local probability measure for elementary complication. This
formula has been used to some success in treatment optimization (Webb 1992, Rowbottom
et al 1997). By comparison with standard objective functions, where the quadratic deviation
from a given dose is usually considered, we find that the prescribed dose should be zero (any

† Note thatWs is still serial despite the small NTCP limit approximations made.
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dose is potentially harmful) and fluctuations should be handled more stringently (local failure
is total failure) (see figure 1). It is remarkable that a single tissue-specific parameter should
suffice. In the appendix, we deal with the robustness of this objective function with respect to
interpatient heterogeneity.
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Figure 1. Comparison of three objective functions for serial complications. For shape parameter
k = 8 both logit and power law functions are steeper than the quadratic overdosage penalty, which
in this case was fitted top = 0.1% and 5%.

For use in objective functions, we deem it safest to obtain this parameterk in equation (16)
from small NTCP volume effect data. Withq(dν) we denote the probability of FU survival
after irradiation with a dosedν . For equal levels of complication probability at partial volume
irradiation one obtains from equation (14)

qν(dν) = q(d1). (22)

Hence with equation (16)

dν = ν−1/kd1 (23)

in accordance with the results of Niemierko and Goitein (1991). Thus, the volume effect power
law is valid as long as equation (16) holds, which is independent of volume, yet not of the
complication level. It has been shown in biological data (Schultheisset al 1983, Niemierko
and Goitein 1991) that for smaller volume fractions and high complication levels this power
law does not hold. This is chiefly a consequence of the high level of complication occurrence
which was considered in the studies and reflects the fact that the low-q condition no longer
holds†.

6. A mean response model for normal body tissue

Treatment plan optimization would not be such a difficult problem if there were no tissues with
a distinct volume effect. It is apparent that the volume effect of parallel complications is of a

† The functionsp = (d/d0)
k andp = 1− [1 + (d/d0)

k ]−1 are virtually indistinguishable (see figure 1) for low
probabilities and yield the same result for the volume effect power law. Since a distinction on the basis of experimental
data does not seem to be possible at present, we do not venture to extend the validity of our statements to the high-
probability regime.
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different nature from that of serial ones. A local probability measure does not seem to exist;
instead, the fundamental quantity appears to be a local damage density. In distinction to the
former, we call this avolume effect of the first kind. Furthermore, the partial volume power
law cannot be used to elicit mesoscopic relations since it does not include effects such as the
threshold volume and leads to a serial ranking function.

The modelling of parallel complications derives from two assumptions about the
complication mechanism which are in accordance with our prior definitions. The first
assumption concerns the existence of a local damage density which carries out a local average.
As a consequence, the central local quantity isρ(d) = 〈p(d)〉 instead ofp. It is evident that
this necessitates an upper bound on fluctuations ofd on the length scalelφ . Technically, this
is little more than a mapping of the dose distribution onto the local damage density, and is
quite similar to the risk histograms introduced by Jacksonet al (1993), yet still retains spatial
resolution.

The second assumption states that the mesoscopic interactions are well-behaved and can
be described by some function of the bulk average. While this is without doubt the case when
the dose distribution is homogeneous, any mesoscopic interactions which alter the course of
the complication when the damage distribution is inhomogeneous are ignored.

These assumptions lead to a description of the parallel complication in analogy to phase
transitions in equilibrium thermodynamics. Let the meanm1 of ρ(x) be given by

m1 = 1

V

∫
V

ρ(x) d3x (24)

then under negligence of long-range interactions between FUs (i.e. in the limit of homogeneous
dose) and low complication probability we expect that

1− Pp ∝

(
µ−m1

µ

)κ
m1 < µ

0 m1 > µ
(25)

for someκ > 0. Notice that ifκ → 0, equation (25) becomes

Pp = 2(m1− µ) (26)

which was introduced by Jacksonet al (1993), Yorkeet al (1993) and Niemierko and Goitein
(1992), with2(x) being the Heaviside step function. The parameterµ denotes some mean-
field quantity which was termed functional reserve. For homogeneous dose distributions, this
parameter is equivalent to the partial volume threshold.

The major shortcoming of models based on these assumptions will be close to the ‘critical
point’, i.e. close to NTCP≈ 1, where dose inhomogeneity and interactions can no longer be
neglected. As a consequence of our development, the slope of the integral response probability
will be finite atPp = 1 at contrast to the well known smooth NTCP dose responses. Although
this feature could be salvaged by population averaging (Jacksonet al1993), we remark that it is
essentially an unbiological consequence of the neglect of interactions. Thus, our development
should be seen as tailored for the rare incidence of complication.

Given thatρ ∝ d1/n and the volume irradiated is larger thanµ, we recover the standard
power law volume effect for low doses. Commonly, a large volume effect is expressed by
the parametern being in the range of≈ 0.4 . . .0.9 (Emamiet al 1991), which means in turn
that the FU response is rather shallow with exponents of≈ 1.2 . . .2.5. Considering thatρ is
sigmoidal in shape, the true fractional volume relationship should deviate from the power law
already forν ≈ 2µ to higher isodoses for smaller volume fractions. The data on this subject
are indecisive. Interpatient heterogeneity certainly assumes a considerable influence on the
magnitude of the volume effect. The main reason for this might be that patients while having
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comparable FU dose response have vastly differing functional reservesµ due to additional
confounding factors, so thatµ has to be chosen with care.

For the ranking function one has with equation (25)

−λp log(1− Pp) = −λp log

(
1− m1

µ

)
(27)

= −λp log

(
1−

∑
j ρ(dj )

µ

)
(28)

≈ λp
(
C +

1

µ−m1

∑
j

ρ(dj )

)
. (29)

The last equation is quite instructive when compared with equation (21), the corresponding
equation for serial complications. Whereas in the serial case the objective function tends to
infinity term by term when the constraint is violated locally, in the parallel case the objective
function increases collectively by means of a prefactor. Thus, mean response allows for local
violation of a whole organ maximum dose constraint in a partial volume of at mostν = µ. This
trait makes it quite similar to dose-volume constraints, with the distinction that the overdose
volume is a function of the dose applied to the remaining volume.

With equation (27) we have transformed the parallel NTCP constraint intotwo interior
penalty functions withoneLagrange multiplier. In addition to the measure-like term, the first
factor penalizes the irradiated volume and limits it to the maximumµ. This interpretation
is valid if a fixed number of beam ports is preselected, since the irradiated volume must be
assumed to suffer nearly total damage in sensitive organs such as lung. Hence, the mean
damage is closely related to the fraction of the total volume which receives a dose higher than
the dose at the point of inflexion of the FU dose response. Note that this prefactor could also
be absorbed in the Lagrange multiplier and updated every few iterations during optimization.

If dPI is the dose at the point of inflection of the FU dose responseρ andρ(dPI) ≈ 1/2,
then the problem is convex ifd < dPI. In case the dose exceeds this level, the problem is most
likely degenerate as we will show below.

7. Summary of objective functions

In the previous sections our goal was to demonstrate that the problem of biological modelling
can be cut down in complexity and number of parameters to yield an expedient objective
function. We summarize the required biological model parameters:

(i) Tumour tissue: ultraparallel.In its basic form for homogeneous cell density, one
parameter suffices: cell radiation sensitivityα. The objective function is given by equation (12).
A TCP model is needed for tuning the Lagrange multiplier during iterated optimization.

(ii) Normal tissue: serial.Accounting for serial tissue requires one parameter: the partial
volume power law exponentn. The objective function is given by equation (21). Multiplier
tuning can be performed by the critical element model without knowledge of mesoscopic
parameters.

(iii) Normal tissue: parallel.An NTCP model is an indispensable requirement. Two
constraints are blended to yield the objective equation (27). These constraints correspond to
a local maximum dose constraint to limit damage to FUs, and a total damage constraint to
limit the gross damage to the functional reserve. At present, parameters for semiempirical
models for the FU response should be chosen with care. However, variations in the functional
form are unlikely to show up in the results. The functional reserve parameter is much harder
to estimate and has to be set according to clinical practice. In most cases, a total of three
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Figure 2. The three components of an objective function with three volumes of interest. The target
dose is set to three times the ‘tolerance’ dose of the parallel and the serial organ. The point of
inflexion dosedPI is set to 1. Objectives are not drawn to scale.

parameters suffices: the TD50 and slopeγ50 for the FU response and the organ functional
reserve parameterµ.

Examples for the objective function constituents are given in figure 2. Serial organs in
the treatment volume result in a convex objective function. If the treatment volume contains
parallel organs, the objective function can potentially become non-convex if the maximum
dosedIP is exceeded in this volume. Although we see no way to preclude the existence of
local minima, there is a fast method to check if the problem is degenerate. Recall that the
source of the non-convexity is the sigmoid FU dose-responseρ(d). If we replacedρ(d) by
ρ̆(d) which for doses greater thandPI follows the tangent onρ in the point of inflexion, only
the local minimumd̆ with smallest NTCP of the parallel complication prevails. Solving this
altered optimization problem and returning toρ delivers a robust upper bound on the objective
function value of the global minimum. Hence, any solution with objective function value
greater than this value has to be discarded. If the objective function is minimized again with
d̆ as a starting point, the gradient algorithm will most likely converge to the local minimum
with the lowest NTCP for the parallel complication.

The level of degeneracy of the problem is related to the number of voxels in the parallel
organ with a dose arounddPI. If the algorithm can redistribute the dose among these voxels
without incurring ‘costs’ due to other objectives, a certain number of degenerate local minima
will arise. Thus, the ‘separation’ of these minima is given by the contribution of these voxels
to the objective function by virtue of the measure property. In the shallow, piecewise-constant
regions of the FU dose response the objective function is determined by the steeper objectives
of target volume and serial complications which effectively convexify the objective function.
For few beam ports, a very low level of degeneracy can be expected. With an increasing number
of beam ports, degeneracy increases while the minimum objective function value saturates.

Notice, that the non-convex problem which would arise from an attempt to optimize beam
angles is of an entirely different quality and can by no means be convexified or computed
by gradient algorithms. The reason for this is that any set of finite sets of beam ports is a
non-convex subset of the set of infinite sets of beam ports.
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8. Conclusion

Our development intends to integrate the basic current biological modelling into an objective
function. With the emphasis on computational expediency, we reduced the modelling to the
essential aspects and expressed the problem in a convex function.

This was achieved mainly by three steps. Firstly, we moved on to a log-probability
objective function which includes the normal tissue constraints as interior penalty functions.
Secondly, we restricted the development to the low-NTCP limit, which simplifies the objective
function, particularly for serial complications in the critical element model. Thirdly, we
demonstrated that interpatient averaging can be absorbed in the objective function. As a
consequence, the objective function has the properties of a biological measure which is of
great importance in devising efficient algorithms for finding an optimum set of beam ports.

The modelling of parallel complications followed an extension of the critical volume
mean-response model and led to an objective function similar to dose-volume constraints for
which positive results have been reported by many authors (Bortfeldet al 1997, Choet al
1998, Langer and Leong 1987, Langeret al 1990, Preiseret al 1997, Spirou and Chu 1998,
Wanget al 1995). We gave a heuristic argument for the experimental finding that no severe
problems arise from the non-convexity in practice.

The advantages of this objective function have to be paid for by the need to perform regular
updates of Lagrange multipliers which carry significant biological information. Therefore, if
treatment objectives are specified as TCP/NTCP targets, comprehensive models with the full
number of parameters have to be used. Together with an ever improving clinical data base,
fine tuning to therapists’ experience will increase the gain of optimization results.
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Appendix

Taking into account the inescapable interpatient heterogeneity it is necessary to link biological
models to predictive assays such as TCP and NTCP. However, for optimizing purposes it
is sufficient to show that the result is robust with respect to parameter fluctuations in the
population.

For want of more detailed knowledge, a Gaussian distribution is assumed for the relevant
biological parameters. If the averaging is invoked on the log-probabilities used in the derivation
of the objective function, we find that the functional structure is invariant, yet parameters
change.

The Poisson model for TCP

The patient averaged objective for ultra parallel complications reads

〈− logF 〉 = 1/N
∑
i

∫ ∞
0

exp

(
(α − α0)

2

2σ 2
α

)
exp(−αdi) dα (30)

≈
∑
i

exp[−(α0 − σ 2
α /2di)di ] (31)
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N being a normalization factor. The approximation is valid ifσ < α0. In this case, it is
possible to replaceα0− σ 2

α /2di with α′0 = α0− σ 2
α /2dp. Note that the second parameter, the

variability in cell density is absorbed in the ‘population averaged’ Lagrange multiplier, i.e. is
taken into account at the multiplier updates according to a TCP calculation.

The critical element model

Recall that in the very low NTCP limit the FU dose response can be written as(d/d0)
k so

that the factordk0 can be absorbed in a ‘population averaged’ Lagrange multiplier. For the
population average of the objective function we find

〈− logF 〉 = 1/N
∑
i

∫ ∞
0

exp

(
(k − k0)

2

2σ 2
k

)
dki dk (32)

≈
∑

di>exp(−k0/σ
2
k )

d
k0+σ 2

k /2 lndi
i (33)

if the normalized dosedi > exp(−k0/σ
2
k ). Again, for k0 ≈ 10σ 2

k , the exponent can be
approximated byk0.

The mean-response model

Although the FU dose response is likely to be the only individual quantity accessible (Boersma
et al1994, 1995), it is not available for planning. Hence, a patient average has to be used from
the start. At any rate, the uncertainty about the functional reserve is to determine the treatment
outcome more dominantly than any other factor. The complication will be expressed by the
fraction of the population with functional reserve smaller than the thresholdµ, thus rendering
a population average of the volume prefactor 1/(µ−m1) obsolete.
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