This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Close this notification
NOTICE: Ensuring subscriber access to content on IOPscience throughout the coronavirus outbreak - see our remote access guidelines.
Institute of Physics and Engineering in Medicine

Click here to close this overlay, or press the "Escape" key on your keyboard.

Institute of Physics and Engineering in Medicine

IPEM's aim is to promote the advancement of physics and engineering applied to medicine and biology for the public benefit. Its members are professionals working in healthcare, education, industry and research.

IPEM publishes scientific journals and books and organises conferences to disseminate knowledge and support members in their development. It sets and advises on standards for the practice, education and training of scientists and engineers working in healthcare to secure an effective and appropriate workforce.

Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning

, , , and

, ,

0031-9155/44/1/012

Abstract

An integer linear programming model is proposed as a framework for optimizing seed placement and dose distribution in brachytherapy treatment planning. The basic model involves using 0/1 indicator variables to describe the placement or non-placement of seeds in a prespecified three-dimensional grid of potential locations. The dose delivered to each point in a discretized representation of the diseased organ and neighbouring healthy tissue can then be modelled as a linear combination of the indicator variables. A system of linear constraints is imposed to attempt to keep the dose level at each point to within specified target bounds. Since it is physically impossible to satisfy all constraints simultaneously, each constraint uses a variable to either record when the target dose level is achieved, or to record the deviation from the desired level. These additional variables are embedded into an objective function to be optimized. Variations on this model are discussed and two computational approaches - a branch-and-bound algorithm and a genetic algorithm - for finding `optimal' seed placements are described. Results of computational experiments on a collection of prostate cancer cases are reported. The results indicate that both optimization algorithms are capable of producing good solutions within 5 to 15 min, and that small variations in model parameters can have a measurable effect on the dose distribution of the resulting plans.

Export citation and abstract BibTeX RIS