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Abstract
Our understanding of angular–momentum-projection goes beyond quantum-number restoration
for symmetry-violated states. The angular–momentum-projection method can be viewed as an
efficient way of truncating the shell-model space which is otherwise too large to handle. It
defines a transformation from the intrinsic system, where dominant excitation modes in the low-
energy region are identified with the concept of spontaneous symmetry breaking, to the
laboratory frame with well-organized configuration states according to excitations. An energy-
dictated, physically-guided shell-model truncation can then be carried out within the projected
space and the Hamiltonian is thereby diagonalized in a compact basis. The present article
reviews the theory of angular–momentum-projection applied in the nuclear many-body problem.
Angular momentum projection emerges naturally if a deformed state is treated quantum-
mechanically. To demonstrate how different physical problems in heavy, deformed nuclei can be
efficiently described with different truncation schemes, we introduce the projected shell model
and show examples of calculation in a basis with axial symmetry, a basis with triaxiality, and a
basis with both quasiparticle and phonon excitations. Technical details of how to calculate the
projected matrix elements and how to build a workable model with the projection techniques are
given in the appendix.

Keywords: shell model, angular momentum projection, deformed basis

1. Introduction

The nuclear shell model, for which we refer to the conven-
tional shell model based on the spherical basis, is thought to
be the most fundamental way of describing many-nucleon
systems [1]. To compare with many other nuclear many-body
techniques [2] a shell-model calculation is conceptually
simple and straightforward: one builds a many-body config-
uration basis, chooses a reasonable Hamiltonian for that basis,
and then performs a numerical diagonalization. Once a calc-
ulation is done, one expects to get, at least in principle, all
types of low-energy excitations. In practice, however, using

such a shell model to study arbitrarily heavy, deformed nuclei
is impossible because of the huge dimensionality of the
configuration space and related problems. Even with todayʼs
computer power, standard shell-model diagonalizations are
usually done up to the mass-70 region, for which dimension
of the configuration space may reach one billion. For heavy
mass regions, a general application of the spherical shell
model is out of question and one can only perform selected
calculations for nuclei lying not far from the closed shells.

To study heavy, deformed nuclei where collective motion
is the dominant excitation mode in the low-energy region [3],
one relies mainly on the mean-field approximations, in which
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the concept of spontaneous symmetry breaking is applied
[2, 4, 5]. The mean-field approximations, such as the Hartree–
Fock, the BCS, or the Hartree–Bogolyubov method, usually
violate the invariance of the system. In particular, a deformed
basis is associated with breaking of rotational symmetry and
angular momentum in a deformed basis is no longer a con-
served quantum number. Although in many circumstances
interesting physics can be discussed in deformed bases
attached to the system (the intrinsic frame) [5], the broken
rotational symmetry should, in principle, be restored if the
system in question is not of a macroscopic size. One common
method to restore the breaking rotational symmetry is through
angular–momentum-projection [2], which corresponds to a
transformation from the intrinsic frame to the laboratory
frame where observables are defined.

There are two different kinds of basic philosophy as far
as the angular–momentum-projection is concerned. The first
one aims mainly to restore the angular-momentum quantum
number violated in the deformed mean-filed wave function
and discuss the related effects. For example, exact (three-
dimensional) angular–momentum-projection from the
cranked Hartree–Fock-Bogoliubov (HFB) wave functions in
heavy nuclei was performed [6, 7] to investigate the validity
of the Kamlah expansion [8] which has been widely used in
the literature for approximate projection. Angular–momen-
tum-projection together with particle-number-projection
calculation was carried out [9, 10] for the cranked HFB self-
consistent solution to overcome the difficulty of a mean field
theory in the calculation of electromagnetic transition rates. It
was suggested [10] that the construction of exact eigenstates
of angular momentum paves a way for the calculation of
interband and intraband electromagnetic transition rates,
which is not possible for wave functions that are not eigen-
states of angular momentum. In another example, angular–
momentum-projection was applied to calculate B E3( ) trans-
ition probabilities of spherical or soft nuclei with the density-
dependent Gogny force [11, 12]. Much enhanced transition
probabilities were obtained as compared to the unprojected
results with a rotational-model assumption [11], indicating a
gain of correlation. Thus it is important to emphasize that,
while the violated quantum number is restored, additional
correlations are gained through angular–momentum-projec-
tion. Therefore, one usually refers the method to beyond-
mean-field.

Considerable progress has recently been made to com-
bine the projection calculation with generator coordinate
method (GCM) to describe shape variations and low-lying
collective excitations (see, for example [13]). These beyond-
mean-filed methods, which represent the state-of-the-art
many-body technique, start from very different (non-relati-
vistic or relativistic) effective interactions but carry out
similar symmetry restoration and configuration mixing pro-
cess for their respective mean-filed solutions. The discussed
physics has been concentrated on low-spin, low-excited states
in doubly-even nuclei. As for instance, [14] used the Gogny
D1S interaction and studied coexistence of multiple shapes in
the N=Z nucleus 80Zr. Reference [15] started from a Sky-
rme energy density functional with the constrained results

of axial deformation, and performed angular–momentum-
projection and configuration mixing calculation for the neu-
tron-deficient lead region where shape coexistence is well
known. Only qualitative agreements with experimental data
were achieved possibly due to the improper single-particle
states generated by the Skyrme force [15]. In another example
[16], neutron-deficient Krypton isotopes were studied by the
beyond relativistic mean-filed method generated by the PC–
PK1 force plus BCS model. Configuration mixing was per-
formed for both particle-number and angular-momentum
projected axially-deformed states in the content of GCM.
Compared with those previously calculated results with the
Gogny and the Skyrme forces, it was concluded [16] that the
results obtained from different types of forces are similar.

The second basic philosophy with angular–momentum-
projection is different. It views the angular–momentum-pro-
jection as an efficient way of truncating the shell model space
which is otherwise too large to handle. From the view point of
quantum mechanics, it does not matter how to prepare a
model basis, it is however important in practice to use the
most efficient one. If one considers the fact that except for a
few lying in the vicinity of shell closures, most nuclei in the
nuclear chart are deformed, one should recognize that using a
spherical basis to describe deformed nuclei is not an optimal
choice. A deformed basis with a deformation closer to the
‘true’ deformation of a nucleus should be more economic.
Furthermore, a deformed basis incorporates efficiently
important correlations through the concept of spontaneous
symmetry breaking. The violated quantum numbers in the
wave functions can be recovered by the projection technique.
The shell-model diagonalization is then carried out in the
projected basis defined in the laboratory frame. Thus
regarding shell-model calculations for arbitrarily heavy
nuclei, working with deformed bases is a wise choice, and
very likely the only choice, as far as the computation feasi-
bility is concerned.

Moreover, feasibility in computation is not our only
concern. To extract physics from the vast amount of computer
output of a large-scale shell-model calculation [1] is generally
difficult. It is thus very desirable to use an optimal basis,
which has a classification scheme in the sense that a simple
configuration corresponds approximately to a low excitation
mode of the nucleus. Working in an optimal basis not only
can simplify the calculation, but also make physical inter-
pretation more easy and transparent. Even though an optimal
basis is not used in the initial shell-model calculation, one
transfers the shell-model results to it in order to discuss the
physics [17, 18].

A deformed basis consists of an optimal set of basis
states for a deformed nucleus. In the long history of the shell
model, Elliott was the first to point out the advantage of a
deformed (intrinsic) many-body basis and developed the
SU(3) shell model [19] for sd-shell nuclei. In this model, the
classification of basis states and their projection onto good
angular momenta can be carried out using the group theor-
etical method. It works nicely so long as the spin–orbit force
is weak (the L–S coupling scheme). In heavier nuclei, where
the presence of a strong spin–orbit force (the j–j coupling
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scheme) is essential for the correct shell closures (or magic
numbers), the SU(3) scheme is no longer valid. For such
systems, we may resort to the Nilsson model [20] (more
precisely the Nilsson+BCS scheme if one takes the strong
pairing correlations into account) and project numerically the
deformed (multi-quasiparticle) basis onto good angular
momenta (and particle number). In this way, we come to the
basic idea of the projected shell model (PSM) [21] approach
that has been proven successful in describing both low-lying
and high-spin states of deformed nuclei. The PSM can be
considered to be a natural extension of the Elliott SU(3) shell
model to heavier systems, which makes shell-model calcul-
ation for heavy, deformed nuclei feasible [22–25]. Models
based on the second philosophy were developed by the
Tübingen group [26–28].

It has been well established that for a description of
excitation modes including the collective rotations and qua-
siparticle (qp) excitations associated with a well-deformed
energy minimum, the PSM introduces a very efficient trun-
cation scheme. Diagonalization for a heavy nucleus can be
done almost instantly with a personal computer, yet the

results are often satisfactory. The reason for the success is
because the major part of the essential correlations in nuclei
has already been built in the basis through the use of a
properly-chosen deformed basis. Therefore, a small qp con-
figuration space built with only a few single-particle orbits
around the Fermi surface can already span a very good basis
for low-energy excitations. Note that each of the configura-
tions in the PSM basis is a complex mixture of multi-shell
configurations of the spherical shell-model space. Although
the final dimension for diagonalization in the PSM approach
is small, it is huge in terms of conventional shell-model
configurations. We shall see an example next to show the
efficiency of working with a deformed basis for shell-model
calculations.

2. Spherical basis versus deformed basis

For a shell-model calculation, the results should in principle
not depend on how the model basis is prepared. We take an
example to show that a same description for energy levels and
electromagnetic transitions can be achieved by using both
spherical and deformed bases, as far as the yrast spectrum is
concerned. 48Cr is a nucleus for which a large-scale shell-
model calculation based on a spherical basis can be done, yet
exhibits remarkable high-spin phenomena usually observed in
heavy nuclei, such as large deformation, rotational spectrum,
and the backbending in moment of inertia in which the reg-
ular rotational band is suddenly disturbed at the angular-
momenta I=10–12 [29]. Caurier et al demonstrated [30] that
the pf-shell model (pf-SM) can provide an exact solution of
the Hamiltonian within the pf-shell, and their SM results for
48Cr indeed reached an excellent agreement with the known
experimental data [29].

However, in the pf-SM calculation in [30], or in spherical
shell-model calculations in general, a single shell-model
configuration does not correspond to any real excitation mode
of a deformed nucleus such as 48Cr, and therefore millions of
many-body basis states are necessary even to represent the
lowest eigenstate of the Hamiltonian. As a result, the physical
insight is lost and interpretation of the result becomes diffi-
cult. In other words, in spherical shell-model calculations,
angular momentum is conserved but the physical insight,
associated with the existence of an optimal basis with the
intrinsic states, can not be extracted. Therefore, in the same
collaboration [30], cranked HFB calculations with the finite-
range density-dependent Gogny force were also performed
and the physics of 48Cr was interpreted in the intrinsic frame,
which however does not conserve angular momentum.

It is desirable to have a method that can combine
advantages of the above two approaches, namely, the mean-
filed theory and the (spherical) shell model. Such a method
starts from a deformed solution obtained in the intrinsic basis
similar as the HFB theory in [30], but transforms the basis
states from the intrinsic to the laboratory frame through
angular–momentum-projection, builds configurations in the
projected space, and then carries out shell-model diag-
onalization in that new basis defined in the laboratory frame.

Figure 1. Top: γ-ray transition energies E E I E I 2( ) ( )= - -g as
functions of spin. Bottom: B(E2) values as functions of spin. The
experimental data are taken from [29], and the results of pf-SM from
[30] and those from the PSM and GCM from [31]. This figure is
reconstructed from figures 1 and 2 of [31] and reproduced with
permission. Copyright APS 1991.
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The latest step is the shell-model diagonalization as in [30];
the difference is that the size of the new, angular-momentum-
projected basis is much smaller than the original pf-SM one.
As we show below, the PSM approach provides such an
example [31].

Before we discuss details of how an angular–momentum-
projection calculation is carried out, let us compare the results
obtained from three different model-calculations for 48Cr. In
the upper plot of figure 1, the PSM results along the yrast
band of 48Cr for the γ-ray transition energies,
E E I E I 2( ) ( )= - -g , together with those of the pf-SM in
[30], are compared with the experimental data [29]. In
figure 1, there is another set of results obtained by the GCM
[32] with the same Hamiltonian as used in the pf-SM calc-
ulation [30]. One sees that the curves in the comparison are
bunched together over the entire spin region, indicating an
excellent agreement of the three theories with each other, and
with the data. The sudden drop in Eγ occurring around spin
I=10 and 12 corresponds to the experimentally-observed
backbending in the yrast band of 48Cr.

In the lower plot of figure 1, the theoretical results for
B(E2) are compared with the data [29]. All the three theories
used the same effective charges (0.5e for neutrons and 1.5e
for protons). Again, one sees that theories agree well not only
with each other but also with the data. The B(E2) values
decrease monotonously after spin I=6. This implies a
monotonous decrease of the intrinsic Q-moment as a function
of spin, reaching finally the spherical regime at higher spins.
This feature was explicitly discussed in [30] within the
cranked HFB framework.

The above results indicate that the PSM, starting from a
deformed intrinsic basis with angular–momentum-projection,
is a reasonable shell-model truncation scheme as it reproduces
the result of the pf-SM very well and describes the same
physics about 48Cr. Similarly, there has been another example
for the superdeformed band of the lighter N=Z nucleus 36Ar
[33, 34], for which the shell models based on spherical and
deformed bases work equally well [35, 36].

There is of course one other question: how much the
shell-model results depend on the interaction? The PSM
results shown in figure 1 uses a schematic Hamiltonian [31]
(see discussions in section 4) while the pf-SM the Hamilto-
nian based on the Kuo–Brown G matrix [37] known as the
KB3 effective force [38]. The answer to the question how the
PSM can obtain a similar result was discussed in [21]. It was
shown that the rotational feature of the band energies does not
depend on details of the Hamiltonian, and that any (rotation
invariant) Hamiltonian, which delivers similar values for (1)
the fluctuation of the angular momentum, (2) the Peierls–
Yoccoz moment of inertia [2], and (3) the qp excitation
energies, will lead essentially to the same result. Among the
above three conditions, the first two are for the ground state
properties that determine the scaling of band energies while
the last one ensures the correct relative position of various
bands reflecting the shell filling of the nucleus in question.
Theories that treat angular momentum properly, either within
the large-scale shell-models or with the angular–momentum-
projection, will likely satisfy the first two conditions. To

satisfy the last condition, one may introduce the monopole
corrections [39] to the effective interaction to obtain correct
single-particle states for large-scale SM calculations, or adopt
well-established single-particle states that are empirically fit-
ted to experimental data (such as those of the deformed
Nilsson model [40]) as a starting basis.

The use of a deformed basis for shell model calculations
can be traced back to the Elliott work [19], who was in the
early days to recognize the advantage to describe rotational
bands. Deformed mean field has been widely used in nuclear
calculations [2]. The term ‘shell model’ is used mainly for the
models based explicitly on diagonalization of (rotational-
invariant) two-body interactions, sometimes referred to as
‘spherical shell model’. Somewhat incorrectly, following the
tradition of the early 1950s of the last century, the mean-field
theory was referred to as ‘deformed shell model’ (typically in
the context of the Nilsson model). On the other hand, the term
‘beyond-mean-field’, which largely takes the advantage of
deformed basis, means ‘projection methods in the context of
the mean field approach’. These approaches usually use the
energy density functional, not a two-body Hamiltonian, and
therefore, do not belong to the shell model family.

Now let us discuss the theory of angular–momentum-
projection and use it to approach the nuclear many-body
problem.

3. Derivation of angular–momentum-projection

We first show that angular–momentum-projection emerges
naturally if a deformed state is treated fully quantum-
mechanically in the rotational space.

As the problem is related to rotation in space, we start the
discussion with the rotation group whose elements are spe-
cified by the group parameter Ω, which represents a set of
Euler angles ( , 0, 2[ ]a g p= and 0,[ ]b p= ). The explicit
form of the group element is [41]

R e e e , 1ı J ı J ı Jz y zˆ ( ) ( )ˆ ˆ ˆW = a b g- - -

where Jîʼs i x y z, ,( )= are the angular momentum operators.
Its (unitary) representation is

IM R JK D 2IJ MK
I∣ ˆ ( )∣ ( ) ( )*m n d dá W ñ = Wmn

where the symbol ∗ means the complex conjugation and
DMK

I ( )W is the D-function [41]. The D-functions form a
complete set of functions in the parameter space of Ω. For a
state IM∣m ñ belonging to the angular momentum IM, μ

designates a set of quantum numbers that specify the quantum
state uniquely, so that the following closure holds:

IM IM 1. 3
IM

∣ ∣ ( )å m mñá =
m

We need not to know details of the state IM∣m ñ, except for the
fact that it belongs to a complete set of orthonormal vectors in
a Hilbert space in which the operator (1) acts. From
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equations (2) and (3), it follows that

R IK IM D 4
M

MK
Iˆ ( )∣ ∣ ( ) ( )*ån nW ñ = ñ W

which is the multiplet relation between the states belonging to
a representation (angular momentum) I.

Now let us suppose that ∣Fñ is a deformed state that is not
an eigenstate of angular momentum. ∣Fñmay be obtained as a
solution of the above mentioned mean-field calculations. For
a rotationally-invariant Hamiltonian

R H R H , 5ˆ ( ) ˆ ˆ ( ) ˆ ( )† W W =

the following identity for the energy expectation value holds

H R HR

R R
. 6

∣ ˆ ∣
∣

∣ ˆ ( ) ˆ ˆ ( )∣
∣ ˆ ( ) ˆ ( )∣

( )
†

†
áF Fñ
áF Fñ

=
áF W W Fñ

áF W W Fñ

This means that the energy expectation value remains the
same when the state ∣Fñ is rotated in space. In other words, all
rotated states, R̂ ( )∣W Fñ, having different orientations Ω are
mutually degenerate. As R̂ ( )∣W Fñ represents states with
certain space orientation Ω, it is linearly independent of any
other state withW¢. Thus the general presentation is written by
taking a superposition of all the rotated states

F Rd . 7∣ ( ) ˆ ( )∣ ( )òYñ = W W W Fñ

Peierls and Yoccoz proposed equation (7) as an ansatz of the
wave function [42], which may be viewed a special case of
the generator-coordinate wave function of Griffin, Hill, and
Wheeler [43], with F ( )W being the generator function. F ( )W
can in principle be determined by minimizing the energy
expectation value

E
H

. 8
∣ ˆ ∣

∣
( )=

áY Yñ
áY Yñ

Solving for F ( )W is generally a nontrivial task. However,
for the present special case, one can greatly simplify the
variational procedure by making use of the completeness of
the D-functions. We can first expand the generator function
F ( )W as

F
I

F D
2 1

8
9

IMK
MK
I

MK
I

2
( ) ( ) ( )å p
W =

+
W

and then insert it into equation (7) to obtain

F P . 10
IMK

MK
I

MK
I∣ ˆ ∣ ( )åYñ = Fñ

The operator PMK
Iˆ in equation (10) is defined as

P
I

D R
2 1

8
d , 11MK

I
MK
I

2
ˆ ( ) ˆ ( ) ( )òp

=
+

W W W

which is called the angular–momentum-projection operator.

PMK
Iˆ ∣Fñ in (10) is thus the (angular–momentum) projected

state. The coefficients FMK
I in (10) play the role of the

variational parameters in place of the generator function F ( )W
in (7). Now ∣Yñ in (10) is expressed as a linear combination of

a set of states created by the operator PMK
Iˆ acting on the

deformed state ∣Fñ.
Using equation (4) and the orthogonality of the D-func-

tions [41]

D D
I

d
8

2 1
, 12MK

I
M K
I

II MM KK

2
( ) ( ) ( )*ò

p
d d dW W W =

+
¢ ¢
¢

¢ ¢ ¢

one obtains the relation

P I K IM . 13MK
I

II KK
ˆ ∣ ∣ ( )n d d n¢ ¢ñ = ñ¢ ¢

From equations (3) and (13), one can obtain its spectral
representation and the ‘sum rule’

P IM IK P, 1. 14MK
I

IM
MM
Iˆ ∣ ∣ ˆ ( )å ån n= ñá =

n

Using the spectral representation, one can easily derive the
properties for the angular–momentum-projection operator

P P P P Pand . 15MK
I

KM
I

KM
I

M K
I

II MM KK
Iˆ ˆ ˆ ˆ ˆ ( )†

d d= =¢ ¢
¢

¢ ¢ ¢

If we carry out the variational procedure with the trial
wavefunction of equation (10), it is easy to show that the
summation over I and M actually drops away due to
equations (5) and (15), and the state therefore has a sharp I
and M. Thus, it is sufficient to carry out the variational
calculation with

F P 16
K

K
I

MK
I∣ ˆ ∣ ( )åYñ = Fñ

without the summation over I and M. This means that ∣Yñ
becomes an eigenstate of angular momentum. The rotational
symmetry violated in the deformed state ∣Fñ is thus recovered
in the new state ∣Yñ.

The resulting variational equation takes the form of the
generate-coordinate equation of Griffin, Hill, and Wheeler
[43], and is an eigenvalue equation with the normalization
condition written in a nonorthogonal basis:

H EN F 0, 17a
K

KK
I

KK
I

K
I{ } ( )å - =

¢
¢ ¢ ¢

F N F 1, 17b
KK

K
I

KK
I

K
I ( )å =

¢
¢ ¢

in which the Hamiltonian matrix and norm matrix are defined
as

H HP , 18a
KK
I

KK
I∣ ˆ ˆ ∣ ( )= áF Fñ¢ ¢

N P . 18b
KK
I

KK
I∣ ˆ ∣ ( )= áF Fñ¢ ¢

Thus we have shown that solving the eigenvalue equations of
(17) is equivalent of performing the variational calculation
from which our discussion started.

It is well known that many nuclei can be viewed
approximately as an axially-deformed rotor. Therefore, it is of
practical importance to discuss the case of axial symmetry, for
which the description with angular–momentum-projection
can be much simpler. If our starting deformed state ∣Fñ is
axially symmetric, for which the relation J Kz 0

ˆ ∣ ∣Fñ = Fñ holds
where K0 is the conserved K-quantum number, the projection
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operator PMK
Iˆ in equation (11) reduces effectively to

I d
1

2
d sin e 19MK

I ı J

0

y( ) ( )ˆò b b b+
p

b-⎜ ⎟⎛
⎝

⎞
⎠

since α and γ can be integrated explicitly when evaluating the
matrix elements. This is an one-dimensional integration about
β with the small-d function [41]. Note for the case of axial
symmetry, the form of equations in (16), (17), (18) remains
the same as in the general three-dimensional case, except that
the projector takes the form of equation (19). The simplest but
very useful example is the axially-deformed vacuum state
with K=0 of a doubly even nuclei. In this case, there is only
one term with K K0= remains in the summation over K. The
solution of (17) then becomes

E
H

N
F

N
with

1
. 20I K K

I

K K
I K

I

K K
I

0 0

0 0

0

0 0

( )= =

This represents the most primitive form of the angular–
momentum-projection theory in the old days [44–46]. It does
not contain admixture of excited configurations and thus can
describe only one ‘rotational band’, whose ‘rotational energy’
is obtained by evaluating E as a function of spin I.

However, this simple procedure already gives an energy
lower than that in equation (6) because the space spanned by
R̂ ( )∣W Fñ is larger than that consisting of just a single state ∣Fñ
which corresponds to 0W = . The energy difference between
the unprojected one in equation (6) and the projected one in
equation (20) represents the gained correlations by projection.
Thus, even from this simplest case, one recognizes that
angular–momentum-projection actually does two jobs: it
recovers the rotational quantum number violated in the mean
field and it brings additional correlations to the variational
states.

To see quantitatively the correlation energy gained by the
projection, we show the results in figure 2 obtained by the
PSM calculation for angular-momentum-projected energy
surfaces in 158Gd. The calculation is performed with a sche-
matic Hamiltonian (see section 4) for projected energies of the
axially-deformed vacuum state given in equation (20)

E
HP

P
21I

I

I
( ) ( )∣ ˆ ˆ ∣ ( )

( )∣ ˆ ∣ ( )
( )e

e e

e e
=

áF F ñ

áF F ñ

by varying the axial deformation parameter ε. It is seen in
figure 2 that the lowest energy for a given angular momentum I is
well localized at deformations varying from 0.24e » at I=0 to

0.28e » at I=12. There are local minima with negative
deformations, but they lie at several MeV higher than those with
positive deformations. Figure 2 thus indicates that 158Gd is a
stably deformed nucleus against rotation, with pronounced
energy minimum corresponding to a prolately-deformed shape.
The angular–momentum-projected minima lie at deformations
that are slightly larger than the unprojected minimum ( 0.23e » ).
The lowest projected energy minimum with I=0 is pushed
down roughly by 1.5MeV as compared to the unprojected one
(shown in figure 2 by the dashed curve). This represents the
amount of the correlation energy gained by the projection.

4. Choice of deformed basis and the Hamiltonian

The preceding discussion on angular–momentum-projection
introduced a method to construct many-body wave functions. To
complete a model, one needs to choose a Hamiltonian and define
the deformed basis. There are many different types of effective
interaction for nuclear structure calculations. Among them, the
quadrupole–quadrupole plus pairing (QQ+P) interaction [48–
52] has been widely applied to describe various nuclear proper-
ties, such as excitation energies, moments, transitions, and reac-
tion rates, for a wide range of nuclei in the medium to heavy
mass regions. This interaction is represented by two basic com-
ponents, the pairing and quadrupole forces as the short and long
range parts of the interaction, respectively. Dufour and Zuker
have shown that any realistic effective interaction is dominated
by the QQ+P interaction with the monopole terms [53]. It has
been understood that, while the quadrupole and pairing terms
take care of the main and smooth part of the structure properties,
the monopole terms play important roles for the shell evolution
and are often responsible for explaining anomalous behaviors in
spectra and transitions. Therefore, for the present pedagogical
purpose, it is sufficient to adopt the simple QQ+P force as the
main part of the Hamiltonian. Of course, the projection theory
itself is independent of the choice of interactions. For a workable
model with angular–momentum-projection, it is open to adoption
of any realistic forces.

The interaction used here consists of a sum of schematic
(i.e. QQ + monopole mairing + quadrupole pairing) forces,
which takes the form

H H Q Q G P P G P P
2

. 22M Q0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †å åc
= - - -

m
m m

m
m m

Figure 2. Angular–momentum-projected energy surface calculations
for 158Gd for the states with I=0 to I=12 as functions of axial
deformation. The unprojected (nonrotating) energies (denoted as
mean field) are also shown for comparison. This figure is taken from
figure 1 of [47] and reproduced with permission. Copyright
APS 2003.
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The first term represents the harmonic oscillator single-
particle Hamiltonian

H c c , 23a0ˆ ( )†å e=
a

a a a

N j s l l2 , 23bNj
2 2{ [ · ( )] } ( )e w k mº - + - á ña

where c†
a and ca are respectively the single-particle creation

and annihilation operator labeled by a set of the spherical
harmonic oscillator quantum numbers N j m, ,{ }a = . Note
that l is known when N and j are specified. The Fermi energy
is included in the single-particle energy (e e l -a a ) for
convenience. The parameters κ and μ in (23b), which are
commonly called Nilsson parameters and can be empirically
fitted to experiment, ensure the correct shell structure.

In PSM calculations, the Nilsson parameters are directly
adopted from the literature, once for a whole mass region
without any modification for individual nuclei. The Nilsson
parameters, κ and μ in (23b), are determined so that the
resulting single-particle energies reproduce the experimen-
tally-observed levels that characterize the single-particle
configurations for a mass region [54]. The N-dependent κ and
μ values were later suggested [40, 55] by more careful fitting
to a large body of data across the periodic table, from the light
to the superheavy mass regions, and become ‘standard’ in
describing the single-particle structure for stable nuclei. Such
a phenomenological potential, though having proven to be
very successful, has an obvious shortcoming when applied to
exotic mass regions where experimental information is lack-
ing. Therefore, modifications of the Nilsson parameters based
on very limited experimental data for the 132Sn mass region
were first attempted by Zhang et al [56]. This shortcoming in
the Nilsson model could hamper applications of the PSM in
the mass regions far from the stability. We shall comment this
later in section 7.

The one-body operators in (22) are defined (for each kind
of nucleons) by

Q c Q c , 24aˆ ( )†å=m
ab

a mab b

P c c
1

2
, 24bˆ ( )† †

¯
†å=

a
a a

P c Q c
1

2
, 24cˆ ( )† †

¯
†å=m

ab
a mab b

where ā represents the time reversal of α (c ¯ =a

Tc T cj m
Nj m

ˆ ˆ ( )† = -a
-

- ) while

Q N jm Q N j m 25NN ( ∣ ∣ ) ( )d= ¢ ¢ ¢maa m¢ ¢

is the matrix element of the SU(3) quadrupole generator,
whose matrix elements are equal to those of the dimensionless
mass quadrupole operator

r

b
Y

4

5
26

2

2 ( )p
m⎜ ⎟⎛

⎝
⎞
⎠

for N N= ¢ but vanish for N N= ¢, with b being the harmonic
oscillator length

b
m

. 272 ( )
w

=

Note the symmetry properties of the matrix element

Q Q Q Q , 28( ) ( )¯ ¯ ¯º = = -mab mab mba
m

mab-

which ensure the relations Q TQ T Q Qˆ ˆ ˆ ˆ ˆ ( ) ˆ¯
† †

º = = -m m m
m

m- .
The HFB single-particle Hamiltonian resulting from

(22) is

H H Q Q G P P P

G P P P . 29

M

Q

HFB 0ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ ) ( )

†

†

å

å

c= - á ñ - á ñ +

- á ñ +

m
m m

m
m m m

Here, á ñ means the expectation value with respect to the
HFB vacuum state 0∣ ñ.

We can adjust the nuclear size by using the conventional
harmonic oscillator parameters

a b
b

a
, , 30a0

2 0
2

( )w w= =t t t
t

b
m

a
N Z

A
, 1 30b0

2

0

1
3{ } ( )

w
= º 

-
t

with + (–) for t=neutron (proton). If we use the value

A41.46780
1
3w = - MeV, for example, we find b A fm0

2 1
3 2= .

In equation (29), there are three coupling constants, χ for
the QQ force, and GM and GQ for the monopole- and quad-
rupole-pairing force, respectively. For simplicity, both pair-
ing-type forces are assumed to act only between like nucleons
(i.e. the isovector type). The coupling constant for the
monopole pairing force, GM, is taken as

G G G
N Z

A A

1
MeV

with for neutron proton , 31

M 1 2 ( )

( ) ( ) ( )

=
-

- +

⎜ ⎟⎛
⎝

⎞
⎠

where G1 and G2 are adjusted to yield the known odd-even
mass differences. Another simpler form for the monopole
pairing force would be G G AM = t (τ=neutron and
proton), which does not contain the isotopic dependence.
For the quadrupole pairing force, we assume that the strength
GQ is simply proportional to GM with an overall constant γ

G G . 32Q M ( )g=

For PSM calculations, γ is usually fixed by choosing a value
around 0.20 (in practice, from 0.15 to 0.25).

The strength of the QQ force is related to the quadrupole
deformation parameter as follows. The second term in right-
hand side of equation (29) may be identified as the (stretched)
Nilsson potential Q2

3 0
ˆe w . Introducing x Q0

ˆwº á ñt t t and

C 1( ) c w wºtt tt t t¢ ¢ ¢
- , one obtains the self-consistent con-

dition

C x C x, ,
2

3
, 33ann n n p np p n p n( ) ( ) ( )e e e e e+ =
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C x C x, ,
2

3
, 33bpn n n p pp p n p p( ) ( ) ( )e e e e e+ =

whose solutions ne and pe are in general different from each
other. We assume as usual that the neutron and proton
deformation parameters are equal to each other, n pe e e= º .
The necessary and sufficient condition for this to be true is
that two equations of (33) reduce to a single equation, namely
they have to be linearly dependent

C C C C C0 , 34nn pp np pn np
2 ( ) ( )- = =

which is the condition for the determinant of (33) to vanish,
so that (33) and (34) lead to the iso-scalar coupling
C C Cnn pp np= = . We therefore obtain the relation

Q Q

2

3 . 35
n n p p0 0

ˆ ˆ ( )
 

 
c

e w w

w w
=

á ñ + á ñ
tt

t t

¢

¢

This is a very useful relation since the nuclear deformation is
a well studied quantity [57]. The QQ force coupling constant
corresponding to a given deformation parameter ε is thus
obtained by (35). We adopt this strategy to ensure that the QQ
force generates the correct (axial) deformation, and any
departure from the relation (35) will reduce the quality of the
model [58]. Note, however, that ctt¢ remains undetermined
for 0e = (a spherical nucleus) since both Q n0

ˆá ñ and Q p0
ˆá ñ

vanish.
The single-particle space for the PSM is large, which

usually includes three (four) major harmonic oscillation shells
each for neutrons and protons in a calculation for deformed
(superdeformed), heavy nuclei. The use of such a large size of
single-particle space ensures that the collective motion is
defined microscopically by accommodating a sufficiently
large number of active nucleons. This is in a sharp contrast to
conventional shell models based on the spherical basis, which
is normally confined in one harmonic oscillation shell.

This force model works surprisingly well despite its
simplicity. It is therefore sufficient to use it in the present
paper for presentation of the projection theory. Nevertheless,
depending on problems, this might be too restrictive and one
will have to introduce (schematic) forces of a more general
type. For example, the neutron–proton interaction is present
only in the (particle-hole type) QQ force in (22). As the force
is of the separable form, one can easily supply additional
terms to it. In [59], the two-body octupole–octupole and
hexadecupole–hexadecupole forces were introduced to the
Hamiltonian (22) to obtain necessary correlations for specific
qp configurations. In the study of β-decay and electron-cap-
ture rates, the Gamow–Teller force of the charge-exchange
terms must be included [60]. This term is a charge-dependent
separable interaction with both particle-hole (ph) and particle-
particle (pp) channels [61], which act between protons and
neutrons.

Summarizing the logical structure of the model, the
calculation proceeds in the following sequence. For each

nucleon, one first diagonalizes the Nilsson Hamiltonian

H H Q
Q Q2

3 2
36N 0 0

2 2ˆ ˆ ˆ ˆ ˆ
( )w e e= - + ¢ ++ -

⎧⎨⎩
⎫⎬⎭

with given deformation parameters ε and e¢. For the axial
deformation ε, we know it either through the connection with
the experimental transition rate of electric quadrupole and the
spectroscopic quadrupole moment [62], or from theoretical
calculations [57]. The triaxial deformation e¢, however, is
treated as an adjustable parameter, except for some cases e¢
may represent the deformation minimum in the projected
energy surface. H0

ˆ in equation (36) is the spherical single-
particle Hamiltonian containing the proper spin–orbit force
for correct shell closures [20]. For the case of axial symmetry,

0e¢ = , and the second term in the brace of equation (36)
vanishes. One then carries out the usual BCS procedure to
take the (monopole) pairing force into account. This defines
the Nilsson+BCS qp basis. The strength of the QQ force can
be evaluated by the relation (35). This fixes the Hamiltonian
(22), which is then diagonalized within the shell model space
spanned by a selected set of configurations (see next section).

In the projection theory, the effect of the rotation is fully
described by the projection operator and the whole depend-
ence of the wavefunctions on spin is contained in the eigen-
vectors since the qp basis is spin independent. This feature
makes not only the numerical treatment simple and stable but
also the interpretation of the result easy and intuitive. Now the
central task is to evaluate various projected matrix elements
efficiently. All the relevant technical details will be given in
appendix. The early version of the codes with all the matrix
element computation was published in [63].

5. Truncation of the shell-model space

Investigation in nuclear structure physics has been mainly
concentrated on two aspects: the collective motion and single
particle excitation, and more importantly, the interplay
between them. The nuclear shell model can in principle
include both aspects and describe the interplay. However, as
discussed above, the shell model calculation can be applied
only to a small range of nuclei in the nuclear chart. Moreover,
even that a shell model reproduces data nicely, one often
interprets the physics with additional help of the mean-field
models [30]. This is because a shell-model state is presented
by numerous number of basis states that do not correspond to
physical states. It is therefore conceptually interesting and
practically useful if one can represent the nuclear states with
good physical algorithms.

As we have seen, the basic concept of angular–momen-
tum-projection is diagonalization of the full many-body
Hamiltonian in the subspace spanned by a set of generating
functions R̂ ( )∣W Fñ, which depend on the continuous para-
meters Ω. This space is usually called the ‘collective space’
[2], and the resulting states are collective in nature.

We note that the final wavefunction with angular–
momentum-projection, ∣Yñ of equation (16), is written as a
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summation of the states labeled by K. Thus there is a possi-
bility that one generalizes it to express the shell-model
wavefunction as a linear combination of (angular–momen-
tum) projected states with various kinds of configurations.
These configurations, denoted by κ in the following, may
include collective ones as well as those of qp excitations, and
all these are mixed by diagonalization of residual interactions.
In this way, we approach the full shell-model problem in a
subspace characterized by collective and qp excitations. In
this practice, one has a freedom to select the configurations to
be contained in the diagonalization procedure, or equivalently
to say, to truncate the shell-model space under the physical
guidance.

Let us start with a simple example. If a †
n and a †

p are the
qp creation operators, with the index in ( ip ) denoting the
neutron (proton) quantum numbers and running over properly
selected single-qp states, and ∣Fñ the corresponding qp
vacuum, the projected multi-qp bases {∣ }F ñk for even–even
nuclei are given as follows:

P P a a P a a

P a a a a

, , ,

, . 37

MK
I

MK
I

MK
I

MK
I

i j i j

i j k l

{ ˆ ∣ ˆ ∣ ˆ ∣

ˆ ∣ } ( )

† † † †

† † † †

Fñ Fñ Fñ

Fñ ¼

n n p p

n n p p

In the bases (37), ‘K’ denotes those configurations that
contain more than two like-nucleon quasiparticles. These
high-order qp configurations have higher excitation energies
due to mutual Pauli blocking of levels. If the configurations
denoted by ‘K’ in (37) were completely included, one would
recover the full shell model space written in the representation
of qp excitation. The above concept can be considered as a
kind of Tamm–Dancoff approximation [2] to which the so-
called broken-pair approximation [64] also belongs.

For the basis states presented in (37), shell-model trun-
cation can now be implemented by simply excluding the
states of high-order quasiparticles with higher energies. We
can do this because, by using deformed bases, we know
clearly which configurations are low in energy. Usually,
configurations constructed by combinations from only a few
orbitals around the Fermi surfaces are sufficient for a
description of the low-energy qp excitations. The truncation is
thus so efficient that dimension never poses a problem even
for a description of superdeformed nuclei [65, 66] or super-
heavy nuclei [67, 68].

Similarly, we can select a set of multi-qp states {∣ }F ñk
which we want to take into account in the shell-model space
for other types of nuclei, i.e. odd-neutron, odd-proton, and
doubly-odd nuclei. These multi-qp bases can be written,
respectively, as

P a P a a a P a a a

P a P a a a P a a a

P a a P a a a a

P a a a a

, , , ,

, , , ,

, ,

, ,

38

MK
I

MK
I

MK
I

MK
I

MK
I

MK
I

MK
I

MK
I

MK
I

i i j k i j k

i i j k i j k

i j i j k l

i j k l

{ ˆ ∣ ˆ ∣ ˆ ∣ }

{ ˆ ∣ ˆ ∣ ˆ ∣ }

{ ˆ ∣ ˆ ∣

ˆ ∣ }
( )

† † † † † † †

† † † † † † †

† † † † † †

† † † †

Fñ Fñ Fñ ¼

Fñ Fñ Fñ ¼

Fñ Fñ

Fñ ¼

n n p p n n n

p p n n p p p

n p n n n p

n p p p

if one allows up to three like-nucleon quasiparticles in a
configuration. Again, if the configurations denoted by ‘K’ in
the above expressions were completely included, one would
recover the full shell model space written in the representation
of qp excitation for the respective types of nuclei.

Once the qp basis {∣ }F ñk is prepared, one diagonalizes
the Hamiltonian in the shell-model space spanned by

PMK
I{ ˆ ∣ }F ñk . This leads to the eigenvalue equation

H EN F 0 39
K

K K
I

K K
I

K
I{ } ( )å - =

k
k k k k k

¢ ¢
¢ ¢ ¢ ¢ ¢ ¢

with the normalization condition

F N F 1. 40
K K

K
I

K K
I

K
I ( )å =

k k
k k k k

¢ ¢
¢ ¢ ¢ ¢

Equations (39) and (40) are the straightforward generalization
of (17) to a multi-configuration space. The Hamiltonian and
norm elements are defined respectively by

H HP , 41aK K
I

KK
I∣ ˆ ˆ ∣ ( )= áF F ñk k k k¢ ¢ ¢ ¢

N P , 41bK K
I

KK
I∣ ˆ ∣ ( )= áF F ñk k k k¢ ¢ ¢ ¢

which is the generalization of (18). After solving the
eigenvalue equation (39), we obtain the normalized eigenstate

F P , 42IM
K

K
I

MK
I∣ ˆ ∣ ( )åY ñ = F ñ

k
k k

which is the generalization of (16).

5.1. Basis with axial symmetry

The presence of axial symmetry simplifies the equations and
numerical calculations. In particular, axial symmetry implies
that the set of quantum numbers κ in the summations con-
tains, amongst other labels, the total intrinsic magnetic
quantum number K implicitly. Therefore, the summations
over K in equations (39)–(42) may be omitted since only one
specific K contributes to the sum for a given κ. This leads to
the set of equations

H EN F 0, 43aI I I{ } ( )å - =
k

kk kk k
¢

¢ ¢ ¢

F N F 1, 43bI I I ( )å =
kk

k kk k
¢

¢ ¢

with

H HP , 44aI
KK
I∣ ˆ ˆ ∣ ( )= áF F ñkk k k¢ ¢ ¢

N P . 44bI
KK
I∣ ˆ ∣ ( )= áF F ñkk k k¢ ¢ ¢

As in this case, the index κ always means a basis state with a
certain K, solving for the eigenvalue equation (43) can be said
to carrying out K-mixing [69].

Deformed bases with axial symmetry describe many
nuclei that are understood to have a stable (prolately or obl-
ately deformed) shape. Microscopic descriptions for the
rotational motion of a stably-deformed nucleus involve
coherent contributions from many nucleons. The yrast state is
of particular interest because it carries valuable information of
how the nucleons are organized in the lowest energy state for
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a given angular momentum and how the organization
responds to the rotation. In the ground state, nuclei tend to
couple their nucleons pairwise. The (angular–momentum)
projected qp vacuum state PMK

Iˆ ∣Fñ, the first term in (37),
describes the rotational behavior of the ground band in a
deformed nucleus. As the nucleus rotates, the Coriolis force,
acting on the nucleon pairs in the intrinsic rotating frame, can
break the pairs and thus destroy the nuclear superfluidity [70].
A sudden increase in moment of inertia at a given angular
momentum is usually an indication of the pair breaking with
their spins of the nucleons aligned along with the axis of
rotation [71]. The projected 2-qp configurations in (37)
describe such spin-aligned states [22]. Mixing of the projected
qp vacuum and projected 2-qp states through diagonalization
describes the interplay between the collective ground state
and the spin-aligned ones. In this way, the experimentally-
observed backbending in moment of inertia in many well-
deformed nuclei can be described microscopically [72].

Backbending in moment of inertia in deformed nuclei is
an indication for the structure changes in a rotational band
mainly due to the interplay between the fully-paired ground
state and spin-aligned states. This can be visualized in a
diagram consisting of energies of various configurations as
functions of angular momentum. The band diagram obtained
from the PSM calculation for 48Cr [31] is shown in figure 3,
where different types of curves distinguish different config-
urations and the filled circles represent the yrast states
obtained after the configuration mixing, which are compared
with the experimental data [29] in figure 1. Among several
2-qp bands which start at energies of 2–3MeV, two of them

(one solid and one dashed curve) cross the ground band at
spin 6. They are neutron 2-qp and proton 2-qp bands con-
sisting of two f7 2 quasiparticles of 3 2W = and 5/2 coupled
to total K 5 2 3 2 1= - = . It is noticed that the crossing
angle is relatively small so that the yrast band smoothly
changes its structure from the 0-qp to the 2-qp states around
spin I=6. Therefore, no clear effect of this (first) band
crossing is seen in the yrast band (see figure 1) and it is thus
not the reason for the observed band disturbance.

The above two (K= 1) 2-qp bands can combine to a
(K= 2) 4-qp band which represents simultaneously broken
neutron and proton pairs. This 4-qp band (one of the dashed–
dotted curves which becomes the lowest band for I 10 in
figure 3) shows a unique rotational behavior as a function of
spin. As spin increases, it goes down first but turns up at spin
I=6. This behavior has its origin in the spin alignment of a
decoupled band as intensively discussed in [21]. Because of
this, it can sharply cross the 2-qp bands between spin I=8
and 10 and becomes the lowest band thereafter. The yrast
band gets the main component from this 4-qp band starting
from I=10. This is seen in the band diagram as a (second)
band crossing. Thus, we can interpret the backbending in 48Cr
as a consequence of the simultaneous breaking of the f7 2

neutron and proton pairs, thus giving a clear physical picture
about the experimentally-observed band disturbance in this
nucleus [29]. The simultaneous breaking of the f7 2 neutron
and proton pairs in the PSM corresponds to a simultaneous
excitation of two neutrons and two protons to the f7 2 orbit in
the spherical shell model language.

In addition to the above study, angular–momentum-pro-
jection on deformed bases with axial symmetry provides a
useful tool for understanding the so-called K-isomer. K-iso-
mer is an excited nuclear state, in which the larger K quantum
number inhibits its decay to other lower-K states due to the
selection rules, and endows the isomeric state with a lifetime
that can be much longer than most nuclear states [73]. The
condition for the formation of K-isomers is the existence of
high j, high Ω orbitals near the Fermi surfaces, which can
couple to form high-K states by two or more quasiparticles
[59, 74, 75]. Physically, these are precisely the basis states
with the axial symmetry labeled with K. Once the high-K
states are built in the model space, diagonalization will be
responsible for the K-mixing, and thus the underlying
mechanism for the so-called K-violation [73] is described
microscopically in the angular–momentum-projection theory.

K-isomers in superheavy elements are thought as step-
ping stones towards the possible island of stability because
their structure is relevant to the positions of the high-j single-
particle orbits, which are the key ingredient in the prediction
for the existence of the island [76]. With a good reproduction
by the PSM calculation, the experimentally-observed 184 μs
isomer at 2.5 MeV of excitation in the Z=102 and N=152
nucleus 254No was interpreted [77] to be of a 4-qp structure
with total K=16, which carries valuable structure informa-
tion on four different high-j single-particle orbitals (two for
neutrons and two for protons).

Figure 3. Diagram of angular–momentum-projected bands from the
PSM calculation for 48Cr. This figure is taken from figure 3 of [31]
and reproduced with permission. Copyright APS 1991.
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5.2. Basis with triaxiality

There are many other nuclei that do not exhibit an axial-rotor
behavior near the ground state, even not approximately.
Likely, these nuclei either have an axially asymmetric shape
or are soft without a well-defined shape. Gao et al have
pointed out [78] that triaxiality is a more general effect in
nuclei as previously thought. For these nuclei, the above
discussed basis with axial symmetry is no longer efficient.
One way to describe these nuclei is to introduce an additional
degree of freedom in the basis that breaks the axial symmetry.
One thus ends up with a triaxially-deformed basis including
both axial and triaxial deformations, described by parameters
ε and e¢ in equation (36). One should keep in mind that in this
case, the intrinsic states ∣F ñk , for example those in (37), have
no restriction in the Euler space, and therefore, the angular–
momentum-projection should be carried out in the three-
dimensional space. For the eigenvalue equations one should
therefore use the general forms given in equations (39)
and (40).

It is important to note that for the case of axial symmetry,
the qp vacuum state has K=0, whereas, in the case with
triaxial deformation, the vacuum state is a superposition of all
possible K-values. Rotational bands built based on the triax-
ial-basis states are obtained by specifying different values for
the K-quantum number appearing in the general angular-
momentum projector in equation (11). The allowed values of
the K-quantum number for a given intrinsic state are deter-
mined through the following symmetry consideration.
Applying the symmetry operator S e ı Jzˆ ˆ= p- , we have

P P S S Pe . 45MK
I

MK
I ı K

MK
Iˆ ∣ ˆ ˆ ˆ ∣ ˆ ∣ ( )† ( )Fñ = Fñ = Fñp k-

For the self-conjugate vacuum or 0-qp state, 0k = and,
therefore, it follows from the above equation that only K=
even values are permitted for this state. For 2-qp states,
a a ∣† † Fñ, the possible values for K-quantum number are both
even and odd, depending on the structure of the qp state. For
example, for a 2-qp state formed from the combination of the
normal and the time-reversed states 0k = , only K=even
values are permitted. For the combination of the two normal
states, 1k = and only K= odd states are permitted.

This additional symmetry breaking in the deformed basis
(i.e. breaking of axial symmetry) coupled with the full three-
dimensional angular–momentum-projection brings significant
effects to the calculation. We mention two examples. It was
shown [79] that the three-dimensional angular–momentum-
projection from a triaxial Nilsson+BCS deformed intrinsic
wave function is essential for a description of the low-spin
states in transitional nuclei such as 156Er, 158Yb, 176W, and
184,186,188Os. The moments of inertia of these nuclei depict a
steep increase as functions of the rotational frequency in the
region I 10< , indicating a rapid shape change with rotation,
and this can be explained only when a triaxially deformed
basis with γ-deformation of 30g »  is assumed in the basis
[79]. Using the relation tan g e e= ¢ , 30g =  corresponds to
the deformation ratio 0.58e e¢ » .

The breaking of additional symmetry in the shell-model
basis results in a much richer spectrum than the case that is

restricted to axial symmetry. Since the qp vacuum state ∣Fñ is
a mixture of K states, one can project it to all possible K.
Taking a deformed doubly-even nucleus as another example,
according to equation (45), all K= even values satisfying
K I are permitted for the 0-qp vacuum state. Therefore,
applying the projection operator to the 0-qp vacuum state, one
obtains, beside of the K=0 ground band (g-band), also the
bands belonging to K=2, 4, K. These K 0¹ bands should
lie, theoretically, at the infinity when the triaxial deformation
(denoted by e¢) is set to zero (i.e. the case with the axial
symmetry), but come down in energy with nonzero e¢.

Let us consider a well-deformed nucleus 168Er, which is
generally considered to be an axially symmetric nucleus.
Figure 4 shows the calculated energies as functions of the
triaxiality parameter e¢ for angular momenta up to I=10. In
addition to the usual g-band with spins I 0, 2, 4,= ¼, a new
set of rotational states with spins I 2, 3, 4,= ¼ appears [80].
One sees from figure 4 that, for the g-band of 168Er, the
energies as functions of triaxiality are nearly flat and their
values remain close to those at zero triaxiality. Thus, the
triaxial basis has no effect on the g-band for a well-deformed
nucleus and does not destroy the good g-band result obtained
with an axially deformed basis.

However, it has a drastic effect on excited bands (second
and higher excited bands are not shown in the figure) which
lie at very high energy when 0e¢ = . As seen in figure 4, their
excitation energies come down quickly as e¢ increases. At

0.13e¢ = , the first excited band reproduces the experimen-
tally observed γ-band in 168Er (while preserving the good

Figure 4. Calculated energies (solid lines) of the g- and γ-band in
168Er as functions of triaxiality parameter e¢ for angular momenta up
to I=10. The experimental g-band (open circles) and γ-band (open
triangles) are best reproduced by the TPSM at 0.13e¢ = . This figure
is taken from figure 1(a) of [80] and reproduced with permission.
Copyright APS 2000.
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g-band agreement). It should be noted that the excited bands
discussed here are obtained by introducing triaxiality in the
basis (i.e. the qp vacuum). They are collective excitations, but
not qp excitations. We may thus identify the first excited band
as the collective γ-band, the second excited band as the 2γ-
band, the third excited band as the 3γ-band, etc.

In figure 5, we plot all the states for spins I � 10 obtained
after diagonalization within our projected triaxial basis for the
two isotopes 166,168Er in which a 2γ-band has been reported
by experimental observations. For both isotopes, the second
excited theoretical band agrees beautifully with the exper-
imental 4+ 2g-band. Since our theory agrees very well with
the g-band and the (1-phonon) γ-band observed in these
nuclei, the present results support strongly the interpretation
of these data as 2γ-bands [80]. The effects of breaking the
axial symmetry with three-dimensional angular–momentum-
projection can also be seen in the study of electromagnetic
properties (BE(2) and g factor) [81–83].

The above two examples about the enriched shell-model
basis with both axial and triaxial quadrupole-deformations
simultaneously improve the results of the g-bands in transi-
tional nuclei and lead to a consistent description of multi-
phonon γ-bands in both transitional and well-deformed
nuclei. The resulting g- and multi-phonon γ-bands agrees
surprisingly well with the existing data, even though we have
used the simplest possible configuration space (i.e. triaxially-
deformed qp vacuum state). We thus see again the efficiency
of the properly chosen deformed states for shell-model cal-
culations. We note that two deformation parameters are
involved for determination of the basis. We have relatively
good knowledge on the axial deformation ε through its con-
nection with the experimental transition rate of electric
quadrupole and the spectroscopic quadrupole moment [62].
The triaxial deformation e¢, however, is treated here as a free
parameter, except for some cases e¢ may coincide with a
deformation minimum in the projected energy surface.

Further expanding the basis, one includes qp configura-
tions associated with the triaxially-deformed vacuum.

Inclusion of multi-qp states in a triaxially-deformed well
results in more fruitful band structures, and in particular the
interplay between the collective motion and qp excitations in
a triaxially-deformed well can be discussed. This is because
with triaxiality in the basis, a single configuration contains a
rich mixture of many possible K-states and after angular–
momentum-projection, each one of them corresponds to a
rotational band. Such an extended model is called the triaxial
projected shell model (TPSM).

The TPSM approach was employed to study the high-
spin band structures of the Er isotopes from A=156 to 170
[84]. The qp states considered are 0-qp, 2-qp neutron and
2-qp proton states, and the 4-qp state. Interesting features of
the results obtained in this approach are: (i) γ bands are quite
close to the yrast line for the neutron deficient Er isotopes, in
particular, for 156Er and 158Er. It is further evident that these γ
states become even lower in energies for high-spin states. For
156Er and 158Er, they become lower than the ground-state
band for I 14> . It was proposed that this is a feature of γ-soft
nuclei [84]. (ii) γ bands are pushed up in energy with
increasing neutron number along the isotopic chain, and
further the degree of anharmonicity of γ vibration also
increases. (iii) The wave function decomposition of the bands
demonstrates that for neutron-deficient Er isotopes, there is a
significant mixture of the γ configuration in the ground-state
band and vice versa. The neutron-rich 170Er nucleus, in
contrast, has the intrinsic structures expected for a well-
deformed nucleus with the ground-state band comprising a
nearly pure K=0 configuration.

Multi-qp band-structures in some neutron-deficient Ce-
and Nd-isotopes were also studied [85]. It was shown that
γ-band built on the 2-qp configurations can modify the band-
crossing features in these nuclei. The 2-qp γ-band with K=3
are shown to be energetically favored for some angular-
momentum states and form the first excited bands in nuclei
studied in [85]. The same approach was also extended to odd-
proton systems with the inclusion of projected one- and three
qp configurations in the shell model space. Consequently,
γ- and 2γ-bands in the odd-proton nucleus 103Nb were studied
as an example [86]. It was demonstrated that the observed
yrast- and γ-bands in 103Nb are reproduced quite well by the
TPSM approach.

5.3. Basis with both quasiparticle and phonon excitations

The above description for γ vibrational states was based on a
shell-model concept by introducing a triaxially-deformed
basis coupled with three-dimensional angular–momentum-
projection. In addition to γ-vibration, the low-energy collec-
tive motion in nuclei is characterized also by β-vibration.
Unlike the phonon model based on phonon excitations [87],
0+ collective excited states are not built in the above pro-
jection calculation. In principle, the collective 0+ states can
emerge in a shell-model calculation if one would include
many K 0=p + multi-qp states on top of the qp vacuum
configuration. However, since the states constructed in this
way are mainly qp in character, the collectivity of such a 0+

excited state is generally expected to be weak. To describe

Figure 5. The spectra up to I=10 for 166,168Er. Theoretical results
are compared with the available experimental data for the g-band and
γ-band, as well as the 4+ 2g-band in 166Er and 168Er. This figure is
taken from figure 2 of [80] and reproduced with permission.
Copyright APS 2000.
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these vibrations efficiently, one may borrow the phonon
concept and introduce the collective phonon states as com-
ponents in the total wavefunction (42).

Following this idea, the PSM basis was extended by
including not only qp excitations but also collective phonon
excitations in the basis. This more general model constructed
in a multi-shell basis, which explicitly contains all known
types of excitations (the β- and γ-excitations and qp excita-
tions plus rotational states on top of these configurations), is
termed heavy shell model [88]. For even–even nuclei the
extended basis becomes

a a a a

a a a a D D

, , ,

, , . 460 2

i j k l
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The total wavefunction is then written as
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where σ denotes different eigen-states of same angular
momentum and κ an intrinsic state in (46).

In the basis (46), there are collective pair operators, D0
†

and D2
†. Projection on states with these D-pairs is supposed to

give rise to β and γ bands

P D P D, , 48I M M
I

I M M
I

, 0 0 , 2 2∣ ˆ ∣ ∣ ˆ ∣ ( )† †Y ñ = Fñ Y ñ = Fñb g

where ∣Fñ is the usual BCS vacuum (of axial symmetry, for
simplicity). Thus these D-pairs may be viewed as collective
phonons [88]. Furthermore, combination of two D-pairs can
give rise to two-phonon states. For example, P D DM

I
0 2 2

ˆ ∣† † Fñ
corresponds to the K=0 2g state. In [89], the D0 (D2)-pair
was suggested to be the linear combination of all the 2-qp
states with K 0=p + K 2( )=p + in the PSM multi-major-shell
truncated space. The structure of D-pairs is written as follows:

D f a a D f a a, ,

49

K K K K
0

,

0 0
2

,

2 2[ ] [ ]

( )

† † † † † †å å= =
r m

rm r m
r m
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= = = =

where a a K[ ]† †
r m is the 2-qp creation operator with K=0 or 2.

ρ and μ are the qp state index, and f K
rm is the structure

amplitude, which are determined by diagonalizing the
Hamiltonian in the full 2-qp basis with given K.

Thus using the projected basis spanned by (46), one can
describe the collective β- and γ-bands, as well as various
bands of qp excitations on an equal footing. Diagonalization
describes the interplay between them. Examples of applica-
tion can be found in [90, 91]. The energy scheme of 232U is
given in figure 6 as an example. It can be seen that the
calculation well reproduces the ground band, β- and γ-bands.
According to the calculation, five 2-qp rotational bands
emerge at 960 keV, 1367 keV, 1587 keV, 1481 keV and
1487 keV with Kp=0+, 3+, 4+, 6+, and 7+, respectively. A
low-lying 4-qp rotational band with 0+ is predicted at
2520 keV with the configuration 743 7437

2

7

2
[ ] [ ]-n n

- -

+ 523 5235

2

5

2
[ ] [ ]-p p

- -
.

6. Angular momentum projection in other fields

The rotational symmetry-restoration method discussed in the
present paper provides a way to identify the main config-
urations of interest, and use these as a guidance to truncate the
full model space. The method may therefore be generally
applied beyond nuclear physics [92]. There have been
examples for application of this technique in condensed
matter physics [93] and quantum chemistry [94, 95], espe-
cially for describing electronic states in the Hubbard model
[96, 97]. Using the broken-symmetry solutions of the HFB
theory, the method of restoration of broken symmetries has
been proven particularly efficient for an application to
superconducting metallic grains [98].

It is well-known that many-electron systems often pos-
sess several symmetries. For example, the Hubbard model
[99] preserves total spin, total momentum, and some geo-
metrical symmetries on a lattice. The fact that the Hubbard
model cannot be solved analytically in arbitrary dimensions
has led to intense research into numerical methods for these
strongly correlated electron systems. It is crucially important
to identify the symmetries and quantum numbers in under-
standing the nature of the ground state, where a symmetry
breaking often occurs in the thermodynamic limit. Like in
nuclei, the broken symmetry should be restored in finite size
systems. Their excitation spectra and spectroscopic properties
result from eigenstates of specified quantum numbers and
play crucial roles in understanding the nature of low-energy
phenomena in condensed matter physics.

Restoration of the spin symmetry was carried out [96] for
the Hubbard model by considering a spin projection [100],
which is the same technique as the angular–momentum-pro-
jection discussed in the present paper. Spin rotation is per-
formed in the spin space and the spin projection is represented
by one-dimensional integral of rotation. Quantum fluctuations
were visualized in the 1D doped Hubbard model by using the
spin projection [97].

Figure 6. Comparison of the calculated and experimental g-bands, β-
and γ-band of 232U. Some 2-qp and 4-qp rotational bands are also
given as a theoretical prediction. This figure is taken from figure 4 of
[91] and reproduced with permission. Copyright APS 2014.
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In a more realistic calculation, a symmetry-projected
configuration mixing scheme to describe ground and excited
states, with well-defined quantum numbers, of the two-
dimensional Hubbard model with nearest-neighbor hopping
and periodic boundary conditions was presented in [101].
Despite of the above mentions applications, one realizes that
while symmetry projected methods have been widely used for
the nuclear physics problem, they have not been received
sufficient attention in other fields such as condensed-matter
physics and quantum chemistry. It was therefore suggested
[102] that the symmetry-projection techniques deserve further
consideration in the study of low-dimensional correlated
many-electron systems.

7. Summary and perspective

To restore quantum numbers violated by spontaneous sym-
metry breakings in nuclei one applies the projection techni-
que. Angular momentum projection is a known numerical
method to recover the rotational symmetry which, as a con-
served quantum number, lies at the foremost position in the
discussion of nuclear many-body problems. The purpose of
the present paper has been to emphasize, however, that our
understanding of angular–momentum-projection may go
beyond just a simple quantum-number restoration. Angular–
momentum-projection method can be viewed as an efficient
way of reorganizing, and more importantly, truncating the
shell-model space. It transforms the states from the intrinsic
system, where dominant excitation modes in the low-energy
region are identified by applying the concept of spontaneous
symmetry breaking, to the laboratory frame with physically
well-defined configurations. Once in the angular–momentum-
projected space, an energy-dictated, physically-guided shell-
model truncation can be easily carried out. The projected
bases are small in size but rich in physics, with which shell-
model diagonalization will never pose a dimension problem
and physical interpretation of the calculated results will
become easy.

We have proven in section 3 that angular–momentum-
projection emerges naturally if a deformed state is treated
fully quantum-mechanically in the rotational space. The
starting ansatz of the proof was the generalized wavefunction
written as a superposition of all the rotated states in the spirit
of GCM. The variational procedure led to eigenvalue
equations expressed in the projected basis. We have shown
that the generalized wavefunction, which is a superposition of
(angular–momentum) projected states, becomes an eigenstate
of angular momentum.

The above finding opens up possibilities to truncate the
shell-model space. These possibilities do not exist in con-
ventional shell models if one insists on the spherical basis. In
section 5, we have shown several examples. If one is inter-
ested mainly in the yrast properties of a well-deformed
nucleus with approximate axial symmetry, then the deformed
basis does not need to be very sophisticated but a simple
axially-deformed one. However, excited multi-qp configura-
tions are important to be included in the projected basis. If the

object nuclei either have an axially asymmetric shape or are
soft without a well-defined shape, one should rather choose a
deformed basis with triaxiality in deformation and perform
three-dimensional angular–momentum-projection. As we
have shown, such a basis is much more enriched and there are
newly emerging states corresponding to experimental obser-
vations. On the other hand, an extended version containing
additional phonon-like configurations in the projected basis
gives possibilities to study the interplay between collective β-,
γ-vibrations and qp excitations.

Technic details for the preparation of deformed qp basis,
for evaluation of contractions and overlaps, for expression of
rotated matrix elements, and for evaluation of projected
matrix elements have been given in appendix. The presenta-
tion there has closely followed the original format in [21].

Before closing the present paper, we would like to
mention two perspectives, one is technical and another is
physical. The technical one is concerning the problem of how
to compute efficiently the overlap of rotated matrix elements,
which lies at the heart of the angular–momentum-projection
theory. Although there is no problem in principle if one fol-
lows the pioneering works [103–105] for such calculation,
one may encounter a practical problem of combinatorial
complexity when more than 4-qp states are included in the
basis configurations. The problem lies in the fact that the
overlap matrix elements of multi-qp states are usually cal-
culated with the generalized Wickʼs theorem [21], For
example, as many as hundreds (thousands) terms are to be
considered to express each matrix element with 4-qp (6-qp)
state. Therefore, up to recently, 3-qp (4-qp) states have been
allowed in the multi-qp configurations that can practically be
treated in the PSM calculation, for odd-mass (even–even)
systems [59, 106].

To push the calculation further toward extremes of
angular momentum involving higher order of qp states, and to
highly-excited energy regions where the nuclear astrophysics
may find interest, a breakthrough in computational many-
body techniques is needed. In nuclear structure physics, the
Pfaffian concept has been introduced [107] as a key mathe-
matical tool for solving the long-standing problem in the
phase determination of the Onishi formula [108, 109].
Moreover, it has been shown that the Pfaffian algorithm is
very efficient also for calculating overlap matrix elements
[110–115]. In particular, by means of Fermion coherent states
and Grassmann integral, an alternative approach to calculate
the rotated matrix element for general qp states was derived
[116], which serves as a theoretical framework to extend the
PSM model space. In an initial attempt [117], the config-
uration space of the PSM has been expanded by using the
Pfaffian method to include all kinds of 4-qp and some 6-qp
states for both positive and negative parities. We expect that
the Pfaffian method for many-body computation may be a
new direction in the development of modern nuclear codes.
We note that specific problems may be encountered when
performing projection calculations, for example, in beyond-
mean-field calculations when the energy density functional is
not derived from a Hamiltonian operator [118–121].
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As for the physical perspective, we should remark on the
obvious limitation of the schematic interaction used in the
present paper. In fact, the schematic forces may make sense
only when they are used in conjunction with a single-particle
Hamiltonian which binds nucleons tightly in space such as in
the harmonic oscillator. Such a Hamiltonian does not allow
nucleons to travel far away from the rest of the nucleus and is
therefore inappropriate for the description of nuclei near the
drip lines. One needs a more realistic Hamiltonian if some
nucleons are loosely bound. Nevertheless, the framework of
the present projection theory itself is still valid for more exotic
systems.

For any nuclear structure calculations, the systematic
description of nuclei along an isotopic or isotonic chain
would fail if the empirical shell structure is not well repro-
duced. All this will naturally depend on details of the
Hamiltonian and is therefore an important constraint on the
Hamiltonian which may be used in nuclear structure pro-
blems. The ‘good’ results mentioned in the present paper rely
heavily on phenomenological adjustments on the single-par-
ticle states obtained by, for example, the Nilsson model.
Consequently, the model essentially provides no information
about the unconventional shell evolution in neutron-rich
nuclei where the single-particle structure is determined
empirically. On the other hand, it has been known that the
monopole interaction is a crucial ingredient for successful
shell-model calculations [122]. The connection between the
monopole interaction and the tensor force [123] was con-
firmed, which explains the shell evolution [124]. Recently,
novel general properties of the monopole components in the
effective interaction have been demonstrated by Otsuka et al
[125] by introducing the monopole-based universal force,
which consists of the Gaussian central force and the tensor
force. This formalism was adopted in realistic shell-model
calculations with the well-established pairing-plus-multipole
force [126]. The so-constructed shell model was applied to a
large number of nuclei in the pf and pf g5 2 9 2 shell regions for
both the near-ground-state region and high-spin excitations
[126, 127]. It remains to be seen how such a monopole-based
universal force can be combined into the Nilsson formalism
which enables changes of the traditional single-particle field
from ‘static’ to ‘dynamic’ along with the exotic shell
evolution.
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Appendix A. Deformed quasiparticle basis

It is convenient to divide a numerical calculation with angu-
lar–momentum-projection into three main parts: preparation
of the configuration space, calculation of the rotated matrix
elements, and diagonalization in the projected basis. The
following presentation closely follows the structure of the
published computer codes for angular–momentum-projection
[63] and the mathematical formulae given in [21].

Throughout the paper, we denote the annihilation
operator in the spherical harmonic oscillator basis by
c cNjm=a and its time-reversal by c Tc Tˆ ˆ¯

†= =a a

cj m
Nj m( )- -

- . It is noted that, under this phase convention
and in the real representation, the time-reversal transformation
T̂ is equivalent to the unitary operator e ı Jŷp- . Also, because of
the identity

e e e , A1 1ı J ı J ı Jx y z ( - )ˆ ˆ ˆ=p p p- - -

e ı Jx̂p- and e ı Jẑp- do not represent mutually independent
operations if the time-reversal is preserved. The former is
the so-called signature operator. In our notation, we will use
the latter to classify the basis states by defining a symmetry
operator

S e . A1 2ı Jzˆ ( - )ˆ= p-

This operator is convenient since it is diagonal in the spherical
basis while the signature operator is not. The whole set of
operators is thus classified into two classes according to

S c S c ıce , A1 3aımˆ ˆ ( - )† = = a
p

a a

S c S c ıce . A1 3bımˆ ˆ ( - )¯
† †

¯
†

¯
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2( )- - ¼ and such a quantum number is denoted as

0a > ( 0a < ) or referred to as of the class S (S̄). There is a
one-to-one correspondence between the operators in the class
S and S̄ which are related to each other through the time-
reversal transformation. Note that, for a given quantum state
α, the operators ca and c ¯

†
a belong to the same class whereas cā

and c†
a to the other. The HFB transformation should be done

within the same class of operators in order to preserve the
symmetry described by (A1-2). For convenience, we will
keep referring to the corresponding deformed single-particle
basis denoted by a set of quantum number α as an ‘Nilsson
basis’, no matter that they are created from a deformed
Nilsson or Woods–Saxon potential, or from any other
effective potentials. To be general, the following discussions
will be made to cover not only the axially symmetric
(spheroidal) deformation but also the triaxial (ellipsoidal) one.

The HFB qp operators which preserve the time-reversal
invariance and have the symmetry described by Ŝ take the
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form (in the real representation)

a U c V c , A1 4a
0

{ } ( - )¯
†å= +n

a
an a an a

>

a V c U c , A1 4b
0

{ } ( - )¯
†

¯
†å= - +n

a
an a an a

>

where the summations run over the class S only. The qp
operators (A1-4) then belong to the class S ( 0n > ). Those
belonging to the class S̄ ( 0n < ) can be obtained by applying
the time-reversal transformation to (A1-4). The inverse of
(A1-4) is given by

c U a V a , A1 5a
0

{ } ( - )¯
†å= -a

n
an n an n

>

c V a U a . A1 5b
0

{ } ( - )¯
†

¯
†å= +a

n
an n an n

>

To summarize, in our convention, the HFB transforma-
tion is carried out among the operators belonging to the same
class to ensure invariance with respect to the operator Ŝ .
Those belonging to different classes are mutually related with
each other by the time-reversal transformation T̂ . The HFB
vacuum state has the symmetry properties

S T0 0 and 0 0 . A1 6ˆ∣ ∣ ˆ∣ ∣ ( - )ñ = ñ ñ = ñ

These convenient properties avoid many common problems
to happen in the numerical calculations with angular–
momentum-projection. For example, in the phase determina-
tion of the Onishi formula [108] when the overlap of HFB
wave functions is computed, there is sign problem for which
special care needs to be taken [109,107].

Due to the unitarity of the HFB transformation, there is
an identity c c c c a a a a

0 0( ) ( )†
¯ ¯

† †
¯ ¯

†å + = å +a a a a a n n n n n> > ,
which leads to

c c c c a a a a M2 . A1 7
0 0

( ) ( ) ˆ ( - )†
¯ ¯

† †
¯ ¯

†å å- = - º
a

a a a a
n

n n n n
> >

It is an invariant operator which counts the difference
between the number of particles or quasiparticles occupying
the class S and S̄ states. Since the HFB procedure inherently
violates the conservation of the total number of particles

N c c c c , A1 8
0

ˆ ( ) ( - )†
¯
†

¯å= +
a

a a a a
>

the operator M̂ represents the ‘next best’ conserved quantity.
It commutes with Jẑ but not with Jx̂ or Jŷ and changes sign

under the time-reversal transformation, TMT Mˆ ˆ ˆ ˆ† = - .
If, for simplicity, we define the qp basis by the Nilsson

+BCS instead of the full HFB procedure, the HFB transfor-
mation amplitudes in (A1-4) become

U W u V W vand , A1 9( - )= =an an n an an n

where Wan is the Nilsson amplitude and Un and vn the BCS
amplitudes:
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a
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The amplitudes Wan in (A1-9) are obtained by diagonalizing
the (ellipsoidal) Nilsson Hamiltonian for a given set of

deformation parameters ε and e¢
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where the operators H0
ˆ and Q̂m are respectively defined by

(23) and (24). For an axially symmetric system, we
have 0e¢ = .

In practice, we do not expect that the final results with
angular–momentum-projection obtained in the Nilsson+BCS
basis differ very much from those obtained in the HFB basis.
This is because the final shell-model diagonalization can take
into account properly the main effect of the coupling between
the Quadrupole and Pairing force including the influence on
the moment of inertia as well as on the coupling between the
intrinsic (quasi-) particles and the rotating body. It is therefore
possible to use the simpler Nilsson+BCS basis. As it is the
deformed basis to start with the shell-model calculation, we
do not need to make it more sophisticated than necessary in
accordance with our basic philosophy.

It is convenient to write the relation (A1-5) in the matrix
form

c
c

U V
V U

a
a

Class S: . A1 12( - )† †= -⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Note that this matrix relation holds among the operators of
class S. For the operators of class S̄, we have the relation

c
c

U V
V U

a
a

Class S: A1 13¯ ( - )† †=
-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

which follows from (A1-5a) by applying the time-reversal
transformation T̂ . The relations U U¯ ¯ =an an and V V¯ ¯ =an an
hold representing the time-reversal symmetry of the HFB
transformation.

The rotation operator mixes the class S and S̄. It is
therefore convenient to write the above two relations in a
‘large’ form. With the definitions

U U
U

V V
V

0
0

and 0
0

. A1 14( - )= = -⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Equations (A1-12) and (A1-13) can be combined together as

c
c

U V
V U

a
a

, A1 15( - )† †=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where the operator arrays for particles and quasiparticles are
arranged as (c c c c, , ,¯

†
¯
†

a a a a) and (a a a a, , ,¯
†

¯
†

n n n n ), respectively.
Since the transformation is unitary (with real matrix
elements), the inverse of (A1-15) is given by

a
a

U V
V U

c
c

, A1 16
t

( - )† †=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where t denotes the transpose of a matrix. The ‘large’ form is
convenient for analytical derivations and the ‘small’ form for
computer coding in numerical calculations. Decomposition of
the former into the latter can be easily done by using (A1-14).
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Appendix B. Evaluation of contractions and overlap

One of the basic ingredients of the angular–momentum-pro-
jection is the description of rotation of the deformed qp basis.
It occurs in question because action of the angular–momen-
tum-projector operator (11) on the ket state, when the matrix
elements (18) are computed, involves a rotation operation of
the deformed qp basis that defines the ket state. For the dis-
cussion purpose, we first note that the rotation of the spherical
basis is attained on using the irreducible representation

R c R D c , A2 1ˆ ( ) ˆ ( ) ( ) ( - )† åW W = Wa
a

aa a
¢

¢ ¢

where, explicitly, D DNN jj mm
j( ) ( )d dW º Waa¢ ¢ ¢ ¢ . The summa-

tion extends over all possible m¢, so that the rotation mixes
two classes S and S̄. In the matrix form, one can write

R
c
c

R
D

D

c
c

0

0
. A2 2ˆ ( ) ˆ ( )

( )
( )

( - )†
†

†*
W W =

W
W

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

It is sometimes convenient to decompose the ‘large’ matrix
D ( )Waa¢ into the ‘small’ form by using the property
D D( ) ( )¯ ¯ *W = Waa aa¢ ¢ , and noting

D
D D

D D
, A2 3( ) ( ) ¯ ( )

¯ ( ) ( )
( - )

* *
W =

W W
- W W

⎡
⎣⎢

⎤
⎦⎥

where D D DNN jj
j m

m m
j¯ ( ) ( ) ( ) ( )¯ d dW º W = - Waa aa¢ ¢ ¢ ¢

- ¢
- ¢ .

Action of the rotation operator on the quasiparticles
(A1-16) can be evaluated by using (A1-15) and (A2-2). The
result is

R
a
a

R
X Y

Y X

a
a

, A2 4ˆ ( ) ˆ ( )
( ) ( )
( ) ( )

( - )†
†

†* *
W W =

W W
W W

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where

X U D U V D V , A2 5at t( ) ( ) ( ) ( - )*W = W + W

Y U D V V D U. A2 5bt t( ) ( ) ( ) ( - )*W = W + W

The ‘small’ forms of these matrices can be obtained by using
(A1-14) and (A2-3), i.e.

X
X X

X X
A2 6a( ) ( ) ¯ ( )

¯ ( ) ( )
( - )

* *
W =

W W
- W W

⎡
⎣⎢

⎤
⎦⎥

Y
Y Y

Y Y
, A2 6b( )

¯ ( ) ( )
( ) ¯ ( )

( - )
* *

W =
W - W
W W

⎡
⎣⎢

⎤
⎦⎥

where

X U D U V D V , A2 7at t( ) ( ) ( ) ( - )W = W + W

X U D U V D V , A2 7bt t¯ ( ) ¯ ( ) ¯ ( ) ( - )W = W + W

Y U D V V D U, A2 7ct t( ) ( ) ( ) ( - )W = W - W

Y U D V V D U. A2 7dt t¯ ( ) ¯ ( ) ¯ ( ) ( - )W = W - W

If the Nilsson+BCS basis is used instead of the HFB basis for
calculations, the matrix elements in (A2-7) can be explicitly
written as

X x Z X x Z, , A2 8a( ) ( ) ¯ ( ) ¯ ( ) ( - )W = W W = Wnn nn nn nn nn nn¢ ¢ ¢ ¢ ¢ ¢

Y y Z Y y Z, , A2 8b( ) ( ) ¯ ( ) ¯ ( ) ( - )W = W W = Wnn nn nn nn nn nn¢ ¢ ¢ ¢ ¢ ¢

where

x u u v v y u v v u, A2 9( - )= + = -nn n n n n nn n n n n¢ ¢ ¢ ¢ ¢ ¢

and

Z W D W Z W D W, . A2 10t t( ) ( ) ¯ ( ) ¯ ( ) ( - )W = W W = W

To evaluate matrix elements expressed by creation and
annihilation operators under rotation, we need to extend the
usual Wick theorem and define three basic ‘contractions’.
Equation (A2-4) can be slightly rewritten as

R a X a Y a R , A2 11aˆ ( ) [ ( ) ( ) ] ˆ ( ) ( - )†åW = W + W Wn
m

nm m nm m

R a Y a X a R . A2 11bˆ ( ) [ ( ) ( ) ] ˆ ( ) ( - )† †* *åW = W + W Wn
m

nm m nm m

Taking the matrix element of the first equation of (A2-11)
with respect to 0∣á and a 0∣† ñ

n ¢
, we can derive the relation (using

the abbreviation 0∣>º ñ)

a R a R X . A2 121ˆ ( ) ˆ ( ) [ ( )] ( - )†á W ñ = á W ñ Wn n nn¢
- ¢

Similarly, on taking the matrix element with respect to a0∣á n ¢

and 0∣ ñ, we derive

a a R R X Y . A2 131ˆ ( ) ˆ ( ) [ ( ) ( )] ( - )á W ñ = á W ñ W Wn n nn¢ - ¢

Finally, we take the matrix element of the second equation of
(A2-11) with respect to 0∣á and a 0∣† ñ

n ¢
to derive

R a a R Y X . A2 141ˆ ( ) ˆ ( ) [ ( ) ( )] ( - )† † *á W ñ = á W ñ W Wn n nn¢
- ¢

If we introduce the operator

R

R
, A2 15[ ]

ˆ ( )
ˆ ( )

( - )W =
W

á W ñ

the above relations can be written as

C a a X A2 16a1( ) [ ] [ ( )] ( - )†W º á W ñ = Wnn n n nn¢ ¢
- ¢

B a a X Y A2 16b1( ) [ ] [ ( ) ( )] ( - )W º á W ñ = W Wnn n n nn¢ ¢ - ¢

A a a Y X . A2 16c1( ) [ ] [ ( ) ( )] ( - )† † *W º á W ñ = W Wnn n n nn¢ ¢
- ¢

The operator (A2-15) is the three-dimensional form in space.
It can be reduced to the one-dimensional operator

e

e
A2 17

ı J

ı J

y

y

[ ] ( - )
ˆ

ˆb =
á ñ

b

b

-

-

when dealing with an axially symmetric system.
Once the unitary coefficients X ( )W and Y ( )W are

obtained, the ‘contractions’ A ( )W , B ( )W and C ( )W can be
evaluated by

C X
C C

C C
, A2 18a1( ) ( )

( ) ¯ ( )
¯ ( ) ( )

( - )
* *

W = W =
W W

- W W
-

⎡
⎣⎢

⎤
⎦⎥

B C Y
B B

B B
, A2 18b( ) ( ) ( ) ( ) ¯ ( )

¯ ( ) ( )
( - )

* *
W = W W =

W W
- W W

⎡
⎣⎢

⎤
⎦⎥

A Y C
A A

A A
, A2 18c( ) ( ) ( )

( ) ¯ ( )
¯ ( ) ( )

( - )*
* *

W = W W =
W W

- W W

⎡
⎣⎢

⎤
⎦⎥
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where the last forms of (A2-18) are their ‘small’ forms which
can be expressed in terms of small matrices of X ( )W
and Y ( )W .

The remaining question is to evaluate the overlap R̂ ( )á W ñ
appearing in equation (A2-15). The detailed derivation for it
was given in [104, 105]. For the angular–momentum-pro-
jection but without particle number projection), R̂ ( )á W ñ is a
real quantity

R Xdet . A2 19
1
2ˆ ( ) { ( )} ( - )á W ñ = W

Moreover, using the small form (A2-6a) for X ( )W , we find
that it is a positive quantity

R X DD

D X X

det det 1 ,

. A2 20

1
2

1

ˆ ( ) ∣ ( )∣{ ( )}
( ) ¯ ( ) ( - )

*á W ñ= W +

º W W-

It should be pointed out that the overlap will be a complex
quantity for some other cases. For example, if 0∣ > is a
Cranked HFB state, the quantity in equation (A2-19) is not
real since the time-reversal is broken. In the case of a
simultaneous angular momentum and particle number
projection, it is not real either since the total operator is a
sum of odd and even operator and has no definite time-
reversal transformation property. The overlap is therefore a
complex quantity in these examples. It means that, in such a
case, the determinant of the matrix X is a complex quantity.
Consequently, it is necessary to ensure that the right branch
be selected when evaluating its square root numerically since
the computer always takes the principal branch by conven-
tion, which is not necessarily the right one. If the wrong
branch is picked at a mesh point, the integration (summation)
over the group parameters may not be done properly since it
leads to a subtraction instead of an addition.

Appendix C. Evaluation of rotated matrix elements

Using the contractions A ( )W , B ( )W and C ( )W obtained in
(A2-16), it is easy to verify that the operator (A2-15) can be
expressed in the form

a B a a C a

a A a

exp
1

2
exp ln

exp
1

2
.

A3 1

[ ] ( )

( - )

† † †å å

å

W = -

´ -

nn
n nn n

nn
n nn n

nn
n nn n

¢
¢ ¢

¢
¢ ¢

¢
¢ ¢

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

Based on this relation, one can prove a generalized
contraction theorem [104] which takes the form (n n+ ¢=

even with m
n n

max 0,
2

º
- ¢⎧⎨⎩

⎫⎬⎭)
a a a a

B C A . A3 2

n n

k m

n

P

k n n n k k

1 1

2
2 2

[ ]

( ) ( ) ( ) ( ) ( - )

† †

( )åå

á W ñ

= 

¢ ¢

=

- - ¢ -

 
⎡⎣ ⎤⎦

Here, the right-hand side is a ‘permuted sum’ of products of
n n 2( )+ ¢ contractions with all possible combinations of
pairs of n n+ ¢ indices and ( ) is the parity of the

permutation. The type of the contraction between a pair of
operators is A (B) if both of them stand on the right (left) side
of [ ]W and is C if one of them stands on the left and the other
on the right side of [ ]W . The notation such as A k( ) implies a
product of k contractions of type A. This contraction rule can
be intuitively understood by studying some examples. We
give below those which involve four qp operators:

a a a a B B

B B B B ,

A3 3a

1 2 3 4 12 34

13 24 14 23

[ ] ( ) ( )

( ) ( ) ( ) ( )
( - )

á W ñ= W W

- W W + W W

a a a a B C

B C C B ,

A3 3b

1 2 3 4 12 34

13 24 14 23

[ ] ( ) ( )

( ) ( ) ( ) ( )
( - )

†á W ñ= W W

- W W + W W

a a a a B A

C C C C ,

A3 3c

1 2 3 4 12 34

13 24 14 23

[ ] ( ) ( )

( ) ( ) ( ) ( )
( - )

† †á W ñ= W W

- W W + W W

a a a a C A

C A C A ,

A3 3d

1 2 3 4 12 34

13 24 14 23

[ ] ( ) ( )

( ) ( ) ( ) ( )
( - )

† † †á W ñ= W W

- W W + W W

a a a a A A A A

A A

,

.

A3 3e

1 2 3 4 12 34 13 24

14 23

[ ] ( ) ( ) ( ) ( )

( ) ( )
( - )

† † † †á W ñ= W W - W W

+ W W

Thus, the evaluation of the ‘rotated’ matrix element can be
made by first writing

a a R a a R a a a a

A3 4
n n n n1 1 1 1

ˆ ( ) ˆ ( ) [ ]
( - )

† † † †á ¼ W ¼ ñ = á W ñá ¼ W ¼ ñ¢ ¢ ¢ ¢

and then expressing the right-hand side in terms of overlap
(A2-19) and contractions (A2-18) with the help of the rule
(A3-2).

As an example, let us consider a one-body operator Ô.
There are four kinds of ‘basic’ contractions, namely

O O a a a O a a a O, , , .

A3 5
1 2 1 2 1 2

ˆ [ ] ˆ [ ] ˆ [ ] ˆ [ ]
( - )

† † †á W ñ á W ñ á W ñ á W ñ

We can express any (higher order) contractions of Ô in terms
of these basic ones. It will be convenient to write them in the
form

O a a O a a O a a ,

A3 6a
1 2 1 2 1 2

ˆ [ ] ˆ [ ] [ ] ( ˆ [ ] )
( - )

† † † † † †á W ñ = á W ñá W ñ + W

a O a O a a a O a ,

A3 6b
1 2 1 2 1 2

ˆ [ ] ˆ [ ] [ ] ( ˆ [ ] )
( - )

† † †á W ñ = á W ñá W ñ + W

a a O O a a a a O .

A3 6c
1 2 1 2 1 2ˆ [ ] ˆ [ ] [ ] ( ˆ [ ])

( - )
á W ñ= á W ñá W ñ + W

The symbol ( [ ] )W  will be referred to as ‘linked’
contraction, which implies that contractions between external
indices (quantum numbers 1 and 2) should not be taken.
Linked contractions will vanish identically when external
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indices are contracted:

a a a a a a 0. A3 71 2 1 2 1 2([ ] ) ( [ ] ) ( [ ]) ( - )† † †W = W = W =

In fact, since 1[ ]á W ñ = , the above properties follow from
(A3-6) by taking O 1ˆ = . The vacuum contraction O( ˆ [ ])W is
identical to Ô [ ]á W ñ as there is no external index. Below, we
present formulas for the linked contractions of a general one-
body operator Ô which we separate into a c-number part and
an operator part as O O O: :ˆ ˆ ˆ= < > +

O a O a a O a a O a: :
1

2
.

A3 8

1 2 3{ }ˆ [ ]

( - )

† ( ) † ( ) † ( )å= + -
nn

n nn n n nn n n nn n
¢

¢ ¢ ¢ ¢ ¢ ¢

Matrices O 2( ) and O 3( ) are anti-symmetric. If Ô is a Hermitian
operator, then O 1( ) is Hermitian and O O3 2( ) ( )*= . In practice,
we may assume that they are real matrices.

The linked contractions of O: :ˆ become

O O: :
1

2
Tr , A3 9aB3ˆ [ ] { } ( - )( )á W ñ = -

a O a O O: : A3 9bC B C
1 2 12

1
12

3( ˆ [ ] ) ( - )† ( ) ( )W = +

O a a O: : , A3 9cC C
1 2 12

3( ˆ [ ] ) ( - )† † ( )W =

a a O O O O: : , A3 9dB B B
2 1 12

2
12

1
12

3( ˆ [ ]) ( - )( ) ( ) ( )W = - -

where the following matrices are introduced

O O B B O , A3 10aB t t1 1 1( ) ( ) ( - )( ) ( ) ( )= W - W

O O C , A3 10bC1 1 ( ) ( - )( ) ( )= W

O B O , A3 10cB t3 3( ) ( - )( ) ( )= W

O O B , A3 10dB B B3 3 ( ) ( - )( ) ( )= W

O O C , A3 10eB C B3 3 ( ) ( - )( ) ( )= W

O C O C . A3 10fC C t3 3( ) ( ) ( - )( ) ( )= W W

Similarly, for the operator

O a O a a O a a O a: :
1

2
,

A3 11

t1 3 2{ }ˆ [ ]

( - )

† † ( ) † ( ) † ( )å= + -
nn

n nn n n nn n n nn n
¢

¢ ¢ ¢ ¢ ¢ ¢

we obtain

O O: :
1

2
Tr , A3 12aB2ˆ [ ] { } ( - )† ( )á W ñ = -

a O a O O: : , A3 12bC B C
1 2 12

0
12

2( ˆ [ ] ) ( - )† † ( ) ( )W = +

O a a O: : , A3 12cC C
1 2 12

2( ˆ [ ] ) ( - )† † † ( )W =

a a O O O O: : , A3 12dB B B
2 1 12

3
12

0
12

2( ˆ [ ]) ( - )† ( ) ( ) ( )W = - -

where

O O B B O , A3 13aB t t0 1 1( ) ( ) ( - )( ) ( ) ( )= W - W

O O C , A3 13bC t0 1 ( ) ( - )( ) ( )= W

O B O , A3 13cB t2 2( ) ( - )( ) ( )= W

O O B , A3 13dB B B2 2 ( ) ( - )( ) ( )= W

O O C , A3 13eB C B2 2 ( ) ( - )( ) ( )= W

O C O C . A3 13fC C t2 2( ) ( ) ( - )( ) ( )= W W

These formulas are of much practical importance. Since the
two-body interaction of the present model is a sum of
separable forces, the direct matrix elements can be expressed
in terms of the quantities such as (A3-9) and (A3-12). This
will save much memory and computing time and is one of the
advantages of the present model. On the other hand, the
exchange matrix elements of separable forces are less
important due to the absence of the coherence (which has
been confirmed numerically in an earlier work [105]) and will
be neglected in accordance with the usual treatment of
separable forces.

Let us consider a Hermitian two-body operator repre-
senting a separable force

H O O O O O O O O

H H H

: : : : : : : :

A3 14

2

0 1 2

ˆ ˆ ˆ ˆ ˆ { ˆ ˆ } ˆ ˆ

ˆ ˆ ( - )

† † †

( ) ( ) ( )

= = á ñ + á ñ + +

º + +

where H 0( ) is a c-number and H 1ˆ ( )
H 2( ˆ )( ) is that part which

contains 2 (4) qp operators. Evaluation of H 1ˆ ( ) proceeds in the
same way as for the one-body operator, namely its vacuum
contraction is given by

H O O O: : : : A3 151 [ ] ˆ { ˆ [ ] ˆ [ ] } ( - )( ) †á W ñ = á ñ á W ñ + á W ñ

while linked contractions become

A3 16

H a a O O a a O a a

a H a O a O a a O a

a a H O a a O a a O

: : : : ,

: : : : ,

: : : : .

1
1 2 1 2 1 2

1
1

2 1 2 1 2

2 1
1

2 1 2 1

( - )

( ˆ [ ] ) ˆ {( ˆ [ ] ) ( ˆ [ ] )}

( ˆ [ ] ) ˆ {( ˆ [ ] ) ( ˆ [ ] )}

( ˆ [ ]) ˆ {( ˆ [ ]) ( ˆ [ ])}

( ) † † † † † † †

( ) † † † †

( ) †

W =á ñ W + W

W =á ñ W + W

W =á ñ W + W

The treatment of H 2ˆ ( ) is more complex. First, the vacuum
contraction is given by

H O O: : : : . A3 172 [ ] ˆ [ ] ˆ [ ] ( - )( ) †á W ñ = á W ñá W ñ

There are eight possible linked contractions for H 2ˆ ( ). The first
three are 2-qp type which are similar to those of H 1ˆ ( ) (and
may be combined with (A3-16)):

H a a O O a a

O O a a

: : : :

: : : : , A3 18a

2
1 2 1 2

1 2

( ˆ [ ] ) ˆ [ ] ( ˆ [ ] )
ˆ [ ] ( ˆ [ ] ) ( - )

( ) † † † † †

† † †

W =á W ñ W

+ á W ñ W

a H a O a O a

O a O a

: : : :

: : : : , A3 18b

1
2

2 1 2

1 2

( ˆ [ ] ) ˆ [ ] ( ˆ [ ] )
ˆ [ ] ( ˆ [ ] ) ( - )

( ) † † †

† †

W =á W ñ W

+ á W ñ W

a a H O a a O

O a a O

: : : :

: : : : . A3 18c

2 1
2

2 1

2 1

( ˆ [ ]) ˆ [ ] ( ˆ [ ])
ˆ [ ] ( ˆ [ ]) ( - )

( ) †

†

W =á W ñ W

+ á W ñ W
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The remaining five are of the 4-qp type:

H a a a a O a a O a a

O a a O a a

O a a O a a

O a a O a a

O a a O a a

O a a O a a

: : : :

: : : :

: : : :

: : : :

: : : :

: : : : ,

A3 19

2
1 2 3 4 1 2 3 4

1 2 3 4

1 3 2 4

1 3 2 4

1 4 2 3

1 4 2 3

( ˆ [ ] ) ( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )
( - )

( ) † † † † † † † † †

† † † † †

† † † † †

† † † † †

† † † † †

† † † † †

W = W W

+ W W

- W W

- W W

+ W W

+ W W

a H a a a a O a O a a

a O a O a a

a O a O a a

a O a O a a

a O a O a a

a O a O a a

: : : :

: : : :

: : : :

: : : :

: : : :

: : : : ,

A3 20

1
2

2 3 4 1 2 3 4

1 2 3 4

1 3 2 4

1 3 2 4

1 4 2 3

1 4 2 3

( ˆ [ ] ) ( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )
( - )

( ) † † † † † † †

† † † †

† † † †

† † † †

† † † †

† † † †

W = W W

+ W W

- W W

- W W

+ W W

+ W W

a a H a a a a O O a a

a a O O a a

a O a a O a

a O a a O a

a O a a O a

a O a a O a

: : : :

: : : :

: : : :

: : : :

: : : :

: : : : ,

A3 21

2 1
2

3 4 2 1 3 4

2 1 3 4

2 3 1 4

2 3 1 4

2 4 1 3

2 4 1 3

( ˆ [ ] ) ( ˆ [ ])( ˆ [ ] )

( ˆ [ ])( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )

( ˆ [ ] )( ˆ [ ] )
( - )

( ) † † † † †

† † †

† † †

† † †

† † †

† † †

W = W W

+ W W

- W W

- W W

+ W W

+ W W

a a a H a a a O a O a

a a O a O a

a a O a O a

a a O a O a

a O a a a O

a O a a a O

: : : :

: : : :

: : : :

: : : :

: : : :

: : : : ,

A3 22

3 2 1
2

4 2 1 3 4

2 1 3 4

3 1 2 4

3 1 2 4

1 4 3 2

1 4 3 2

( ˆ [ ] ) ( ˆ [ ])( ˆ [ ] )

( ˆ [ ])( ˆ [ ] )

( ˆ [ ])( ˆ [ ] )

( ˆ [ ])( ˆ [ ] )

( ˆ [ ] )( ˆ [ ])

( ˆ [ ] )( ˆ [ ])
( - )

( ) † † †

† †

† †

† †

† †

† †

W = W W

+ W W

- W W

- W W

+ W W

+ W W

a a a a H a a O a a O

a a O a a O

a a O a a O

a a O a a O

a a O a a O

a a O a a O

: : : :

: : : :

: : : :

: : : :

: : : :

: : : : .

A3 23

4 3 2 1
2

2 1 4 3

2 1 4 3

3 1 4 2

3 1 4 2

4 1 3 2

4 1 3 2

( ˆ [ ]) ( ˆ [ ])( ˆ [ ])
( ˆ [ ])( ˆ [ ])
( ˆ [ ])( ˆ [ ])
( ˆ [ ])( ˆ [ ])
( ˆ [ ])( ˆ [ ])
( ˆ [ ])( ˆ [ ])

( - )

( ) †

†

†

†

†

†

W = W W

+ W W

- W W

- W W

+ W W

+ W W

Note that, in evaluating the contractions of H 2ˆ ( ), only those
terms which factorize to two one-body contractions are
retained since they are the terms which benefit from the
maximal coherence. They represent the direct type matrix
elements. All other matrix elements are neglected since they
are of exchange types.

Let us now consider the matrix elements of the operators
H 1ˆ ( ) and H 2ˆ ( ) in (A3-14) between two multi-qp states

n a a n a a0 and 0 ,

A3 24
n n1 1

∣ { } ∣ ∣ { } ∣
( - )

† † † †F ñ = ¼ ñ F ¢ ñ = ¼ ñ¢ ¢

where the sum of the number of quasiparticles in these states
(n n+ ¢) has to be an even number. We obtain for the operator
H 1ˆ ( ):

n H n H n n

H a a n n i j

a H a n j n i

a a H n i j n

; ,

; ;

; , ,

A3 25

i j

i i

j i

1 1

1

1

1

{ }∣ ˆ [ ]∣ { } ˆ [ ] { }∣[ ]∣ { }

( )( ˆ [ ] ) { }∣[ ]∣ { }

( )( ˆ [ ] ) { }∣[ ]∣ { }

( )( ˆ [ ]) { }∣[ ]∣ { }
( - )

( ) ( )

( ) † †

( ) †

( )

å
å
å

áF ¢ W F ñ = á W ñáF ¢ W F ñ

+  W áF ¢ W F ñ

+  W áF ¢ ¢ W F ñ

+  W áF ¢ ¢ ¢ W F ñ

¢

¢ ¢

where n i j; ,∣ { }F ñ etc means a state which is obtained by
removing the quasiparticles ai

† and aj
† from the state n∣ { }F ñ.

Similarly, we obtain for the operator H 2ˆ ( ):

n H n H n n

H a a n n i j

a H a n i n i

a a H n i j n

H a a a a

n n i j k l

a H a a a

n i n i j k

a a H a a

n i j n i j

a a a H a

n i j k n i

a a a a H

n i j k l n

; ,

; ;

; ,

; , , ,

; ; , ,

; , ; ,

; , , ;

; , , , . A3 26

i j

i i

j i

i j k l

i i j k

j i i j

k j i i

l k j i

2 2

2

2

2

2

2

2

2

2

{ }∣ ˆ [ ]∣ { } ˆ [ ] { }∣[ ]∣ { }

( )( ˆ [ ] ) { }∣[ ]∣ { }

( )( ˆ [ ] ) { }∣[ ]∣ { }

( )( ˆ [ ]) { }∣[ ]∣ { }

( )( ˆ [ ] )

{ }∣[ ]∣ { }

( )( ˆ [ ] )

{ }∣[ ]∣ { }

( )( ˆ [ ] )

{ }∣[ ]∣ { }

( )( ˆ [ ] )

{ }∣[ ]∣ { }

( )( ˆ [ ])

{ }∣[ ]∣ { } ( - )

( ) ( )

( ) † †

( ) †

( )

( ) † † † †

( ) † † †

( ) † †

( ) †

( )

å
å
å
å

å

å

å

å

áF ¢ W F ñ = á W ñáF ¢ W F ñ

+  W áF ¢ W F ñ

+  W áF ¢ ¢ W F ñ

+  W áF ¢ ¢ ¢ W F ñ

+  W

´ áF ¢ W F ñ

+  W

´ áF ¢ ¢ W F ñ

+  W

´ áF ¢ ¢ ¢ W F ñ

+  W

´ áF ¢ ¢ ¢ ¢ W F ñ

+  W

´ áF ¢ ¢ ¢ ¢ ¢ W F ñ

¢

¢ ¢

¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢ ¢

The summations are over permutations. The contractions
appearing in these formulas can be evaluated by using
(A3-15) –(A3-23) and overlaps of two states by (A3-2).

Appendix D. Evaluation of projected matrix elements
and solution of the eigenvalue equation

The last step is the integration over the group parameters. The
projected matrix element between two intrinsic states in
general takes the form

n P T P n IM I M

IK I K

n T P n

,

,

. A4 1

K M
I

KM
I

K K
I

{ }∣ ˆ ˆ ˆ ∣ { } ( ∣ )
( ∣ )

{ }∣ ˆ ˆ ∣ { } ( - )

å
lm

n ln

áF ¢ F ñ = ¢ ¢

´ ¢ - ¢ ¢

´ áF ¢ F ñ

lm

n

ln n

¢ ¢
¢

¢-
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The operator T̂lm was originally considered to be a one-body
(multipole) operator but the formula is actually valid for any
spherical tensor operators. For example, we could also take it
to be 1 (norm) or Ĥ (Hamiltonian) in which case we have

0l m= = . In what follows, we will thus examine the three-
fold integration in the projected matrix element (using the
abbreviations n∣ ∣ { }Fñ º F ñ and n∣ ∣ { }F¢ñ º F ¢ ñ):

T P

I
D T R

2 1

8
d . A4 2

K K
I

K K
I

2

∣ ˆ ˆ ∣

( ) ∣ ˆ ˆ ( )∣ ( - )òp

áF¢ Fñ

=
+

W W áF¢ W Fñ

ln n

n ln

¢-

¢-

In order to accelerate the computation, it is essential to
use an efficient algorithm to evaluate the rotated matrix ele-
ment T R∣ ˆ ˆ ( )∣áF¢ W Fñln since it has to be computed at each
mesh point of Ω for all possible qp configurations taken into
account. This aspect was discussed in the previous section.
Moreover, the same rotated matrix element is used to compute
the projected matrix elements for different spins (i.e. the
dependence on I, K and K¢ comes only from the D-function)
so that we can take the advantage of this feature to speed up
the computation. Another important strategy is to reduce the
range of the integrations (i.e. the number of mesh points of Ω)
by using the symmetry properties of the integrand. Such a
consideration is especially important when carrying out a
triaxial projection (three-fold integration over complex func-
tions) which can be quite time-consuming.

The integrations in (A4-2) are evaluated by using
appropriate quadrutures (e.g. the Gauß–Legendre for β- and
trapezoidal formulas for α- and γ-integration). They are the
standard problems of the numerical analysis and will not be
discussed.

When a new code for angular–momentum-projection is
written, one might wish to test it before applying to actual
problems. In particular, the test of that part that is related to
the PSM eigenvalue equation will be essential among other
parts of the programme. In this sense, the most important
quantities are the Hamiltonian and norm matrix elements

H HP , A4 3aK K
I

KK
IN∣ ˆ ˆ ∣ ( - )= áF F ñk k k k¢ ¢ ¢ ¢

N P , A4 3bK K
I

KK
IN∣ ˆ ∣ ( - )=áF F ñk k k k¢ ¢ ¢ ¢

which constitute the basic ingredients of the PSM eigenvalue
equation.

To test the coding and check the numerical accuracy, two
sum rules

H HP , A4 4a
IM

M M
I N∣ ˆ ˆ ∣ ( - )å = áF F ñk k k k¢ ¢

N P A4 4b
IM

M M
I N∣ ˆ ∣ ( - )å =áF F ñk k k k¢ ¢

are most useful. Make the replacements P PKK
IN

KK
Iˆ ˆ¢ ¢ and

P 1Nˆ  if the particle number projection is to be omitted.
The summation over I may be terminated at a sufficiently
large value since the magnitudes of the projected matrix
elements decrease rapidly beyond a certain value of I.

For an axially symmetric system, the Hamiltonian and
norm elements are written as

H HP N Pand ,

A4 5

I
KK
IN I

KK
IN∣ ˆ ˆ ∣ ∣ ˆ ∣

( - )
= áF F ñ = áF F ñkk k k kk k k¢ ¢ ¢ ¢ ¢ ¢

where K and K¢ are respectively the conserved (intrinsic)
K-quantum number of ∣F ñk and ∣F ñk¢ , so that the summation
over M reduces to a single term with M K K= = ¢. If the
particle number projection is omitted, for example, the sum
rules become

H H Nand . A4 6
I

I

I

I∣ ˆ ∣ ∣ ( - )å å= áF F ñ = áF F ñkk k k kk k k¢ ¢ ¢ ¢

Note that both sides vanish if K K¹ ¢. It means unfortunately
that nontrivial sum rules exist only for the matrix elements of
K K= ¢ in the axially symmetric case.

Let us now turn to the discussion of how to solve the
eigenvalue equation

H EN F 0. A4 7
K

K K
I

K K
I

K
I{ } ( - )å - =

k
k k k k k

¢ ¢
¢ ¢ ¢ ¢ ¢ ¢

We introduce and work in the representation in which the
norm matrix is diagonal

N U n U . A4 8
K

K K
I

K K ( - )å =
k

k k k
s

s k
s

¢ ¢
¢ ¢ ¢ ¢

The norm eigenvalues nσ are nonnegative quantities since the
norm is a positive semi-definite matrix. However, it is quite
possible that some of them vanish. This happens under the
circumstances that the multi-qp states become linearly
dependent when they are projected. It implies that the PSM
basis contains some redundant states. Such redundant states
can be removed simply by discarding the zero-eigenvalue
solutions of (A4-8) since the norm (length) of such a state
becomes zero. In fact, we find that U U n∣á ñ =s s

s, namely

U U P 0
K K MK

IN∣ ˆ ∣åñ º F ñ =s
k k

s
k if n 0=s , which implies

nothing other than the linear dependence of the projected
multi-qp states. We may exclude all solutions of (A4-8)
corresponding to n 0=s since U∣ ñs vanishes.

In the basis of U n, 0{∣ }ñ ¹s
s , the PSM eigenvalue

equation takes the form

G V E V , A4 9aI E E ( - )å =
s

ss s s
¢

¢ ¢

G
U H U

n n
A4 9bI K K K K K

I
K ( - )å

=ss
k k k

s
k k k

s

s s
¢

¢ ¢ ¢ ¢ ¢ ¢
¢

¢

from which the eigenvaector V E
s and the energy E are

obtained. In the original muti-qp basis, the PSM amplitude
corresponding to the energy E takes the (nonunitary) form

F
V U

n
A4 10K

I
E

K ( - )å=k
s

s k
s

s

which satisfies automatically the normalization condition (40)

F N F 1, A4 11
K K

K
I

K K
I

K
I ( - )å =

k k
k k k k

¢ ¢
¢ ¢ ¢ ¢

provided that the eigenvectors of (A4-8) and (A4-9) are
normalized to unity. For axially symmetric systems, we
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remove all summations over the K-quantum numbers and
omit K in the amplitude F K

I
k as described previously.
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