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Abstract
We investigated the athermal high-pressure behavior of the elastic properties of SrTiO3 (STO)
up to 26 GPa in cubic, tetragonal and orthorhombic phases using the ab initio pseudo-potential
method. Our results for the cubic phase are in good agreement with experiment and previous
pseudo-potential calculations. There are no studies for the tetragonal and orthorhombic phases
under high pressure available for comparison. To date, there are no global data on elastic
parameters under high pressure for STO. We establish data when we report the results of our
structural and elastic study under high pressure in the three phases. Our calculations show that
the cubic–tetragonal phase transition occurs at 6 GPa and the tetragonal–orthorhombic phase
transition at 14 GPa. A third and unknown phase transition from orthorhombic Cmcm to
monoclinic P21/m was observed at 24 GPa, but no study has explored it. The orthorhombic
phase is unstable and this instability may be due to ferroelectricity at high pressure. The elastic
properties of STO are also strongly pressure dependent with instabilities near the phase
transition pressure. STO is more resistant to plastic deformation and to fracture in the cubic
phase than in the tetragonal and orthorhombic phases.

PACS numbers: 62.20.Dc, 62.20.de, 71.15.Mb, 68.18.Jk, 63.70.+h, 61.50.Ks

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The understanding of the ceramic perovskite behavior under
high pressure, which is often determined by the electronic and
atomic structure in any phase, is very important in many fields,
such as geology, environmental chemistry, catalysis, thermal
coatings, microelectronics and bioengineering.

Strontium titanate is a typical ceramic perovskite
with a wide range of technological applications because
of its special properties related to ferroelectricity [1–3],
semiconductivity [4–6], superconductivity [7] and analytic
activity [8]. It has been studied over the past several years as
a structural analogue of MgSiO3, which is a major mineral
in the earth’s lower mantle [9, 10]. Since the 1960s, SrTiO3

(STO) has been extensively studied for understanding its
properties with temperature variation in both the cubic and
tetragonal phases but has not been examined under high

pressure. The orthorhombic phase remains totally unknown,
and until now there are no definitive data on STO under high
pressure.

In this paper, we report first-principles determinations
of the elastic parameters of STO as a function of
hydrostatic pressure up to 26 GPa in the cubic, tetragonal and
orthorhombic phases.

Under high pressure, strontium titanate exhibits two
phase transitions. The first one is in the 5–7 GPa range. This
phase transition is well known and is from cubic Pm3m
(O1

h ) to tetragonal phase I 4/mcm (D18
4h). This structural phase

transition involves the rotation of the TiO6 octahedra about
the [0 0 1] axis. This leads to a tetragonal lattice with a
unit cell

√
2a ×

√
2a × 2a, where a is the lattice parameter

of the original cubic unit cell; therefore the volume of the
tetragonal unit cell is about four times that of the cubic unit
cell.
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Table 1. Lattice parameters and atoms positions.

Phase Space group Lattice parameters Atom positions References

Cubic Pm3m—O1
h ac = 3.905 Å Sr(0.0, 0.0, 0.0)

(No. 221) Ti(0.5, 0.5, 0.5) [21]
O(0.5, 0.5, 0.0)

Tetragonal I 4/mcm—D18
4h aT = bT = ac

√
2 Ti(0.0, 0.0, 0.0)

(No. 140) Sr(0.0, 0.5, 0.25) [18]
cT = 2cc = 2ac O(0.0, 0.0, 0.25) [21]

O(x, 0.5 + x, 0.0) [22]
x = 0.244

Orthorhombic Cmcm—D17
2h aOr = 2ac Ti(0.0, 0.0, 0.0)

(No. 63) bOr = 2bc = 2ac Sr(0.0, 0.2498, 0.25) [20]
cOr = 2cc = 2ac O(0.0, 0.4331, 0.25) [23]

O(0.0, 0.1296, 0.0553)

The cubic–tetragonal phase transition has been observed
by several authors, e.g. Lyttle et al using x-ray diffraction [11],
Okay et al using ultrasound [12], Bonello et al using
Brillouin scattering [13], Ishidate et al using Brillouin
spectroscopy [14] and Raman scattering [15], Grzechnik
et al [16], Fleury et al using Raman scattering [17] and
Shirane et al using inelastic scattering [18].

Previous results show a phase transition at about 6 GPa
and at room temperature and it is identified as that which
occurs at atmospheric pressure and 105 K [19].

The second phase transition in STO is the
tetragonal–orthorhombic phase transition. It has been
shown in many previous works to occur with temperature
variation but has not been identified [11, 14, 18]. Under high
pressure it was observed at 15.5 GPa by Grzechnik et al [16]
and at 14 GPa by Cabaret et al [20] who identified it.

Structural phase transitions in STO perovskite provide
typical examples of displacive systems. Under pressure the
lattice symmetry changes from cubic to tetragonal and
then from tetragonal to orthorhombic. It is a sequence of
thermodynamically continuous transitions possible from the
cubic to tetragonal to orthorhombic:

Pm3m → I 4/mcm → Cmcm.

This last phase was considered with the CaIrO3 orthorhombic
perovskite structure with space group Cmcm (D17

2h) [20]. The
unit cell of the orthorhombic phase is about 2a × 2a × 2a,
where a is the lattice parameter of the original cubic unit cell;
therefore the volume of the orthorhombic unit cell is about
eight times that of the cubic unit cell. All the parameters
and atom positions in the three phases are summarized in
table 1 [21–23].

2. Calculation method

In order to investigate the elastic and structural properties
of SrTiO3 under hydrostatic pressure, we performed
ab initio calculations within the framework of the density-
functional theory (DFT) as implemented in the CASTEP
package [24, 25].

For both cubic and tetragonal phases, we have treated
exchange and correlation effects by the generalized gradient
approximation (GGA) potential of Perdew et al (PW91) [26].
Norm-conserving pseudo-potentials [27] and plane wave

expansion of the Kohn–Sham orbital up to a kinetic cutoff
of 660 eV are used. Brillouin zone (BZ) integration has been
performed over Monkhorst–Pack meshes [28] of 6 × 6 ×

6 and 5 × 5 × 3 K-points for cubic and tetragonal phases,
respectively.

Determination of the elastic stiffness coefficients requires
a knowledge of the equilibrium structure at zero pressure.
We first fully optimize the unit cell of STO at different
pressures up to 26 GPa. The structural optimization technique
uses energy optimization with variable cell shape. The
elastic stiffness coefficients are then determined from direct
computation of the stresses. The differences in energies
and stresses are well converged so that the computational
uncertainties in the elastic parameters are less than 1%.

For the orthorhombic phase, the calculations have
been done using ultra-soft pseudo-potentials and GGA
approximation. A plane wave basis is used to expand
the wavefunctions. These chosen pseudo-potentials and the
plane-wave cutoff of 340 eV and 3 × 3 × 3 K-points are
adequate to correctly represent the properties of STO
with a good convergence in a range of 16–26 GPa. No
other result could be obtained with good precision. These
pseudo-potentials include O 2s and 2p, Ti 3s, 3p, 3d and 4s
and Sr 4s, 4p and 5s, as the valence electrons.

3. Results and discussion

The elastic parameters determine the response of the crystal
to external forces, as characterized by elastic stiffness
coefficients Ci j , bulk modulus (B), shear modulus (G),
Young’s modulus (E) and Poisson’s ratio (ν), and obviously
play an important part in determining the strength of the
materials. The values of elastic parameters provide valuable
information about the bonding characteristic between adjacent
atomic planes and the anisotropic character of the bonding and
structural stability [29, 30].

The elastic stiffness coefficients are a measure of the
resistance of a crystal to an externally applied stress and
are determined by Hooke’s law. The shear modulus G
represents the resistance to plastic deformation, whereas the
bulk modulus B represents the resistance to fracture. ν is
defined as the ratio of lateral strain and axial strain, and
measures the stability of a crystal against shear. E is the
ratio of stress to strain on the loading plane along the loading
direction.
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We calculated all the parameters in the pressure range
from 0 to 26 GPa in the three phases.We present our results
in each phase and we infer the elasticity of SrTiO3 under high
pressure.

We also calculated mono-crystalline bulk modulus and
shear modulus in the Reuss approximation (BR, GR) [31]
and in the Voigt approximation (BV, GV) [32]. Then, we
utilized the Voigt–Reuss–Hill approximation (B, G). In this
approach, according to Hill [29], the Voigt and Reuss averages
are limits and the actual effective moduli for polycrystals
could be approximated from the arithmetic mean of these
two limits. The general expressions for the Voigt and Reuss
approximations for bulk and shear moduli are

BR =
1

(S11 + S22 + S33) + 2(S12 + S13 + S23)
, (1)

BV =
1
9 (C11 + C22 + C33) + 2

9 (C12 + C13 + C23), (2)

GR =
1

4(S11 +S22 +S33)−4(S12 +S13 +S23)+3(S44 + S55 + S66)
,

(3)

GV =
1

15 (C11+C22 +C33−C12−C13−C23)+ 1
5 (C44 +C55 +C66).

(4)
The Si j are the elastic compliance constants.
The Voigt–Reuss–Hill approximation gives

B =
BV + BR

2
, (5)

and

G =
GV + GR

2
. (6)

For isotropic material, Young’s modulus (E) and
Poisson’s ratio (ν) are given by the relation [29]

E =
9BG

3B + G
, (7)

and

ν =
3B − 2G

2(3B + G)
. (8)

3.1. Cubic phase

We calculated the variation of the fractional volume V/V0 as a
function of the pressure, where V0 is the conventional volume
at 0 GPa (V0 = 60.33 Å3). As shown in figure 1, the volume
decreases with increasing pressure.

The elasticity of a cubic crystal is characterized by three
independent moduli: C11, C12 and C44. Figure 2 shows the
variation of the different coefficients: C11, C12 and C44 as a
function of the pressure up to 6 GPa for the studied phase.

The calculated values at zero pressure are reported
in table 2 and compared with available experimental
and calculated data. Our results at zero pressure are in
good agreement with experimental results and previous
pseudo-potential calculations [33–37]. When the pressure
increases, the experimental studies of Beattie et al [38]
and Ishidat et al [14] are in disagreement. Our calculations
also disagree with these results. Much of the differences

Figure 1. Fractional volume as a function of the hydrostatic
pressure in cubic, tetragonal and orthorhombic phases of STO.

Figure 2. The elastic stiffness coefficients as a function of the
pressure in cubic, tetragonal and orthorhombic phases of STO.

between our results and experiment can be attributed to the
temperature; our calculations were done at T = 0 K but the
experiment was done at 300 K. The disagreement between
theoretical results may be due to the approximation used.

We remark that the material is mechanically stable in
this cubic phase because the stability conditions are satisfied:
C11 > 0, C11 > C12 and C44 > 0 up to 6 GPa.

Elastic stiffness coefficients increase monotonically with
increasing pressure. However, at several pressures, they
may decrease with increasing pressure, implying an elastic
instability like at 4–6, 12–14 and 22–24 GPa, which indicates
that a displacive transition phase occurs at these pressures.
The analysis of elastic instabilities plays an important role in
the theoretical understanding of phase transitions.

The coefficient C11 sharply increases with pressure, while
C12 and C44 do not vary much with pressure. The C11 and
C12 curves show a leap at about 6 GPa due mainly to the
phase transition. For pressures under 6 GPa, the three axes a,
b and c are the least compressible because C11 > C44 > C12

(C11 = C22 = C33) and C44 is very close to C12, indicating that
the shear along the (100) plane is easy.

For the cubic system we have C12 = C23 = C13, C44 =

C55 = C66 and S11 = S22 = S33, S12 = S23 = S13, S44 = S55 =

S66.
We obtain BR = BV = B.
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Table 2. Lattice parameters, elastic tensor (Ci j ), bulk (B) and shear (G) moduli (in GPa) of cubic STO perovskite at zero pressure compared
with previous studies.

P (GPa) a (Å) C11 C12 C44 B GV G R G

This study 3.92 366.1 91.39 102.20 182.96 116.26 113.86 115.06
Expt [33] – 317.2 102.5 122.35 174 – – –
[34] – 316 103 123 – – – –
Calc.
LDA [35] – – – 121 203 – – –
LDA [36] 3.86 421 122.1 133.2 222 – – –
PWGGA [36] 3.95 312.9 98 113.4 170 – – –
PBE [36] 3.94 319.3 97.5 113 171 – – –
BLYP [36] 3.98 290.7 93.9 110.9 159 – – –
P3PW [36] 3.90 316 92.7 120.1 167 – – –
B3LYP [36] 3.94 328.3 105.7 124.6 180 – – –
HF [36] 3.92 416.8 71.1 105 186 – – –
FP-LaPW [37] 3.94 311.08 99.04 107.66 169.72 – – –
PW-PP [37] 3.94 313.86 97.46 112.16 169.59 – – –

Figure 3. The bulk and shear moduli as a function of the pressure
in the cubic, tetragonal and orthorhombic phases of STO.

B is also given by a combination of both the C11 and C12

elastic stiffness coefficients [29]:

B = (C11 + 2C12)/3, (9)

and

GV =
2C ′ + 3C44

5
, (10)

GR =
5C ′.C44

2C44 + 3C ′
, (11)

and
C ′

= C11 − C12. (12)

Figure 3 shows the bulk modulus dependence on the
hydrostatic pressure. B increases with pressure and a leap at
about 6 GPa also appears in the bulk modulus curve.

Under hydrostatic pressure and in the cubic phase, the
STO mechanical properties are the same in all orientations.
However, we have

Ex = Ey = Ez and νxy = νyx = νzx = νxz = νyz = νzy .

All calculated values are reported in table 3. We remark
that E increases with increasing pressure and presents
instabilities near the phase transition pressure. The values

of Poisson’s ratio are associated with volume change during
uniaxial deformation.

If ν = 0.5, no volume change occurs during elastic
deformation. The low ν value for STO means that a
large volume change is associated with its deformation. In
addition, Poisson’s ratio provides more information about the
characteristics of the bonding forces than any of the other
elastic constants [39]. It has been proved that ν = 0.25 is the
lower limit for central-force solids and 0.5 is the upper limit,
which corresponds to infinite elastic anisotropy [40]. The low
ν value (substantially smaller than 0.25) indicates that STO is
relatively stable against shear and the inter-atomic forces are
non-central.

3.2. Tetragonal phase

Most of the studies have been made to calculate the elastic
stiffness coefficients of cubic STO from first principles,
whereas only a very few have been made to calculate the
elastic stiffness coefficients of low-symmetry systems such as
tetragonal systems. The main problem in estimating elastic
parameters from first principles is not only the requirement of
accurate methods for calculating the total energy, but also the
complicated heavy computations involved in the calculation
of elastic stiffness coefficients. Further, if the symmetry of
the system is reduced, the number of independent elastic
constants increases and hence a larger number of distortions
is required to calculate the full set of elastic parameters.

The variation of the fractional volume V/V0 as a function
of the pressure is shown in figure 1. We note a leap at about
6 GPa, which indicates that the phase transition under pressure
is of first order.

The elasticity of a tetragonal crystal is characterized by
six independent moduli: C11, C12, C13, C33, C44 and C66 [29],
with C11 = C22, C13 = C23, C44 = C55, C14 = C15 = C24 =

C25 = C34 = C35 = C36 = C45 = C46 = C56 = 0.
And for class I 4/mcm C16 = −C26 = 0.
Then we found

BV =
1
9 [(2C11 + C12) + C33 + 4C13] (13)

and

BR =
C2

M
(14)

4
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Table 3. Elastic tensor Ci j (in GPa) of cubic, tetragonal and orthorhombic STO perovskite under a pressure from 0 to 26 GPa.

P C11 = C22 = C33 C12 = C23 = C13 C44 = C55 = C66

Cubic phase
0 366.1 91.39 102.20
2 386.66 96.28 103.50
4 406.56 100.94 104.76
6 444.07 108.03 107.09

P C11 = C22 C33 C12 C13 = C23 C44 = C55 C66

Tetragonal phase
6 315.46 416.03 104.22 132.30 108.11 143.82
8 341.62 436.23 128.61 131.34 109.78 149.60

10 358.10 453.75 141.74 134.60 110.97 155.27
12 341.33 474.03 123.37 145.57 106.69 152.99
14 377.24 489.91 153.72 146.75 109.43 165.11

P C11 C22 C33 C12 C13 C23 C44 C55 C66

Orthorhombic phase
16 252.33 427.87 292.27 87.90 88.05 153.75 96.45 29.91 −149.87
18 281.58 438.41 295.24 102.86 91.95 171.52 103.43 40.07 −137.78
20 278.03 465.24 298.81 107.80 88.37 174.71 102.16 38.27 −138.16
22 284.38 474.85 310.30 113.52 95.73 173.14 102.87 42.80 −153.34
24 302.03 494.81 312.53 118.60 105.07 184.97 98.86 52.05 −158.81
26 312.81 512.49 339.96 120.75 114.96 193.00 102.88 50.44 −117.25

with
M = C11 + C12 + 2C33 − 4C13, (15)

C2
= (C11 + C12)C33 − 2C2

13 (16)

and
GV =

1
30 (M + 3C11 − 3C12 + 12C44 + 6C66). (17)

All these elastic constants are positive and satisfy the
well-known Born’s criteria for tetragonal crystals: C11 > 0,
C33 > 0, C44 > 0, C66 > 0, (C11 − C12) > 0, (C11 + C33 −

2C13) > 0 and {2(C11 + C12) + C33 + 4C13} > 0 [41].
All calculated values are summarized in table 3.
As shown in figure 2, from 6 to 14 GPa we find C33 >

C11 > C66 > C13 > C12 > C44.
The unit cell is elongated along the c-axis. As a result,

C33 is much larger than C11. This indicates that the c-axis is
the least compressible and the atomic bonds along the (001)
planes between nearest neighbors are stronger than those
along the (100) and (010) planes. The a and b axes become
more compressible in this phase than in the cubic one.

The C44 coefficient is lower than C66, indicating that the
shear along the (100) planes is easier relative to the shear
along the (001) planes.

The C11 elastic coefficient increases as a function of
pressure in the cubic phase more sharply than in the tetragonal
one and there is a jump of 29%. This indicates that the
compression in the tetragonal phase is easier than in the cubic
one. The C44 coefficient is relatively invariant in both the
cubic and tetragonal phases, indicating that the shear along the
(100) planes is the easiest and does not depend on the phase.

Our bulk modulus calculations, shown in figure 3 and in
table 4, show that the material is harder in the cubic phase than
in the tetragonal phase.

Young’s modulus will change depending on the direction
from which the force is applied. Anisotropy can be seen in
Poisson’s ratio. All calculated values are reported in table 5.
In this phase we have

Ex = Ey 6= Ez and νxy = νyx ,

νxz = νyz and νzx = νzy .

The Poisson’s ratio value (for νxy = νyx and νzx = νzy)
indicates that the inter-atomic forces are central and
non-central for νxz = νyz .

3.3. Orthorhombic phase

The task of calculating the elastic parameters of orthorhombic
crystals becomes even more difficult when realizing that
the strains needed to calculate some of them give rise to
geometry with very low symmetry. Possibly this is the reason
why so far no theoretical work on elastic parameters of
orthorhombic systems based on first-principles methods have
been published.

In the specific case of orthorhombic lattices, the
elasticity is characterized by nine independent moduli:
C11, C22, C33, C12, C13, C23, C44, C55 and C66 [29], with

C14 = C15 = C16 = C24 = C25 = C26 = C34

= C35 = C36 = C45 = C46 = C56 = 0.

In our calculations, we cannot use the norm-conserving
pseudo-potential [27] as for the cubic and tetragonal
phases. After many calculations we have chosen ultra-soft
pseudo-potential to correctly represent the elastic parameters
of SrTiO3 with good convergence, but only in a range of
16–26 GPa.

5
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Table 4. Lattice parameters (a, b, c in Å), bulk (BV, BR) and shear (GV, GR) moduli (in GPa) of cubic, tetragonal and orthorhombic STO
perovskite under pressure up 26 GPa.

P a = b = c BR = BV GR GV

Cubic phase
0 3.92 182.96 113.86 116.26
2 3.91 193.07 116.93 118.58
4 3.89 202.81 119.83 121.90
6 3.88 220.04 125.26 128.36

P a = b c BR BV GR GV

Tetragonal phase
6 5.44 7.82 193.20 198.29 115.10 117.21
8 5.42 7.81 208.76 211.34 119.84 122.38

10 5.40 7.79 219.31 221.31 122.92 126.04
12 5.41 7.74 214.21 220.63 119.33 122.75
14 5.37 7.75 234.96 237.65 125.47 129.94

P a b c BR BV GR GV

Orthorhombic phase
16 3.09 12.84 6.01 181.32 168.49 38.15 87.60
18 3.08 12.84 5.98 194.21 181.58 44.40 106.16
20 3.06 12.82 5.95 198.20 181.62 45.20 104.48
22 3.04 12.80 5.92 203.81 188.23 44.27 110.72
24 3.03 12.78 5.89 214.07 198.26 45.14 120.60
26 3.01 12.77 5.87 224.74 209.75 56.32 130.05

The calculated elastic stiffness coefficients are shown in
table 3. All constants, except for C66, obey the mechanical
stability criteria given by (C22 + C33 − 2C23) > 0, (C11 +
C22 + C33 + 2C12 + 2C13 + 2C23) > 0, C11 > 0, C22 > 0, C33 >

0, C44 > 0, C55 > 0 and C66 > 0 [42].
At 14 GPa it was not possible to calculate the parameters;

then we extrapolated the curve volume versus pressure for
determining the volumes V0 = 270 Å3 at 0 GPa and V =

241.6 Å3 at 14 GPa. In figure 1, we show that the phase
transition tetragonal–orthorhombic is of first order and the
leap is 7.39%.

No data for the elastic stiffness coefficients of the
orthorhombic SrTiO3 perovskite are currently available for
any pressure. Our elastic stiffness coefficients at high
pressures from 16 to 26 GPa are shown in figure 2 and table 3.
We find C22 > C33 > C11 > C23 > C12 > C44 > C13 > C55.
This indicates that, in this phase, the b-axis is the least
compressible and the a-axis is more compressible than the
c-axis. Elastic stiffness coefficients associated with shear
strains also change with pressure in different manners. At high
pressure, C55 becomes much smaller than C44, indicating that
the shear along the (010) plane becomes easy relative to the
shear along the (100) planes.

The negative values of C66 indicate that the shear along
the (001) plane is unstable.

The possibility of STO crystallizing in orthorhombic
phase is not eliminated because this phase was observed
experimentally [20], but this instability may be due to other
causes like ferroelectricity.

It has been commonly accepted for more than 30 years
that hydrostatic pressure in insulating perovskites tends
to suppress ferroelectricity. It is shown that such a trend

is no longer valid at high pressure, both experimentally
and theoretically. The ferroelectricity appears above a
critical value of pressure. This unexpected high-pressure
ferroelectricity is different in nature from conventional
ferroelectricity, because it is driven by an original electronic
effect rather than by long-range ionic interactions [43–45].
For STO, the critical pressure inducing this instability is the
phase transition tetragonal–orthorhombic pressure (14 GPa).

The Reuss bulk and shear moduli and the Voigt bulk
and shear moduli are calculated from equations (1)–(4) [29].
All calculated values are summarized in table 4. In figure 3,
we remark that B and G are lower than in tetragonal and
cubic phases, indicating that STO is more resistant to plastic
deformation and to fracture in cubic phase than in tetragonal
and orthorhombic phases.

All calculated values of Young’s modulus and Poisson’s
ratio are reported in table 5. In this orthorhombic phase, we
have: Ex 6= Ey 6= Ez and

νxy 6= νyx 6= νxz 6= νyz 6= νzx 6= νzy .

We clearly show the anisotropy in Young’s modulus and
Poisson’s ratio as a function of the pressure along different
directions.

4. Octahedral tilting in cubic perovskites

The octahedral tilting in cubic perovskites has been identified
by a number of authors [46–50]. Howard and Stokes [50],
using more formal group theoretical methods, listed 15
possible space groups for perovskites with octahedral tilting
and gave a schematic representation of space groups derivable
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Table 5. Young’s modulus (in GPa) and Poisson’s ratio of cubic, tetragonal and orthorhombic STO perovskite under pressure from 0 to
26 GPa.

P (GPa) Young’s modulus, E (GPa) Poisson’s ratio, ν

Ex = Ey = Ez νxy = νyx = νzx = νxz = νyz = νzy

Cubic phase
0 329.59 0.1998
2 348.27 0.1994
4 366.41 0.1989
6 401.79 0.1957

P (GPa) Ex = Ey Ez νxy = νyx νxz = νyz νzx = νzy

Tetragonal phase
6 259.26 332.61 0.2273 0.2457 0.3152
8 275.81 362.86 0.2949 0.2123 0.2793

10 285.59 381.26 0.3200 0.2017 0.2693
12 275.77 382.83 0.2652 0.2257 0.3133
14 297.14 408.79 0.3293 0.2009 0.2764

P (GPa) Ex Ey Ez νxy νyx νxz νyz νzx νzy

Orthorhombic phase
16 220.82 339.33 223.41 0.1198 0.1842 0.2382 0.4706 0.2410 0.3098
18 245.73 329.10 217.75 0.1459 0.1955 0.2267 0.5201 0.2009 0.3441
20 243.22 350.58 224.14 0.1546 0.2228 0.2054 0.5188 0.1892 0.3317
22 245.30 364.06 235.68 0.1589 0.2358 0.2198 0.4852 0.2112 0.3141
24 258.45 373.40 229.90 0.1464 0.2115 0.2495 0.5207 0.2220 0.3206
26 266.30 391.68 250.29 0.1377 0.2025 0.2600 0.4992 0.2444 0.3190

by octahedral rotations from the cubic parent structure
Pm3m. Structures are also identified by the pattern of
octahedral rotation in the notation of Glazer [46]. According
to this schematic representation, the anomaly observed in
figures 2 and 3 at 22–24 GPa may be a third phase transition
from Cmcm to monoclinic P21/m at about 24 GPa. Further
experimental works can verify this observation.

5. Conclusion

In summary, by means of first-principles PW91-GGA total
energy calculations, we have predicted the elastic properties
of SrTiO3. We have established data for structural and
elastic parameters under pressure up to 26 GPa for cubic,
tetragonal and orthorhombic phases. Our analysis of these
data showed that, for SrTiO3, the cubic and tetragonal phases
are stable. We noted at 4, 12 and 22 GPa nonlinear behavior
of the elastic stiffness coefficients. Theses anomalies are
due to the pre-transitional phases. The orthorhombic phase
is unstable and this instability may be due to a transition
from paraelectric to ferroelectric. The easiest deformation
mechanism in both cubic and tetragonal phases is the shear
along the (100) plane and is independent of the two phases.
We predict a third phase transition orthorhombic–monoclinic
at 24 GPa. All our computations reveal that more experiments
need to be performed to ascertain the true nature of
the instability of orthorhombic STO and the monoclinic
phase.

The elastic properties of STO are also strongly pressure
dependent. STO is more resistant to plastic deformation and
to fracture in cubic phase than in tetragonal and orthorhombic
phases.
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