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Abstract. Three-dimensional  medical  image  reconstruction  for  both  transmission  and 
emission  tomography  has  traditionally  decomposed  the  problem  into  a  set of two- 
dimensional  reconstructions on parallel  transverse  sections.  There  is,  however,  increasing 
interest  in  reconstructing  projection  data  directly in three  dimensions. For emission 
tomography  in  particular,  such  a  reconstruction  procedure  would  clearly  make  more efficient 
use  of  the  available  photon flux. In  the  past few years,  a  number  of  authors  have  studied 
the  problems  associated  with  full  three-dimensional  reconstruction,  especially  in  the  case 
of  positron  tomography  where  three-dimensional  reconstruction is likely to offer the  greatest 
benefits.  While  most  approaches  follow  that  of  filtered  backprojection,  the  relationship 
between  the  various filters that  have  been  proposed is far  from  evident.  This  paper  clarifies 
this  relationship by analysing  and  generalising  the  different  classes  of  published filters and 
establishes  the  properties  and  characteristics of a  general  solution  to  the  three-dimensional 
reconstruction  problem.  Some  guidelines  are  suggested  for  the  choice of an  appropriate 
filter in a  given  situation. 

1. Introduction 

The  traditional  approach  to  three-dimensional medical  image  reconstruction  for  both 
transmission  and emission  tomography  decomposes  the  problem  into  a set of two- 
dimensional  reconstructions on independent  parallel sections.  Each  two-dimensional 
section is reconstructed  from  a  set of one-dimensional  projection  data  using a standard 
filtered backprojection  algorithm  (Herman 1980, Barrett and Swindell 1981, Natterer 
1986).  However, while this  approach is computationally efficient, photons which pass 
obliquely  through  the  chosen set of sections cannot be included  in  the  reconstruction. 
This is a  particular  disadvantage in emission  tomography  where  the  photons  are  emitted 
isotropically and only a  fraction of the  available flux  is actually  used  in  the  reconstruc- 
tion. In transmission  tomography,  collimation of the x-ray source  to emit within a 
transverse plane prevents  exposure of the  patient  to unnecessary  radiation. In emission 
tomography,  since  the  source  cannot  be  collimated, it is usual  to  shield the  detector 
in order  to eliminate  oblique  rays. This shielding  also serves to  reduce  both  the  total 
incident  photon flux and  the fraction of scattered  photons. 

It is evident  that, in  emission  tomography,  more efficient usage  would be made of 
the emitted photons if the  oblique rays were also  included in the  reconstruction. To 
achieve  this  goal, the  detector must  be operated  without  shielding  and  a fully three- 
dimensional  reconstruction  algorithm  used  to  process  the  data.  Although  this  idea is 
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not new, applications in medical  imaging  remain  marginal  because of a  number of 
technical and  computational difficulties. Removal of the  collimation, while permitting 
the  detection of oblique  rays,  also  increases  the sensitivity of the system to  scattered 
photons  and  other sources of contrast-reducing  background.  Furthermore,  conven- 
tional  two-dimensional  reconstruction  techniques  cannot  be  straightforwardly  gen- 
eralised  to  three  dimensions, with one  exception  in  the  case of full 47r angular 
acceptance,  which  necessitates  an  impractical  spherical  detector  geometry.  Three- 
dimensional  reconstructions  generally  impose  a heavy computational  load on the  data 
processing. 

In medical  imaging,  three-dimensional  reconstruction  incorporating  oblique rays 
has  been  studied  mainly  for  cone  beam  transmission  tomography  and  for  positron 
emission  tomography.  The two applications  lead  to  rather  different  reconstruction 
problems  owing  to  fundamental differences in the  input  data sets. Cone beam  tomogra- 
phy  requires  inversion of the  divergent  beam  transform  since  the  integrals of density 
are  measured  along straight  lines  radiating  from  the  position of the x-ray  source. 
Details of this  problem and its  solution  have  been  published by Smith (1989, Natterer 
(1986) and  Grangeat  (1987),  and  cone beam  geometry will not  be  considered  further 
in this paper. 

In positron  emission  tomography (PET), three-dimensional  reconstruction 
algorithms were developed  originally  for  stationary,  planar,  position-sensitive  detectors 
(Chu  and Tam 1977, Schorr  and  Townsend 1981) and more  recently  for  rotating planar 
detectors  (Colsher 1980, Schorr er a1 1983) and  stationary  truncated  spherical  detector 
arrays (Ra er a1 1982). Three-dimensional  reconstruction  algorithms  attempt  to  recover 
the  distribution of a  positron-emitting  isotope  from  a set of two-dimensional  projections. 
This recovery procedure is not  unique;  a  number of distinct  algorithms  are  available 
which do not  produce  the  same reconstructed  image  when  the  projection data  contain 
noise.  These differences are  fundamental  and  do not  originate  only  from  the  discretisa- 
tion or implementation  procedure.  The  reason  for  this  non-uniqueness lies in a 
redundancy of the  three-dimensional  data. While lines in two dimensions ( 2 ~ )  are 
specified by two  parameters  (slope  and  intercept)  and  are used to  reconstruct  a density 
function  which  depends on two spatial  variables (x, y ) ,  lines in three  dimensions (3D) 

require four  parameters  (two slopes and two  intercepts)  and  are  used  to  reconstruct 
a density  function which depends on three  spatial  variables (x, y ,  z). The inversion 
procedure is therefore  overdetermined,  as was originally  noted by Orlov  (1976) in his 
seminal  work on three-dimensional  reconstruction  for  x-ray  crystallography,  and  more 
recently by Pelc and  Chesler  (1979). 

The  aims of this paper  are  to clarify the  relationship  between  the  different  published 
algorithms,  to  establish the  properties  and characteristics of a general  solution  and  to 
indicate  guidelines  for  the  choice of an  appropriate filter. The  paper will focus on 
algorithms  based on a  shift-invariant system response.  Shift  invariance  requires  that, 
if one  line  integral is measured in a  particular  direction, all line  integrals are measured 
in that  direction  through all points within the  field of view, i.e. all projections in the 
data set  must  be  complete. An equation  for  the  general  linear  shift-invariant  inversion 
formula will be  given.  The  equation will be  investigated  separately  for two different 
classes of reconstruction filters: factorisable and  non-factorisable. In this  context, a 
factorisable filter is one  for which  the  frequency  space  representation  can be  separated 
into  the  product of the  angular  component  for  the  projection  direction  and a component 
which depends  upon  the frequency  space  coordinates within the projection. As will 
be  seen,  a  direct  consequence of this separability is that  the  operations of filtering and 
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backprojection  can  be  interchanged. An optimal  property of factorisable filters will 
be  established  that  could  help in selecting  the  most appropriate filter to use in practice. 

The  treatment  throughout  this  paper will be  mainly  theoretical;  problems  concerned 
with the  discretisation  or  computer  implementation aspects of the  algorithms will not 
be  discussed. 

2. The general  condition for the recovery filter 

The  line  integrals p(I?, S )  of a  density f ( x )  measured  for  a set of directions R are 
defined by 

where I? is a  unit  vector with I? E R and S .  I? = 0. The  aperture R is assumed  to  be  shift 
invariant, so that  for  each  direction I? E R the line  integrals  are  measured  for all positions 
in  the  central  plane  normal  to I?, i.e. for  all S E R 3  satisfying S .  I? = 0. For simplicity, 
R is taken  to be  symmetrical with respect to  the origin (if I? E R then -I? E R) ,  and  the 
projection is an even function on R(  p ( &  S )  = p ( - I ? ,  S)).  

The  relationship (1) between the density f and  the  projections p is expressed in 
Fourier  space by the  central slice theorem  (Natterer 1986 p  11) 

F(v)= [[I d3xf(x)   exp(-2r ix-  v )  = P ( $ ,  v )  
R 3  

with I? v = 0 .  P( I?, v )  is the  two-dimensional  Fourier  transform of the  projection 

P(; ,  v)= 1, d2s  exp(-2ris. v)p(I?, S )  I?. v =O. 
s.u=o 

A given projection p ( $ ,  S),  for all S, therefore  samples  the  Fourier  transform F (  v )  of 
f ( x )  on the  frequency  plane  through  the origin (a central plane)  and  normal  to  the 
unit  vector I?. A set of projections  thus  samples f ( x )  on a  corresponding set of central 
planes in frequency  space. Since, in  general,  some of these  planes will intersect,  a 
given frequency  component F(v) may be  sampled by more than  one projection,  a 
situation  which, in two dimensions,  arises  only  at  the  origin.  This  shows  that  a  necessary 
and sufficient condition  for  the existence of a  unique  solution  to  the  inversion  of 
equation (1) is that,  for  any frequency v, at least one  projection must  be  available 
which satisfies I? v = Q  in order  to  recover F (  v )  using the  central slice theorem. 
Geometrically,  this  condition  (Orlov 1976) requires  that  the aperture region  should 
intersect all equatorial circles on the  unit  sphere.  However,  even if Orlov’s condition 
is not  satisfied,  the  solution may still be  unique  provided  that  the  set of admissible 
solutions is further  restricted, e.g. from  knowledge of the  bounded  support of the 
function f(x). In this  case,  the  inversion  problem is severely ill-posed  (Tam  and 
Perez-Mendez 1981a, b),  a  situation similar  to  the  limited-angle  tomography  problem 
in 2~ (Davison 1983). Throughout  this  paper it  will be  assumed  that Orlov’s condition 
is satisfied. 
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The  most  general  linear and shift-invariant  inversion  formula  for  equation (1) can 
be  shown  to  be  a filtered backprojection 

f ( x ) = ~ / d ' d p ' [ i x - ( x , i ) i ]  (4) 

where  x - (x 6 ) ;  is the  projection of the vector x onto  the  plane  normal  to  the unit 
vector ii, and  the filtered projections pF are  obtained  from  a 2~ convolution with a 
kernel h (defined  as  a  generalised  function) by 

R 

p'(ii, S )  = d2s' h(  ii, S - s ' )p(  U*, S') S - ii = 0. 

s ' . P = O  

Taking the  Fourier  transform of both  sides of equation (5) gives 

P F ( i i , v ) = P ( i i , v ) H ( i i , v )  i i . v = o  

where the  upper case  characters  denote 2~ Fourier  transforms,  defined  as in equation 
(3 ) .  The  projections p ( ; ,  s) may  therefore  be  equivalently filtered in  Fourier  space 
according  to  equation (6). 

A number of specific Fourier  space filters H (  U*, v )  have been  described in the 
literature  (Colsher 1980, Schorr et al 1983, Ra et a1 1982) which  permit  the  exact 
reconstruction of any  density f(x).  It is useful  to  derive  an  equation  which  must be 
satisfied by any valid reconstruction filter. Specific filters can  then  be  shown  to  be 
particular  solutions of this  equation  (cf. §P 3 and 4). 

Taking  the  Fourier  transform of both  sides of equation (4), and using  equation (5) 
and  the  representation of the  Dirac  distribution  as 

b 

S(x)  = lim dy  exp( -27rixy) 
b-cc 

(7 )  

results in 

F(v)= d2iiS(ii. v)H(U*, v)P(ii,  v). (8) 
n 

Using the  central slice theorem  (2) we now  replace P(i, v )  by F(v) in equation (8). 
Since the resulting  equation  must  be satisfied for  any  density f (x) ,  it follows  that  any 
valid filter function H ( & ,  v )  must satisfy 

d2iiS(u*. v)H(ii, v ) = l  (9) 
n 

for  any v in R'. 
As will be seen, an infinite  number of filters can  be  derived  which satisfy the 

necessary and sufficient condition (9). These filters are  not,  however,  equivalent  in 
that  they do not yield identical  reconstructions  unless  the  data  are  consistent,  i.e. 
belong to  the range of the x-ray  transform given by equation (1). This is, in  general, 
only  true if the  data  are noise  free,  and  therefore  in  practice the various filters differ 
in the way in which they  propagate  noise.  Discretisation  and  numerical  implementation 
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may, of course,  introduce  further  differences  between  mathematically  equivalent 
algorithms,  a  situation  which is  well known in 2~ tomography. 

This paper will examine  two  families of filters satisfying  equation (9): those which 
are  factorisable  and  those  which  are  not  factorisable. 

3. Factorisable  filters 

A filter is said  to  be  factorisable if it can  be written  as the  product of a filter function 
H’( v )  defined on R 3 ,  with an even positive  integrable  function W( 2) defined on i2: 

H ( l i , v ) = H ’ ( v ) w ( i )  v * i i = o .  (10) 

Geometrically  this  means  that  each  projection p( ; ,  v )  is filtered using  a filter H(;,  v )  
which is proportional  to  the  central section  normal  to U  ̂ through  a 3~ filter function 
H’( v). A factorisable filter can  be  constructed  for  any  positive  function W(;); indeed, 
when W(;) is given, equation  (9) uniquely  determines  the filter from 

This  family (for different W(;)) of reconstruction filters was first derived by Schorr 
et a1 (1983).  The inversion  formula of Orlov  (1976)  belongs to  this family. As was 
shown by Kinahan et a1 (1987), Orlov’s formula is equivalent  to filtered backprojection 
with the filter derived by Colsher  (1980)  for  the  particular  case of a  truncated cylindrical 
detector  with W( G) = 1. Indeed most of the  published  truly 3~ reconstruction  algorithms 
involve factorisable filters. 

Factorisable filters have  a  number of interesting  properties, the practical  implica- 
tions of which will be  discussed  below. 

3.1. Commuting the jiltering  and backprojection operations 

The filtering and  backprojection  operations of the inversion  procedure given by 
equations (4) and ( 5 )  can  be  commuted  for  factorisable filters. Therefore, it is possible 
to  perform  an equivalent  inversion by backprojecting  prior  to filtering, in analogy with 
the  so-called ‘rho-filtered  layergram’ approach in ZD (Smith et a1 1973).  Thus  from 
equations (8) and  (10) 

where  the  generalised  function h‘ (x )  is the  inverse 3D Fourier  transform of the filter 
H ’ ( v )  and  the  backprojected  distribution b R ( x )  is defined  as 

b n ( x ) =  [ rd’r iw( i )p[ ; ,x- (x . i ) i ]  
J J  
R 

which is the 3~ inverse  Fourier  transform of 

d2u^S(ri. v ) w ( i i ) P ( G ,  v). 
R 
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The  backprojection of a  point  source  at  the  origin, L ~ ~ ( X ) ,  is usually  known as  the  point 
response  function ( PRF) of the system.  From  equation (13) 

P R F ( x ) = [ ~  d26w(6)  6 2 [ ~ - ( x . 6 ) r i ]  

n 

= O  otherwise.  (14) 

Taking  the  Fourier  transforms of both  sides of equation  (14)  and  comparing with 
equation  (1 l ) ,  it can  be seen  that  the 3~ filter H ' (  v )  is the  reciprocal of the  Fourier 
transform of the PRF. 

The  factorisability of the filter H (  6, v )  is an essential  requirement  in  order  to  derive 
equations  (12)  and  (13). In general,  in 3 ~ ,  the  dependence of the filter on ri and v 
cannot  be  separated in this way and  therefore  there is no equivalent  form of the 
rho-filtered  layergram for  non-factorisable filters. Nevertheless, the possibility  to 
perform  the  backprojection  operation  before filtering can  be  important  for  certain 
applications,  particularly  in 3 ~ ,  where the  number of sampled  projections  can be very 
large. The essential  advantage of backprojection  before filtering arises  from  the  fact 
that  the  sorting of the  data  into explicit  projections  can  be  avoided. In positron 
tomography,  each  projection  value  represents  the  sum of a  number of individual 
coincidence  events  and,  from  the linearity of the  backprojection  process,  these  events 
may be  backprojected  one  at  a  time,  thereby  avoiding  the  sorting  into  projections.  For 
this procedure  to yield a valid reconstruction,  the  corresponding filter must  be 
factorisable. 

3.2. The filter H'  is proportional  to the modulus  of the frequency, lvI 

Equation ( 1  1) can  be  rewritten  as 

where the  denominator  depends only on the  direction of the  frequency v (Schorr et 
a1 1983). The frequency dependence of the 3~ factorisable filter is thus  the  same  as 
that of the  standard  ramp filter in two dimensions,  which reflects the  same mildly 
ill-posed nature of the  inversion  problem  associated with this  ramp-like  behaviour. 
The usual  apodising  windows  (e.g.  a  Hanning  window)  can be used  to regularise the 
reconstruction. 

3.3. Optimality of the factorisable  filters 

A possible  criterion for selecting  a filter which satisfies equation (9) is to choose  the 
one which minimises the variance in the  reconstructed  image. Assume first that  all 
projections p ( ; ,  S) have  been  measured with the  same  accuracy  and  evaluate F(v) 
from P ( 6 ,  v )  according  to  the  equation (S),  which can  be  interpreted  as  a  weighted 
average of all available  estimates of a given Fourier  component F( v). Then  the  variance 
of F(v) will be  minimum if all contributions  to  the  average  are  equally  weighted, i.e. 
if H (  6, v )  is independent of 6. Such  a  requirement is obviously satisfied by a  factorisable 
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filter with W ( ; )  = 1. This  heuristic  argument can be  expressed  more  rigorously by 
introducing  the  following  mathematical  property. 

Let W (  ii) be  some fixed positive  integrable  function on R. Among  all filters H( ii, v )  
satisfying the general condition,  equation  (9),  the  factorisable filter, equation ( lo) ,  
minimises the  quantity 

R 

for  any fixed frequency v. 
This  can  be  seen  from the following  inequality: 

R 

= v ( H ,  v ) + u ( w H ’ ,  v ) - 2 H ‘ ( v ) = v ( H ,  v ) - v ( w H ’ ,  v )  (17) 

with v ( H ,  v) given by equation (16) and H‘ given by equation ( 1 1 ) .  
The  interpretation of this  result is as  follows. Consider  the  measured line  integrals 

p( i i i , s j )  as  independent  random variables  with  variance (due  to measurement  errors) 
u2(iii, s j ) .  Assuming that  the  projection  sampling is sufficiently fine and  uniform,  the 
density  function f(x) can be  reconstructed by discretising the filtered  backprojection 
formula given by equations (4) and ( 5 ) :  

i j  

where Au and A, are  quadrature weights (assuming  uniform  sampling),  and hs is a 
reconstruction  kernel,  apodised using  some appropriate  smoothing filter S ( v ) ,  i.e. its 
Fourier  transform is given by 

Hs( ii, v )  = H( ii, v ) S (  v )  (19) 

for  some filter H(& v )  satisfying  equation (9). The variance of the image  estimate 
(18)  at x is 

var{f(x)} = A:A: C C h2,[iii, x - (x i i i ) i i i  - s j ]u2( i i i ,  s j ) .  (20) 

Using the fact  that the discrete  summations  approximate  the  double integral  over 6 
and S, this  can  be  rewritten  as 

i j  

var{f(x)l= A U A S  [[d’i J[ d ’ s h ~ ( i i , s ) u * [ i i , x - ( x . i i ) d - s S ]  (21) 
n l i .s=O 

where U’(;, S )  is a  function  interpolating  the  measurement  variances v2(iii, s j ) .  The 
square of the  kernel hs is a  sharply  peaked  function  around S = 0, whereas,  except 
near  boundaries, a’( 6, S )  is assumed  to vary only slowly with S. We therefore  approxi- 
mate S by 0 in  the  argument of U*.  Using Parseval’s  relation 

d’s h:( ii, S )  = jj d’v IH(ii, v)l’S*(v) 
J .s=O ri.u=o 
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we finally obtain  for  the  image  variance  at x 

var{f(x)} = A,A, d2u* d [ & ,  x - ( x -  G);] d2u IH(ri, v)12S2(v). 
R J.u=O 

Thus  the  extremum  property (16), being  valid  for  any v, implies  that  the  factorisable 
filter given by equation (11) with W ( ; )  = 1/a2[li, x - (x ;)G] minimises  the  variance 
of the  reconstructed  densityf(x)  at x. Likewise, the  variance  integrated  over  a bounded 
region D is minimised by taking 

4. Non-factorisable filters 

A valid reconstruction filter satisfying equation (9) need  not be  factorisable  in  the 
form of equation (10) and  as discussed  in § 3. Indeed,  as  shown in the  Appendix, 
non-factorisable filters can be  constructed  for  any  non-trivial  aperture a. Sections 4.1 
and 4.2 focus  on  one  particular family of non-factorisable filters, an  example of which 
was introduced originally by Ra et a1 (1982) for  a  truncated  spherical  detector.  A 
slightly  more  general  form of this filter will be derived  in order  to clarify the  relationship, 
and  emphasise  the differences,  between  the  factorisable filters and  this alternative 
family of solutions  to  equation (9). For  the  particular  case of a  truncated  cylindrical 
detector,  the explicit  form of the  factorisable filter proposed by Colsher (1980) will 
be  compared with the  non-factorisable filter of Ra et a1 (1982) in order  to clarify the 
significance of the  optimality  property  described  in § 3. Finally,  in § 4.3, a  family of 
recovery filters will be  derived  for  this  geometry,  thus  providing  a  clear  illustration of 
the  redundancy in the 3~ data  set. 

4.1. The TTR algorithm 

Ra et a1 (1982) observed  that  a 3~ image may be  considered as a  series of independent 
2~ slices. In  conventional 2~ tomography,  as  mentioned  in  the  Introduction,  reconstruc- 
tion is restricted  to  a set of non-intersecting  slices by eliminating  oblique  rays.  However, 
in principle,  the  same 2~ algorithms  can be  used  to  reconstruct  any slice, including 
oblique  slices,  provided that  the  data set  includes  all  the  line  integrals of the  density 
function  required  for  such  a  reconstruction.  The slices, or  planes,  that  contain  such 
a  completely  measured set of line  integrals are  here referred to  as valid planes,  and 
they will be  identified by their  unit  normal  vector 6. The  set of orientation  vectors i? 
of all valid planes  containing  the  point x is denoted  as A ( x ) :  

A ( x ) = { ~ ~ S ~ ~ p ( ~ , s ) i s m e a s u r e d f o r a l l l i , s s u c h t h a t u * ~ o ^ = O a n d s ~ o ^ = x ~ o ^ } .  ( 2 5 )  

Since  the  aperture is shift  invariant, if one  plane  normal  to  a given orientation  vector 
6 is valid,  then  the  whole set of parallel  planes is valid.  The  set of valid  orientation 
vectors can  be written as 
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i.e. the whole  equatorial  circle  normal  to 6 must  be  contained  within R, which is simply 
the  usual  requirement  for  a ZD reconstruction. It should be  noted  that in 3~ the set 
of valid planes A may still be  empty even when R satisfies Orlov's  condition,  although 
this  would  only  occur for  rather unrealistic  detector  geometries. Consider  for  instance 
an  aperture R built  as the  union of two non-adjacent sets R, and R2 on the  unit  sphere, 
neither of which  separately satisfies Orlov's  condition  but  chosen in such  a way that 
any  equatorial  circle  intersects  either R, or R2 (or both).  The  aperture R satisfies 
Orlov's  condition  but no equatorial circle can  be  entirely  contained  in R, so that A is 
empty.  Therefore  the TTR (truly  three-dimensional)  algorithm  described  hereafter 
cannot be  applied  in  this  case. 

A given point x in the field of view will lie on  a  number of valid planes and, 
therefore, it is natural  to  reconstruct  the  density  function f at x as  a weighted  average 
of all ZD reconstructions of planes  through x. Thus 

where W(&) is a positive  even  integrable  function and  the ZD reconstruction f(x, 6 )  of 
f ( x )  in the  plane  orthogonal  to 6 through x is obtained  using  a ZD filtered back- 
projection: 

f(x, 6 ) =  11 d'GS(6 .G)pF[G, x - ( x .  $)U^]. 

n 

The  double integral  over G corresponds  to  a  backprojection in the  plane  normal  to 6, 
and p' is obtained by a  one-dimensional ( I D )  convolution of the  projections: 

p'( G, S )  = d2s' S(S' * 6)k ( ( s ' l )p (G ,  S - S ' )  
. .  

l i . s ' = O  

where k ( s )  is the  conventional  kernel  used in ZD tomography, i.e. the inverse I D  Fourier 
transform of the  ramp filter lv1/2 (Herman 1980).  The  usual  form of ZD filtered 
backprojection  can  be  seen by rewriting  equations (28)  and  (29) in a  coordinate 
system with the  unit  vector 6 along  the z axis, x = (x, y ,  0), and G = 
(cos 6 sin 4, sin 6 sin 4, cos 4 ) .  In  this  system, the integral  over G reduces to a single 
integral  over 8. 

Changing  the  order of integration  over 6, U* and S '  we can now reformulate  the 
reconstruction  algorithm,  equation  (27),  as  a 3~ filtered backprojection  (equations (4) 
and (5) )  with 

A 

= O  otherwise. 
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Taking  the 2~ Fourier  transform of equation  (30) yields  the filter 

This filter has  been  published  for  a  truncated  spherical  detector  (with W = 1) by 
Ra et a1 (1982) and  named  the TTR kernel. It can  be checked  that  this filter, equation 
(31), satisfies equation (9). It is not,  however,  factorisable and  consequently  does  not 
possess the attractive  properties  discussed in the  previous  section. In particular,  the 
operations of filtering and  backprojection  cannot be  commuted,  and  thus filtering must 
be  performed  prior  to  backprojection.  Additionally,  within  the  restricted  sense  defined 
in 0 3.3, the  behaviour of this filter in the presence of noise is suboptimal.  However, 
the TTR kernel (equation  (30))  for each  projection is zero  outside  a  wedge defined by 
the set of valid  planes, i.e. by A. This  unique  property  has  been  exploited by Cho et 
a1 (1983)  to  derive an  extended algorithm ( ETTR) which  allows the  incorporation in 
the  reconstruction of incompletely  measured  projections.  These  incomplete  projec- 
tions,  which  are  normally  rejected  to  ensure  the  shift  invariance of the  aperture a, are 
incomplete  only in regions  where  the  corresponding filter value  would, in any  case, 
be  zero.  While  the  method  introduced by these  authors is indeed  correct,  the  presenta- 
tion  led  to  some  confusion  and  the validity of the ETTR algorithm  has  recently  been 
questioned  (Rogers et a1 1987).  Clarification of the  rationale  behind  the ETTR approach 
is possible  based on  the  above generalised  derivation of the TTR kernel. 

In order  to  reconstruct  a  density  distribution f ( x )  by 3~ filtered backprojection  the 
filtered projection p‘( 6, S),  for  each  direction ii which contributes  to  the  backprojection 
at x, must  be  evaluated  at  the  point S = x - ( x .  6)ri (equation (4)). In  general,  the 
convolution  kernel h(ri ,  S )  for  a filter satisfying  equation (9) is non-zero  for  almost all 
S E R*.  Hence,  the  value of p ” (  ri, S )  at S = x - (x  $)U^ can  be  evaluated  only if the line 
integrals p (  d ,  S )  have been  measured  for  all S, thereby  excluding  the use of incomplete 
projections. 

The TTR kernel (equation  (30)) is zero  outside  the region in the  projection  plane 
defined by the  intersection of all valid reconstruction  planes.  In  order  to  evaluate  the 
convolution of the  projection with the  kernel at  the  point S = x - (x  i)ri only  projection 
values  which lie inside the  support of the TTR kernel  when  centred at S are  required. 
It is not,  therefore,  necessary  that all projections  included  in  the  reconstruction  are 
completely  measured.  For  the ETTR algorithm,  then,  the set of valid  planes used to 
reconstruct  the  density  distribution at x need  not be  independent of x. A discussion 
of  the practical  implementation of this  algorithm (Cho er a1 1983) and of other 
algorithms  allowing  a  better  utilisation of the available data  (Defrise et a1 1987, Clack 
et a1 1988) is beyond the  scope of this paper. 

4.2. Comparison with a factorisable j l t e r  

It is interesting  to compare  the TTR filter (equation  (31)) with the  factorisable filter 
(equation (1 1)) for  a  truncated  cylindrical  detector with its axis  along  the z direction. 
The  corresponding  aperture is then 

R={u^ES2//U1,1<sineo)  (32) 

and  the set of valid planes is given by 

A = { ~ ^ E S * ( ( ~ ~ ( > C O S  eo} (33) 
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for  some fixed aperture  angle Bo. Evaluation of the  expressions in equations ( 1  1 )  and 
(31) with w ( 6 )  = 1 then  yields the filters derived respectively by Colsher (1980) (H,) 
and  Ra et a1 (1982) (HR): 

H,( v )  = - IvI 
27T 

if cos v' > cos Bo 

(34) 
-- I vl 1 - if cos v' <cos eo 

4 sin"(sin eO/sin 9) 

and 

if cos v' > cos Bo 
( l < )  

where U; = 1 - 6 ;  and cos = 1v21/1v1. 
The  behaviour of these filters H ,  and H R  is shown in figure 1 for  an  aperture 

eo = 50". The  particular  projection shown  has l u * , l =  0.50, and  the filters are plotted  for 
Iv( = 1, as  a  function of 6, the angle of the  frequency vector in the  projection  plane 
perpendicular  to U* (i.e. v, = Jvl cos v' = up sin 6 ) .  It is interesting  to  note  the  smaller 
range of the  angular  part of the  factorisable filter; this  property  can  be  checked  from 
equations (34) and (35) to be  valid  for any  projection  (i.e.  any value of l6,l) and is 
consistent with the  optimality  property discussed  above in 0 3.3. 

0.3 

0.2 

0.1 

0.0 
0 30 60 90 

S 

Figure 1. A comparison  between  a  factorisable filter H, (Colsher 1980) and a non-factorisable filter H, 
(Ra ef a1 1982). 

4.3. A general  class ofjilters 

Finally,  as  a  demonstration of the  redundancy  intrinsic in the 3~ data set and of the 
non-uniqueness of the recovery filter, a class of inversion filters is derived  for  the 
truncated  cylindrical  detector  geometry  defined by equation (32). The  discussion will 
be  restricted to filters H ( 6 ,  v )  with the  same  cylindrical  symmetry  as  the  detector, 
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which  means  that  the filter can  be  written  as H( 0, $, Ivl), where 6, =cos 0 and v, = 
IvI cos $. Then,  integration of the  Dirac  delta  function in equation (9) results in 

I +min(sin B,,sin*) 

d(cos 0 )  2 H ( 0 ,  v', Ivl) 
I vl(sin2 V - cos2 0)"2 = 

for all V. (36) 
-min(sin Bn,sin*) 

A whole class of filters can be  constructed  using finite Chebyshev  series (Fox  and 
Parker 1968) 

where Tn(cos 6) = cos( n6) and  the  number of terms N is arbitrary.  The  condition  for 
a valid reconstruction filter, equation (36), then  becomes 

where 

I -min(sin &,,sin (sin* $-cos* o ) l ; ' T . ( G )  = r n ( + ) .  (39) 
+rnin(sin B,,sinIL) 

d(cos 0 )  
2 cos 0 

This  integral is zero  for  odd values of n, while for even  values of n it is given by 

Finally, for n = 0 

A reconstruction filter can  now be constructed by arbitrarily  choosing the  functions 
c, for all n 3 1. The first coefficient c. is then  determined so as  to  satisfy  equation 
(38), which is always possible  since ro( $) # 0 for all +. Colsher's filter H c ,  for  example, 
is obtained by taking c, (4) = 0 for all n 2 1. 

5. Conclusions 

This paper  has  explored  the  relationship between a number of algorithms  that  have 
been  proposed  in  recent  years  for 3~ image  reconstruction. I t  has  been  shown  that, 
as  a  consequence of the  intrinsic  redundancy  in  the 3~ data set,  each  algorithm yields 
a valid reconstruction, even though  the filters used  are  mathematically  distinct.  For 
noise-free  data,  the  reconstructions  are  identical. It has  been  seen  that all such filters 
must  satisfy  a  general  condition, and two different  families of filters-factorisable and 
non-factorisable-have  been  studied in detail. It has  been  shown  that  factorisable 
filters have  a  number of interesting  properties,  including the possibility to  commute 
the  operations of backprojection  and filtering. Factorisable filters are  seen  to  have 
optimal  properties in the  presence of noisy data. 
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The  second class of filters that were studied  are  non-factorisable  and  include  the 
ITR algorithm  published by Ra et a1 in 1982. This  algorithm,  and its extension  to  the 
EITR algorithm (Cho et a1 1953), has  been  generalised and  the  potential of such 
non-factorisable filters to  incorporate incompletely  measured  projections  into the 
reconstruction  has  been  discussed.  Non-factorisable filters, it has  been  seen, do not 
share  the  optimum noise  properties of factorisable filters. Recently it has  been  shown 
(Defrise et a1 1987) that  algorithms  based  on  factorisable filters can  also  be modified 
to  incorporate  partially  measured  projection  data.  However,  the efficiency with which 
these  algorithms  incorporate  incomplete  projections,  and  the noise  properties of the 
reconstructed  images, will need  further  study. 

Acknowledgments 

MD is Research  Associate with the  National  Fund  for Scientific Research  (Belgium). 

Appendix 

We demonstrate  here  that  a  non-factorisable filter  can  be  constructed  for  any  non-trivial 
aperture R (i.e.  not  simply  consisting of one great circle on the  unit  sphere).  The 
reason why this  proof is not trivial is that  the  equation (10) for  a  factorisable filter 
needs  not  be satisfied for all  pairs (G, v )  but  only  for  the  orthogonal pairs G v = 0. 
Therefore  the fact that  the explicit  form of a filter H ( &  v )  does  not seem to be 
factorisable is not  a sufficient proof. 

Select any  three  unit  vectors G,, G 2 ,  G, in R not lying on a  common  equatorial  circle. 
Define as r, the  intersection of the  equatorial circle through i i 2  and G, with the 
acceptance  region R. Similarly, define T2 and r, . Denote by v,,  v2,  v3 the  unit vectors 
normal  to r l ,  T2, r3 respectively.  For  instance r, = {G E RIG v, = 0). Finally, denote 
by l , ,  1 2 ,  l3 the length of T, , T2, r,, for  example 

l ,  = d2G6(G. v,). 
R 

We now  construct  two  factorisable filters satisfying (10) and (1 l ) ,  using two weight 
functions  defined  as  follows: 

wA( G) = 1 on R 

wB(G) = 1 on r, 
2 in G = G, 
defined  along T2 such  that  its  integral  along T2 is equal  to (1, 

defined  along r3 such  that its integral  along r, is equal  to pl, 

arbitrarily  defined  elsewhere  as  a  positive  integrable  function 

where 6 and p are  two  positive  numbers with 6 # p. The  two  factorisable  filters  are 
now given by 
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We now  prove  that  the filter H = ( H A +  HB)/2 (which satisfies the general  equation 
(9)) is not  factorisable. Indeed, if it were, the ratio 

would  be  equal  to unity. Note  that  the  ratio R includes  only  pairs (2, U )  satisfying 
U .̂ U = 0. We can check that 

when 6 # p, since,  according  to  the  definitions of H A  and HB, we have 

~ ~~ 

61, v2 11 12 21 5 1 2  

61, U3 11 4 2/ P13 

4 2 ,  v3 l /  13 l /  P13 

4 2 ,  v1 l /  11 l /  4 
u*3, U1 1 /11  1/11 
u*3, U2 l /  12 1 / 5 / 2 .  

Therefore  it is possible  to  build  at  least one  non-factorisable filter for  any non-trivial 
aperture. 

RCsum6 

Reconstruction  d’images  tridimensionnelles h partir de projections  globales. 

La reconstruction  d’images  mtdicales  tridimensionnelles  en  tomographie  par  transmission  et  emission est 
classiquement  rtduite a un  ensemble  de  reconstructions  bidimensionnelles  dans  des  sections  transverses 
parallbles. I1 existe  cependant  un  interet  croissant  pour  la  reconstruction  directe  des  projections  en  trois 
dimensions.  En  tornographie  d’tmission  en  particulier,  un tel processus  de  reconstruction  rendrait  plus 
efficace l’utilisation  du flux de  photons utilisable.  Dans  les  dernieres  anntes,  plusieurs  auteurs  ont  etudit 
les  problbmes  associes  aux  reconstructions  tridimensionnelles  globales,  plus  specialement  dans le cas de la 
tomographie  par  positrons ob la  reconstruction  tridimensionnelle offre certainement les plus  grands  avan- 
tages.  Tandis  que la plupart  des  approches  reposent  sur la rttroprojection  filtrte, la relation  entre les 
difftrents filtres qui  ont t t t   proposts est loin  d’0tre  evidente.  Ce  travail  clarifie  cette  relation  par  I’analyse 
et  la gtntralisation  des  difftrentes  classes  de filtres publikes,  et  ttablit les proprittds  et  caracttristiques  d’une 
solution  gtntrale  du  probltme  de  la  reconstruction  tridimensionnelle. Les auteurs  suggerent  quelques rbgles 
pour le choix  d’un filtre approprid B une  situation  donnee. 

Zusammenfassung 

Dreidimensionale  Bildrekonstruktion  aus  vollstandigen  Projektionen 

Bei der  dreidimensionalen  medizinischen  Bildrekonstruktion  sowohl  fur  Transmissionsals  auch  fur  Emission- 
stomographie  wurde  bisher  das  Problem  in  eine  Reihe  von  zweidimensionalen  Rekonstruktionen  paralleler 
Querschnitte  zerlegt. Es gibt  jedoch  ein  zunehmendes  Interesse  an  der  direkten  Rekonstruktion  der  Projek- 
tionsdaten  in  drei  Dimensionen.  Insbesondere  fur  die  Emissionstomographie  wurde  ein  solches  Rekonstruk- 
tionsverfahren  den  verfugbaren  PhotonenfluR vie1 besser  nutzen.  In  den  letzten  Jahren  haben  eine  Reihe 
von  Autoren  die mit einer  vollen  dreidimensionalen  Rekonstruktion  verbundenen  Probleme  untersucht, 
besonders  in  der  Positronentomographie, WO eine  dreidimensionale  Rekonstruktion  wahrscheinlich  den 
groBten  Nutzen zu bieten  hatte.  Wahrend  die  meisten  Ansatze  dem  gefilterter  Ruckprojektionen  folgen, 
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sind  die  Beziehungen  zwischen  den  verschiedenen  Filtern  die  vorgeschlagen  wurden  bisher  nicht  bewiesen. 
Die  vorliegende  Arbeit  untersucht  diese  Beziehungen  durch  Analyse  und  Verallgemeinerung  der  ver- 
schiedenen  Arten  veroffentlichter  Filter  und  stellt  die  Eigenschaften  und  Charakteristiken  einer  allgemeinen 
Losung  des  dreidimensionalen  Rekonstruktionsproblems  dar.  Einige  Richtlinien  fur  die  Wahl  eines  geeig- 
neten  Filters fur  eine  gegebene  Situation  werden  vorgeschlagen. 
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