PAPER

Three-body negative ions under Coulomb interaction

To cite this article: S Bhattacharyya et al 2012 Phys. Scr. 85065305

View the article online for updates and enhancements.

You may also like
Characterizing entanglement with geometric entanglement witnesses Philipp Krammer

Impact of geometric factors of roughness on the dewetting dynamics of a liquid film in the Wenzel state Lei Wang, Xiang Wang and Ze-Rui Peng

Ultrafast optical currents in gapped graphene
S Azar Oliaei Motlagh, Fatemeh Nematollahi, Aranyo Mitra et al.

Three-body negative ions under Coulomb interaction

S Bhattacharyya ${ }^{1}$, J K Saha ${ }^{2}$, P K Mukherjee ${ }^{3,4}$ and T K Mukherjee ${ }^{2}$
${ }^{1}$ Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700 131, India
${ }^{2}$ Narula Institute of Technology, Agarpara, Kolkata 700 109, India
${ }^{3}$ Department of Mathematics, Visva Bharati, Santiniketan, West Bengal, 731 235, India
${ }^{4}$ Ramakrishna Mission Vivekananda University, Belur Math, West Bengal, 711 202, India
E-mail: sukhamoy.b@gmail.com

Received 22 December 2011
Accepted for publication 15 May 2012
Published 7 June 2012
Online at stacks.iop.org/PhysScr/85/065305

Abstract

The ground state energy eigenvalues of the symmetric three-body exotic negative ions $\mathrm{p}^{+} \pi^{-} \pi^{-}$and $\mathrm{p}^{+} K^{-} K^{-}$have been determined variationally for the first time using an explicitly correlated Hylleraas basis set. Ground state energies of Ps^{-}and $\mathrm{p}^{+} \mu^{-} \mu^{-}$were also determined to check the accuracy of the present methodology by comparing those results to a few accurate earlier results for these systems.

PACS numbers: $31.15 \mathrm{ac}, 31.15 \mathrm{ve}, 36.10 \mathrm{Dr}, 36.10 \mathrm{Gv}$

1. Introduction

The quantum mechanical description of Coulombic three-body exotic systems has drawn considerable attention in recent years as the x-rays emitted from such systems provide useful information about nuclear structure ([1] and references therein) and the muon-catalyzed fusion process [1-3] in stellar bodies. These exotic complexes may be formed in experiments during the passage of hadrons through matter or dense plasma, although they have low lifetimes [3-5]. The estimation of the ground state energy eigenvalue of three-body exotic systems was started long ago by Hylleraas [6], Cohen et al [7] and Kolos et al [8], and afterwards, many workers have investigated the structure of such three-body exotic systems by using different theoretical methods [9-26] over the last few decades. In this study, we have focused on a number of exotic three-body negative ions under Coulomb interaction. These include $\mathrm{p}^{+} X^{-} X^{-}$, where X^{-}is a π^{-}or a K^{-}(first calculations of such), as well as $X^{-}=\mu^{-}$, which is done to compare our results to previous results for this system. Additionally, we consider Ps^{-}for such comparison purposes. Specifically, we calculate the ground state energy for each of these four three-body systems.

Knowledge of the ground state energies and wave functions of these exotic, negative three-body systems is a necessary part of what is needed when calculating their formation rates as well as their photon emission rates and wavelengths. Such three-body systems are usually expected to be formed through collision and capture processes in highly excited states which may relax to the ground state emitting
a cascade of photons. The $X^{-}+H$ collision exhibits some interesting features which are different from those of electron or proton impacts as the masses of the negative X^{-}ions under consideration (i.e. μ^{-}, π^{-}and K^{-}) are appreciably high. The adiabatic Born-Oppenheimer situation characterized by the Fermi-Teller radius $R_{\mathrm{FT}}=0.639$ au [27,28] is important, which indicates that the electronically bound states become absent if the radial distance between H and $\left(X^{-}\right)$is less than R_{FT}. When the center-of-mass translational energy is less than the ionization threshold $(13.6 \mathrm{eV})$, the electron emission takes place during capture of X^{-}, giving rise to the formation of the two-body system $\mathrm{p}^{+} X^{-}$[28],

$$
\begin{equation*}
X^{-}+H(1 \mathrm{~s}) \rightarrow \mathrm{p}^{+} X^{-}+\mathrm{e}^{-} \tag{1}
\end{equation*}
$$

This two-body system $\mathrm{p}^{+} X^{-}$can further capture a negatively charged third particle (X^{-}) during its passage through matter by the collision process to form a three-body system. The stability of the three-body system may vary depending upon the mass of the particle $\left(X^{-}\right)$. It is true that hadronic hydrogen atoms $\mathrm{p} X^{-}\left(X^{-}=\pi^{-}\right.$and $\left.K^{-}\right)$in the 1 s state have a very short lifetime ($\sim 10^{-16} \mathrm{~s}$ for $\mathrm{p} \pi^{-}$and $\sim 10^{-18} \mathrm{~s}$ for $\mathrm{p} K^{-}$) due to prompt nuclear absorption via the strong interaction. But the three-body ion $\mathrm{p}^{+} X^{-} X^{-}$is energetically more bound than the corresponding two-body subsystem $\mathrm{p}^{+} X^{-}$although the lifetimes of these three-body systems are sufficiently small. Recent advances in optical technologies and laser sources make it possible to produce extreme ultraviolet light pulses as short as 80 attoseconds [29-32]. Thus, the direct exploration of the electronic dynamics in atoms, molecules and solids in

Table 1. Non-relativistic energy eigenvalues $-E(\mathrm{au})$ of three-body systems Ps^{-}and $\mathrm{p}^{+} X^{-} X^{-}(X=\mu, \pi$ and $K)$. ρ_{1}, ρ_{2} are the nonlinear parameters and N is the dimension of the triple exponent correlated wave function.

	$-E(\mathrm{au})$			
	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$	$\mathrm{p}^{+} \mu^{-} \mu^{-}$	$\mathrm{p}^{+} \pi^{-} \pi^{-}$	$\mathrm{p}^{+} K^{-} K^{-}$
N	$\rho_{1}=0.5713$	$\rho_{1}=92.53829$	$\rho_{1}=235.46245$	$\rho_{1}=780.50417$
21	$\rho_{2}=0.1982$	$\rho_{2}=202.04699$	$\rho_{2}=64.60945$	$\rho_{2}=152.44583$
39	0.26192236752	97.56114545	124.68266067	330.73515877
66	0.26198795327	97.56645942	124.68923031	330.78580788
102	0.26200246563	97.56692621	124.69048020	330.79940515
150	0.26200480083	97.56697197	124.69060216	330.80036933
210	0.26200503595	97.56698068	124.69065264	330.80057896
285	0.26200506405	97.56698312	124.69066504	330.80062766
375	0.26200506809	97.56698399	124.69067039	330.80063436
483	0.26200506925	97.56698436	124.69067256	330.80063584
609	0.26200506974	97.56698452	124.69067358	330.80063647
	0.26200506997	97.56698459	124.69067407	330.80063677
	$0.26200507023^{\mathrm{a}}$	97.3747607^{c}		
affinity	0.262005068^{b}	97.56698344^{d}		

${ }^{\text {a }}$ Drake et al [14].
${ }^{\mathrm{b}}$ Saha et al [15].
${ }^{\text {c }}$ Ancarani et al [21].
${ }^{\mathrm{d}}$ Frolovet al [22].
this time domain is gradually coming within reach. Therefore the experimental measurement of the structural properties of such three-body systems having very small lifetimes may be possible in future.

2. Methodology

Here we designate the proton as particle 3 and the two X^{-}as particles 1 and 2. The translational invariance of the Hamiltonian of the three-body system makes it possible to describe the motion of the system with respect to their center of mass in six co-ordinates. Among these six co-ordinates, r_{1}, r_{2} and r_{12} are the sides of the triangle formed by the particles with the proton position being where r_{1} and r_{2} intersect, particle 1 at the other end of r_{1} and particle 2 at the other end of r_{2}. The remaining three coordinates are the Eulerian angles defining the orientation of the triangle in space. For the spherically symmetric ground state, the three-body general variational equation [33] for arbitrary angular momentum reduces to

$$
\begin{align*}
\delta \int & {\left[\frac{1}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{3}}\right)\left(\frac{\partial \Psi}{\partial r_{1}}\right)^{2}+\frac{1}{2}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right)\left(\frac{\partial \Psi}{\partial r_{2}}\right)^{2}\right.} \\
& +\frac{1}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)\left(\frac{\partial \Psi}{\partial r_{12}}\right)^{2} \\
& +\frac{1}{m_{1}} \frac{r_{1}^{2}-r_{2}^{2}+r_{12}^{2}}{2 r_{1} r_{12}}\left(\frac{\partial \Psi}{\partial r_{1}}\right)\left(\frac{\partial \Psi}{\partial r_{12}}\right) \\
& +\frac{1}{m_{2}} \frac{r_{2}^{2}-r_{1}^{2}+r_{12}^{2}}{2 r_{2} r_{12}}\left(\frac{\partial \Psi}{\partial r_{2}}\right)\left(\frac{\partial \Psi}{\partial r_{12}}\right) \\
& +\frac{1}{m_{3}} \frac{r_{1}^{2}+r_{2}^{2}-r_{12}^{2}}{2 r_{1} r_{2}}\left(\frac{\partial \Psi}{\partial r_{1}}\right)\left(\frac{\partial \Psi}{\partial r_{2}}\right) \\
& \left.+(V-E) \Psi^{2}\right] \mathrm{d} v_{r_{1}, r_{2}, r_{12}}=0 \tag{2}
\end{align*}
$$

where the masses are $m_{1}=m_{2}=m_{X}=\left\{m_{\mu}, m_{\pi}, m_{K}\right\}$ depending on the system under study with $m_{\mu}=206$. $768262 * m_{\mathrm{e}}, m_{\pi}=273.132426 * m_{\mathrm{e}}, m_{K}=966.1016949 *$ m_{e} and $m_{3}=m_{\mathrm{p}}=1836.1526675 * m_{\mathrm{e}}$, where m_{e} is the mass of an electron. It should be mentioned here that m_{e} is taken to be 1 as we have considered atomic units throughout. The three-body potential V is expressed as

$$
\begin{equation*}
V=-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{r_{12}} \tag{3}
\end{equation*}
$$

We have considered the correlated wave function in triple exponent Hylleraas-type basis as

$$
\begin{align*}
\Psi\left(r_{1}, r_{2}, r_{12}\right)= & \sum_{l \geqslant 0} \sum_{m \geqslant 0} \sum_{n \geqslant 0}\left[C_{l m n}^{(1)}\left(r_{1}^{l} r_{2}^{m}+r_{1}^{l} r_{2}^{m}\right) r_{12}^{n} \eta_{1}(1) \eta_{1}(2)\right. \tag{2}\\
& +C_{l m n}^{(2)}\left\{r_{1}^{l} r_{2}^{m} \eta_{1}(1) \eta_{2}(2)+r_{1}^{m} r_{2}^{l} \eta_{1}(2) \eta_{2}(1)\right\} r_{12}^{n} \\
& \left.+C_{l m n}^{(3)}\left(r_{1}^{l} r_{2}^{m}+r_{1}^{m} r_{2}^{l}\right) r_{12}^{n} \eta_{2}(1) \eta_{2}(2)\right] . \tag{4}
\end{align*}
$$

Here $\eta_{i}(j)=\mathrm{e}^{-\rho_{i} r_{j}}$ and ρ are the nonlinear parameters. The different ρ in the Slater-type orbitals incorporate the effect of radial correlation in the wave function, whereas the angular correlation effect is taken care of through different powers of r_{12}. In a multi-exponent basis set, if there are p number of nonlinear parameters, the number of terms in the radially correlated basis is $\frac{p(p+1)}{2}$ and therefore the dimension of the full basis (N) including angular correlation will be $\left[\frac{p(p+1)}{2} \times q\right]$, where q is the number of terms involving r_{12}. For example, as we have used two nonlinear parameters, the number of terms in the radially correlated basis is 3 and with seven terms involving different powers of r_{12}, the dimension of the full basis (N) becomes 21 . The linear variational parameters $C^{(1)}, C^{(2)}, C^{(3)}$ used in equation (4) along with energy eigenvalue E are determined by solving the
generalized eigenvalue equation [34]

$$
\begin{equation*}
\underline{\underline{H}} \underline{C}=E \underline{\underline{S}} \underline{\underline{C}}, \tag{5}
\end{equation*}
$$

where \underline{H} is the Hamiltonian matrix, $\underline{\underline{S}}$ is the overlap matrix, \underline{C} is the column matrix consisting of linear variational parameters and E is the energy eigenvalue. The nonlinear parameters (ρ) are determined by the optimization procedure using the Nelder-Mead algorithm [35]. All computations are carried out in quadruple precision to ensure better numerical stability for extended multiple exponent Hylleraas basis sets.

3. Results and discussion

To check the consistency of the present methodology we have calculated the ground state energy of the positronium ion $\left(\mathrm{Ps}^{-}\right)$for which accurate theoretical estimates are available [6, 7, 16-20]. The Ps^{-}ion can be visualized keeping the positron at the origin with two electrons being the other two identical particles and is subject to the same potential expressed in equation (3). The computational data obtained from our calculation are displayed in table 1. The total number of terms (N) in the correlated wave function is given in the first column of table 1. In the second column, we have listed the energy eigenvalues of the ground state of the Ps^{-}ion with the increasing number of terms (N) in the wave function along with a few other theoretical results [14, 15]. A good convergence for the ground state energy eigenvalues of the Ps^{-}ion is achieved and our results agree fairly well with other results, as is evident from table 1. It is important to note that better results for the ground state energy of Ps^{-} ion may be produced from the present method by increasing the number of nonlinear parameters in the correlated wave function. But the aim of this paper is not to produce the best variational upper bound of ground state energy of Ps^{-}. Instead, we are interested in estimating the ground state energies of other three-body systems $\mathrm{p}^{+} \mu^{-} \mu^{-}, \mathrm{p}^{+} \pi^{-} \pi^{-}$and $\mathrm{p}^{+} K^{-} K^{-}$whose respective two-body subsystems exist. The ground state energy eigenvalues of the Ps^{-}ion obtained from the present variational method certainly assures us about the desired level of accuracy for the present purpose. The ground state energy eigenvalues of $\mathrm{p}^{+} \mu^{-} \mu^{-}, \mathrm{p}^{+} \pi^{-} \pi^{-}$and $\mathrm{p}^{+} K^{-} K^{-}$ions are listed in subsequent columns in table 1. The corresponding optimized nonlinear parameters are also given in respective columns. To check the convergence of the energy values we have increased the number of terms (N) in the wave function up to 609 parameters $(l+m+n=11)$ in a systematic manner. It is evident from table 1 that the energy eigenvalues converge at least up to the fifth decimal place for all the systems under investigation. A few theoretical results for the ground state energy of $\mathrm{p}^{+} \mu^{-} \mu^{-}$exist, some of which are listed [21, 22] in the table for a comparison with the present results. Our result for the ground state energy of $\mathrm{p}^{+} \mu^{-} \mu^{-}$is the lowest as yet obtained, as is evident from table 1.

The ground state energy eigenvalues of the hydrogen-like two-body subsystems $\mathrm{p}^{+} \mu^{-}, \mathrm{p}^{+} \pi^{-}$and $\mathrm{p}^{+} K^{-}$are $-92.920409,-118.882193$ and -316.514844 au, respectively. At the end of table 1, we have given the exotic affinities (electron affinity in the case of Ps^{-}) defined as the difference between the ground state energy eigenvalues
of two-body and three-body systems. From the numbers obtained as exotic affinity it appears that it increases almost linearly with an increase in the reduced mass of the two-body subsystem. It will be highly interesting to observe the behavioral change in exotic affinities of such systems under an external environment such as plasma. Our findings may serve as a benchmark reference for future investigations in related disciplines.

Acknowledgments

The authors are grateful for support from the Department of Atomic Energy, Government of India under grant no. 2011/37P/15/BRNS/0074. PKM acknowledges support from the Department of Science and Technology, Government of India under grant no. SR/S2/LOP- 22/2008.

References

[1] Cohen-Tannoudji C, Diu B and Laloë F 2005 Quantum Mechanics vol 1 (New York: Wiley) p 811
[2] Cohen J C 1993 Review of Fundamental Processes and Applications of Atoms and Ions (Singapore: WorldScientific) p 61
[3] Froelich P 1992 Adv. Phys. 41405
[4] Cowan T et al 1985 Phys. Rev. Lett. 541761
[5] Kulpa J and Wycech S 1996 Acta Phys. Pol. B 27941
[6] Hylleraas E A 1947 Phys. Rev. 71491
[7] Cohen S, Judd D J and Riddell R J 1958 Phys. Rev. 110 1471L
[8] Kolos W, Roothaan C C J and Sack R A 1960 Rev. Mod. Phys. 32178
[9] Frolov A M 2004 Phys. Rev. A 69022505
[10] Frolov A M 2000 Phys. Rev. E 628740 Frolov A M 2001 Phys. Rev. E 64036704
[11] Eskandari M R and Mahdavi M 2003 Phys. Rev. A 68032511
[12] Ghosal A and Ho Y K 2010 J. Phys. B: At. Mol. Opt. Phys. 43115007
[13] Bhattacharyya S et al 2007 Phys. Plasmas 14024503
[14] Drake G W F, Cassar Mark M and Nistor Razvan A 2002 Phys. Rev. A 65054501
[15] Saha B, Mukherjee T K and Mukherjee P K 2003 Chem. Phys. Lett. 373218
[16] Ho Y K 1983 J. Phys. B: At. Mol. Opt. Phys. 161503
[17] Bhatia A K and Drachman Richard J 1983 Phys. Rev. A 282523
[18] Chen Z and Lin C D 1990 Phys. Rev. A 4218
[19] Korobov V I 2000 Phys. Rev. A 61064503
[20] Krivec R, Mandelzweig V B and Varga K 2000 Phys. Rev. A 61062503
[21] Ancarani L U, Rodriguez K V and Gasane G 2011 Int. J. Quantum Chem. 1114255
[22] Frolov A M, Smith V H Jr and Komasa J 1993 J. Phys. A: Math. Gen. 266507
[23] Mohallem J R 1999 J. Phys. B: At. Mol. Opt. Phys. 323805
[24] Ackermann J and Shertzer J 1996 Phys. Rev. A 54365
[25] Arias de Saavedra F, Buendá E, Galvez F J and Sarsa A 2001 Eur. Phys. J. D 13201
[26] Alexander S A and Monkhorst H J 1988 Phys. Rev. A 3826
[27] Fermi E, Teller E and Weisskopf V 1947 Phys. Rev. 71314
[28] Sakimoto K 2002 Phys. Rev. A 66032506
[29] Hentschel M et al 2001 Nature 414509
[30] Sansone G et al 2006 Science 314443
[31] Goulielmakis E et al 2008 Science 3201614
[32] Corkum P B and Krausz F 2007 Nature Phys. 3381
[33] Mukherjee T K and Mukherjee P K 1995 Phys. Rev. A 514276
[34] Bransden B H and Joachain C J 2004 Physics of Atoms and Molecules 2nd edn (Delhi: Pearson Education) pp 133
[35] Nelder J A and Mead R 1965 Comput. J. 7308

