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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be gp, B8( ) radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,
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low-energy constants (LECs) fitted to experimental data. It
predicts higher-body forces, in particular a three-nucleon (3N)
interaction that plays an important role in nuclear structure
and dynamics.

Ab initio calculations in nuclear physics start from the
fundamental forces among nucleons, typically the chiral EFT
interactions, and aim at predicting the properties of nuclei.
This is a very challenging task because of the complex nature
of nuclear forces and because of our limited knowledge of
these forces. The high-level strategy is to solve the non-
relativistic many-nucleon Schrödinger equation with the inter-
nucleon interactions as the only input. This can be done
exactly for the lightest nuclei (A=3, 4) [2–5]. However,
using new methods and well-controlled approximations,
ab initio calculations have recently progressed tremendously
and become applicable to nuclei as heavy as nickel and
beyond.

This progress has been in particular quite dramatic con-
cerning the description of bound-state properties of light and
medium mass nuclei. For light nuclei, the Greenʼs function
Monte Carlo method (GFMC) [6–12] has been applied up to
A 12. The no-core shell model (NCSM) [13–16] with its

importance-truncated extension [17, 18] up to oxygen iso-
topes [19]. Other NCSM extensions, e.g., symmetry-adapted
NCSM [20] and no-core Monte-Carlo shell model [21] are
under active development. Very recently, methods such as the
coupled cluster (CCM) [22–31], the self-consistent Greenʼs
function (SCGF) [32] and its Gorkov generalization [33], the
newly developed in-medium similarity renormalization group
(IM-SRG) method [19, 34–37] achieved high accuracy and
predictive power for nuclei up to the calcium region with a
full capability to use chiral NN+3N interactions. Further,
there has been progress in Monte Carlo methods such as the
nuclear lattice EFT [38, 39] as well as the auxiliary-field
Monte Carlo method and the GFMC that are now also able to
use chiral EFT NN+3N interactions [40, 41].

As to the inclusion of continuum degrees of freedom, for
=A 3, 4 systems there are several successful exact methods,

e.g., the Faddeev [42], Faddeev–Yakubovsky [43, 44], Alt–
Grassberger and Sandhas [45, 46], and hyperspherical har-
monics (HH) [47, 48] methods. For >A 4 nuclei, concerning
calculations of nuclear resonance properties, scattering and
reactions, there has been less activity and the no-core shell
model with resonating-group method (NCSM/RGM) [49, 50]
and in particular the no-core shell model with continuum
(NCSMC) method [51, 52] highlighted in this paper are
cutting edge approaches. Still the field is rapidly evolving also
in this area. The GFMC was applied to calculate -n 4He
scattering [41, 53], the nuclear lattice EFT calculations were
applied to the 4He–4He scattering [54], and the -p 40Ca
scattering was calculated within the CCM with the Gamow
basis [55]. The CCM with the Gamow basis was also used to
investigate resonances in 17F [23] and in oxygen isotopes
[56]. Further, the ab initio Gamow NCSM with a capability to
calculate resonance properties is under development [57, 58].

Let us stress that a predictive ab initio theory of nuclear
structure and nuclear reactions is needed for many reasons:

(i) Nuclear structure plays an important role in many
precision experiments testing fundamental symmetries
and physics beyond the standard model. Examples
include the determination of the Vud matrix element of
the Cabbibo–Kobayashi–Maskawa matrix and its uni-
tarity tests, the conserved vector current hypothesis
tests, neutrino oscillations experiments, neutrino-less
double beta decay experiments, searches for right-
handed, scalar and other currents not present in the
standard model. Realistic nuclear structure is of great
importance here and ab initio nuclear theory of light
and medium mass nuclei can provide a significant help.

(ii) A predictive nuclear theory would greatly help our
understanding of nuclear reactions important for astro-
physics. Typically, capture, transfer or other reactions
take place in the Cosmos at energies much lower than
those accessible by experiments. A well-known exam-
ple is provided by the triple-alpha and 12C(a g, )16O
radiative capture reactions. The ratio of the thermo-
nuclear reaction yields for these two processes deter-
mines the carbon-to-oxygen ratio at the end of helium
burning with important consequences for the production
of all species made in subsequent burning stages in the
stars. At stellar energies (»300 keV) radiative capture
rates are too small to be measured in the laboratory.
Thus, measurements are performed at higher energies
(see, e.g., the recent experiment of [59]) and extrapola-
tions to the low energy of interest using theory are
unavoidable. Theoretical extrapolation are, however,
challenging due to the influence of several resonances.
A fundamental theory would be of great use here.

(iii) Ab initio theory of medium mass nuclei helps to shed
light on the shell evolution of the neutron rich nuclei
that impact our understanding of the r-process and the
equation of state [60, 61].

(iv) Low-energy fusion reactions represent the primary
energy-generation mechanism in stars, and could
potentially be used for future energy generation on
Earth. Examples of these latter reactions include the
3H(d, n)4He fusion used at the international project
ITER in France and at the National Ignition Facility in
the USA. Even though there have been many exper-
imental investigations of the cross section of this
reaction, there are still open issues. A first-principles
theory will provide the predictive power to reduce the
uncertainty, e.g., in the reaction rate at very low
temperatures; in the dependence on the polarization
induced by the strong magnetic fields.

(v) Nuclear reactions are one of the best tools for studying
exotic nuclei, which have become the focus of the new
generation experiments with rare-isotope beams. These
are nuclei for which most low-lying states are unbound,
so that a rigorous analysis requires scattering boundary
conditions. In addition, much of the information we
have on the structure of these short-lived systems is
inferred from reactions with other nuclei. A predictive
ab initio theory will help to interpret and motivate
experiments with exotic nuclei.
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In addition to all of the above, an accurate many-body
theory for light and medium mass nuclei provides a feedback
about the quality of the inter-nucleon interactions, e.g., those
derived from the QCD-based chiral EFT, used in the calcu-
lations and ultimately helps to improve our knowledge of the
NN interactions, and in particular of the still-not-completely
understood 3N interactions.

In this paper, we focus on an ab initio description of both
bound and unbound nuclear states in a unified framework. In
particular, we discuss in detail the NCSM/RGM [49, 50] and
the very recent NCSMC [51, 52].

Our approach to the description of light nuclei is based
on combining the ab initio NCSM [15, 16] and the RGM [62–
66] into new many-body approaches (the first version called
ab initio NCSM/RGM) [49, 50] capable of treating bound
and scattering states in a unified formalism, starting from
fundamental inter-nucleon interactions. The NCSM is an
ab initio approach to the microscopic calculation of ground
and low-lying excited states of light nuclei. The RGM is a
microscopic cluster technique based on the use of A-nucleon
Hamiltonians, with fully anti-symmetric many-body wave
functions using the assumption that the nucleons are grouped
into clusters. Although most of its applications are based on
the use of binary-cluster wave functions, the RGM can be
formulated for three (and, in principle, even more) clusters in
relative motion [63]. The use of the harmonic oscillator (HO)
basis in the NCSM results in an incorrect description of the
wave function asymptotics (for bound states due to technical
limitations on the size of the HO expansion) and a lack of
coupling to the continuum. By combining the NCSM with the
RGM, we complement the ability of the RGM to deal with
scattering and reactions with the use of realistic interactions,
and a consistent ab initio description of nucleon clusters,
achieved via the NCSM.

The state-of-the-art version of this approach is the
NCSMC [51, 52]. It is based on an expansion of the
A-nucleon wave function consisting of a square-integrable
NCSM part and an NCSM/RGM cluster part with the proper
asymptotic behavior. In this way, the NCSM description of
short- and medium-range many-nucleon correlations is com-
bined with the NCSM/RGM description of clustering and
long-range correlations. This approach treats bound and
unbound states on the same footing and provides a superior
convergence compared to both the NCSM and the NCSM/
RGM. Using the NCSMC method we can predict not only the
bound ground- and excited-state observables of light nuclei,
but also resonances and cross sections of nuclear reactions as
well as electromagnetic and weak transitions among bound
and unbound states.

In section 2, we present the formalism of the binary-
cluster as well as the three-body cluster NCSM/RGM, of the
binary-cluster NCSMC, and introduce the formalism for the
calculation of electric dipole transitions in the NCSMC. In
section 3, we discuss NCSMC results for =A 5, 6 nuclei and
for 9Be with the chiral EFT NN+3N interactions. In
section 4, we show the application of the three-body cluster
NCSM/RGM to the description of the Borromean halo
nucleus 6He. In section 5, we review our first application of

the NCSM/RGM formalism to a reaction important for
astrophysics, the 7Be( gp, )8B radiative capture. In section 6,
we discuss our past as well as new results for the 3H(d, n)4He
fusion. Finally, we give conclusions and an outlook in
section 7.

2. Unified ab initio description of bound and
scattering states

As mentioned in the Introduction, ab initio many-body
approaches making use of expansions on square-integrable
basis functions have been quite successful in explaining the
properties of many well-bound systems. At the same time,
microscopic cluster approaches, in which the wave function is
represented by the continuous motion of two or more clusters,
are naturally adapted to the description of clustering, scat-
tering and reaction observables. In general, both approaches,
taken separately, tend to have significant limitations owing to
the fact that in most practical calculations one must severely
restrict the number of basis states in the trial function. In this
section, we discuss how these seemingly very different views
can be combined into a unified approach to structure and
reactions, particularly in the context of ab initio calculations.
To build such a unified theory we start from an accurate
microscopic Hamiltonian, described in section 2.1. We then
make use of the SRG approach [67–69] to soften this
Hamiltonian, as described in section 2.2. The NCSM
approach we use to obtain the square-integrable eigenstates is
briefly outlined in section 2.3. A unified description of
structure and dynamics can be achieved by means of the
RGM, discussed in sections 2.4 and 2.5, but is more effi-
ciently obtained working within the NCSMC, presented in
section 2.6.

2.1. Hamiltonian

Ab initio approaches start from the microscopic Hamiltonian
for the A-nucleon system

= +H T V 1intˆ ˆ ˆ ( )

composed of the intrinsic kinetic energy operator Tint
ˆ and the

nuclear interaction = + +V V V ...NN 3Nˆ ˆ ˆ , which describes
the strong and electro-magnetic interaction among nucleons.
The interaction V̂ generally consist of realistic NN and 3N
contributions that accurately reproduce few-nucleon proper-
ties, but in principle can also contain higher many-nucleon
contributions. More specifically, the Hamiltonian can be
written as

å å å=
-

+ + +
< = < = < < =

 
H

A

p p

m
V V

1

2
...,

2
i j

A
i j

i j

A

ij
i j k

A

ijk
1

2

1

NN

1

3Nˆ ( ˆ ˆ ) ˆ ˆ

( )

where m is the nucleon mass and

pi the momentum of the ith

nucleon. The electro-magnetic interaction is typically
described by the Coulomb force, while the determination of
the strong interaction poses a tremendous challenge.
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According to the standard model, the strong interaction
between nucleons is described by QCD with quarks and
gluons as fundamental degrees of freedom. However, the
nuclear structure phenomena we are focusing on are domi-
nated by low energies and QCD becomes non-perturbative in
this regime, which so far impedes a direct derivation of the
nuclear interaction from the underlying theory. Inspired by
basic symmetries of the Hamiltonian and the meson-exchange
theory proposed by Yukawa [70], phenomenological high-
precision NN interactions, such as the Argonne V18 [71] and
CD-Bonn [72] potentials, have been developed. These inter-
actions provide an accurate description of NN systems, but
sizeable discrepancies are observed in nuclear structure
applications to heavier nuclei [11, 73, 74]. This indicates the
importance of many-nucleon interactions beyond the two-
body level and reveal the necessity for a consistent scheme to
construct the nuclear interactions. Thus, Weinberg formulated
an effective theory for the low-energy regime using nucleons
and pions as explicit degrees of freedom [75]. The chiral EFT
[1, 76] uses a low-energy expansion illustrated in figure 1 in
terms of Lc

nQ( ) that allows for a systematic improvement of
the potential by an increase of the chiral order ν. Here Q
relates to the nucleon momentum/pion mass and Lc corre-
sponds to the break down scale of the chiral expansion that is
typically on the order of 1 GeV. Moreover, the chiral
expansion provides a hierarchy of NN, 3N, and many-nucleon
interactions in a consistent scheme [78–81]. Since the chiral
expansion is only valid at low energies it is necessary to
suppress high-momentum contributions beyond a certain
cutoff Lcut by introducing a regularization. There are different
possible choices for the regulator function and the cutoff,
which determine the regularization scheme. The commonly
used chiral NN interaction in nuclear structure and reaction
physics is constructed by Entem and Machleidt at next-to-

next-to-next-to leading order (N3LO) using a cutoff
L = 500 MeVcut [82]. The LECs of this potential are fitted to
the πN scattering as well as neutron–proton (np) and proton–
proton data below 290 MeV. The accuracy of the description
of NN systems is comparable to the mentioned phenomen-
ological high-precision interactions [82]. This NN potential is
generally supplemented by local 3N contributions at next-to
next-to leading order (N2LO) using a three-body cutoff
Lcut,3N of 500 MeV [83] or 400 MeV [84], depending on the
mass region. The 3N contributions at N2LO consist of a two-
pion exchange term, a one-pion exchange two-nucleon con-
tact term and a 3N contact term (see figure 1). The LECs in
the two-pion exchange term c1, c3, and c4 already appear in
the NN force and are fitted to NN data, while the LECs cD and
cE of the contact contributions appear for the first time and are
fitted to the triton beta-decay half life and the A=3 or
A=4-body ground-state (g.s.) energies [85, 86]. This inter-
action is extensively studied in nuclear structure and reaction
physics and constitutes the starting point for the majority of
the investigations in this review. It is important to note that
the rapid developments in the construction of chiral interac-
tions in recent years not only exploit different regularizations
and fit procedures [40, 87–90], but extend the accessible
contributions to higher chiral orders [91, 92]. The chiral
interactions are currently optimized using advanced numerical
techniques, showing promising results for applications to
heavier nuclei beyond the p shell [89, 90]. Moreover, the
LENPIC collaboration [93] provides consistent interactions
for a sequence of cutoffs constructed order by order up to
N4LO in combination with a prescription to determine pro-
pagated uncertainties of nuclear observables resulting from
the interaction [92]. These developments will enhance the
predictive power of ab initio calculations and allow to
determine theoretical uncertainties in the future.

Figure 1. Hierarchy of nuclear forces in chiral EFT [77]: the interaction diagrams up to N3LO arranged by the particle rank of the interaction.
Dashed lines represent pions and the solid lines nucleons. Small dots, large solid dots, solid squares and open squares denote vertices at
increasing expansion orders. Reproduced with permission from [77]. Copyright IOP Publishing 2012.
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2.2. SRG method

Chiral interactions are already rather soft compared to phe-
nomenological high-precision interactions such as the
Argonne V18 [71] and CD-Bonn [72] owing to the regular-
ization that suppresses high-momentum contributions, as
described in section 2.1. Nevertheless, most many-body
methods cannot achieve convergence in feasible model spaces
due to present short-range and tensor correlation induced by
the chiral interactions. Therefore, additional transformations,
such as the unitary correlation operator method [94], theV klow

renormalization group method [95–97] or the Okubo–Lee–
Suzuki similarity transformation [98, 99] are used to soften
the interactions. The most successful transformation approach
in nuclear structure physics is the SRG [67–69] that is pre-
sented in the following. This transformation provides a
model-space and nucleus independent softened interaction
and allows for consistent unitary transformations of the NN
and 3N components of the interaction.

The basic concept of the SRG is the first-order differ-
ential operator equation

h=
s

H H
d

d
, , 3s s sˆ [ ˆ ˆ ] ( )

that defines the continuous unitary transformation

=H U H Us s s
ˆ ˆ ˆ ˆ†

, where the unitary operator Uŝ depends on
the continuous flow-parameter s. In this flow equation Hs

ˆ
denotes the SRG evolved Hamiltonian depending on the flow
parameter s and the anti-Hermitian dynamic generator

h h= - = -U
s

U
d

d
. 4s s s sˆ ˆ ˆ ˆ ( )† †

The canonical choice for the generator (used in the majority
of nuclear structure and reaction applications) is the
commutator of the kinetic energy with the Hamiltonian, i.e.


h

m
= ⎜ ⎟⎛

⎝
⎞
⎠ T H2 , , 5s s2

2

intˆ [ ˆ ˆ ] ( )

where μ is the reduced nucleon mass and Tint
ˆ constitutes the

trivial fix point of the flow of the Hamiltonian, such that the
high- and low-momentum contributions of the interaction
decouple. For this generator choice it is reasonable to
associate the flow parameter with a momentum scale, using
the relation L = -s 1 4( ) as often done in the literature
[100, 101].

When aiming at observables other than binding and
excitation energies it is formally necessary to transform the

corresponding operators =O U O Us s s
ˆ ˆ ˆ ˆ†

, which can be
achieved by evaluating Uŝ directly or by solving the flow
equation

h=
s

O O
d

d
, . 6s s s

ˆ [ ˆ ˆ ] ( )

Because the dynamic generator contains the evolved
Hamiltonian, the flow equations for the operator Os

ˆ and the
Hamiltonian Hs

ˆ need to be evolved simultaneously. We refer

to [102, 103] for recent applications and stress that there is
work in progress to perform SRG transformations of
observables.

It is important to note that equation (3) is an operator
relation in the A-body Hilbert space. Due to the repeated
multiplication of the operators on the right-hand side of the
flow equation, irreducible many-body contributions beyond
the initial particle rank of the Hamiltonian are induced.
Generally, contributions beyond the three-body level cannot
be considered. This limitation causes one of the most chal-
lenging problems in context of the SRG transformation, since
the unitarity is formally violated. Thus, it is necessary to
confirm the invariance of physical observables under the
transformation. In practice a variation of the flow-parameter Λ
is used as an diagnostic tool to access the impact of omitted
many-body contributions. Moreover, to probe the induced
and initial 3N contributions individually one exploits three
types of Hamiltonians. The NN-only Hamiltonian is obtained
from an initial NN interaction performing the SRG at the two-
body level and does not contain any three- or higher many-
body contributions.

The NN+3N-ind Hamiltonian is obtained from an
initial NN interaction performing the SRG at the two- and
three-body level such that the induced 3N contributions are
included.

The NN+3N-full or simply NN+3N Hamiltonian is
obtained from an initial NN+3N interaction performing the
SRG at the two- and three-body level. This Hamiltonian
contains the complete set of NN and 3N contributions.

For practical applications the flow equation (3) is repre-
sented in a basis and the resulting first-order coupled differ-
ential equations are solved numerically. Due to the simplicity
of the evolution the SRG can be implemented in the three-
body space and even beyond. The most efficient formulation
for the SRG evolution with regard to descriptions of finite
nuclei is performed in the Jacobi HO representation
[100, 104, 105] using a subsequent Talmi–Moshinsky trans-
formation [106] to the particle representation that is utilized
by the many-body approaches, see [86] for a detailed expla-
nation. There are also implementations of the three-body SRG
evolution performed in other basis representations, such as the
partial-wave decomposed momentum-Jacobi basis [107] and
the hyperspherical momentum basis [108]. However, so far
only the SRG in the HO basis has been used to provide
reliably evolved 3N interactions and operators for nuclear
structure calculations beyond the lightest nuclei.

It has been shown that the two-pion exchange part of the
3N interaction induces irreducible contributions beyond the
three-body level that become sizeable in the mid-p shell [86].
As a consequence alternative formulations of the dynamic
generator have been explored to avoid induced many-body
contributions from the outset [109]. In addition, it has been
observed that a reduction of the 3N cutoff from 500 MeV to
400 MeV strongly suppresses the impact of induced many-
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body contributions [86] and allows for reliable applications
beyond p- and sd-shell nuclei.

2.3. Square-integrable eigenstates of clusters and the
compound nucleus

Expansions on square integrable many-body states are among
the most common techniques for the description of the static
properties of nuclei. The ab initio NCSM is one of such
techniques. Nuclei are considered as systems of A non-rela-
tivistic point-like nucleons interacting through realistic inter-
nucleon interactions discussed in section 2.1. All nucleons are
active degrees of freedom. Translational invariance as well as
angular momentum and parity of the system under con-
sideration are conserved. The many-body wave function is
cast into an expansion over a complete set of antisymmetric
A-nucleon HO basis states containing up to Nmax HO exci-
tations above the lowest possible configuration:

ååY ñ = ñp

=

p p
c ANiJ T . 7A

J T

N

N

i
Ni
J T

0

max

∣ ∣ ( )

Here, N denotes the total number of HO excitations of all
nucleons above the minimum configuration, pJ T are the total
angular momentum, parity and isospin, and i additional
quantum numbers. The sum over N is restricted by parity to
either an even or odd sequence. The basis is further
characterized by the frequency Ω of the HO well and may
depend on either Jacobi relative [110] or single-particle
coordinates [14]. In the former case, the wave function does
not contain the center of mass (c.m.) motion, but antisymme-
trization is complicated. In the latter case, antisymmetrization
is trivially achieved using Slater determinants, but the c.m.
degrees of freedom are included in the basis. The HO basis
within the Nmax truncation is the only possible one that allows
an exact factorization of the c.m. motion for the eigenstates,
even when working with single-particle coordinates and
Slater determinants. Calculations performed with the two
alternative coordinate choices are completely equivalent.

Square-integrable energy eigenstates expanded over the
 WNmax basis, ñpANiJ T∣ , are obtained by diagonalizing the

intrinsic Hamiltonian

l lñ = ñp
l

pp
H A J T E A J T , 8J Tˆ ∣ ∣ ( )

with Ĥ given by equation (1) and λ labeling eigenstates with
identical pJ T . Convergence of the HO expansion with
increasing Nmax values is accelerated by the use of effective
interactions derived from the underlying potential model
through either Okubo–Lee–Suzuki similarity transformations
in the NCSM space [13, 14, 111] or SRG transformations in
momentum space [68, 94, 100, 101, 104, 112] discussed in
detail in section 2.2. In this latter case, the NCSM calculations
are variational. Because of the renormalization of the
Hamiltonian, the many-body wave function obtained in the
NCSM (as well as in the NCSM/RGM and the NCSMC) are
in general renormalized as well. This fact is in particular
important to keep in mind when using low SRG parameters,
i.e.,L 2⪅ fm−1. Finally, we note that with the HO basis sizes
typically used ( ~N 10 14max – ), the NCSM l ñpA J T∣

eigenstates lack correct asymptotic behavior for weakly
bound states and always have incorrect asymptotic behavior
for resonances.

2.4. Binary-cluster NCSM/RGM

A description of bound and scattering states within a unified
framework can already be achieved by adopting a simplified
form of Y ñ

p

A
J T∣ , limited to expansions on microscopic cluster

states chosen according to physical intuition and energetic
arguments. Expansions on binary-cluster states

a a
d

F ñ= - ñ ñ

´
-

n
p p

-
-

-

p

p

A a I T a I T

Y r
r r

rr
, 9

r
J T sT

ℓ A a a
J T A a a

A a a

1 1 1 2 2 2

,
,

,

1 2∣ [(∣ ∣ )

( ˆ )] ( ) ( )

( )

( )

are the most common, allowing to describe processes in
which both entrance and exit channels are characterized by
the interaction of two nuclear fragments.

The above translational invariant cluster basis states
describe two nuclei (a target and a projectile composed of
A− a and a nucleons, respectively), whose centers of mass
are separated by the relative displacement vector -


rA a a, . The

translational-invariant (antisymmetric) wave functions of the
two nuclei, a- ñpA a I T1 1 1

1∣ and a ñpa I T2 2 2
2∣ , are eigenstates

of the -A a( )- and a-nucleon intrinsic Hamiltonians, with
angular momentum Ii, parity pi, isospin Ti and energy labels
ai, where i = 1, 2. The system is further characterized by a

+ ℓs
J

2 1 partial wave of relative motion, where s is the channel
spin resulting from the coupling of the total clusters’ angular
momenta, ℓ is the relative orbital angular momentum, and J is
the total angular momentum of the system. Additional
quantum numbers characterizing the basis states are parity
p p p= -1 ℓ

1 2 ( ) and total isospin T resulting from the coupling
of the clusters’ isospins. In the notation of equation (9), all
relevant quantum numbers are summarized by the
index n a a= - p pA a I T a I T sℓ; ;1 1 1 2 2 2

1 2{ }.
However, to be used as a continuous basis set to expand

the many-body wave function, the channel states (9) have to
be first antisymmetrized with respect to exchanges of
nucleons pertaining to different clusters, which are otherwise
unaccounted for. This can be accomplished by introducing an
appropriate inter-cluster antisymmetrizer, schematically

 å=
-

+ -n
¹

⎛
⎝⎜

⎞
⎠⎟

A a a

A
P1 , 10

P id

pˆ ( ) ! !
!

( ) ( )

where the sum runs over all possible permutations of nucleons
P (different from the identical one) that can be carried out
between two different clusters (of A− a and a nucleons,
respectively), and p is the number of interchanges character-
izing them. The operator(10) is labeled by the channel index
ν to signify that its form depends on the mass partition,

-A a a,( ), of the channel state to which is applied.
Equations (9) and (10) lead to the RGM ansatz for the

many-body wave function

òå
g

Y ñ = F ñ
n

n n
np p
p

r r
r

r
d , 11A

J T
r

J T
J T

2∣ ˆ ∣ ( ) ( )
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where gn
p

rJ T ( ) represent continuous linear variational ampli-
tudes that are determined by solving the RGM equations:

 òå
g¢ ¢ ¢ - ¢

¢
¢

=
n

nn nn
n

¢
¢ ¢

¢p p
p

r r r r E r r
r

r
d , , 0.

12

J T J T
J T

2 [ ( ) ( )] ( )

( )

Here E is the total energy in the c.m. frame, and  ¢
nn ¢
p r r,J T ( )

and  ¢
nn ¢
p r r,J T ( ), commonly referred to as integration kernels,

are respectively the overlap (or norm) and Hamiltonian matrix
elements over the antisymmetrized basis(9), i.e.

  ¢ = áF F ñn n n n n n¢ ¢ ¢ ¢
p p p

r r, , 13aJ T
r

J T
r

J T( ) ∣ ˆ ˆ ∣ ( )

  ¢ = áF F ñn n n n n n¢ ¢ ¢ ¢
p p p

r r H, . 13bJ T
r

J T
r

J T( ) ∣ ˆ ˆ ˆ ∣ ( )

In the above equation, Ĥ is the microscopic A-nucleon
Hamiltonian of equation (2), which can be conveniently
separated into the intrinsic Hamiltonians for the -A a( )- and
a-nucleon systems, respectively -H A a

ˆ( ) and H a
ˆ( ), plus the

relative motion Hamiltonian

= + + + +-H T r V r H H . 14A a arel C relˆ ˆ ( ) ¯̂ ( ) ˆ ˆ ˆ ( )( ) ( )

Here, T rrel
ˆ ( ) is the relative kinetic energy between the two

clusters, = n nV r Z Z e rC 1 2
2¯̂ ( ) ( nZ1 and nZ2 being the charge

numbers of the clusters in channel ν) the average Coulomb
interaction between pairs of clusters, and rel

ˆ is a localized
relative (inter-cluster) potential given by:

 å å å å

å å

= +
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=
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= - + < =
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A
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1 1

NN

1 1

3N

1 1

3N
C

ˆ ˆ ˆ

ˆ ¯̂ ( ) ( )

Besides the nuclear components of the interactions between
nucleons belonging to different clusters, it is important to
notice that the overall contribution to the relative poten-
tial(15) coming from the Coulomb interaction

å å
t t+ +

-
-

-=

-

= - +
 

⎛
⎝⎜

⎞
⎠⎟

e

r r A a a
V r

1 1

4

1
,

16
i

A a

j A a

A
i
z

j
z

i j1 1

2

C
( )( )

∣ ∣ ( )
¯̂ ( )

( )

is also localized, presenting an -r 2 behavior, as the distance r
between the two clusters increases.

The calculation of the many-body matrix elements of
equation (13), which contain all the nuclear structure and
antisymmetrization properties of the system under con-
sideration, represents the main task in performing RGM cal-
culations. In the following we will review the various steps
required for one of such calculations when the eigenstates of
the target and the projectile are obtained within the ab initio
NCSM (see section 2.3). This is the approach known as
NCSM/RGM.

2.4.1. NCSM/RGM norm and Hamiltonian kernels. When
representing the target and projectile eigenstates by means of
NCSM wave functions, it is convenient to introduce RGM
cluster states in HO space (with frequency Ω identical to that

used for the clusters) defined by

a a
h

F ñ= - ñ ñ

´
n

p p

- -

p

p

A a I T a I T

Y R r . 17
n

J T sT

ℓ A a
J T

nℓ A a a

1 1 1 2 2 2

,

1 2∣ [(∣ ∣ )
( ˆ )] ( ) ( )

( )

( )

The coordinate-space channel states of equation (9) can then
be written as F ñ = å F ñn n

p p
R rr

J T
n nℓ n

J T∣ ( )∣ by making use of the
closure properties of the HO radial wave functions. Following
equations (10) and(14), it is also useful to factorize the norm
and Hamiltonian kernels into ‘full-space’ and ‘localized’
components

 d
d¢ =

¢ -
¢

+ ¢
n n n n n n¢ ¢ ¢
p r r

r r

r r
r r, , , 18J T ex( ) ( ) ( ) ( )
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] ( ) ( ) ( )

where the exchange part of the norm,  ¢
n n¢ r r,ex ( ), and the

potential kernel,  ¢
n n¢
p r r,J T ( ), (both localized quantities) are

obtained in an HO model space of size Nmax consistent with
those used for the two clusters as:
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´áF F ñ¢ ¢

n n

n n n

¢
¢

¢ ¢

¢ -

p

p p

r r R r R r,

. 21

J T
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n
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We note that in deriving the above expressions we took
advantage of the commutation between antisymmetrizers(10)
and A-nucleon Hamiltonian(2), ^ =n H, 0[ ˆ ] , and used the
following relationship dictated by symmetry considerations:

  F ñ = F ñn n n n n¢ - ¢ ¢

p p
. 22n

J T A

A a a n
J Tˆ ˆ ∣ ˆ ∣ ( )!

( ) ! !

Finally, while it can be easily demonstrated that the exchange
part of the norm kernel is Hermitian, i.e.





áF F ñ

= áF F ñ

¢ ¢n n n

n n n

¢ ¢ -

¢ ¢ -

p p

p p
, 23

n
J T A

A a a n
J T

n
J T A

A a a n
J T

∣ ˆ ∣

∣ ˆ ∣ ( )

!
( ) ! !

!
( ) ! !

the same is not true for the Hamiltonian kernel as defined in
equation (19), once its localized components are expanded
within a finite basis. Therefore, we work with an Hermitized
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Hamiltonian kernel 
~

n n¢

pJ T
given by

 


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Being translationally invariant quantities, the Hamilto-
nian and norm kernels(20), (21) can be ‘naturally’ derived
working within a translationally invariant Jacobi-coordinate
HO basis [50]. However, particularly for the purpose of
calculating reactions involving p-shell nuclei, it is computa-
tionally advantageous to use the second-quantization formal-
ism. This can be accomplished by defining Slater-determinant
(SD) channel states

a aF ñ = - ñ ñ

´

n
p

p

A a I T a I T

Y R R R , 25
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J T sT

ℓ
a J T

nℓ
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SD 1 1 1 SD 2 2 2∣ [(∣ ∣ )

( ˆ )] ( ) ( )

( )

( ) ( ) ( )

in which the eigenstates of the -A a( )-nucleon fragment are

obtained in a HO SD basis as jF ñ = F ñn n
-p p 

Rn
J T

n
J T A a

SD 00∣ ∣ ( )( )

(while the second cluster is a NCSM Jacobi-coordinate
eigenstate [113]), with = - å

- -
=
- 

R A a r
A a

i
A a

i
1 2

1( )( ) ( ) and

= å-
= - +

 
R a r

a
i A a
A

i
1 2

1
( )

being the vectors proportional to the
c.m. coordinates of the -A a( )-and a-nucleon clusters,
respectively. Indeed, it is easy to demonstrate that transla-
tionally invariant matrix elements can be extracted from those
computed in the SD basis of equation (25) by inverting the
following expression:
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Here t.i.
ˆ represents any scalar, parity-conserving and

translationally invariant operator ( = nt.i.
ˆ ˆ , nĤ ˆ , etc),

á ñ
-

n ℓ NLℓ nℓℓ00r r a
A a

∣ , á ¢ ¢ ¢ ¢ ¢ñ
-

n ℓ NLℓ n ℓ ℓ00r r a
A a

∣ are general HO
brackets for two particles with mass ratio -a A a( ) [114]
and the notation ℓ̂ stands for +ℓ2 1 .

2.4.2. Algebraic expressions for the A�1; 1ð Þ mass partition.
To give an example of the algebraic expressions for the SD
matrix elements on the left-hand side of equation (26) here we
consider the case in which the projectile in both initial and
final states is a single nucleon ( ¢ = =a a 1). The
antisymmetrization operator for -A 1, 1( ) mass partitions
can be written as

  åº = -n -
=

-⎡
⎣⎢

⎤
⎦⎥A

P
1

1 , 27A
i

A

iA1,1
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1
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where PiA
ˆ is a permutation operator exchanging nucleon A

(the projectile) with the ith nucleon of the target. Using the

second-quantization formalism, the SD matrix elements of the
exchange-part of the norm kernel(20) for a single-nucleon
projectile can be related to linear combinations of matrix
elements of creation and annihilation operators between

-A 1( )-nucleon SD states as [50]
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In deriving this expression we took advantage of the
symmetry properties of the -A 1( )-nucleon target, and
introduced one-body density matrix elements of the target

nucleus, a aá - ¢ ¢ ¢ - ñ
t

¢ ¢ ¢A I T a a A I T1 1
nℓj n ℓ j

K

SD 1 1 1 1 SD1
2

1
2( )∣∣∣ ˜ ∣∣∣†

( )

(reduced both in angular momentum and isospin),
where = -¢ ¢ ¢ ¢ ¢

¢- ¢+ - ¢
¢ ¢ ¢- ¢ - ¢a a1n ℓ j m m

j m m
n ℓ j m mt

t
t
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2

1
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2
˜ ( ) .

The derivation of the analogous matrix elements(21) for
the NN and 3N potentials, although more involved, is
straightforward. It can be demonstrated that the NN potential
kernel for the same -A 1, 1( ) partition in both initial and
final states ( ¢ = =a a 1) takes the form [50]

 áF F ñ
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where in the first and second lines, respectively, on the right-
hand side of equation (29) one can identify a ‘direct’ and an
‘exchange’ term of the interaction, schematically represented
by the diagrams of figure 2.

The SD matrix elements of the direct term of the potential
involve operations on the projectile and one of the nucleons
of the target (including a trivial exchange of the interacting

Figure 2. Diagrammatic representation of (a) and (b) ‘direct’ and (c)
‘exchange’ components of the potential kernel for the -A 1, 1( )
cluster basis. The first group of circled lines represents the first cluster,
the bound state of -A 1 nucleons. The separate line represents the
second cluster, in the specific case a single nucleon. Bottom and upper
part of the diagrams represent initial and final states, respectively.
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nucleons shown in figure 2(b)) and are given by
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Different from equations (28) and (30), the SD matrix elements
of the exchange term of the potential involve operations on two
nucleons (projectile exchange with a first and interaction with a
second nucleon) of the -A 1( ) cluster and hence depend on
two-body density matrix elements of the target nucleus (last
line in the right-hand side of the equation):
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The inclusion of the 3N force in the Hamiltonian further
complicates the calculation of the -A 1, 1( ) NCSM/RGM
kernels. As for the corresponding NN portion of the potential
kernel, there are a direct (including a trivial exchange of the
interacting nucleons) and an exchange term, described by
diagrams (a) and (b), and diagram (c) of figure 3, respectively.
For a summary of their expressions we refer the interested readers
to [115]. While the first two diagrams are similar in complexity to
the NN exchange term, the third depends on three-body density
matrix elements of the target nucleus. Due to their rapidly

increasing number in multi-major-shell basis spaces, storing in
memory three-body density matrices is very demanding and
requires the implementation of specialized computational
strategies [116]. One of such strategies is to develop an efficient
on-the-fly computation of these matrix elements by working in
the m-scheme and exploiting the fact that the target eigenstates

a- ñpA I M T M1 T1 1 1 1
1

1∣ are implicitly given as expansions in HO
many-body SDs within the NCSM model space. For example,
the matrix elements of the operator - - - -P VA A A A A1, 3, 2, 1

ˆ ˆ ,
characterizing the exchange term of the 3N force, with respect
to the basis states(25) can be written as
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∣ ˆ
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†
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where we introduced the notation ¼a f, ,{ } denoting the
quantum numbers of ℓs-coupled HO single-particle states, i.e.
=a n ℓ j m ma a a j ta a{ }. The two summations corresponding to

the expansions in HO many-body SDs of the eigenstates of
the target (not shown explicitly in the equation) can be pulled
in front of all other summations in equation (32), obtaining an
expression in which each term can be computed indepen-
dently, i.e., ideally suited for parallel computation. In
addition, the sums over HO single-particle states can of
course be restricted to those combinations, which can connect
the two SDs of the density matrix. Here, we can make use of
the technology that was originally developed to compute A-
body matrix elements of three-body operators during the setup of
the many-body matrix in the importance-truncated NCSM
[17, 18]. The next critical objects in equation (32) are the m-

Figure 3. Diagrammatic representation of the components of the
direct (a) and (b) and exchange components of the 3N potential
kernel for the same -A 1, 1( ) partition in both initial and final states
( ¢ = =a a 1). The groups of circled lines represent the

-A 1( )-nucleon cluster. Bottom and upper part of the diagrams
represent initial and final states, respectively.
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scheme matrix elements of the 3N interaction. The storage of these matrix elements in memory is again prohibitive if we want to
proceed to large model spaces. However, we benefit from storing the matrix elements of the 3N interaction in the JT-coupled scheme
developed by Roth et al [86, 105] and the corresponding efficient on-the-fly decoupling into the m-scheme. Finally, we note from
equation (32) the necessity to treat the projection quantum numbers of the angular momenta and isospins of the target states explicitly,
including consistent relative phases. Both can be accomplished using a single NCSM run to produce a specific eigenvector from
which all other vectors with necessary projection are obtained using angular momentum raising and lowering operators.

The second option is to algebraically perform the summations over the projection quantum numbers of equation (32) and
introduce coupled densities using the Wigner–Eckart theorem as previously done for the NN case (30), (31), i.e.

where ¼a f, ,{ ¯ ¯} denote HO orbitals, i.e. =a n ℓ j, ,a a a¯ { }, and the triple vertical bars indicate that the matrix elements are reduced in

both angular momentum and isospin, and á ¢ ¢ ¢ ña b J T n ℓ j J T V d e J T f J T, ; , ; , ; , ;ab ab de de
1

2 0 0
3N

0 0¯ ¯ ∣ ˆ ∣ ¯ ¯ ¯ are JT-coupled 3N-force matrix
elements. Further, to avoid the storage in memory of the reduced three-body density matrix, we factorize this expression by inserting
a completeness relationship over -A 4( )-body eigenstates leading to the final expression:
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Compared to equation (33), there is an additional summation over the index β labeling the eigenstates a- ñb b
p

b
bA I T4 , ,∣ of the

-A 4( )-body system. In this second approach, we first calculate and store in memory the reduced matrix elements of the tensor
operator a a ad e

J T
f

J Tde de 0 0(( ) )¯
†

¯
†

¯
† and compute the factorized three-body density of equation (34) on the fly. This strategy reduces

the computational burden and computer memory required to perform the calculation. We work directly with the JT-coupled 3N
matrix elements exploiting their symmetries and using the appropriate Racah algebra if necessary. The main limitation of this
approach is the factorization of the reduced density which is feasible only for light systems where a complete set of

-A 4( )-body eigenvectors can be obtained, i.e., the four- and five-nucleon systems for the specific case of nucleon-nucleus
collisions. For such systems, however, it is still a more efficient approach when many excited states of the target are included in
the calculation as discussed in section 3.1 in the case of n-4He scattering calculations with seven He4 eigenstates. In terms of
numerics we have achieved a load-balanced parallel implementation by using a non-blocking master-slave algorithm. Finally,

10

Phys. Scr. 91 (2016) 053002 Invited Comment



following the application of the Wigner–Eckart theorem, the
isospin breaking terms of the nuclear Hamiltonian in the
potential kernels are not treated exactly in this approach.
Rather, they are approximated by isospin averaging [116].
However, it should be noted that no isospin-symmetry
breaking terms are typically included in the chiral 3N
interaction. With the exception of the treatment of isospin
symmetry, the two implementations described in this section
are formally equivalent. By storing in memory the reduced
densities, the latter is more efficient for reactions with
different projectiles while the former is ideally suited for
addressing heavier targets as in the case of the 9Be study of
section 3.2.

More in general, the complexity of the integration kernels
rapidly increases with projectile mass, number of projectile/
target states, and number of channels included, making the
NCSM/RGM a computationally intensive approach. In this
section we have presented a review of the algebraic
expressions for the SD matrix elements entering the norm
and Hamiltonian kernels for equal -A 1, 1( ) mass partitions
in both initial and final states. The explicit form of the inter-
cluster antisymmetrizer for the case in which the projectile is
a deuterium nucleus (a= 2), together with algebraic expres-
sions for the SD matrix elements of = nt.i.

ˆ ˆ and  nrel
NN ˆ for

equal mass partitions in initial and final states can be found in
[117]. For reactions involving a deuterium-nucleus entrance
and nucleon-nucleus exit channels (e.g., 3H d, n 4( ) He) or
vice versa, and, more in general, whenever both nucleon-
nucleus and deuterium-nucleus channel basis states are used
in the RGM model space, one has to address the additional
contributions coming from the off-diagonal matrix elements
between the two mass partitions: -A 1, 1( ) and -A 2, 2( ).
A summary of their expressions in the case of a two-body
Hamiltonian can be found in [115]. Finally, the NCSM/RGM
formalism can be generalized to the description of collisions
with heavier projectiles, such as 3H/3He-nucleus scattering
[118] and, in principle, α-nucleus scattering.

2.4.3. Orthogonalization of the RGM equations. An
important point to notice, is that equation (12) does not
represent a system of multichannel Schrödinger equations,
and gn

p
rJ T ( ) do not represent Schrödinger wave functions.

This feature, which is highlighted by the presence of the norm
kernel  ¢

n n¢
p r r,J T ( ) and is caused by the short-range non-

orthogonality induced by the non-identical permutations in
the inter-cluster anti-symmetrizers(10), can be removed by
working with orthonormalized binary-cluster states

 òå ¢ ¢ ¢ F ñ
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nn n n
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and applying the inverse-square root of the norm kernel,

 ¢
nn ¢
- r r,

1
2 ( ), to both left and right-hand sides of the square

brackets in equation (12). Here, we review how this can be
done in practice.

Following equation (20), the norm kernel in r-space
representation can be written as a convolution of a localized
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Square and inverse-square roots of the norm kernel can then
be defined in an analogous way as:





å

å

d
d

d¢ =
- ¢
¢

- ¢

+ ¢

nn nn

n n

¢


¢
¢

¢ ¢ ¢

¢
¢ ¢


¢ ¢

⎡
⎣⎢

⎤
⎦⎥r r

r r

rr
R r R r

R r R r

,

,

38

nn
nℓ nn n ℓ

nn

nℓ n n n ℓ

1
2

1
2

( ) ( ) ( ) ( )

( ) ( )
( )

where the matrix elements  n n ¢ ¢


n n

1
2 , can be obtained from the

eigenvalues and eigenstates of the matrix(36) by using the
spectral theorem, and it can be easily demonstrated that, e.g.,

the convolution of  nm r y,
1
2 ( ) with  ¢

mn ¢
- y r,

1
2 ( ) yields the full-

space identity, d d - ¢ ¢nn ¢ r r rr( ) . Similarly, the Hermitized
Hamiltonian kernel within the orthonormal basis of
equation (35) follows from applying the inverse-square root
of the norm from the left and right-hand sides of equation (24),
i.e.
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and the orthogonalized RGM equations take the form of a set
of non-local coupled channel Schrödinger equations:
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Here, the Schrödinger wave functions of the relative motion
cn

p
rJ T ( ) are the new unknowns, related to the original

functions gn
p

rJ T ( ) by
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For more details on the NCSM/RGM kernels we refer the
interested reader to [50].
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2.5. Three-cluster NCSM/RGM

When considering ternary clusters, the NCSM/RGM emerges
in the same way as for binary clusters. However, in this case,
the relative motion behavior of the wave function must be
described in terms of two different coordinates that char-
acterize the relative position among the clusters. Therefore,
we can represent a system of A nucleons arranged into three
clusters respectively of mass number -A a23, a2, and a3
( = + <a a a A23 2 3 ), by the many-body wave function

åY ñ = F ñ
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n n n
p p p

x y x y G x yd d , , 42J T J T
xy

J T2 2∬∣ ( ) ˆ ∣ ( )

where n
p

G x y,J T ( ) are continuous variational amplitudes of the
integration variables x and y, n

ˆ is an appropriate intercluster
antisymmetrizer introduced to guarantee the exact preserva-
tion of the Pauli exclusion principle, and
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are three-body cluster channels of total angular momentum J,
parity π and isospin T. Here, a- ñpA a I T23 1 1 1

1∣ , a ñpa I T2 2 2 2
2∣

and a ñpa I T3 3 3 3
3∣ denote the microscopic (antisymmetric) wave

functions of the three nuclear fragments, which are labelled
by the spin-parity, isospin and energy quantum numbers pIi i,
Ti, and ai, respectively, with =i 1, 2, 3. Additional quantum
numbers characterizing the basis states (43) are the spins

= +
  
s I I23 2 3 and = +
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S I s1 23, the orbital angular momenta

ℓx, ℓy and = +
  
L ℓ ℓx y, and the isospin = +
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T T T23 2 3. In our

notation, all these quantum numbers are grouped under the
cumulative index n a= - pA a I T ;23 1 1 1

1{ a pa I T ;2 2 2 2
2

a pa I T ;3 3 3 3
3 s T S ℓ ℓ Lx y23 23 }. Besides the translationally

invariant coordinates (see e.g. [50] section 2.3) used to
describe the internal dynamics of clusters 1, 2 and 3,
respectively, in equation (43) we have introduced the Jacobi
coordinates h1,23 and h23 where
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is the relative coordinate proportional to the distance between
the centers of mass of cluster 2 and 3 (see figure 4). Here,


ri

denotes the position vector of the ith nucleon.

When using the expansion(42), the many-body problem
can be described through a set of coupled integral-differential
equations that arise from projecting the A-body Schrödinger
equation onto the cluster basis states  F ñn n
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where n
p

G x y,J T ( ) are the unknown continuum amplitudes and
E is the energy of the system in the c.m. frame. The
integration kernels are defined now as
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where Ĥ is the intrinsic A-body Hamiltonian.
The system of multi-channel equations (46) can be

Hermitized and orthogonalized obtaining the analogous of
equation (40) for binary cluster systems, i.e.:
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In this case, the relative motion wave functions cn
p

x y,J T ( )
depend on two relative coordinates. In order to solve these
equations, it is convenient to perform a transformation to the
HH basis. This basis has the great advantage that its elements
are eigenfunctions of the hyper-angular part of the relative
kinetic operator when written in hyperspherical coordinates
[119]. The hyperspherical coordinates (hyperradius ρ and
hyperangle α) can be defined in terms of the relative
coordinates of equations (44) and (45) as:

h r a r a= =h h xsin , sin , 5023 ( )

h r a r a= =h h ycos , cos . 511,23 ( )

Figure 4. Jacobi coordinates for three cluster configurations, h1,23

(proportional to the vector between the c.m. of the first cluster and
that of the residual two fragments) and h23 (proportional to the vector
between the c.m. of clusters 2 and 3). In the figure, a case with three
clusters of four, two and one nucleons are shown, however the
formalism is general and could be used to describe any three cluster
configuration.
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The continuous amplitudes cn
p

x y,J T ( ) can then be expanded
in HH functions as

åc r a
r

r f a=n n
p p

u,
1

, 52J T

K
K
J T

K
ℓ ℓ

5 2
,x y( ) ( ) ( ) ( )

where the basis elements are

f a a a a= + +N Psin cos cos 2 , 53K
ℓ ℓ

K
ℓ ℓ ℓ ℓ

n
ℓ ℓ, ,x y x y x y x y

1
2

1
2( ) ( ) ( ) ( ) ( )

here xa bPn
, ( ) are Jacobi polynomials, and NK

ℓ ℓx y normalization
constants.

When projecting equations (49) over the HH basis and
integrating on the hyperangle α, this expansion allows to
reduce those equations to a set of non-local integral-differ-
ential equations in the hyperradial coordinate:

òå rr r r
r

r

r

r
¢ =

¢

¢n
n n

n n
¢
¢ ¢ ¢

p p
u

E
u

d , , 54
K

K K K
J T

K
J T

5
5 2 5 2

¯ ( ) ( ) ( )
( )

which is the three-cluster analogous of equation (40).
For details on the method adopted to solve the above set

of equations, we refer the interested reader to section 2.7.
At the moment, the method has been implemented exclu-

sively for systems in which two of the clusters are single
nucleons. In this case, the calculation of the integration kernels
(47) is performed, up to a great extent, through the same
expressions as when studying a binary system with a two-
nucleon projectile, which can be found in [117]. However, it is
important to note that in the case of the two-body projectile
formalism the interaction between those nucleons has been
already taken into account through NCSM eigenstates of the
projectile. Therefore, when considering such nucleons as dif-
ferent clusters, one has to additionally account for the intrinsic
two-nucleon Hamiltonian H xˆ ( ). In particular, the specific
expression for the kernel produced by the interaction between
the nucleonsV xˆ ( ) can be found in equation (39) of [120]. In the
absence of Coulomb interaction between the two nucleons, such
term is localized in the x coordinate, but not in the y variables
where a Dirac’s δ appear. For computational purposes, this δ is
approximated by an extended-size expansion in HO radial wave
functions that goes well beyond the adopted HO model space
( N Next max). The convergence of the results with respect to
the newly introduced parameter Next is discussed in section 2.8.2
in order to determine the effect of such approximation.

2.6. NCSMC

The unified description of structure and reaction properties of
an A-nucleon system is most efficiently obtained working
within a generalized model space spanned by fully antisym-
metric A-body basis states including both square-integrable
wave functions, l ñpA J T∣ , and continuous RGM binary-cluster
(and/or multi-cluster, depending on the particle-emission
channels characterizing the nucleus in consideration) channel
states, F ñn n

p

r
J Tˆ ∣ , of angular momentum J, parity π and isospin

T:

ò

å

å

l

g

Y ñ= ñ

+ F ñ

l
l

p

n

n
n n

p p

p
p

c A J T

r r
r

r
d . 55

A
J T J T

J T

r
J T2

∣ ∣

( ) ˆ ∣ ( )

When the compound, target and projectile wave functions are
eigenstates of their respective intrinsic Hamiltonians com-
puted within the NCSM (see equations (7) and (8) of
sections 2.3 and 2.4), this approach is known as NCSMC and
the unknown discrete, l

p
cJ T , and continuous, gn

p
rJ T ( ) linear

variational amplitudes can be simultaneously obtained by
solving the set of coupled equations

 
 

c c=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

h
h

c
E

g
g

c
, 56( ) ( )¯

¯
¯

¯
( )

where c p
rJ T ( ) are the relative motion wave functions in the

NCSM/RGM sector when working within the orthogonalized
cluster channel states of equation (35). The two by two block-
matrices on the left- and right-hand side of equation (56)
represent, respectively, the NCSMC Hamiltonian and norm
(or overlap) kernels. The upper diagonal blocks are given by
the Hamiltonian (overlap) matrix elements over the square-
integrable part of the basis. In particular, as the basis states are
NCSM eigenstates of the A-nucleon Hamiltonian, these are
trivially given by the diagonal matrix  d=ll l ll¢ ¢E of the
eigenergies (the identity matrix  d=ll ll¢ ¢). Similarly, those
over the continuous portion of the basis appear in the lower
diagonal blocks and are given by the orthogonalized,
Hermitized Hamiltonian kernel of equation (39) and
 d d¢ = - ¢ ¢nn nn¢ ¢r r r r rr,( ) ( ) . The off-diagonal blocks con-
tain the couplings between the two sectors of the basis, with

̂ òå l= ¢ ¢ á F ñ ¢ln
n

p
n n n n

¢
¢ ¢ ¢ ¢

-pg r r r A J T r rd ,

57

r
J T2 1 2¯ ( ) ∣ ∣ ( )

( )

the cluster form factor, and the coupling form factor
analogously given by

̂ òå l= ¢ ¢ á F ñ ¢ln
n

p
n n n n

¢
¢ ¢ ¢ ¢

-ph r r r A J T H r rd , .

58

r
J T2 1 2¯ ( ) ∣ ˆ ∣ ( )

( )

As for the RGM kernels in sections 2.4.1 and 2.4.2 these form
factors can be computed using the second-quantization
formalism. Their algebraic expressions can be found in [51, 52].

Similar to the NSCM/RGM in section 2.5, the NCSMC
formalism presented here can also be generalized for the
description of three-cluster dynamics. A detailed presentation
of such formalism will be given in [121].

2.6.1. Orthogonalization of the NCSMC equations. The
NCSMC equations can be orthogonalized in an analogous
way to that presented in section 2.4.3 for the binary-cluster
NCSM/RGM. To define the square and inverse square roots
of the NCSMC norm in r-space representation, we first
rewrite the two-by-two matrix on the left-hand side of
equation (56) as the convolution of a NCSMC model-space
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norm kernel
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plus a correction owing to the finite size of the HO model-
space, i.e.:
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where, d=n n nnR R rr n nℓ ( )˜ ˜ , the model-space cluster form factor
is related to the r-space one through = åln lng r R r gn nl n¯ ( ) ( ) ¯ ,

and the sum over the repeating indexes l n l n¢ ¢n, , , ,˜ ˜ ˜ ˜ , and ¢n
is implied. The square and inverse square roots of N can then
be defined as:
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These expressions can be easily generalized to the case in
which expansion (55) contains RGM components of the
three-cluster type. In general, inserting the identity - +N N

1
2

1
2 in

both left- and right-hand sides of equation (56), and
multiplying by -N

1
2 from the left, one finally obtains

c c=H
c

E
c

, 62( ) ( )¯
¯

¯
¯ ( )

where the orthogonalized NCSMC Hamiltonian H is given
by,


= - -
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and the orthogonal wave functions by
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c
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Finally, starting from equation (55) the orthogonalized
NCSMC wave function takes then the general form:
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2.7. Microscopic R-matrix approach

Within the RGM, solving the integro-differential
equations (40) or (49), for binary or ternary clusters respec-
tively, provides the continuum coefficients of the cluster
expansion, i.e., the relative motion wave functions. In order to
solve these equations, we use the coupled-channel R-matrix
method on a Lagrange mesh [122, 123]. The formalism for
binary and ternary clusters is completely analogous and
therefore, here we present details only for the binary cluster
case. Details of the generalization for ternary clusters can be
found in [120].

The configuration space is first divided in two regions
delimited by a matching radius r=a. In the internal
region, the complete internuclear interaction is considered
and the radial wave function is expanded on a Lagrange
basis.

In the external region, only the Coulomb interaction is
assumed to be relevant. Therefore, in this region the wave
function is approximated by its known asymptotic form,
which is proportional to the Whittaker functions h kn nW r,ℓ ( )
for bound states

h k=n n n n
p p

u r C W r, 66J T J T
ℓ,ext ( ) ( ) ( )

with
p

C J T being the asymptotic normalization constant. It can
be written in terms of incoming and outgoing functions

h kn n
H r,( ) and the scattering matrix n

p
S i

J T when studying
continuum states:

d h k h k= -n n n n n n n n
- - +p p

u r v H r S H r
i

2
, , .

67

J T
i ℓ i

J T
ℓ,ext

1
2( ) [ ( ) ( )]

( )

with nv the speed, kn the wave number, and hn the
Sommerfield parameter of the final state. Labels i and ν refer
to the initial and final state, respectively. The R-matrix
formalism is expressed in terms of the Bloch–Schrödinger
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equations:
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where the Bloch operator, which has the dual function of
restoring the Hermiticity of the Hamiltonian in the internal
region and enforcing a continuous derivative at the matching
radius [124], is defined as


m

d= - -n
n

n⎜ ⎟⎛
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⎠L r r a

r

B

r2

d

d
69ˆ ( ) ( ) ( )

here the constants nB are arbitrary and therefore can be chosen
to facilitate the solution of the equations (68). When
calculating a bound state the constants nB are chosen as the
logarithmic derivative of n

p
u rJ T

,ext ( ) evaluated in the matching
radius. This election cancels the right-hand side of
equation (68) and gives rise to an eigenvalue problem that
can be solved iteratively starting from =nB 0 (convergence is
typically reached within a few iterations). When calculating a
continuum state the constants nB are chosen to be zero, and
the scattering matrix is obtained through the calculation of the
R-matrix. The details of this procedure can be found in [122].

The solution of equation (68), is conveniently achieved
on a Lagrange mesh by projecting the equations on a set of N
Lagrange functions. Due to its properties, the Lagrange basis
provides straightforward expressions for the matrix elements
of the relative kinetic operator, the Bloch operator and the
non-local Hamiltonian kernel. The basis is defined as a set of
N functions fn(x) (see [122] and references therein), given by

= -
- -

-
-f x a
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xP x a

x ax
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1 2 1
, 70n
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where PN(x) are Legendre polynomials, and xn satisfy

- =P x2 1 0. 71N n( ) ( )

The Lagrange mesh associated with this basis consists of N
points axn on the interval a0,[ ] and satisfies the Lagrange
condition

l
d=¢ ¢f ax

a

1
, 72n n

n
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where the coefficients ln are the weights corresponding to a
Gauss–Legendre quadrature approximation for the 0, 1[ ]
interval, i.e.
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Using the Lagrange conditions of equation (72), it is
straightforward to see that within the Gauss approximation
the Lagrange functions are orthogonal, i.e.

ò d~¢ ¢f x f x xd . 74
a

n n nn
0

( ) ( ) ( )

2.7.1. Using the R-matrix method within the NCSMC. When
working within the NCSMC formalism, the wave function is
described by a short/mid range contribution from the discrete
NCSM basis and a long range contribution coming from the
cluster basis. Due to the fact that at the matching radius only
the long range behavior is present, the only relevant
component of the wave function comes from the cluster
basis states. Therefore, it is possible to perform the matching
between internal and external regions using only this
contribution.

This is accomplished by defining a matrix Bloch surface
operator in which only the right-bottom block is non-zero

=n
n

⎛
⎝⎜

⎞
⎠⎟L

L r

0 0
0

, 75ˆ
ˆ ( )

( )

where the operator nL rˆ ( ) is given by equation (69) for binary
clusters. The Bloch–Schrödinger equations can be written as

c c+ - =H L E
c

L
c

76( ) ( )( ¯ ˆ ) ¯
¯

ˆ ¯
¯ ( )

and their solution is obtained in an analogous way as within
the NCSM/RGM approach.

2.8. Convergence properties

In this section we give an overview of the convergence
properties of the NCSM/RGM (for both binary and ternary
scattering processes) and NCSMC (for binary reactions)
approaches with respect to all relevant parameters character-
izing their model spaces. In particular, as an example in
section 2.8.1 we present an analysis performed on the N+4He
and d+4He scattering phase shifts obtained with the SRG-
evolved chiral NN+3N-full Hamiltonian with resolution
scale L = 2 fm−1 by solving the NCSM/RGM
equations (39) and NCSMC equations (62) with scattering
boundary conditions by means of the microscopic R-matrix
method on Lagrange mesh outlined in section 2.7. Because of
the additional expansion on HH basis states, the treatment of
three-cluster dynamics introduces a new set of parameters
controlling the behavior of the results. For this reason, as an
example in section 2.8.2 we also show results for the bound
and scattering states of the 4He+n+n system obtained by
solving the NCSM/RGM equations (49) with bound and
scattering boundary conditions starting from the SRG N3LO
NN-only interaction evolved to L = 1.5 fm−1.

2.8.1. Binary clusters. For binary reactions, a channel radius
of =a 18 fm is typically large enough for the clusters to
interact only through the Coulomb force and about Ns = 36
mesh points (roughly 2 mesh points per fm) are usually
sufficient to obtain convergence with respect to the Lagrange
expansion. In this section we will present results obtained with
these Lagrange parameters and concentrate on the remaining
convergence properties of the scattering calculation.

In both NCSM/RGM and NCSMC methods, the NCSM
eigenstates of the target and projectile (and, for the second,
also of the compound nucleus) are essential building blocks.

15

Phys. Scr. 91 (2016) 053002 Invited Comment



Naturally the properties of the these eigenstates propagate to
the NCSM/RGM and NCSMC calculations and we find the
HO frequency Ω and the maximum number of major HO shell
Nmax (of the HO basis used to expand the NCSM wave
functions of the clusters and the localized parts of the NCSM/
RGM kernels) to be parameters regulating the behavior of the
results. Therefore, we begin our overview by presenting in
figure 5 the dependence of NCSM/RGM calculations of the
n-4He phase shifts with respect to Nmax and  W. The left
panel presents single channel calculations for

=N 7, 9, 11max , and 13 carried out using n-4He channel
states with the 4He in its g.s. The phase shifts for the first four
partial waves exhibit a good convergence behavior. With the
exception of the P2

3 2 resonance, where we can observe a
difference of less than 5 degree in the energy region
 E4 10 MeVkin , the =N 11max and =N 13max phase

shifts are on top of each other. An analogous behavior is
obtained when using the NN+3N-induced interaction and
the N3LO NN-only interaction evolved to the same Λ value
[125]. In the latter case, working only with a two-body
potential, we were able to obtain results for Nmax values as
high as 17, but no substantial differences were found with
respect to those obtained for =N 13max . Therefore, given the
large scale of these computations, we study the sensitivity
with respect to the HO frequency within an =N 11max model
space. This is shown in the right panel of figure 5, where we
compare  W = 16, 20 and 24MeV results. We find
essentially no dependence on the HO frequency when
comparing the  W = 20 and 24MeV, i.e., the phase shifts
are in good agreement: the S2

1 2 and D2
3 2 phase shifts are on

top of each other while the P2
1 2 and P2

3 2 phase shifts show
very small deviations around the resonance positions. At the
same time, we note that using the lower frequency of
 W = 16 MeV is problematic due to the finite size of the HO
model space used during the SRG transformation. This has to
be cured using a frequency conversion technique [86].

As explained previously in section 2.2, employing an
effective interaction obtained from the SRG method requires
to account for induced effects, a priori of an A-body nature.
This is impractical to achieve for larger A values. Therefore
the SRG scale Λ became a parameter of the model and, as
long as the remaining higher-order induced effects remain
negligible we can, in the context of an ab initio framework,
claim that renormalized results in a finite model space are
almost unitary equivalent to their bare counterpart. Thus it is
essential to study our reaction observables with respect to Λ.
While the proper way to address this is to show that
renormalized results are consistent with those of L = ¥,
because of the finiteness of the model space together with the
sensitivity of reaction observables to g.s. energies of the
reactant nuclei, it can only be done within a restricted range of
values. In figure 6, we show a sensitivity study of the n-4He
phase shifts with respect to Λ. Only two values are displayed
due to the computational difficulty of the calculation. We can
see that the effects of the missing four- and five-body SRG
induced interactions are small, of the order or smaller than the
effects of the Nmax and  W parameters. In the corresponding
study of [116], it was shown that the 3N-induced interaction
was essential to correct for the SRG scale dependence of the
NN-only phase shifts for the same values of Λ.

With the behavior with respect to the parameters Ω, Nmax

and Λ of our many-body space discussed above, we can now
focus on the convergence properties of the phase shifts with
respect to the number and types of NCSM/RGM cluster
states. In the case of the n-4He scattering phase shifts, this
means investigating the dependence on the number of target
eigenstates included in the calculation. This is shown in the
left panel of figure 7, where we employ our largest model
space of =N 13max . As can be seen in the figure, the target
excitations are crucial in particular for the resonant phase
shifts, where they lead to an enhancement. Specifically, the

Figure 5. Left panel: convergence of the n-4He S1 1 2, P2
1 2, P2

3 2, and D2
3 2 phase shifts with respect to the model-space size Nmax at

 W = 20 MeV. Brown dotted lines, green long-dashed lines, blue dashed lines and red solid lines correspond to =N 7, 9, 11max and 13,
respectively. Right panel: dependence of the n-4He phase shifts on the HO frequency. Green long-dashed lines, blue dashed lines and red
solid lines correspond to  W = 16, 20 and 24, respectively. The model space is truncated at =N 11max . In both panels all curves were
obtained including the g.s. of 4He and employing the SRG-evolved chiral NN+3N-full interaction with L = 2 fm−1.

16

Phys. Scr. 91 (2016) 053002 Invited Comment



resonance of the P2
3 2 wave is strongly influenced by the

inclusion of the =p -J T 2 0 state, while the P2
1 2 phase shift is

slowly enhanced near its resonance with the addition of the
odd-parity states, among which the -1 states have the strongest
effect. On the other hand, the S2

1 2 wave is Pauli blocked and
mostly insensitive to these polarizations effects. However,
despite the inclusion of up to the first seven eigenstates of the
4He, overall the convergence is clearly slow. This is further
demonstrated by the right panel of figure 7, comparing
NCSM/RGM calculations (dashed blue lines) to the corresp-
onding results obtained within the NCSMC (continuous red
lines) by including the same number of target eigenstates.
Here, the figure shows the phase shifts for a proton elastically
colliding on a 4He target. We can see that the coupling to the
discrete 5Li NCSM eigenstates is instrumental to reproduce
the experimental phase shifts obtained from an R-matrix
analysis of the data, in particular the position and width of the
resonances. More in detail, the inclusion of the eigenstates of
the compound nucleus tends to influence the resonances
around the energy (Ekin) corresponding to their eigenva-
lues Eλ.

The more efficient simultaneous description of both short
and medium-to-long range correlations, and hence faster
convergence, obtained within the NCSMC approach [51] by
augmenting the NCSM/RGM basis with NCSM A-body
eigenstates of the compound (here 5He) system is further
demonstrated by the plot of figure 8. The convergence of the
n-4He scattering phase shits with respect to the number of
target excitations included in the calculations is now
excellent.

Similarly to this case, the distortion that arises from the
projectile polarization can play a role in scattering calcula-
tions. This is illustrated in figure 9 where the phase shifts of a
deuterium impinging on a 4He target computed within the

NCSMC approach are compared starting from the case where
only the 2H g.s. is included in the model space, to the case in
which up to seven deuterium pseudo states in each of the
influential channels ( -S D3

1
3

1,
3D2 and -D G3

3
3

3) are
considered. Stable results are found with as little as three
deuteron states per channel. This is a strong reduction of the
d influence with respect to the NCSM/RGM study of [117],
lacking the coupling of square-integrable 6Li eigenstates.
Still, although the convergence in term of pseudo states is
fast, their effect cannot be entirely disregarded. This is due to
the fact that the deuterium is only bound by 2.224MeV
resulting in a very low breakup threshold for this reaction
system. In turn, it means that the system transitions from a
two- to a three-body nature. Thus the discretization of the
deuterium continuum consists in an approximation above this
threshold, where the appropriate three-body asymptotic
should be accounted for. Part of these effects are absorbed
in the coupling to the discrete 6Li eigenstates, but a true
modeling of the system above 2.224MeV of excitation
energy should include a ternary cluster basis.

2.8.2. Ternary clusters. For ternary clusters, we present
convergence properties when performing calculations with
the NCSM/RGM basis alone. (The implementation of the
NCSMC within ternary clusters and its convergence behavior
will be presented elsewhere [121].) In this case, the
asymptotic condition is reached for larger values of the
matching (hyper) radius a. This can be understood from
the fact that for a three-cluster motion, a large hyper radius
can result from configurations in which two of the clusters are
still relatively close to each other. In practice the value of a
and the number of radial mesh points Ns needed to achieve
convergence have to be carefully chosen for each partial wave
and tend to grow together with the value of Nmax and Next (the
parameter introduced to approximately describe the effect of
the interaction between the two single-nucleon clusters, see
section 2.5). Typically, a ranges between 30 and 45 fm and
one needs on the order of  N60 130s radial mesh points
to achieve convergence.

The convergence pattern with respect to the size of the
HO model space is similar to the one seen in the binary
cluster case. Although, when studying continuum states, the
computational challenge of these calculations prevents us
from obtaining accurate quantitative results, the degree of
convergence is sufficient to provide a very good qualitative
description of the continuum. As an example, in figure 10, we
show convergence of the + +He n n4 eigenphase shifts for

=p - + +J 1 , 0 , 2 and +1 channels with respect to the size of
the model space Nmax. Here, it can be seen that, despite the
lack of complete convergence, the presence of resonances is
well determined as they clearly appear even at low Nmax. This
is easily seen in the right panel of the figure where two +2
resonances and one +1 are shown. An approximate position
and width of those resonances can also be extracted.

It is important to additionally study the convergence of
the results with respect to the parameters that appear
exclusively when performing a three-cluster calculation: the
maximum hypermomentum Kmax included in the

Figure 6. Sensitivity of the n-4He S1 1 2, P2
1 2, P2

3 2, and D2
3 2 phase

shifts with respect to SRG scale Λ using the SRG-evolved chiral
NN+3N-full interaction and a model-space size =N 13max major
HO shells at  W = 20 MeV. Blue dashed lines and red solid lines
correspond to L = 1.88 and 2 fm−1, respectively. Additionally, the
first six excited state of 4He are included in the calculation.
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hyperspherical expansion (52) and the extended model space
used for the description of the potential kernel (Next).

Further, one also has to consider the convergence with
respect to the integration in the hyperangles, which we
perform numerically using a Chebyshev–Gauss quadrature
and is usually well under control using =aN 40 angular mesh
points.

In figure 11, we show the convergence pattern of the g.s.
energy of 6He respect to Kmax and Next for an =N 6max

calculation. In both cases very stable results are reached. It is

found that for higher values of Nmax convergence patterns are
very similar, however convergence is reached at slighter
higher values of the correponding parameters.

When studying continuum states, the values needed in
order to reach convergence depend greatly on the particular
channel that is being considered. For example, in figure 12,
convergence with respect to the maximum hypermomentun
Kmax used in the expansion (52) when calculating phase shifts
is shown. For this parameter the convergence pattern is very

Figure 7. Left panel: dependence of the n-4He phase shifts on the considered target eigenstates. Results with only the g.s. of 4He (thin gray
long-dashed lines) are compared to those obtained by including in addition up to the 0+0 (thin black dashed lines), 0−0 (thin violet lines),
2−0 (thick brown dotted lines), 2−1 (thick green long-dashed lines), 1−1 (thick blue dashed lines), and 1−0 (thick red lines) excited states of
He4 , respectively. Right panel: comparison between the phase shifts obtained using the NCSM/RGM (dashed blue lines) and NCSMC
(continuous red lines) methods for the 4He(p, p)4He reaction. The R-matrix analysis of data from [126] is shown as guidance (purple crosses).
In both calculations, the first five excited states of 4He are included and the chiral NN+3N interaction SRG-evolved to a typical scale of 2
fm−1 is used. Additionally, in the NCSMC, all the influential NCSM eigenstates of 5Li are accounted for. In both panels the model space is
truncated at =N 13max . Other parameters are identical to those of the left panel of figure 5.

Figure 8. Convergence of the 4He(n, n)4He phase shifts obtained
with the NCSMC with respect to the number of excited states of 4He
included in the calculation from g.s. (black dashed line) to the first
five excited states (continuous red line). The R-matrix analysis of
data from [126] is shown as guidance (purple crosses). Additional
parameters of the computed phase shifts are identical to those of
figure 7.

Figure 9. Computed S- and D-wave 4He(d, d)4He phase shifts
obtained with the NCSMC using fifteen 6Li eigenstates and up to
seven 2H in each of three most influential channels ( -S D3

1
3

1,
3D2

and -D G3
3

3
3). Only the two-body part of the SRG-evolved chiral

NN interaction is used. The HO quanta maximum is =N 8max while
other parameters are identical to those of figure 7. (Figure adapted
and reproduced with permission from [127]. Copyright American
Physical Society 2015.)
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smooth, however, the particular value needed for Kmax in
order to reach convergence can be as low a 19 for the
-1 channel or as high as 24 for the +0 case in an =N 7max

calculation.

2.9. Electric dipole transitions in the NCSMC

The ab initio NCSMC approach, introduced in section 2.6,
provides an efficient simultaneous description of bound and
scattering states associated with a microscopic Hamiltonian. It
can thus be naturally applied to the description of radiative-
capture reactions, which involve both scattering (in the initial
channels) and bound states (in the final channels). While the
main components of the formalism have been introduced in
section 2.6, here we provide the algebraic expressions for the
matrix elements—between NCSMC basis states—of the
electric dipole operator
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(usually the dominant electromagnetic multipole at low
excitation energies, when the long wavelength limit applies)
required to compute radiative-capture cross sections. Here e is
the electric charge,
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the c.m. coordinate of the A-nucleon system. Working within
a binary cluster basis, it is convenient to re-write equation (77)

in terms of three components: (i) an operator acting
exclusively on the first A−a nucleons (pertaining to the
first cluster or target); (ii) an operator acting exclusively on
the last a nucleons (belonging to the second cluster or
projectile); and, finally, (iii) an operator acting on the relative
motion wave function between target and projectile:
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the relative displacement vector between the two clusters, while
-Z A a( ) and Z a( ) represent respectively the charge numbers of the

target and of the projectile. It can be easily demonstrated that
equations (77) and (79) are exactly equivalent.

Noting that the dipole operator can be expanded in terms
of spherical basis vectors m = me , 0, 1{ˆ } as =


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it is convenient to introduce the reduced matrix elements
between two bound states of an A-body nucleus with spin Ji,

Figure 10. Convergence behavior of calculated + +He n n4 (a) =p -J 1 and (b) +0 eigenphase shifts at =K 19max and 28, respectively, and
(c) +2 and (d) +1 diagonal phase shifts at =K 20max with respect to the size Nmax of the NCSM/RGM model space. For these calculations we
used a matching radius of a=30 fm, N=60 Lagrange mesh points, and an extended HO model space of =N 70ext .
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parity pi, isospin Ti, energy Ei in the initial state and
pJ T E, , ,f f f f in the final state:
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In the second line of equation (81) we have introduced the
short notation f(i) for the group of quantum numbers

pJ Tf i f i
f i{ }( ) ( )

( ) that will be used throughout the rest of this
section. In the NCSMC formalism the matrix element of
equation (81) is given by the sum of four components,
specifically, the reduced matrix element in the NCSM sector of
the wave function, the ‘coupling’ reduced matrix elements
between NCSM and NCSM/RGM (and vice versa) basis states,
and the reduced matrix element in the NCSM/RGM sector:
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The algebraic expression for the reduced matrix elements in the
NCSM sector l lá ¢ ñp p A J T A J Tf f

E
i i1

f i can be easily obtained
working in the single-particle SD HO basis. In the following, we
consider the reduced matrix elements in the NCSM/RGM sector.
First, we notice that the inter-cluster antisymmetrizer commutes
with the A-nucleon


E1 dipole operator of equation (77) and
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Second, using the


E1 operator in the form of equation (79) we
can rewrite, e.g., the first matrix element in the right-hand side
of equation (83) as:

Figure 11. Dependence of the NCSM/RGM calculated 6He g.s. energy at =N 6max within a 4He+n+n basis using a matching radius of
a=20 on (left panel) the maximum value of the hypermomentum Kmax used in the HH expansion ( =N 40ext ) and (right panel) the size of
the extended HO model space Next (results for =K 20max ).

Figure 12. Convergence behavior respect to the maximum
hypermomentum used in the hyperspherical expansion (52) of the
calculated + +He n n4 (a) =p + -J 2 , 1 and (b) +0 diagonal phase
shifts at =N 7max and =N 50ext .
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Given the long-range nature of the electric dipole operator
and the fact that the effect of the exchange part of the
antisymmetrization operator is short-ranged, if there are no
allowed E1 transitions between the target (projectile)
eigenstate in the initial state and that in the final state (e.g.,
only positive-parity eigenstates of the target/projectile are
included in the model space), the first two terms on the right-
hand side of equation (84) are expected to be negligible and
one obtains:

 



å

d

áF F ñ
- -

´ áF F ñ

=
- -

´ + + + -

´ + ¢

n n n

n n n

n n

¢ ¢ ¢
-

¢ ¢ ¢ - -

-

+

¢

  

 

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

e
Z a Z A a

A

r Y r

e
Z a Z A a

A

J J ℓ

ℓ ℓ ℓ ℓ s J

J ℓ
r r r

2 1 2 1 2 1

2 1 1
0 0 0 1

, ,

85

r
f E

r
i A a a

r
f

A a a A a a r
i

A a a

i f
s J

T T

ℓ

i

f

f

1

, 1 ,

f
i f

ˆ ( )

ˆ ( ˆ )
( )

( )( )( ) ( )

˜ ˜
˜ ( )

( )

( ) ( )

( ) ( )

˜
˜

where all quantum numbers in the index ñ are identical to
those in the index ν except for the angular momentum ℓ,
which is replaced by ℓ̃ .

The ‘coupling’ E1 reduced matrix elements between
NCSM and NCSM/RGM components of the basis can be
derived making similar considerations:

Once again, the first two terms in the right-hand side of
equation (86) are expected to be negligible provided there are
no E1 transitions between the -A a( )-nucleon (a-nucleon)
eigenstates included in the model space. This can be easily

understood by inserting—to the left of the antisymmetrization
operator—an approximate closure relationship with respect to
the binary cluster basis. In such a case, one can make the
approximation:
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To summarize, in the following we provide the algebraic

expressions for the reduced matrix elements of the E
1

operator within the fully orthogonalized NCSMC basis, that
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where ci f¯ ( ) and ci f¯ ( ) are, respectively, the NCSM and
NCSM/RGM components of the orthogonal NCSMC basis
function of equation (65), -N f i 1

2( ) the inverse-square roots of
the NCSMC norm kernel, defined in equation (61), and
A B B, ,fi fi fi¯ and C fi four matrices given by:
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Here, we have introduced the orthogonalized E1 integration
kernel
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where ¢a is the mass number of the projectile in the final state,
the quantum numbers in the index n¢˜ are identical to those in
the index n¢ except for ¢ℓ , which is replaced by ¢ℓ̃ , and the
phase - -1 J Jf i( ) is a result of the symmetry properties of the
reduced matrix elements of theE

1 operator under Hermitian
conjugation:
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The formalism presented in this section for the matrix
elements of the electric dipole operator can be extended to
any electromagnetic multipole of interest, although in general
—different from the


E1 case—the partition of the operator

into terms acting exclusively on the target, projectile and
relative motion wave functions (see equation (79)) will only
be approximate. For a general multipole operator the
assumption of zero internal transitions between target’s
(projectile’s) eigenstates used to arrive at equations (85) and

(87) may also no longer be valid. In those instances, the
matrix elements of the target’s and projectile’s portion of the
operators can be estimated by inserting an approximate clo-
sure relationship with respect to the binary cluster basis.

3. Structure and reaction observables of light nuclei
with chiral two- and 3N forces

Light nuclei exhibit strong clustering effects mostly due to the
tightly bound alpha particle, i.e., the 4He nucleus. One of the
consequences is the presence of low-lying thresholds result-
ing in few (or even no) bound states and many resonances at
low excitation energies. A realistic description of light nuclei
must take into account the presence of these thresholds and
include a continuum description of the inter-cluster motion.
Further, it has been known for a long time that significant
effects due to the 3N forces are manifest in the structure of
p-shell nuclei. Consequently, for a realistic description of
light nuclei the 3N interactions should also be included. As
described in the previous section, we have now developed a
capability to include both these aspects in the NCSMC
formalism. In this section, we present results for nucleon
scattering on 4He and properties of A=5 nuclei, for a
simultaneous description of the structure of 6Li and the deu-
teron scattering on 4He, and for the structure of 9Be with a
focus on continuum and 3N-force effects.

3.1. Nucleon and deuterium scattering on s-shell targets

A few-nucleon projectile impinging on an s-shell target at low
energy is among the most suited systems to build the foun-
dations of a theory designed to tackle simultaneously bound
and resonant states. Even in such a restricted mass region,
nuclei exhibit a sharp transition from a unit of MeV of binding
energy per nucleons for the deuteron (d), to 7MeV per nucleon
for the α particle, thus indicating a leap from dilute systems to
the dense and tightly bound α particle. As a direct consequence
the low-energy continuum of 5He (5Li) consists of a single
open channel per total angular momentum J and orbital angular
momentum ℓ, up to an energy of 17.638MeV (18.35MeV)
where the 3H(d, n)4He (3He(d, p)4He) channel become ener-
getically opened. These simple features have turned this scat-
tering system into the tool of choice to test ab initio structure
augmented by a reaction framework. Despite the conceptual
simplicity of these two systems, it is only recently that an
ab initio description of the elastic collision of a neutron and a α
particle has been performed by Nollett et al [53]. In the work of
Nollett et al, the realistic two-nucleon AV18 and two different
(UIX and IL2) 3N force models are employed. The findings of
Nollett et al showed that an accurate 3N interaction is crucial to
reproduce the low-energy phase shifts, and spurred global
interest on the subject. In the meantime, the development of
chiral EFT [76] had reached its maturity allowing nuclear
physicists to unravel nuclear properties starting from the fun-
damental theory of QCD [82]. These interactions are non-local
by nature and therefore difficult to implement in the Green’s
Function Monte Carlo method used by Nollett et al, but can be
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applied in the context of the NCSM/RGM, which is able to
address non-local interactions [49, 50, 116]. Nevertheless,
using the GFMC framework, a recent work of Lynn et al [41]
employed the local part of the chiral N2LO two-nucleon
interaction to describe this reaction system.

Figure 13 shows the first application of the NCSMC to
this reaction system. The calculated phase shifts are obtained
with the SRG-evolved N3LO two-nucleon chiral interaction
supplemented by the induced 3N forces (blue dashed lines)
and the complete NN+3N chiral interaction (continuous red
lines). At the present HO frequency ( W = 20 MeV) and
SRG-resolution scale (L = 2 fm−1), the former and the latter
are representations of the initial chiral NN and NN+3N
interaction, respectively, as the SRG unitarity is broken only
mildly in this case (see figure 6 as well as figures 6 and 7 in
[116] and the related discussion). The observed disagreement
between the two-nucleon force model results and experiment,
particularly regarding the relative position of the P3

2
to P1

2

centroids, corroborates the conclusions of Nollett et al.
Accordingly, the inclusion of the chiral 3N force is necessary
to the reproduction of the observed splitting between the P-
waves and given that the spin–orbit interaction is responsible

of the fine tuning of the relative position of the
-

3

2
and

-
1

2
resonances, we conclude that the chiral 3N force brings an
important part of the nuclear spin physics. Here we stress that
it would not have been possible to draw such conclusions
working within the many-body model space of the NCSM/
RGM, where it is difficult to account for the short-range

many-body correlations. This is exemplified by figures 7 and
8 of section 2.8.

Therefore, the advent of the NCSMC treating on the
same footing bound and resonant states permits us to reach
convergence with respect to the parameters of the HO model
space. A typical example of the precision that can be attained
is displayed in figure 14. There, the 1H(α, p)4He angular
differential cross-section calculated with the NCSMC is
compared to data of [128–133] for a set of proton recoil
angles (j). The range in energy of the impinging α particle

covers the
-

3

2
and

-
1

2
resonances where the cross section

deviates the most from the Rutherford limit (limit of struc-
tureless charged particle scattering). Numerous experiments
have been performed in this region to understand the nuclear
enhancement and thus obtain precise cross-section needed for
ion-beam analysis. For instance, the cross section shown here
are essential for the determination of the concentration and
depth of 4He impurity in superconductors used in fusion
energy research. Here, we benefit from the wealth of data and
use it to probe the precision of the (SRG-evolved NN+3N)
nuclear force model. For almost all angles, the theoretical
results are within the error bars of data, and only at small
angles we see disagreements that could be related to the
remaining inaccuracies of the interaction to reproduce the
centroid positions. Despite this, the present NCSMC form-
alism and the state-of-the-art chiral interaction has reached the
stage where it can be used as a predictive tool in particular in
light nuclei where the convergence and the SRG sensitivity is
more-or-less under control [134]. Furthermore, it is essential
to stress that a consistent framework for bound and resonant
states is constitutive to the agreement of the cross section with
data. For instance, figure 7 in section 2.8 sheds the light on
the effects of the coupling to the NCSM 5Li eigenstates.

Figure 13. Computed 4He(n, n)4He phase shifts obtained with the
NCSMC using the SRG-evolved N3LO NN interaction augmented
with the three-nucleon SRG-induced (NN, blue dashed lines) and
total NN+3N (continuous red lines) Hamiltonian. The R-matrix
analysis of data from [126] is shown as guidance (purple crosses).
The results are computed in a HO model of =N 13max with a HO
frequency of  W = 20 MeV, all the influential eigenstates of the
compound nuclei (5He) and only the g.s. of the target nuclei are
included. The SRG-resolution scale is L = 2 fm−1, which, for this
system, approximates well a unitary representation of the initial
interaction [116].

Figure 14. The computed 1H(α, p)4He angular differential cross-
section at proton recoil angle of j =   4 , 16 , 20p and 30° as a
function of the proton incident energy is plotted versus the data
(symbols) of [128–133]. Parameters of the computed angular
distributions are identical to those of figure 13. (Figure adapted and
reproduced with permission from [134]. Copyright American
Physical Society 2014.)
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In figure 15 the 4He(n, n)4He angular differential cross
section and a polarization observable (Ay) of [135–137] are
compared to NCSMC results using the chiral N3LO NN and
its 3N induced interaction (dashed blue lines) and the full
NN+3N (continuous red lines), which includes the chiral
N2LO 3N interaction.

In panel (a), the agreement between the NCSMC results
and experiment is nearly within the error bars of data and the
effect of the initial 3N force is almost indistinguishable. In
this respect, panels (b) and (c) give more insight as the Ay

analyzing power is a more sensitive probe of the spin–orbit
force. In particular we can see that the differences between the
chiral two- and two-plus-3N force models are mostly con-
centrated in the spin physics, which is better reproduced in the
latter model. The remaining disagreement with experiment, in
particular in panel (b), hints that there is still room for
improvement of our understanding of the nuclear interaction.
Additionally, we can see that as the incident neutron energy
increased from panels (b) to (c), the disagreement between the
NCSMC NN+3N and experiment widens. This is related to
the missing distortion effects induced by the closed but
neighboring 3H(d, n)4He channel.

This is more readily visible in figure 16 where the total
cross-section of the 5He continuum is plotted up to 22MeV of
excitation energy. The calculated cross-sections correspond to
the phase shifts and angular distributions shown in figures 13
and 15 with the same color coding. The calculations are
compared to data (purple crosses) and R-matrix fit (black line)
from the ENDF library. Once again, the difference between
the two nuclear force models is apparent around the positions
of the two low-lying resonances while, at higher energies, the
cross sections are indistinguishable and differences can only
probe using more sensitive observables such as the Ay shown
in figure 15. We can see here that the enhancement of the
cross-section due to +d H3 fusion is already present in the
NCSMC calculation however at the wrong energy due to the

Figure 15. Comparison between angular differential cross-section
and polarization observable for 4He(n, n)4He computed with SRG-
evolved N3LO NN interaction augmented with the three-nucleon
SRG-induced (NN, blue dashed lines) and total NN+3N (red lines)
Hamiltonian, and data (purple crosses) from [135–137]. From top to
bottom, respectively, the angular differential cross-section at neutron
incident energy of 17.6 MeV, the polarization observable at 11 and
15 MeV are shown. Parameters of the computed cross section are
identical to those of figure 13.

Figure 16. Comparison between the computed 4He(n, n)4He cross-
section obtained with the NCSMC using the SRG-evolved N3LO
NN interaction augmented with the three-nucleon SRG-induced
(NN, blue dashed lines), the total NN+3N (continuous red lines)
Hamiltonian, R-matrix analysis from ENDF (black line) and data
(purple crosses). Parameters of the computed cross section are
identical to those of figure 13.
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lack of the appropriate 3H-d cluster states in the basis, which
encode the correct reaction threshold as well as escape width.

Along the path towards the treatment of 3H(d, n)4He
transfer channel (or, in the present case, +d H3 fusion)
within the NCSMC, the formalism needs to be extended to
treat two-nucleon projectile. In the NCSM/RGM framework,
reaction channels are treated as an essential building block of
the theory and thus need to be implemented incrementally as
they become energetically relevant to the reaction mechanism
(see for instance sections 2.4 and 2.5). In addition to this
technical aspect, among the possible two-nucleon projectile
only the deuteron is bound henceforth it can be observed in
the final state of a nuclear collision, though with its binding
energy of 2.224MeV, the deuteron is likely to break into a
neutron and a proton. Consequently, the problem takes on a
three-body nature and we have the additional challenge of
accounting for the breakup channel. However, below the
breakup threshold we can incorporate the distortion effects
through the inclusion of pseudo-states of the deuterium
( >E 0) such that the continuum is discretized. Above the
breakup threshold, we make an approximation using this
scheme, which should be tested with the implementation of
the three-body cluster technique described in section 2.5. This
approach is feasible and we have demonstrated in section 2.8
that the combination of the NCSMC and the discretization of
the deuteron continuum results in a satisfactory convergence
pattern and represents a reliable approximation even above
the breakup threshold (see figure 9). This step of extending
the binary-cluster to heavier projectile mass is necessary to

address reaction systems where the compound nuclei breaks
apart ejecting, for instance, a deuteron.

As a summary of the power of the NCSMC using chiral
NN+3N forces, we show in figure 17, the low-lying spec-
trum of 6Li comparing the NCSM, experiment (black) and
NCSMC on the left, middle and right, respectively. All the
influential NCSM eigenvalues of 6Li and pseudo states of the
deuteron are included. The chiral NN interaction (blue) is
compared to the chiral NN+3N (red) nuclear interaction.
Both are softened via the SRG method to a resolution scale of
L = 2 fm−1 providing negligible four-body induced effects
for the energy of the lowest lying states in 6Li [104, 105]. We
see that the 3N force is essential to the reproduction of the g.s.
energy of 6Li yielding −32.01MeV compared to the exper-
imental −31.994MeV and, at the same time, to account for
the correct spacing between the +3 and +2 excited states, but
slightly overestimates the energy of the +3 resonance by
350 keV. On the other hand, the comparison at a given Nmax,
i.e., without taking into account the Nmax extrapolation of
the NCSM result (left versus right spectra), shows that the
NCSMC is able to grasp long-range correlations far above
the Nmax truncation of traditional NCSM. Nevertheless,
once the eigenenergies of the NCSM are extrapolated to

 ¥Nmax (in the present case assuming an exponential
form) thus accounting for the finiteness of the HO model
space, all but the high-energy resonant states are reproduced.
In fact due to their resonant nature, no bound-state techniques,
like the NCSM, is able to fully describe them. Accordingly,
we can describe the reaction observables using the same wave
functions that yield figure 17 starting from the elastic 4He(d,
d)4He reaction. The corresponding S-, 3P0- and D-wave
computed phase-shifts are shown in panel (a) of figure 18. We
use the same color coding as in figure 17 for the NN+3N-
ind and NN+3N nuclear force models. We find again that
the chiral 3N force affects essentially the splitting between the
3D3- and

3D2-partial waves, which corresponds to the main
difference between the two spectra at the right-hand side of
figure 17. Thus, owing to a fairly good reproduction of the g.
s. and low-lying spectrum of 6Li with the chiral NN+3N
interaction model, we compare directly differential cross-
section to data of [140, 141] in panel (b). At the available
experimental energies of Ed = 2.93, 6.96, 8.97 and 12MeV,
the computed angular distribution reproduces the bulk and
resonant structure. However it would fail around the +3
resonance due to the remaining 350 keV discrepancy between
NN+3N calculation and experiment. In addition to the
phase shifts shown in panel (a), the negative-parity partial-
waves are mandatory to the computation of the cross-section
while the partial-wave expansion runs up to J=6.

Moreover, only in the NCSMC case do the wave func-
tions present the correct asymptotic of the 6Li g.s., which is
essential for the extraction of the asymptotic normalization
constant yielding a D- to S-state ratio of −0.027 in agreement
with a determination from 6Li–4He elastic scattering [142]
and the value previously obtained by Nollett et al using
variational Monte Carlo [143]. As shown in [117, 127] and
exemplified by figure 17, the combination of NCSMC and a
realistic NN+3N force model is essential to the

Figure 17. Comparison between the positive parity low-lying states
of 6Li and their width Γ computed with (red lines) and without (blue
lines) the initial chiral 3N force, and augmented (right-hand side) or
not (left-hand side) with the coupling between NCSM/RGM and
NCSM 6Li wave functions within the NCSMC. The NCSM
extrapolated spectra (red thick lines) towards  ¥Nmax is obtained
using an exponential form. All parameters are identical to those of
figure 13 but the Nmax is limited, for computational reasons, to 11
major HO shell. (Figure adapted and reproduced with permission-
from [127]. Copyright American Physical Society 2015.)
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reproduction of the cross-section of such a reaction system.
This is particularly true for an accurate description of the low-
energy regime that is essential for the determination of
astrophysical S-factor or, in the present case, 2H(α, γ)6Li
radiative capture. This work demonstrates that the NCSMC is
a technique capable of addressing simultaneously bound and
resonant states using the latest nuclear interaction fitted on the
A 3 nuclear properties. In the s-shell target sector, we are

able to achieve convergence within the computationally fea-
sible model space henceforth providing a stepping stone
towards ab initio calculations of reaction observables of
astrophysical interest together with a test bed for further
approximations required to address the challenging p-shell
target sector.

3.2. Nucleon scattering on p-shell targets

The efficient developments for treatments and inclusions of
3N interactions in ab initio nuclear structure and reaction
calculations allow to study continuum effects also for p-shell
targets. In the case of the single-nucleon projectile 3N inter-
actions can be included explicitly via the extended kernel
calculations formalism introduced in section 2.4.2 (see, e.g.,
equation (32) and [116, 148]). As a first application of the
NCSMC with 3N effects the spectrum of Be9 is studied.

The Be9 spectrum is sensitive to the truncations of the
localized HO model space, as shown, in the convergence
problems of previous NCSM calculations where the positive-
parity states were found too high in excitation energy com-
pared to experiment [145, 146]. The splitting between the
lowest -5 2 and -1 2 states is found overestimated in NCSM
calculations using the INOY interaction model that includes
3N effects [145]. This splitting is also sensitive to the 3N
interactions, as shown by GFMC calculations [11]. The 3N

contributions appeared to shift the splitting away from
experiment, highlighting deficiencies of the applied 3N force
models. The spectrum of Be9 has also relevance for astro-
physics by providing seed material for the C12 production in
the core collapse supernovae, via the (ααn, γ) Be9 (α, n) C12

reaction, an alternative to the triple-α reaction [146–148]. In
particular, the accurate description of the first +1 2 state,
relevant for the cross sections and reaction rates, poses a long
standing problem [146, 147, 149].

The starting point for the ab inito NCSMC calculations
are the chiral NN interaction at N3LO by Entem and
Machleidt [82] combined with the local 3N interaction at
N2LO [83] with a cutoff L = 400 MeVcut,3N [84] (see
section 2.1). This choice is motivated by the observation that
for L = 500 MeVcut,3N the Hamiltonian tend to overbind the
n- Be8 threshold by about 800 keV in calculations with the IT-
NCSM at =N 12max [144]. In addition, the NN and
NN+3N interaction is softened by the SRG evolution,
leading to the NN+3N-ind and NN+3N-full Hamiltonian,
respectively, as described in section 2.2. The Be9 spectrum is
an ideal candidate for the NCSMC with explicit 3N interac-
tions using a single-nucleon-projectile channel, since only the
g.s. is bound, while all excited states are in the continuum
above the n- Be8 threshold energy, which is experimentally
located at 1.665 MeV [150].

The NCSMC wave function(55) in section 2.6 consist of
the eigenstates of the compound system and the NCSM/
RGM expansion of the cluster channel. For the first term we
include the first 4 positive and 6 negative parity eigenstates of
Be9 obtained with the NCSM. This selection consists of the

+1 2 , +5 2 , +3 2 , +9 2 and -3 2 , -5 2 , -1 2 , -3 2 , -7 2 ,
-5 2 states and contains all excited states up to 8 MeV above

the n- Be8 threshold, which is consistent with experimental
data [150]. Moreover, in the NCSM calculations and

Figure 18. (a) 4He(d, d)4He phase shifts computed with the SRG-evolved N3LO NN interaction augmented with the three-nucleon SRG-
induced (blue dashed lines) and total NN+3N (red lines) Hamiltonian, compared to R-matrix fits of data (purple crosses) from [138, 139].
In panel (b), the calculated c.m. angular distributions (lines) is compared to the measured one (symbols) at Ed = 2.93, 6.96, 8.97 [140] and
12 MeV [141]. The cross sections are scaled by an appropriate factor to fit in the figure. Other parameters are identical to those of figure 17.
(Figure adapted and reproduced with permission from [127]. Copyright American Physical Society 2015.)
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experiment there is a gap of about 3 MeV between the
included second -5 2 state, and the next known resonance at
11.2 MeV. For the second term of expansion(55) we restrict

ourselves to channels with a single-neutron projectile and Be8

target. For the target we include the +0 g.s. of Be8 , as well as
its first excited +2 state obtained from the NCSM.

Figure 19. NCSMC n- Be8 eigenphase shifts for negative (top panels) and positive (bottom panels) parity at = -N 6 12max . The left- and
right-hand columns show the results for the NN+3N-ind and NN+3N-full Hamiltonian, respectively. Remaining parameters are
 W = 20 MeV, L = -2.0 fm 1, and =E 143 max . Same colors correspond to identical angular momenta. Figure taken and reproduced with
permissionv from [144]. Copyright American Physical Society 2015.

Figure 20. Negative (a) and positive (b) parity spectrum of Be9 relative to the n- Be8 threshold at =N 12max and 11, respectively. Shown are
NCSM (first two columns) and NCSMC (last two columns) results compared to experiment [150]. First and last columns contain the energies
for the NN+3N-ind and the second and fourth column for the NN+3N-full Hamiltonian, respectively. Shaded areas denote the width of
the energy levels. Remaining parameters are  W = 20 MeV and L = -2.0 fm 1. Figure taken and reproduced with permission from [144].
Copyright American Physical Society 2015.
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To reduce the computational costs of the eigenstate cal-
culations the importance truncated NCSM (IT-NCSM)
[17, 18] is used, which also simplifies the calculations of the
NCSM/RGM and NCSMC coupling kernels. This is because
only relevant Slater determinants are considered for the
expansion of the eigenstates. The basis reduction within the
IT-NCSM has only a minor impact on the resonance positions
in the Be9 spectrum [144]. The convergence with respect to
Nmax is illustrated in figure 19 for the positive- and negative-
parity eigenphase shifts of n- Be8 using the NN+3N-ind and
NN+3N-full Hamiltonian. The typical convergence pattern
shows a shift of the resonance positions when going from

=N 8max to 10 but only a minor change from the step to
=N 12max , indicating an approach to convergence. The

eigenphase shifts are most sensitive to the model-space size
near resonances with the sole exception of the +1 2 eigen-
phase shift, which is affected at all energies. Overall the
eigenphase shifts and the spectrum resulting from the reso-
nance centroids are reasonably converged, in particular for the
negative parity states. An extensive study of the effect of
incorporated truncations can be found in [144].

In figure 20 we illustrate the excitation spectrum of Be9 ,
and compare the results for the NCSM and NCSMC using the
NN+3N-ind and NN+3N-full Hamiltonian. The resonance
centroid ER is determined by the inflection point of the
eigenphase shifts and the width follows from

dG = =E E2 d d E Ekin kin R kin( ( ) )∣ with the eigenphase shifts δ in
units of radians [151]. The resonance positions and widths are
summarized in table 1. Note, that the applied procedure for the
determination ER and Γ is generally only valid for narrow
resonances that can be approximated by a Breit–Wigner shape.
Thus, the +1 2 - and +3 2 -states as well as the broad reso-
nances are not quoted in the table and require more elaborated
approaches [152], that are currently investigated [153]. The
positive-parity states in figure 20(b) with both methods are
rather insensitive to initial 3N interactions. On the other hand,
for the negative parity states in figure 20(a), all states, except
the first -5 2 resonance, are sensitive to the inclusion of the
initial chiral 3N interaction with effects of roughly similar size
for both the NCSM and the NCSMC: the inclusion of the chiral

3N interaction increases the resonance energies relative to the
threshold. For the NCSM calculations the agreement with
experiment generally deteriorates when the initial 3N interac-
tion is included, while once the continuum effects treated
properly with the NCSMC the overall agreement clearly
improves when the 3N interaction is included.

In this context it is important to note that the NCSMC
spectrum is reasonably well converged, while the spectrum
resulting from the pure (IT)-NCSM calculations is poorly
converging at similar Nmax values [144], such that conclu-
sions about the impact of 3N interactions are only reliable for
investigations that cope with continuum effects.

Although the relevance of cluster structures beyond the
single-nucleon binary-cluster ansatz used here cannot be ruled
out, one might expect larger sensitivities to the NCSM model-
space size if such structures were relevant. Therefore, even
though one has to be also wary of some impact of SRG trans-
formations the present deviations from experiment are likely to
be connected to deficiencies of the chiral NN+3N Hamiltonian.

4. Ground and continuum states of the 6He nucleus

The lightest Borromean nucleus is 6He [154, 155], that makes
it the perfect candidate to be studied within the NCSM/RGM
for three-cluster systems. Therefore the method was first used
in [120, 156] to study such nucleus. Both, its ground and
continuum states have been studied using a two-body inter-
action, namely the SRG evolved [68, 112] potential obtained
from the chiral N3LO NN interaction [82] with the evolution
parameter Λ = 1.5 fm−1. Using such a soft potential has the
great advantage of providing fast convergence. Furthermore,
obtaining an accurate binding energy within the NCSM is
possible and therefore it provides a well-founded benchmark
for the NCSM/RGM results.

For present calculations, only the g.s. of 4He was inclu-
ded in the cluster basis. The inclusion of some of its excited
states may be necessary in order to take into account all
many-body correlations, however, it implies an increase in the
size of the problem that is not feasible given current com-
putational capabilities. In order to overcome this limitation, it

Table 1. Energies of the bound state and resonances relative to the n-
8Be threshold and resonance width in MeV for the NCSMC with the
NN+3N-full Hamiltonian with L = 400 MeVcut,3N and =N 11max

and 12 for positive and negative parity states, respectively. The
values are extracted from the procedure described in the text and
compared to experiment [150].

NCSMC Experiment

Be9 E MeVR ( ) G MeV( ) E MeVR [ ] G MeV( )
+5

2
3.39 0.17 1.38 0.28

-3
2

−1.367 — −1.66 —
-1

2
1.15 0.95 1.11 1.08

-5
2

1.25 0.02 keV 0.76 0.78 keV
-3

2
3.4 0.26 3.92 1.33

-7
2

6.21 0.84 4.71 1.21

Table 2. In the second column we show the convergence in terms of
model space size Nmax of ground state energy of 4He (in MeV)
within the NCSM formalism. The third column shows the same for
6He within the NCSM/RGM method. The last column shows the
6He g.s. energies (in MeV) for a model space size of -N 2max . The
extrapolated values for the NCSM calculations to  ¥Nmax has
been obtained by an exponential fit using E Nmax( ) =

+¥
-E a e bNmax. In the last row, the experimental values are shown.

Nmax
4He-NCSM 6He-NCSM/RGM 6He-NCSM

6 −27.984 −28.907 −27.705
8 −28.173 −28.616 −28.952
10 −28.215 −28.696 −29.452
12 −28.224 −28.697 −29.658
Extrapolation -28.23 1( ) — -29.84 4( )
Experimental −28.296 −29.268
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is possible to use an extension of the NCSMC to ternary
cluster, in this case the NCSM eigenstates of the six-body
system can compensate for the missing many-body correla-
tions. The extension of NCSMC to three-cluster systems and
its results for 6He will be presented elsewhere [121].

4.1. Ground state of 6He

We calculate the g.s. of 6He by solving equation (49). The
convergence of this =p +J T 0 1 state is studied with respect to
all parameters included in the calculation. Examples of this
study are shown in section 2.8.2, where a good stability and
convergence with respect to the maximuun hypermomentum
used in the expansion (52) and with respect to the size of the
extension of the model space (Next) is shown. In particular, the
NCSM/RGM convergence of the energy with respect to the
size of the model space is shown in the third column of
table 2. While the convergence is rather fast, the obtained
energy is about 1MeV less bound than the expected result for
the NN potential used (i.e. from the extrapolated value
obtained through NCSM shown in the fourth column of
table 2). This missing binding energy gives a measure of the
effect of the many-body correlations that remain unaccounted
for when using only the g.s. of 4He in the cluster basis. As
shown in [121], the extrapolated NCSM result for the binding
energy is recovered, already at =N 10max , when working
with the NCSMC.

Despite the limitation of the NCSM/RGM as to obtain-
ing the correct binding energy due to the restrictions imposed
in the cluster basis, i.e., the lack of inclusion of excited states
of the α core, the formalism gives rise to a wave function that
has the correct asymptotic behavior, which is included by
construction when using the R-matrix method. This is extre-
mely important when describing halo nuclei such as 6He that
exhibit an extended tail. This is a great advantage with respect

to the NCSM that yields Gaussian asymptotic behavior due to
the expansion over HO basis states.

Plotting the probability distribution (or probability den-
sity) provides a visual description of the structure of the 6He
g.s., in particular, it gives an idea of the distribution of the
neutrons respect to the α core. In figure 21, we show such
distribution which presents two peaks corresponding to the
characteristic di-neutron (two neutrons close together) and
cigar (two neutrons far apart in opposite sides of the α par-
ticle) configurations of 6He.

4.2. 4He+n+n continuum

For the study of the contiuum of 6He, we used the same NN
potential we used in the previous section, which allows our
results to reach convergence in the HO expansions within

~N 13max (the largest model space currently feasible).
We solve equations (54) using the corresponding

asymptotic conditions (67) in order to obtained the three-body
phase shifts for the =p  J 0 , 1 and 2± channels. The phase
shifts can be extracted either from the diagonal elements of
the scattering matrix (diagonal phase shifts) or from its
diagonalization (eigenphase shifts), however, when large off-
diagonal couplings are present, the use of eigenphase shifts is
more appropriate.

From the behavior of the phase shifts it is possible to
identify the presence of resonances in the different channels.
In figure 22, we show in the left-hand panel the positive and
negative parity eigenphase shifts as a function of the kinetic
energy Ekin with respect to the two-neutron emission thresh-
old, while in the right hand panel, we show the energy
spectrum for 6He, the energies and widths of the resonances
were extracted from the phase shifts obtained for the
corresponding channels.

We found several resonances, in particular we found two
resonances in the +2 channel, which include the well-known

Figure 21. Probability distribution (left) and its contour diagram (right) for the main component of the 4He+n+n relative motion wave
function for the =p +J T 0 1 ground state. The quantum numbers corresponding to this component are = = = =S L ℓ ℓ 0x y . Here

h=r 2nn nn and h=a ar 3 4nn nn, , are respectively the distance between the two neutrons and the distance between the c.m. of 4He and
that of the two neutrons. Reproduced with permission from [120]. Copyright American Physical Society 2013.
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narrow +21 and the recently measured broader +22 . Additional
resonances were located in the -2 , -0 and +1 channels.
However, we did not find a resonance in the -1 channel, and
therefore our results do not support the idea that the accu-
mulation of dipole strength at low energy is originated by a
three-body resonance in this channel.

5. The 7Be p;γð Þ8B radiative capture

The core temperature of the Sun can be determined with high
accuracy through measurements of the 8B neutrino flux,
currently known with a ~9% precision [158]. An important
input in modeling this flux are the rates of the 3He(a g, )7Be
and the 7Be( gp, )8B radiative capture reactions [159, 160].
The 7Be( gp, )8B reaction constitutes the final step of the
nucleosynthetic chain leading to 8B. At solar energies this
reaction proceeds by external, predominantly nonresonant E1,
S- and D-wave capture into the weakly bound g.s. of 8B.
Experimental determinations of the 7Be( gp, )8B capture
include direct measurements with proton beams on 7Be tar-
gets [161–164] as well as indirect measurements through the
breakup of a 8B projectile into 7Be and proton in the Coulomb
field of a heavy target [165–169]. Theoretical calculations
needed to extrapolate the measured S-factor to the astro-
physically relevant Gamow energy were performed with
several methods: the R-matrix parametrization [170], the
potential model [171–173], microscopic cluster models [174–
176] and also using the ab initio NCSM wave functions for
the 8B bound state [177]. The most recent evaluation of the
7Be( gp, )8B S-factor (proportional to the cross section) at
zero energy, S 017 ( ), has a ∼10% error dominated by the
uncertainty in theory [159, 160].

We performed many-body calculations of the 7Be
( gp, )8B capture within the NCSM/RGM starting from a NN

interaction that describes two-nucleon properties with a high
accuracy [178]. In particular, we used an SRG evolved chiral
N3LO NN [82] and chose the SRG evolution parameter Λ so
that the experimental separation energy (s.e.) of the 8B
weakly bound +2 g.s. with respect to the 7Be+p is reproduced
in the largest-space calculation that we were able to reach. We
note that for the calculation of the low-energy behavior of the
S17 S-factor, a correct s.e. is crucial. Using the five lowest
eigenstates of 7Be (i.e., -3 2 g.s. and - - -1 2 , 7 2 , 5 21 and

-5 22 excited states) in the =N 10max model space and sol-
ving the NCSM/RGM equations with bound-state boundary
conditions we were able to reproduce experimental s.e. for
L = 1.86 fm−1.

Figure 22. In the left, calculated He4 +n+n (a) positive- and (b) negative-parity attractive eigenphase shifts as a function of the kinetic energy
Ekin with respect to the two-neutron emission threshold. In the right, energy spectrum obtained from those phase shifts, compared to the most
recent experimental spectrum [157]. Reproduced with permission from [156]. Copyright American Physical Society 2014.

Figure 23. Dominant P-wave components of the +2 8B g.s. wave
function for =N 10max and  W = 18 MeV, using the SRG-N3LO
NN potential with L = 1.86 fm−1. The NCSM/RGM calculation
includes 7Be g.s. and -1 2 , -7 2 , -5 21 and -5 22 excited states.
Reproduced with permission from [178]. Copyright Elsevier 2011.
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In figure 23, we plot the most significant components of
the radial wave functions c r( ) for the +2 g.s. of 8B. The
dominant component is clearly the channel-spin =s 2
P-wave of the 7Be(g.s.)-p that extends to a distance far
beyond the plotted range. Remarkably, we notice a substantial
contribution from the 7Be -- p5 22( ) P-wave in the channel
spin =s 2. (The other possible =s 3 P-wave configuration is
negligible.) At the same time, the 7Be -5 22 state is dominated
by a 6Li-p channel-spin =s 3 2 P-wave configuration.
Within the NCSM framework relevant to the present calcu-
lations this was shown (for the mirror 7Li-n system) in [179].
Therefore, such a large contribution of the =s 2 7Be

-- p5 22( ) P-wave to the 8B g.s. seems to indicate the pre-
sence of two antiparallel protons outside of a 6Li core, and
that their exchanges are important. Clearly, for a realistic
description of the 8B g.s., this state must be taken into
account.

Next, using the same NN interaction, we solve the
NCSM/RGM equations with scattering-state boundary con-
ditions for a chosen range of energies and obtain scattering
wave functions and the scattering matrix. The resulting phase
shifts and cross sections are displayed in figure 24. All
energies are in the c.m.. We find several P-wave resonances
in the considered energy range. The first +1 resonance, man-
ifested in both the elastic and inelastic cross sections, corre-
sponds to the experimental 8B +1 state at =E 0.77 MeVx

(0.63MeV above the p-7Be threshold) [150]. The +3 reso-
nance, responsible for the peak in the elastic cross section,

corresponds to the experimental 8B +3 state at
=E 2.32 MeVx . However, we also find a low-lying +0 and

additional +1 and +2 resonances that can be distinguished in
the inelastic cross section. In particular, the =s 1 P-wave +2
resonance is clearly visible. There is also an =s 2 P-wave +2
resonance with some impact on the elastic cross section.
These resonances are not included in the current =A 8
evaluation [150]. We note, however, that the authors of the
recent [180] do claim observation of low-lying +0 and +2
resonances based on an R-matrix analysis of their p-7Be
scattering experiment. Their suggested +0 resonance at
1.9 MeV is quite close to the calculated +0 energy of the
present work.

With the resulting bound- and scattering-state wave
functions that are properly orthonormalized and anti-
symmetrized, we calculate the 7Be(p, γ)8B radiative capture
using a one-body E1 transition operator. We use the one-body
E1 operator defined in equation (77) that includes the leading
effects of the meson-exchange currents through the Siegert’s
theorem. The resulting S17 astrophysical factor is compared to
several experimental data sets in figure 25. In the data, one
can see also the contribution from the +1 resonance due to the
M1 capture that does not contribute to a theoretical calcul-
ation outside of the resonance and is negligible at astro-
physical energies [159, 160]. Our calculated S-factor is
somewhat lower than the recent Junghans data [164] but the
shape reproduces closely the trend of the GSI data [168, 169],
which were extracted from Coulomb breakup. The shape is
also quite similar to that obtained within the microscopic
three-cluster model [176] (see the dashed line in figure 25(a))
used, after scaling to the data, in the most recent S17 eva-
luation [159]. The contributions from the initial -1 , -2 and -3
partial waves are shown in panel (b) of figure 25.

An interesting feature of the S-factor is its flattening
around 1.5MeV. As seen in figure 25(b), this phenomenon is
due to the S-wave contribution that dominates the = -J 2i and
-1 partial waves at low energies. The increase of flattening
with the number of 7Be eigenstates included in the calcul-
ation, see figure 5 in [178], indicates that this is an effect due
to the many-body correlations. This finding corroborates the
observations of [176], where the flattening was attributed to
the deformation of the 7Be core. We also note that the flat-
tening found in the present work is slightly larger than that
obtained in the microscopic three-cluster model of [176].
Presumably, this is because in the three-cluster model the 7Be
structure was assumed to be of 3He–4He nature only, while
the NCSM wave functions include in addition 6Li-p config-
urations, particularly for the 5/2−2

7Be state, as discussed
earlier.

The convergence of our results with respect to the size of
the HO model space was assessed by means of calculations
up to =N 12max within the importance-truncated NCSM with
(due to computational limitations) only the first three-eigen-
states of 7Be. The =N 10max and 12 S-factors are very close.
As for the convergence in the number of 7Be states, we
explored it by means of calculations including up to 8 7Be
eigenstates in a =N 8max basis (larger Nmax values were out
of reach with more then five 7Be states). Based on this

Figure 24. P-wave (a) diagonal phase shifts of p-7Be elastic
scattering and the inelastic 7Be(p, ¢p )7Be(1/2−) cross section (b).
Calculations as described in figure 23. Reproduced with permission
from [178]. Copyright Elsevier 2011.
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analysis, we estimated the uncertainty of the obtained S-fac-
tor. Finally, our calculated =S 0 19.4 717 ( ) ( ) eVb is on the
lower side, but consistent with the latest evaluation

 20.8 0.7 expt 1.4 theory( ) ( ) eVb [159, 160].
The calculations discussed in this section and published

in [178] can and will be further improved. In particular, we
should include the 3N interaction, both the chiral 3N as well
as the induced 3N from the SRG transformation. This is a
neccessary step towards an ab initio description. As demon-
strated in section 3.2 in calculations for 9Be, we have now
developed the capability to do that. Also, to further improve
the convergence of the capture calculations, we should utilize
the NCSMC expansion of the wave functions rather than just
the NCSM/RGM. Again, this has been developed including
the capability to calculate the E1 and M1 contributions to the
capture S-factor as discussed in sections 2.6 and 2.9.

Concerning the related reaction, 3He(a g, )7Be, we have
already performed calculations of its S-factor using similarly
the SRG evolved chiral EFT NN interaction this time, how-
ever, within the NCSMC formalism [153]. Actually, for the
3He–4He system, we would be unable to achieve any rea-
sonable convergence within the NCSM/RGM alone for
technical reasons. The application of the NCSMC becomes
unavoidable in this case. We plan to include the 3N interac-
tions also for this reaction in the future, most likely using the
normal-ordering approximation.

6. The 3H d;nð Þ4He fusion

The 3H(d, n)4He and 3He(d, p)4He reactions are leading
processes in the primordial formation of the very light ele-
ments (mass number, A 7), affecting the predictions of Big
Bang nuleosynthesis for light nucleus abundances [181]. With
its low activation energy and high yield, 3H(d, n)4He is also
the easiest reaction to achieve on Earth, and is pursued by
research facilities directed toward developing fusion power by
either magnetic (e.g. ITER) or inertial (e.g. NIF) confinement.
The cross section for the +d H3 fusion is well known

experimentally, while more uncertain is the situation for the
branch of this reaction, 3H gd, n 4( ) He that produces 17.9 MeV
γ-rays [182, 183] and that is being considered as a possible
plasma diagnostics in modern fusion experiments. Larger
uncertainties dominate also the 3He(d, p)4He reaction that is
known for presenting considerable electron-screening effects
at energies accessible by beam-target experiments. Here, the
electrons bound to the target, usually a neutral atom or
molecule, lead to increasing values for the reaction-rate with
decreasing energy, effectively preventing direct access to the
astrophysically relevant bare-nucleus cross section. Con-
sensus on the physics mechanism behind this enhancement is
not been reached yet [184], largely because of the difficulty of
determining the absolute value of the bare cross section.

Past theoretical investigations of these fusion reactions
include various R-matrix analyses of experimental data at
higher energies [185–188] as well as microscopic calculations
with phenomenological interactions [189–191]. However, in
view of remaining experimental challenges and the large role
played by theory in extracting the astrophysically important
information, it is highly desirable to achieve a microscopic
description of the 3H(d, n)4He and 3He(d, p)4He fusion
reactions that encompasses the dynamic of all five nucleons
and is based on the fundamental underlying physics: the
realistic interactions among nucleons and the structure of the
fusing nuclei.

We made the first step in this direction by performing
NCSM/RGM calculations using a realistic NN interaction
[192]. We started from the SRG-evolved chiral N3LO NN
interaction [82] with L = 1.5 fm−1, for which we reproduce
the experimental Q-values of both reactions within 1%. This
interaction, at the same time, provides an accurate description
of the two-nucleon scattering data and of the deuteron prop-
erties. The NCSM/RGM calculations were performed start-
ing from eigenstates of the interacting nuclei, i.e. 2H, 3H, 3He
and 4He, calculated within the NCSM with the above NN
interaction. Important for determining the magnitude of the
fusion reactions considered here is the Coulomb interaction.
The NCSM/RGM (and the NCSMC) allows for a proper

Figure 25. Calculated 7Be(p, γ)8B S-factor as function of the energy in the c.m. compared to data and the microscopic cluster-model
calculations of [176] (blue dashed line) with the Minnesota (MN) interaction (a). Only E1 transitions were considered. Initial-state partial
wave contributions are shown in panel (b). Calculation as described in figure 23. Reproduced with permission from [178]. Copyright
Elsevier 2011.
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handling of such interaction (particularly its long-range
component, which is treated exactly), as described in
section 2.4 (see equations (14)–(16)). Further, even though
the fusion proceeds at very low energies, the deformation and
virtual breakup of the reacting nuclei cannot be disregarded,
particularly for the weakly bound deuteron. A proper treat-
ment of deuteron-breakup effects requires the inclusion of
three-body continuum states (np-nucleus) and is very chal-
lenging. In the first fusion application we limited ourselves to
binary-cluster channels and approximated virtual three-body
breakup effects by discretizing the continuum with excited

deuteron pseudostates, strategy that proved successful in our
d-4He calculations as demonstrated in section 3.1.

Also in section 3.1, we discussed the nucleon-4He scat-
tering phase shifts calculated by considering only the
n(p)-4He binary cluster channels. Here, we extend those cal-
culations by including the coupling to the d-3H (d-3He)
channels. The impact of this coupling can be judged (in the
n-4He case) from figure 26. Besides a slight shift of the P-
wave resonances to lower energies, the most striking feature
is the appearance of a resonance in the D2

3 2 partial wave,
just above the d-3H (d-3He) threshold. The further inclusion
of distortions of the deuteron via an 2H 3S1-

3D1 pseudostate
*d( ), enhances this resonance. By investigating also the d-3H

(3He) scattering, we find a resonance in the S4
3 2 channel, i.e.,

an S-wave between the d and 3H(3He) with their spins
aligned, at the same energy where we observe a resonance in
the D2

3 2 n(p)-4He phase shift. This resonance is further
enhanced by distortions of the deuteron. On the contrary,
when the spins of the d and 3H(3He) are opposite, i.e., in the
S2

1 2 channel, the Pauli blocking causes a repulsion between
the two nuclei.

The 3H(d, n)4He and 3He(d, p)4He fusion (or more
accurately transfer) reactions cross sections are then strongly
enhanced near the resonance energy (experimentally at
50 keV and 200 keV, respectively). The fusion at the reso-
nance proceeds from the S4

3 2 d-
3H(3He) channel to the D2

3 2

n(p)-4He channel with a realease of large amount of energy
due to the dramatic difference in the threshold energies of the
two binary-cluster systems (17.6MeV and 18.35MeV,
respectively).

Our calculated S-factors (proportional to the cross
sections) are shown in figures 27 and 28. In paticular,
figure 27 presents results obtained for the 3He d p, 4( ) He S-
factor. The deuteron deformation and its virtual breakup,
approximated by means of d pseudostates, play a crucial role.
The S-factor increases dramatically with the number of
pseudostates until convergence is reached for * *+ ¢9d 5d .

Figure 26. Calculated elastic n-4He phase shifts. The dashed (dotted)
lines are obtained with (without) coupling of the n(p)-4He and d-3H
(3He) channels and all nuclei in their g.s. The full lines represent
calculations that further couple channels with one S D3

1
3

1– deuteron
pseudostate. The SRG-N3LO NN potential with L = 1.5 fm−1 and
the HO space with =N 12max ( =N 13max for the negative parity)
and  W = 14 MeV were used. Reproduced with permission from
[192]. Copyright American Physical Society 2012.

Figure 27. Calculated S-factor of the 3He d p, 4( ) He reaction
compared to experimental data. Convergence with the number of 2H
pseudostates in the 3S1-

3D1 (d
*) and 3D2 ( *¢d ) channels. Parameters

as in figure 26. Reproduced with permission from [192]. Copyright
American Physical Society 2012.

Figure 28. Calculated 3H d, n 4( ) He S-factor compared to exper-
imental data. Convergence with Nmax obtained for the SRG-N3LO
NN potential with L = 1.45 fm−1 at  W = 14 MeV. Reproduced
with permission from [192]. Copyright American Physical
Society 2012.
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The dependence upon the HO basis size is illustrated by the
3H d, n 4( ) He results of figure 28. The convergence is satis-
factory and we expect that an =N 15max calculation, which is
currently out of reach, would not yield significantly different
results. The experimental position of the 3He d, p 4( ) He S-
factor is reproduced within few tens of keV. Correspondingly,
we find an overall fair agreement with experiment for this
reaction, if we exclude the region at very low energy, where
the accelerator data are enhanced by laboratory electron
screening. The 3H d, n 4( ) He S-factor is not described as well
with L = 1.5 fm−1, see figure 2(a) in [192]. Due to the very
low activation energy of this reaction, the S-factor (particu-
larly peak position and height) is extremely sensitive to
higher-order effects in the nuclear interaction, such as 3N
force (not included in this calculation) and missing isospin-
breaking effects in the integration kernels (which are obtained
in the isospin formalism). To compensate for these missing
higher-order effects in the interaction and reproduce the
position of the 3H d, n 4( ) He S-factor, we performed additional
calculations using lower Λ values. This led to the theoretical
S-factor of figure 28 (obtained for L = 1.45 fm−1), that is in
overall better agreement with data, although it presents a
slightly narrower and somewhat overestimated peak. This
calculation would suggest that some electron-screening
enhancement could also be present in the 3H d, n 4( ) He mea-
sured S factor below »10 keV c.m. energy. However, these
results cannot be considered conclusive until more accurate
calculations using a complete nuclear interaction are
performed.

Overall, however, the results discussed above and pub-
lished in [192] are promising and pave the way for micro-
scopic investigations of polarization and electron screening

effects, of the 3H(d, gn)4He bremsstrahlung and other reac-
tions relevant to fusion research that are less well understood
or hard to measure. Due to the rapid progress in the for-
mulation and implementation of our formalism, we are in a
position to perform significantly improved calculations for
these reactions within the NCSMC formalism outlined in the
previous sections of this paper. By coupling the NCSM/
RGM binary-cluster basis with the NCSM eigenstates for 5He
(5Li) will take into account more five-nucleon correlations
and polarization of not just the deuteron but also of the 3H
(3He) and the 4He at and near the resonance energy and
further improve the converence of the calculations compared
to those discussed in this section. Further, since we developed
the capability to include the 3N interaction in the NCSMC
(for both the single-nucleon and the deuteron projectiles) we
are in a position to calculate the 3H(d, n)4He and 3He(d, p)4He
fusion with a realistic chiral EFT NN+3N Hamiltonian.

Work in this direction is under way with the first pre-
liminary results published in [190]. In figure 29, we present
the n-4He scattering phase shifts obtained within the NCSMC
wih the chiral NN+3N interaction with L = 500 MeVcut,3N .
The phase shifts are comparable to those shown in figure 26.
The difference is, however, that now we are not fine-tuning
the SRG parameter Λ. We selected a standard value, L = 2
fm−1, and checked that phase shift and resonance position
results are less sensitive to variations of the Λ compared to the
NN-only case of figure 26. This was done in particular by
repeating calculations using L = 1.7 fm−1. More on the SRG
Λ sensitivity of nucleon-4He phase shifts, see figure 6 and the
discussion in [116]. Despite the fairly small size of the HO
basis, the calculation is in close agreement with experiment.
In particular, besides a slight shift of the P-wave resonances
to lower energies, the inclusion of d+3H channels leads to the
appearance of a resonance in the D2

3 2 partial wave, just
above the d+3H threshold. This is the exit channel of the
deuterium-tritium fusion. What is in particular encouraging is
the fact that the resonance appears close to the experimental
resonance energy. It is a consequnce of the chiral NN+3N
interaction rather than of an SRG fine-tuning.

It should be noted that the (d, p), (d, n) transfer reaction
formalism can be readily generalized for >A 5 masses. We
took the first steps in that direction and investigated the 7Li(d,
p)8Li reaction witin the NCSM/RGM [194].

7. Conclusions and outlook

Ab initio theory of light and medium mass nuclei is a rapidly
evolving field with many exciting advances in the past few
years. Several new methods have been introduced capable to
describe bound-state properties of nuclei as heavy as nickel.
Similarly, there has been a significant progress in calculations
of unbound states, nuclear scattering and reactions, mostly in
light nuclei so far.

In this contribution, we reviewed the recently introduced
unified approach to nuclear bound and continuum states based
on the coupling of a square-integrable basis (A-nucleon
NCSM eigenstates), suitable for the description of many-

Figure 29. Preliminary results (lines) for the n-4He scattering phase
shifts from zero to 24 MeV in the center-of-mass energy compared to
an R-matrix anaysis of experiment (crosses). All calculations were
performed at =N 9max within the NCSMC including n+4He(g.s.)
and d+3H(g.s.) continuous basis states with up to two 2H
pseudostates in the 3S1-

3D1 (d
*) and 3D2 ( *¢d ) channels, as well as

square-integrable discrete eigenstates of the compound 5He nucleus.
The chiral NN+3N interaction SRG evolved with L = 2 fm–1 and
 W = 20 MeV were used.
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nucleon correlations, and a continuous basis (NCSM/RGM
cluster states) suitable for a description of long-range corre-
lations, cluster correlations and scattering. This ab initio
method, the NCSMC, is capable of describing efficiently: (i)
short- and medium-range NN correlations thanks to the large
HO basis expansions used to obtain the NCSM eigenstates,
and (ii) long-range cluster correlations thanks to the NCSM/
RGM cluster-basis expansion.

We demonstrated the potential of the NCSMC in calcu-
lations of nucleon scattering on 4He, in highlighting the
connection between the deuteron scattering on 4He and the
structure of 6Li, and in studying the continuum and 3N effects
in the structure of 9Be. We further presented the extension of
the formalism to three-body cluster systems and discussed in
detail calculations of bound and resonance states of the
Borromean halo nucleus 6He.

We introduced in this paper the formalism for electro-
magnetic transition calculations within the NCSMC and
reviewed our first application to reactions important for
astrophysics, the 7Be( gp, )8B radiative capture. We also
discussed our past and ongoing calculations of the 3H(d,
n)4He transfer reaction relevant to future energy generation on
Earth.

The NCSMC is a versatile method with many applica-
tions. We are developing the formalism needed to study
transfer (d, p), (d, n) and (p, t) reactions frequently used in
radioactive beam experiments. We will extend the calcula-
tions throughout the p-shell and light sd-shell nuclei and
investigate ( gp, ), (a g, ) and ( gn, ) capture reactions relevant
to nuclear astrophysics. We will investigate the brems-
strahlung process 3H( gd, n )4He relevant to the fusion
research. We will calculate weak decays relevant to testing of
fundamental symmetries such as the 6He beta decay that is
being measured with high precision at present.

Our long-term goals are then studies of systems with
three-body clusters, in particular the Borromean exotic
nucleus 11Li, and in general reactions with three-body final
states such as 3He(3He, 2p)4He. Ultimate goal for the for-
seeable future is to study alpha clustering, e.g., in 12C and
16O, and reactions involving 4He, e.g., 8Be(a g, )12C, 12C
(a g, )16O important for stellar burning, the 11B( ap, )8Be
aneutron reaction explored as a candidate for the future fusion
energy generation as well as the 13C(a, n)16O relevant to the
i- and s-processes. The first two of these reactions were
identified as one of the drivers of exascale computing [195].
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