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Abstract
The ground state energy eigenvalues of the symmetric three-body exotic negative ions
p+π−π− and p+ K −K − have been determined variationally for the first time using an
explicitly correlated Hylleraas basis set. Ground state energies of Ps− and p+µ−µ− were also
determined to check the accuracy of the present methodology by comparing those results to a
few accurate earlier results for these systems.

PACS numbers: 31.15ac, 31.15ve, 36.10Dr, 36.10Gv

1. Introduction

The quantum mechanical description of Coulombic
three-body exotic systems has drawn considerable attention in
recent years as the x-rays emitted from such systems provide
useful information about nuclear structure ([1] and references
therein) and the muon-catalyzed fusion process [1–3] in
stellar bodies. These exotic complexes may be formed in
experiments during the passage of hadrons through matter or
dense plasma, although they have low lifetimes [3–5]. The
estimation of the ground state energy eigenvalue of three-body
exotic systems was started long ago by Hylleraas [6], Cohen
et al [7] and Kolos et al [8], and afterwards, many workers
have investigated the structure of such three-body exotic
systems by using different theoretical methods [9–26] over
the last few decades. In this study, we have focused on a
number of exotic three-body negative ions under Coulomb
interaction. These include p+ X− X−, where X− is a π− or a
K − (first calculations of such), as well as X−

= µ−, which
is done to compare our results to previous results for this
system. Additionally, we consider Ps− for such comparison
purposes. Specifically, we calculate the ground state energy
for each of these four three-body systems.

Knowledge of the ground state energies and wave
functions of these exotic, negative three-body systems is
a necessary part of what is needed when calculating their
formation rates as well as their photon emission rates and
wavelengths. Such three-body systems are usually expected to
be formed through collision and capture processes in highly
excited states which may relax to the ground state emitting

a cascade of photons. The X− + H collision exhibits some
interesting features which are different from those of electron
or proton impacts as the masses of the negative X− ions under
consideration (i.e. µ−, π− and K −) are appreciably high.
The adiabatic Born–Oppenheimer situation characterized by
the Fermi–Teller radius RFT = 0.639 au [27, 28] is important,
which indicates that the electronically bound states become
absent if the radial distance between H and (X−) is less than
RFT. When the center-of-mass translational energy is less than
the ionization threshold (13.6 eV), the electron emission takes
place during capture of X−, giving rise to the formation of the
two-body system p+ X− [28],

X− + H(1s) → p+ X− + e−. (1)

This two-body system p+ X− can further capture a negatively
charged third particle (X−) during its passage through matter
by the collision process to form a three-body system. The
stability of the three-body system may vary depending upon
the mass of the particle (X−). It is true that hadronic hydrogen
atoms pX− (X−

= π− and K −) in the 1s state have a very
short lifetime (∼ 10−16 s for pπ− and ∼ 10−18 s for pK −) due
to prompt nuclear absorption via the strong interaction. But
the three-body ion p+ X− X− is energetically more bound than
the corresponding two-body subsystem p+ X− although the
lifetimes of these three-body systems are sufficiently small.
Recent advances in optical technologies and laser sources
make it possible to produce extreme ultraviolet light pulses as
short as 80 attoseconds [29–32]. Thus, the direct exploration
of the electronic dynamics in atoms, molecules and solids in
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Table 1. Non-relativistic energy eigenvalues −E (au) of three-body systems Ps− and p+ X− X− (X = µ, π and K ). ρ1, ρ2 are the nonlinear
parameters and N is the dimension of the triple exponent correlated wave function.

−E (au)

e+e−e− p+µ−µ− p+π−π− p+ K −K −

ρ1 = 0.5713 ρ1 = 92.538 29 ρ1 = 235.462 45 ρ1 = 780.504 17
N ρ2 = 0.1982 ρ2 = 202.046 99 ρ2 = 64.609 45 ρ2 = 152.445 83

21 0.261 922 367 52 97.561 145 45 124.682 660 67 330.735 158 77
39 0.261 987 953 27 97.566 459 42 124.689 230 31 330.785 807 88
66 0.262 002 465 63 97.566 926 21 124.690 480 20 330.799 405 15

102 0.262 004 800 83 97.566 971 97 124.690 602 16 330.800 369 33
150 0.262 005 035 95 97.566 980 68 124.690 652 64 330.800 578 96
210 0.262 005 064 05 97.566 983 12 124.690 665 04 330.800 627 66
285 0.262 005 068 09 97.566 983 99 124.690 670 39 330.800 634 36
375 0.262 005 069 25 97.566 984 36 124.690 672 56 330.800 635 84
483 0.262 005 069 74 97.566 984 52 124.690 673 58 330.800 636 47
609 0.262 005 069 97 97.566 984 59 124.690 674 07 330.800 636 77

0.262 005 070 23a 97.374 760 7c

0.262 005 068b 97.566 983 4d

affinity 0.012 005 4.646 575 5.808 481 14.285 793

a Drake et al [14].
b Saha et al [15].
c Ancarani et al [21].
d Frolovet al [22].

this time domain is gradually coming within reach. Therefore
the experimental measurement of the structural properties of
such three-body systems having very small lifetimes may be
possible in future.

2. Methodology

Here we designate the proton as particle 3 and the two
X− as particles 1 and 2. The translational invariance of the
Hamiltonian of the three-body system makes it possible to
describe the motion of the system with respect to their center
of mass in six co-ordinates. Among these six co-ordinates, r1,
r2 and r12 are the sides of the triangle formed by the particles
with the proton position being where r1 and r2 intersect,
particle 1 at the other end of r1 and particle 2 at the other
end of r2. The remaining three coordinates are the Eulerian
angles defining the orientation of the triangle in space. For
the spherically symmetric ground state, the three-body general
variational equation [33] for arbitrary angular momentum
reduces to

δ

∫ [
1

2

(
1

m1
+

1

m3

) (
∂9

∂r1

)2

+
1

2

(
1

m2
+

1

m3

) (
∂9

∂r2

)2

+
1

2

(
1

m1
+

1

m2

) (
∂9

∂r12

)2

+
1

m1

r2
1 − r2

2 + r2
12

2r1r12

(
∂9

∂r1

) (
∂9

∂r12

)
+

1

m2

r2
2 − r2

1 + r2
12

2r2r12

(
∂9

∂r2

) (
∂9

∂r12

)
+

1

m3

r2
1 + r2

2 − r2
12

2r1r2

(
∂9

∂r1

) (
∂9

∂r2

)

+(V − E)92

]
dvr1,r2,r12 = 0, (2)

where the masses are m1 = m2 = m X = {mµ, mπ , mK }

depending on the system under study with mµ = 206.

768 262 ∗ me, mπ = 273.132 426 ∗ me, mK = 966.101 6949 ∗

me and m3 = mp = 1836.152 6675 ∗ me, where me is the mass
of an electron. It should be mentioned here that me is taken
to be 1 as we have considered atomic units throughout. The
three-body potential V is expressed as

V = −
1

r1
−

1

r2
+

1

r12
. (3)

We have considered the correlated wave function in triple
exponent Hylleraas-type basis as

9(r1, r2, r12) =

∑
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∑
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∑
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Here ηi ( j) = e−ρi r j and ρ are the nonlinear parameters.
The different ρ in the Slater-type orbitals incorporate the
effect of radial correlation in the wave function, whereas the
angular correlation effect is taken care of through different
powers of r12. In a multi-exponent basis set, if there are p
number of nonlinear parameters, the number of terms in the
radially correlated basis is p(p+1)

2 and therefore the dimension
of the full basis (N ) including angular correlation will be
[ p(p+1)

2 × q], where q is the number of terms involving r12.
For example, as we have used two nonlinear parameters,
the number of terms in the radially correlated basis is 3
and with seven terms involving different powers of r12, the
dimension of the full basis (N ) becomes 21. The linear
variational parameters C (1), C (2), C (3) used in equation (4)
along with energy eigenvalue E are determined by solving the

2
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generalized eigenvalue equation [34]

H C = E S C, (5)

where H is the Hamiltonian matrix, S is the overlap matrix,
C is the column matrix consisting of linear variational
parameters and E is the energy eigenvalue. The nonlinear
parameters (ρ) are determined by the optimization procedure
using the Nelder–Mead algorithm [35]. All computations are
carried out in quadruple precision to ensure better numerical
stability for extended multiple exponent Hylleraas basis sets.

3. Results and discussion

To check the consistency of the present methodology we have
calculated the ground state energy of the positronium ion
(Ps−) for which accurate theoretical estimates are available
[6, 7, 16–20]. The Ps− ion can be visualized keeping the
positron at the origin with two electrons being the other
two identical particles and is subject to the same potential
expressed in equation (3). The computational data obtained
from our calculation are displayed in table 1. The total number
of terms (N ) in the correlated wave function is given in the
first column of table 1. In the second column, we have listed
the energy eigenvalues of the ground state of the Ps− ion
with the increasing number of terms (N ) in the wave function
along with a few other theoretical results [14, 15]. A good
convergence for the ground state energy eigenvalues of the
Ps− ion is achieved and our results agree fairly well with
other results, as is evident from table 1. It is important to
note that better results for the ground state energy of Ps−

ion may be produced from the present method by increasing
the number of nonlinear parameters in the correlated wave
function. But the aim of this paper is not to produce the
best variational upper bound of ground state energy of Ps−.
Instead, we are interested in estimating the ground state
energies of other three-body systems p+µ−µ−, p+π−π− and
p+ K −K − whose respective two-body subsystems exist. The
ground state energy eigenvalues of the Ps− ion obtained
from the present variational method certainly assures us about
the desired level of accuracy for the present purpose. The
ground state energy eigenvalues of p+µ−µ−, p+π−π− and
p+ K −K − ions are listed in subsequent columns in table 1.
The corresponding optimized nonlinear parameters are also
given in respective columns. To check the convergence of the
energy values we have increased the number of terms (N )

in the wave function up to 609 parameters (l + m + n = 11)
in a systematic manner. It is evident from table 1 that the
energy eigenvalues converge at least up to the fifth decimal
place for all the systems under investigation. A few theoretical
results for the ground state energy of p+µ−µ− exist, some of
which are listed [21, 22] in the table for a comparison with
the present results. Our result for the ground state energy
of p+µ−µ− is the lowest as yet obtained, as is evident from
table 1.

The ground state energy eigenvalues of the hydrogen-like
two-body subsystems p+µ−, p+π− and p+ K − are
−92.920 409, −118.882 193 and −316.514 844 au,
respectively. At the end of table 1, we have given the
exotic affinities (electron affinity in the case of Ps−) defined
as the difference between the ground state energy eigenvalues

of two-body and three-body systems. From the numbers
obtained as exotic affinity it appears that it increases almost
linearly with an increase in the reduced mass of the two-body
subsystem. It will be highly interesting to observe the
behavioral change in exotic affinities of such systems under
an external environment such as plasma. Our findings may
serve as a benchmark reference for future investigations in
related disciplines.
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